=NUMERICAL METHODS=

Implicit Euler Scheme for an Abstract Evolution Inequality

R. Z. Dautov and A. I. Mikheeva

Kazan Federal University, Kazan, Russia Received December 10, 2010

Abstract—For a triple $\{V, H, V^*\}$ of Hilbert spaces, we consider an evolution inclusion of the form $u'(t) + A(t)u(t) + \partial\phi(t, u(t)) \ni f(t), u(0) = u_0, t \in (0, T]$, where A(t) and $\phi(t, \cdot), t \in [0, T]$, are a family of nonlinear operators from V to V^* and a family of convex lower semicontinuous functionals with common effective domain $D(\phi) \subset V$. We indicate conditions on the data under which there exists a unique solution of the problem in the space $H^1(0,T;V) \cap W^1_{\infty}(0,T;H)$ and the implicit Euler method has first-order accuracy in the energy norm.

DOI: 10.1134/S0012266111080076

The aim of the present paper is to state conditions guaranteeing the first-order accuracy of the implicit Euler method in the energy norm for the following problem: find a function $u(t) \in D(\phi)$ with $u(0) = u_0$ such that the inequality

$$\langle u'(t) + A(t)u(t) - f(t), v - u(t) \rangle + \phi(t, v) - \phi(t, u(t)) \ge 0$$
(1)

holds for each $v \in D(\phi)$ and for almost all $t \in (0, T]$, which is equivalent to the relation $u'(t) + A(t)u(t) + \partial\phi(t, u(t)) \ni f(t)$, where $\partial\phi : \mathcal{V} \to \mathcal{V}^*$ is the subdifferential of ϕ . This problem was earlier considered in [1, 2] for the case in which the functional ϕ does not explicitly depend on t. (The operators A(t) were assumed in [1] to be linear, and the case of A(t) = 0 was considered in [2].) We generalize the results of these papers by using the studies in [1]. The energy norm is defined by the formula

 $||v||_E = ||v||_{L_{\infty}(0,T;H)} + ||v||_{L_2(0,T,V)}.$

1. NOTATION AND ASSUMPTIONS

Let V and H be separable Hilbert spaces with dense continuous embeddings $V \subset H = H^* \subset V^*$, and let $\langle \cdot, \cdot \rangle$ be the duality pairing between V^* and V. For a given Banach space X, we define the spaces $L_p(0,T;X)$ and $W_p^k(0,T;X)$, $p \in [1,\infty]$, $k \geq 0$, and the norms in them in a standard way (e.g., see [3, Chap. 4]). Set

$$\mathcal{V} = L_2(0,T;V), \qquad \mathcal{V}^* = L_2(0,T;V^*), \qquad H^1(0,T;X) = W_2^1(0,T;X), \\ \mathcal{D}(\phi) = \{ v \in \mathcal{V} : \phi(t,v(t)) \in L_1(0,T) \}.$$

We impose the following constraints on data of problem (1): (A_1) A(t)0 = 0; the estimates

$$\begin{aligned} \langle A(t)u - A(t)v, u - v \rangle &\geq \alpha \|u - v\|_{V}^{2}, \qquad \alpha = \text{const} > 0, \\ \|A(t)u - A(t)v\|_{V^{*}} &\leq m_{0}(t)\|u - v\|_{V}, \qquad \|A'(t)v\|_{V^{*}} \leq m_{1}(t)\|v\|_{V}, \\ M &= \|m_{0}\|_{L_{2}(0,T)} + \|m_{1}\|_{L_{2}(0,T)} < \infty \end{aligned}$$

[A'(t) = dA(t)/dt] hold for arbitrary $u, v \in V$ and for almost all $t \in [0, T]$.

 (A_2) The functional $v \to \phi(t, v)$ is proper convex and lower semicontinuous on V for each $t \in [0, T]$, and its effective domain

$$D(\phi) = \{ v \in V : \phi(t, v) < \infty \}$$

is independent of $t; 0 \in D(\phi)$.

(A₃) If $\chi : [0,T] \to V^*$ is a subgradient of ϕ at zero, i.e., if $\phi(t,v) - \phi(t,0) \ge \langle \chi(t),v \rangle$ for all $v \in D(\phi)$, then $\chi \in H^1(0,T;V^*)$.

 $(A_4) \int_0^T |\phi_t(t, u(t)) - \phi_t(t, v(t))| dt \leq \varrho(||u||_{\mathcal{V}}, ||v||_{\mathcal{V}}) ||u - v||_{\mathcal{V}} \text{ for all } u, v \in \mathcal{D}(\phi), \text{ where the function } \\ \varrho \text{ is continuous function and nondecreasing with respect to each argument and } \phi_t(t, u) = d\phi(t, u)/dt, \\ u \in D(\phi).$

 $(A_5) \ f \in H^1(0,T;V^*), \ u_0 \in D(\phi), \ \text{and} \ C_0 = \|u_0\|_V + \inf_{v \in M(u_0,f)} \|v\|_H < \infty, \ \text{where the set}$ $M(u_0,f) = \{ w \in H : \ \langle w + A(0)u_0 - f(0), v - u_0 \rangle + \phi(0,v) - \phi(0,u_0) \ge 0 \ \forall v \in D(\phi) \}$

is nonempty.

