Implicit Euler Scheme for an Abstract Evolution Inequality

R. Z. Dautov and A. I. Mikheeva
Kazan Federal University, Kazan, Russia
Received December 10, 2010

Abstract

For a triple $\left\{V, H, V^{*}\right\}$ of Hilbert spaces, we consider an evolution inclusion of the form $u^{\prime}(t)+A(t) u(t)+\partial \phi(t, u(t)) \ni f(t), u(0)=u_{0}, t \in(0, T]$, where $A(t)$ and $\phi(t, \cdot), t \in[0, T]$, are a family of nonlinear operators from V to V^{*} and a family of convex lower semicontinuous functionals with common effective domain $D(\phi) \subset V$. We indicate conditions on the data under which there exists a unique solution of the problem in the space $H^{1}(0, T ; V) \cap W_{\infty}^{1}(0, T ; H)$ and the implicit Euler method has first-order accuracy in the energy norm.

DOI: 10.1134/S0012266111080076

The aim of the present paper is to state conditions guaranteeing the first-order accuracy of the implicit Euler method in the energy norm for the following problem: find a function $u(t) \in D(\phi)$ with $u(0)=u_{0}$ such that the inequality

$$
\begin{equation*}
\left\langle u^{\prime}(t)+A(t) u(t)-f(t), v-u(t)\right\rangle+\phi(t, v)-\phi(t, u(t)) \geq 0 \tag{1}
\end{equation*}
$$

holds for each $v \in D(\phi)$ and for almost all $t \in(0, T]$, which is equivalent to the relation $u^{\prime}(t)+$ $A(t) u(t)+\partial \phi(t, u(t)) \ni f(t)$, where $\partial \phi: \mathcal{V} \rightarrow \mathcal{V}^{*}$ is the subdifferential of ϕ. This problem was earlier considered in $[1,2]$ for the case in which the functional ϕ does not explicitly depend on t. (The operators $A(t)$ were assumed in [1] to be linear, and the case of $A(t)=0$ was considered in [2].) We generalize the results of these papers by using the studies in [1]. The energy norm is defined by the formula

$$
\|v\|_{E}=\|v\|_{L_{\infty}(0, T ; H)}+\|v\|_{L_{2}(0, T, V)} .
$$

1. NOTATION AND ASSUMPTIONS

Let V and H be separable Hilbert spaces with dense continuous embeddings $V \subset H=H^{*} \subset V^{*}$, and let $\langle\cdot, \cdot\rangle$ be the duality pairing between V^{*} and V. For a given Banach space X, we define the spaces $L_{p}(0, T ; X)$ and $W_{p}^{k}(0, T