Note that condition (A_1) implies the continuity of the function $t \to A(t)$ on [0, T] and the pseudomonotonicity and coercivity of A(t) for each $t \in [0, T]$ (e.g., see [4, p. 190]), and condition (A_3) permits one to assume without loss of generality that

$$\phi(t, v) \ge \phi(t, 0) = 0 \qquad \forall v \in D(\phi).$$

In what follows, we assume that this condition is satisfied. Indeed, otherwise the problem can be reduced to problem (1) with data $\bar{f}(t) = f(t) - \chi(t)$ and $\bar{\phi}(t, v) = \phi(t, v) - \phi(t, 0) - \langle \chi(t), v \rangle$ and with the same solution u; moreover, one can readily see that conditions (A_2) , (A_3) , and (A_5) , as well as condition (A_4) , remain valid for the new data, because $\|\chi'(t)\|_{V^*} \in L_2(0,T)$ and

$$\begin{aligned} |\phi_t(t,u) - \phi_t(t,v)| &= |\phi_t(t,u) - \phi_t(t,v) + \langle \chi'(t), u - v \rangle| \\ &\leq |\phi_t(t,u) - \phi_t(t,v)| + \|\chi'(t)\|_{V^*} \|u - v\|_{V^*} \|v - v\|_{V^*} \|u - v\|_{V^*} \|u - v\|_{V^*} \|v - v\|_{V^*} \|$$

The condition $C_0 < \infty$ in (A_5) is the matching condition for the data and is necessary for the problem to be solvable in the space $E^1 = H^1(0,T;V) \cap W^1_{\infty}(0,T;H)$. Indeed, if $u \in E^1$, then $u \in C([0,T];V), u' \in C([0,T];H)$, and one can consider inequality (1) for t = 0 by continuity. Then we obtain $u'(0) \in M(u_0, f)$ and $C_0 < \infty$.

2. IMPLICIT EULER SCHEME

Let us fix the grid increment $\tau = T/N$ and the corresponding partition of the interval $[-\tau, T]$ into the elements $I_n = [t_{n-1}, t_n)$, $n = 0, 1, \ldots, N$, where $t_j = j\tau$, $j = -1, 0, \ldots, N$. Set $y^n \approx u(t_n)$, $A^n = A(t_n)$, $f^n = f(t_n)$, $\phi^n(\cdot) = \phi(t_n, \cdot)$, $y^{-1} = u_0$, $A(t_{-1}) = A(0)$, $f(t_{-1}) = f(0)$, and $\phi(t_{-1}, \cdot) = \phi(0, \cdot)$.

Let us define an implicit scheme as follows: find $y^n \in D(\phi)$ such that the inequalities

$$\langle (y^n - y^{n-1})/\tau + A^n y^n - f^n, v - y^n \rangle + \phi^n(v) - \phi^n(y^n) \ge 0 \qquad \forall v \in D(\phi)$$

$$\tag{2}$$

hold for n = 0, 1, ..., N. Note that, unlike the traditional statement of the implicit Euler scheme, for n = 0, we solve the following problem to find y^0 :

$$\langle (y^0 - u_0)/\tau + A(0)y^0 - f(0), v - y^0 \rangle + \phi(0, v) - \phi(0, y^0) \ge 0 \qquad \forall v \in D(\phi).$$
(3)

This approximation proves useful in connection with condition (A_5) .

From inequality (2), we successively find y^n (starting from y^0). For $y^n \in D(\varphi) = D(\phi)$, we obtain the inequality

$$\langle By - G, v - y \rangle + \varphi(v) - \varphi(y) \ge 0 \qquad \forall v \in D(\varphi),$$

DIFFERENTIAL EQUATIONS Vol. 47 No. 8 2011

1131

where $B = 1/\tau + A^n$ is a pseudomonotone coercive operator from V into V^{*},

$$G = y^{n-1}/\tau + f^n \in V^*,$$

and $\varphi(y) = \phi(t_n, y)$ is a proper convex lower semicontinuous functional on V. It is well known that there exists a uniquely determined solution of this inequality (e.g., see [4, Th. 8.5, p. 265]). Therefore, the sequence $\{y^n\}_{n=0}^N$ is well defined and lies in $D(\phi)$.

3. A PRIORI ESTIMATES

The piecewise constant and piecewise linear extensions of a grid function g^n , n = -1, 0, ..., N, will be denoted by $g_{\tau}(t)$ and $\hat{g}_{\tau}(t)$, $t \in [-\tau, T)$, respectively; by \check{u} we denote the shift $\check{u}(t) = u(t-\tau)$ of a function u. In addition, let $\ell(t)$ stand for the τ -periodic function equal to $(t - t_{n-1})/\tau$ on the interval $[t_{n-1}, t_n)$. Then, for all $t \in (-\tau, T)$, we have¹

$$\hat{y}_{\tau}(t) = (1 - \ell(t))\check{y}_{\tau}(t) + \ell(t)y_{\tau}(t), \quad \hat{y}_{\tau}(t) - y_{\tau}(t) = (1 - \ell(t))(\check{y}_{\tau}(t) - y_{\tau}(t)), \\
\hat{y}_{\tau}'(t) = (y_{\tau}(t) - \check{y}_{\tau}(t))/\tau.$$

Lemma 1. One has the estimates

$$\|(A - A_{\tau})v\|_{\mathcal{V}^*} + \tau \|\hat{A}_{\tau}'v\|_{\mathcal{V}^*} \le 2M\tau \|v\|_{L_{\infty}(0,T;V)}$$

and

$$\|f - f_{\tau}\|_{\mathcal{V}^*} + \tau \|\hat{f}_{\tau}'\|_{\mathcal{V}^*} \le 2F\tau,$$

where $F = ||f||_{H^1(0,T;V^*)}$.

Proof. We have

$$\int_{0}^{T} \langle (A - A_{\tau})v, w \rangle \, dt = \sum_{n=1}^{N} \int_{I_{n}} \langle (A(t) - A(t_{n}))v(t), w(t) \rangle \, dt = \sum_{n=1}^{N} \int_{I_{n}} \left(\int_{t_{n}}^{t} \langle A'(s)v(t), w(t) \rangle \, ds \right) dt$$
$$\leq \sum_{n=1}^{N} \int_{I_{n}} \left(\int_{I_{n}} m_{1}(s) \, ds \right) \|v(t)\|_{V} \|w(t)\|_{V} \, dt \leq M\tau \|v\|_{L_{\infty}(0,T;V)} \|w\|_{\mathcal{V}}.$$

Hence it follows that $||(A - A_{\tau})v||_{\mathcal{V}^*} \leq M\tau ||v||_{L_{\infty}(0,T;V)}$. The estimate $||\hat{A}'_{\tau}v||_{\mathcal{V}^*} \leq M ||v||_{L_{\infty}(0,T;V)}$, as well as similar estimates for f, can be proved in a completely similar way.

Lemma 2. Let y^0 be a solution of problem (3). Then $||y^0 - u_0||_H^2 + \alpha \tau ||y^0 - u_0||_V^2 \le C_0^2 \tau^2$.

Proof. Let w be some element of the set $M(u_0, f)$ [see condition (A_5)]. We take $v = y^0$ in the inequality defining w and $v = u_0$ in (3). By adding the resulting inequalities, we obtain

$$\langle (y^0 - u_0) / \tau - w + A(0)y^0 - A(0)u_0, y^0 - u_0 \rangle \le 0.$$

Let us use the strong monotonicity of A. Then

$$\|y^{0} - u_{0}\|_{H}^{2} + \alpha \tau \|y^{0} - u_{0}\|_{V}^{2} \le \tau \|w\|_{H} \|y^{0} - u_{0}\|_{H}.$$

Hence it follows that $\|y^0 - u_0\|_H^2 + \alpha \tau \|y^0 - u_0\|_V^2 \leq \tau^2 \|w\|_H^2$. By minimizing this estimate with respect to w, we obtain the desired assertion.

¹ At the points of discontinuity, \hat{y}'_{τ} is assumed to be left continuous; \hat{f}_{τ} and \hat{A}_{τ} are defined in a similar way.

Lemma 3. Let y be a solution of the scheme (2). Then²

$$\|y_{\tau}\|_{E} \leq C, \qquad \|\check{y}_{\tau}\|_{E} \leq C, \qquad \|\hat{y}_{\tau}\|_{E} \leq C, \qquad C = c(T, \alpha)(C_{0} + F).$$

Proof. Let us multiply inequality (2) by τ and set v = 0. By virtue of conditions (A_1) and (A_3) , we obtain the inequality $\langle y^n - y^{n-1} + \tau A^n y^n, y^n \rangle \leq \tau \langle f^n, y^n \rangle$. We use the strong monotonicity A^n $(A^n 0 = 0)$, the inequality

$$2\langle u - v, u \rangle = \|u\|_{H}^{2} + \|u - v\|_{H}^{2} - \|v\|_{H}^{2} \ge \|u\|_{H}^{2} - \|v\|_{H}^{2} \qquad \forall u, v \in V,$$

$$\tag{4}$$

and the ε -inequality $2ab \leq \varepsilon^{-1}a^2 + \varepsilon b^2$, $\varepsilon > 0$, $a, b \in R$. As a result, we have

$$\|y^n\|_H^2 - \|y^{n-1}\|_H^2 + 2\alpha\tau\|y^n\|_V^2 \le 2\tau\|f^n\|_{V^*}\|y^n\|_V \le \tau\varepsilon^{-1}\|f^n\|_{V^*}^2 + \tau\varepsilon\|y^n\|_V^2.$$

By setting $\varepsilon = \alpha$ and by summing the resulting inequalities with respect to n from 1 to $m \leq N$, we obtain the estimate

$$\|y^m\|_H^2 + \alpha \tau \sum_{n=1}^m \|y^n\|_V^2 \le \|y^0\|_H^2 + \alpha^{-1} \tau \sum_{n=1}^N \|f^n\|_{V^*}^2 \le C^2, \quad C = c(T,\alpha)(C_0 + F),$$

since Lemmas 1 and 2 imply that $||f_{\tau}||_{\mathcal{V}^*} \leq 3F$ and $||y^0||_H \leq ||u_0||_H + C_0\tau \leq (1+T)C_0$.

Consequently, we have the estimates

$$\|y_{\tau}\|_{L_{\infty}(0,T;H)} = \max_{1 \le m \le N} \|y^{m}\|_{H} \le C, \qquad \|y_{\tau}\|_{L_{2}(0,T;V)} \le C/\alpha.$$

These two estimates imply the first assertion of the lemma. Since

$$\|\check{y}_{\tau}\|_{L_{\infty}(0,T;H)} = \max_{0 \le m \le N-1} \|y^{m}\|_{H}, \qquad \|\check{y}_{\tau}\|_{\mathcal{V}}^{2} \le \tau \|y^{0}\|_{V}^{2} + \|y_{\tau}\|_{\mathcal{V}}^{2},$$

it is clear that $\|\check{y}_{\tau}\|_{E} \leq C$. The final estimate in the lemma follows from the inequality $\|\hat{y}_{\tau}\|_{E} \leq \|\check{y}_{\tau}\|_{E} + \|y_{\tau}\|_{E}$.

Lemma 4. Let y be a solution of the scheme (2). Then $\|\hat{y}_{\tau}'\|_{E} \leq C$, $C = C(T, \alpha, C_{0}, F, M, \varrho)$.

Proof. Let us introduce the notation $y_t^n = (y^{n+1} - y^n)/\tau$. Set $v = y^{n+1}$ in inequality (2) preliminarily divided by τ and $v = y^n$ in the same inequality at the next time step; by adding the resulting inequalities, we arrive at the relation

$$\langle y_t^n - y_t^{n-1}, y_t^n \rangle + \langle A^n y^{n+1} - A^n y^n, y_t^n \rangle \le \tau \langle f_t^n - A_t^n y^{n+1}, y_t^n \rangle + \tau^{-1} \Phi^n,$$

where $\Phi^n = (\phi(t^n, y^{n+1}) - \phi(t^{n+1}, y^{n+1})) - (\phi(t^n, y^n) - \phi(t^{n+1}, y^n))$. We again use the strong monotonicity of A^n and inequality (4) and obtain the relation

$$\|y_t^n\|_H^2 - \|y_t^{n-1}\|_H^2 + 2\alpha\tau \|y_t^n\|_V^2 \le 2\tau (\|f_t^n\|_{V^*} + \|A_t^n y^{n+1}\|_{V^*}) \|y_t^n\|_V + 2\Phi^n/\tau.$$

By applying the ε -inequality with $\varepsilon = \alpha$ to the right-hand side and by summing the resulting inequalities with respect to n from 0 to m < N, we obtain

$$\|y_t^m\|_H^2 + \alpha \tau \sum_{n=0}^m \|y_t^n\|_V^2 \le \|y_t^{-1}\|_H^2 + \alpha^{-1} \tau \sum_{n=0}^{N-1} (\|f_t^n\|_{V^*}^2 + \|A_t^n y^{n+1}\|_{V^*}^2) + 2\tau^{-1} \sum_{n=0}^{N-1} \Phi^n = S_1 + S_2 + S_3.$$

Just as above, it follows from this estimate that

$$\max_{0 \le m \le N-1} \|y_t^m\|^2 + \tau \sum_{n=0}^{N-1} \|y_t^n\|_V^2 \le cS^2, \qquad c = c(\alpha), \qquad S^2 = S_1 + S_2 + S_3.$$

² Here and throughout the following, various constants like c and C, possibly with subscripts, are independent of τ .

This implies an estimate for the quantity required in the statement of the lemma,

$$\|\hat{y}_{\tau}'\|_E \le cS. \tag{5}$$

Let us estimate the terms occurring in S^2 . By Lemma 2, we have

$$S_1 = \tau^{-2} \|y^0 - u_0\|_H^2 \le cC_0^2.$$
(6)

To estimate S_2 , we use Lemma 1. Obviously,

$$S_{2} = \alpha^{-1} \int_{0}^{T} \left(\|\hat{f}_{\tau}'\|_{V^{*}}^{2} + \|\hat{A}_{\tau}'y_{\tau}\|_{V^{*}}^{2} \right) dt = \alpha^{-1} \left(\|\hat{f}_{\tau}'\|_{\mathcal{V}^{*}}^{2} + \|\hat{A}_{\tau}'y_{\tau}\|_{\mathcal{V}^{*}}^{2} \right) \leq \alpha^{-1} \left(F^{2} + M^{2} \|y_{\tau}\|_{L_{\infty}(0,T;V)}^{2} \right).$$

Since $\|y_{\tau}\|_{L_{\infty}(0,T;V)}^{2} \leq \|y^{0}\|_{V}^{2} + 2\|\hat{y}_{\tau}'\|_{L_{2}(0,T;V)}\|y_{\tau}\|_{L_{2}(0,T;V)}$, it follows from Lemmas 2 and 3 that

$$\|y_{\tau}\|_{L_{\infty}(0,T;V)}^{2} \leq C(1+\|\hat{y}_{\tau}'\|_{E}), \qquad C = C(T,\alpha,C_{0},F,M).$$
(7)

Consequently,

$$S_2 \le C(1 + \|\hat{y}_{\tau}'\|_E). \tag{8}$$

Finally, let us estimate S_3 ,

$$S_{3} = -2\tau^{-1} \sum_{n=0}^{N-1} \int_{t_{n}}^{t_{n+1}} (\phi_{t}(t, y^{n+1}) - \phi_{t}(t, y^{n})) dt = -2\tau^{-1} \int_{0}^{T} (\phi_{t}(t, y_{\tau}(t)) - \phi_{t}(t, \check{y}_{\tau}(t))) dt$$
$$\leq 2\tau^{-1} \varrho(\|y_{\tau}\|_{\mathcal{V}}, \|\check{y}_{\tau}\|_{\mathcal{V}}) \|y_{\tau} - \check{y}_{\tau}\|_{\mathcal{V}} = 2\varrho(\|y_{\tau}\|_{\mathcal{V}}, \|\check{y}_{\tau}\|_{\mathcal{V}}) \|\hat{y}_{\tau}'\|_{\mathcal{V}}.$$

Since the norms $\|y_{\tau}\|_{\mathcal{V}}$ and $\|\check{y}_{\tau}\|_{\mathcal{V}}$ are bounded uniformly with respect to τ by Lemma 3, we have

$$S_3 \le C \|\hat{y}'_{\tau}\|_E, \qquad C = C(T, \alpha, C_0, F, \varrho).$$

By summing this estimate with (6) and (8), we obtain the estimate $S^2 \leq C(1 + \|\hat{y}_{\tau}'\|_E)$. By using it in (5), we obtain the assertion of the lemma.

Lemma 5. The inequality

$$\langle \hat{y}'_{\tau} + A(t)\hat{y}_{\tau} - f, v - \hat{y}_{\tau} \rangle + \phi(t, v) - \phi(t, \hat{y}_{\tau}) \ge -R_{\tau}(t, v)$$
 (9)

holds for all $t \in [0,T]$ and $v \in D(\phi)$; moreover, if $v \in \mathcal{D}(\phi)$, then there exists a constant C depending on $||v||_{\mathcal{V}}$ such that

$$\int_{0}^{T} R_{\tau}(t, v(t)) dt \le C(\tau^{2} + \tau \| \hat{y}_{\tau} - v \|_{\mathcal{V}})$$

Proof. Let $\sigma = \sigma(t)$, $t \in [-\tau, T)$, be the piecewise constant extension of the grid function t_n , $\sigma(t) = t_n$, $t \in [t_{n-1}, t_n)$, n = 0, 1, ..., N. By writing out the grid inequality (2) in the index-free form, for all $t \in (-\tau, T)$, we have

$$\langle \hat{y}'_{\tau} + A_{\tau}(t)y_{\tau} - f_{\tau}, v - y_{\tau} \rangle + \phi(\sigma(t), v) - \phi(\sigma(t), y_{\tau}) \ge 0 \qquad \forall v \in D(\phi).$$
(10)

Since $\hat{y}_{\tau}, \check{y}_{\tau}$, and y_{τ} are related by the identities

$$\hat{y}_{\tau}(t) = (1 - \ell(t))\check{y}_{\tau}(t) + \ell(t)y_{\tau}(t), \qquad \hat{y}_{\tau}(t) - y_{\tau}(t) = (1 - \ell(t))(\check{y}_{\tau}(t) - y_{\tau}(t)),$$

it follows from the convexity of ϕ and inequality (10) that $(L = \langle A\hat{y}_{\tau} - A_{\tau}y_{\tau}, \hat{y}_{\tau} - v \rangle)$

$$\begin{aligned} \langle \hat{y}'_{\tau} + A\hat{y}_{\tau} - f_{\tau}, \hat{y}_{\tau} - v \rangle + \phi(\sigma, \hat{y}_{\tau}) - \phi(\sigma, v) \\ &= \langle \hat{y}'_{\tau} + A_{\tau}y_{\tau} - f_{\tau}, \hat{y}_{\tau} - v \rangle + \phi(\sigma, (1 - \ell)\check{y}_{\tau} + \ell y_{\tau}) - \phi(\sigma, v) + L \\ &\leq \langle \hat{y}'_{\tau} + A_{\tau}y_{\tau} - f_{\tau}, y_{\tau} - v \rangle + \langle \hat{y}'_{\tau} + A_{\tau}y_{\tau} - f_{\tau}, \hat{y}_{\tau} - y_{\tau} \rangle \\ &+ (1 - \ell)\phi(\sigma, \check{y}_{\tau}) + \ell\phi(\sigma, y_{\tau}) - \phi(\sigma, v) + L \\ &\leq (1 - \ell)[\langle \hat{y}'_{\tau} + A_{\tau}y_{\tau} - f_{\tau}, \check{y}_{\tau} - y_{\tau} \rangle + \phi(\sigma, \check{y}_{\tau}) - \phi(\sigma, y_{\tau})] + L. \end{aligned}$$
(11)

By multiplying relation (10) for $t - \tau$ by $(1 - \ell)$ and by setting v = y, we obtain the inequality

$$(1-\ell)[\langle \hat{y}'_{\tau}(t-\tau) + \check{A}_{\tau}\check{y}_{\tau} - \check{f}_{\tau}, y_{\tau} - \check{y}_{\tau} \rangle + \phi(\check{\sigma}, y_{\tau}) - \phi(\check{\sigma}, \check{y}_{\tau})] \ge 0.$$

By adding this quantity to the right-hand side in (11) and by making simple transformations, we obtain the desired inequality (9) with

$$R_{\tau}(t,v) = r_1 + r_2 + r_3 + r_4 + r_5 + L,$$

where

$$\begin{split} r_1 &= (1-\ell) \langle \hat{y}'_{\tau} - \hat{y}'_{\tau}(t-\tau), \check{y}_{\tau} - y_{\tau} \rangle, \\ r_2 &= (1-\ell) \langle \check{f}_{\tau} - f_{\tau} + A_{\tau} y_{\tau} - \check{A}_{\tau} \check{y}_{\tau}, \check{y}_{\tau} - y_{\tau} \rangle, \\ r_3 &= (1-\ell) (\phi(\check{\sigma}, y_{\tau}) - \phi(\sigma, y_{\tau}) - \phi(\check{\sigma}, \check{y}_{\tau}) + \phi(\sigma, \check{y}_{\tau})), \\ r_4 &= \phi(\sigma(t), \hat{y}_{\tau}) - \phi(t, \hat{y}_{\tau}) - \phi(\sigma(t), v) + \phi(t, v), \qquad r_5 = \langle f - f_{\tau}, v - \hat{y}_{\tau} \rangle. \end{split}$$

Let us estimate the integral of each term in $R_{\tau}(t, v)$. Note that the identity

$$\int_{0}^{T} (1-\ell)g_{\tau} \, dt = \frac{1}{2} \int_{0}^{T} g_{\tau} \, dt$$

holds for any piecewise constant function g_{τ} . Since $\hat{y}'_{\tau}(t) = (y_{\tau}(t) - \check{y}_{\tau}(t))/\tau$, it follows from inequality (4) and Lemma 2 that

$$\begin{split} \int_{0}^{T} r_{1} dt &= \tau \int_{0}^{T} (1-\ell) \langle \hat{y}_{\tau}'(t-\tau) - \hat{y}_{\tau}', \hat{y}_{\tau}' \rangle \, dt = \frac{\tau}{2} \int_{0}^{T} \langle \hat{y}_{\tau}'(t-\tau) - \hat{y}_{\tau}', \hat{y}_{\tau}' \rangle \, dt \\ &\leq \frac{\tau}{2} \int_{0}^{T} (\|\hat{y}_{\tau}'(t-\tau)\|_{H}^{2} - \|\hat{y}_{\tau}'(t)\|_{H}^{2}) \, dt \leq \frac{\tau}{2} \int_{0}^{\tau} \left\| \frac{y^{0} - u_{0}}{\tau} \right\|_{H}^{2} \, dt \leq \frac{1}{2} C_{0}^{2} \tau^{2}. \end{split}$$

By taking into account the strong monotonicity of \check{A}_{τ} , the estimate (8) for the quantity S_2 , and Lemma 4, we obtain the estimate

$$\int_{0}^{T} r_{2} dt = \tau \int_{0}^{T} (1-\ell) \langle f_{\tau} - \check{f}_{\tau} + \check{A}_{\tau} \check{y}_{\tau} - A_{\tau} y_{\tau}, \hat{y}_{\tau}' \rangle dt$$
$$= \frac{\tau^{2}}{2} \int_{0}^{T} \langle \hat{f}_{\tau}' - \hat{A}_{\tau}' y_{\tau}, \hat{y}_{\tau}' \rangle dt - \frac{1}{2} \int_{0}^{T} \langle \check{A}_{\tau} y_{\tau} - \check{A}_{\tau} \check{y}_{\tau}, y_{\tau} - \check{y}_{\tau} \rangle dt$$
$$\leq \frac{\tau^{2}}{2} (\|\hat{f}_{\tau}'\|_{\mathcal{V}^{*}} + \|\hat{A}_{\tau}' y_{\tau}\|_{\mathcal{V}^{*}}) \|\hat{y}_{\tau}'\|_{\mathcal{V}} \leq c\tau^{2}.$$

The following estimates are similar to the estimate of S_3 in the proof of Lemma 4:

$$\int_{0}^{T} r_{3} dt = \frac{1}{2} \int_{0}^{T} \int_{\sigma(t)}^{\tilde{\sigma}(t)} (\phi_{t}(\xi, y_{\tau}) - \phi_{t}(\xi, \check{y}_{\tau})) d\xi dt = \frac{1}{2} \sum_{n=1}^{N} \int_{t_{n-1}}^{t_{n}} \int_{t_{n}}^{t_{n-1}} (\phi_{t}(\xi, y_{\tau}) - \phi_{t}(\xi, \check{y}_{\tau})) d\xi dt$$
$$= \frac{-\tau}{2} \int_{0}^{T} (\phi_{t}(\xi, y_{\tau}) - \phi_{t}(\xi, \check{y}_{\tau})) d\xi \leq c\tau ||y_{\tau} - \check{y}_{\tau}||_{\mathcal{V}} = c\tau^{2} ||\hat{y}_{\tau}'||_{\mathcal{V}} \leq c\tau^{2},$$
$$\int_{0}^{T} r_{4} dt = \int_{0}^{T} \int_{t_{0}}^{\sigma(t)} (\phi_{t}(\xi, \hat{y}_{\tau}) - \phi_{t}(\xi, v)) d\xi dt \leq c(v)\tau ||\hat{y}_{\tau} - v||_{\mathcal{V}},$$

where c(v) is bounded on $\mathcal{D}(\phi)$. From Lemma 1, we have

$$\int_{0}^{T} r_{5} dt \leq \|f - f_{\tau}\|_{\mathcal{V}^{*}} \|v - \hat{y}_{\tau}\|_{\mathcal{V}} \leq c\tau \|\hat{y}_{\tau} - v\|_{\mathcal{V}}.$$

Finally, by taking into account Lemma 1 and inequality (7), we obtain the estimate

$$\int_{0}^{T} L \, dt \leq \int_{0}^{T} \|A\hat{y}_{\tau} - A_{\tau}y_{\tau}\|_{V^{*}} \|\hat{y}_{\tau} - v\|_{V} \, dt \leq \int_{0}^{T} (\|A\hat{y}_{\tau} - Ay_{\tau}\|_{V^{*}} + \|(A - A_{\tau})y_{\tau}\|_{V^{*}}) \|\hat{y}_{\tau} - v\|_{V} \, dt$$
$$\leq (\tau M \|\hat{y}_{\tau}'\|_{V^{*}} + M\tau \|y_{\tau}\|_{L_{\infty}(0,T;V)}) \|\hat{y}_{\tau} - v\|_{V} \leq c\tau \|\hat{y}_{\tau} - v\|_{V},$$

because $\hat{y}_{\tau} - y_{\tau} = \tau(\ell - 1)\hat{y}'_{\tau}$. By summing this estimate with the estimates for the integrals of the remaining terms in $R_{\tau}(t, v)$, we arrive at the definitive conclusion of the lemma.

4. EXISTENCE OF A SOLUTION. ERROR ESTIMATE

Lemma 6. Let \hat{y}_{τ} and \hat{y}_k be the solutions of the scheme (2) with time increments τ and k = T/M, respectively. Then $\|\hat{y}_{\tau} - \hat{y}_k\|_E \leq c(\tau + k)$, where c is a constant independent of τ and k.

Proof. By Lemma 5, the inequality

$$\langle \hat{y}'_k + A\hat{y}_k - f, v - \hat{y}_k \rangle + \phi(t, v) - \phi(t, \hat{y}_k) \ge -R_k(t, v)$$
 (12)

holds for $t \in [0, T]$ and $v \in D(\phi)$; moreover, if $v \in \mathcal{D}(\phi)$, then $\int_0^T R_k(t, v(t)) dt \leq C(k^2 + k \|\hat{y}_k - v\|_{\mathcal{V}})$, $C = C(\|v\|_{\mathcal{V}})$.

By setting $v = \hat{y}_k$ in inequality (9) and $v = \hat{y}_{\tau}$ in (12) and by adding the resulting inequalities, we obtain $\langle \hat{y}'_k - \hat{y}'_{\tau} + A\hat{y}_k - A\hat{y}_{\tau}, \hat{y}_k - \hat{y}_{\tau} \rangle \leq R_k(t, \hat{y}_{\tau}) + R_{\tau}(t, \hat{y}_k)$. Hence we have the inequality

$$\frac{d}{dt} \|\hat{y}_k - \hat{y}_\tau\|_H^2 + 2\alpha \|\hat{y}_k - \hat{y}_\tau\|_V^2 \le 2(R_k(t, \hat{y}_\tau) + R_\tau(t, \hat{y}_k)).$$

We integrate this inequality with respect to $t \in (0, s)$, $s \leq T$, set s = T on the right-hand side, use the estimates for the integrals of R_k and R_{τ} , and take into account the relation

$$\|\hat{y}_k(0) - \hat{y}_\tau(0)\|_H \le \|\hat{y}_\tau(0) - u_0\|_H + \|\hat{y}_k(0) - u_0\|_H \le c(k+\tau).$$

As a result, we obtain the inequality

$$\begin{aligned} \|(\hat{y}_{k} - \hat{y}_{\tau})(s)\|_{H}^{2} + 2\alpha \int_{0}^{s} \|\hat{y}_{k} - \hat{y}_{\tau}\|_{V}^{2} dt &\leq \|\hat{y}_{k}(0) - \hat{y}_{\tau}(0)\|_{H}^{2} + c(\tau^{2} + k^{2}) + c(\tau + k)\|\hat{y}_{k} - \hat{y}_{\tau}\|_{\mathcal{V}} \\ &\leq c(\tau + k)^{2} + c(\tau + k)\|\hat{y}_{k} - \hat{y}_{\tau}\|_{\mathcal{V}}. \end{aligned}$$

This implies the assertion of the lemma.

Theorem 1. The following assertions hold.

(a) There exists a unique solution u of problem (1). It satisfies the inclusion $u \in H^1(0,T;V) \cap W^1_{\infty}(0,T;H)$.

(b) Let u and \bar{u} be the solutions of problem (1) with input data $\{u_0, f\}$ and $\{\bar{u}_0, \bar{f}\}$, respectively; then $\|\bar{u} - u\|_E \leq c(\|\bar{u}_0 - u_0\|_H + \|\bar{f} - f\|_{\mathcal{V}^*}).$

(c) If \hat{y}_{τ} is the piecewise linear extension of the solution of the implicit scheme (2), then $\|u - \hat{y}_{\tau}\|_{E} \leq c\tau$.

Proof. We start the proof from assertion (b). Set $v = \bar{u}(t)$ and v = u(t) in inequality (1) defining u and \bar{u} , respectively. By adding the resulting inequalities, we obtain

$$\langle (\bar{u}-u)', \bar{u}-u \rangle + \langle A\bar{u}-Au, \bar{u}-u \rangle \leq \langle \bar{f}-f, \bar{u}-u \rangle \leq \|\bar{f}-f\|_{V^*} \|\bar{u}-u\|_V.$$

This implies the estimate

$$\frac{d}{dt}\|\bar{u}-u\|_{H}^{2}+\alpha\|\bar{u}-u\|_{V}^{2}\leq\alpha^{-1}\|\bar{f}-f\|_{V^{*}}^{2},$$

whence, in turn, we obtain the stability estimate in assertion (b); note that it guarantees the uniqueness of the solution.

To prove assertion (a), we arbitrarily fix $v \in \mathcal{D}(\phi)$. By integrating inequality (9), we obtain the relation

$$\int_{0}^{T} \left(\langle \hat{y}_{\tau}' + A\hat{y}_{\tau} - f, v - \hat{y}_{\tau} \rangle + \phi(t, v) - \phi(t, \hat{y}_{\tau}) \right) dt + \varepsilon_{\tau} \ge 0, \qquad \varepsilon_{\tau} \le c(\tau^{2} + \tau \| \hat{y}_{\tau} - v \|_{\mathcal{V}}). \tag{13}$$

From the a priori estimates, we have

$$\hat{y}_{\tau}, \hat{y}'_{\tau} \in E = L_2(0, T; V) \cap L_{\infty}(0, T; H);$$

moreover, $\|\hat{y}_{\tau}\|_{E} + \|\hat{y}_{\tau}'\|_{E} \leq C$ uniformly with respect to τ . It follows from Lemma 6 that the sequence $\{\hat{y}_{\tau}, \tau = T/N, N = 1, 2, ...\}$ is a Cauchy sequence in E. Therefore, it strongly converges to some element $u \in E$; in a standard way, one can show that \hat{y}_{τ}' weakly converges to u' in $L_{2}(0,T;V)$, and $\|u\|_{E} + \|u'\|_{E} \leq C$. By virtue of the lower semicontinuity of the functional $v \to \phi(t,v), t \in [0,T]$, we have

$$\phi(t, u) \le \liminf_{\tau \to 0} \phi(t, \hat{y}_{\tau});$$

i.e., $u \in D(\phi)$. Therefore, by taking into account the continuity of the operators A(t), $t \in [0, T]$, and by passing to the limit in (13), we obtain the inequality

$$\int_{0}^{T} \left(\langle u'(t) + A(t)u(t) - f(t), v(t) - u(t) \rangle + \phi(t, v(t)) - \phi(t, u(t)) \right) dt \ge 0.$$

This implies inequality (1), because v is arbitrary. Since the estimate

$$\|\hat{y}_{\tau}(0) - u_0\|_H \le C_0 \tau$$

holds by Lemma 2, it follows that $u(0) = u_0$ and u is a solution of problem (1).

To prove assertion (c), it suffices to pass to the limit as $k \to 0$ in the estimate in Lemma 6.

ACKNOWLEDGMENTS

The research was supported by the Russian Foundation for Basic Research (project no. 10-01-00629).

DAUTOV, MIKHEEVA

REFERENCES

- Savaré, G., Weak Solutions and Maximal Regularity for Abstract Evolution Inequalities, Adv. Math. Sci. Appl., 1996, no. 6, pp. 377–418.
- 2. Rulla, J., Error Analysis for Implicit Approximations to Solutions to Cauchy Problems, SIAM J. Numer. Anal., 1996, vol. 33, no. 1, pp. 68–87.
- Gajewski, H., Gröger, K., and Zacharias, K., Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen, Berlin: Akademie-Verlag, 1974. Translated under the title Nelineinye operatornye uravneniya i operatornye differentsial'nye uravneniya, Moscow: Mir, 1978.
- Lions, J.-L., Quelques méthodes de résolution des problèmes aux limites nonlinéaires, Paris: Dunod, 1969. Translated under the title Nekotorye metody resheniya nelineinykh kraevykh zadach, Moscow: Mir, 1972.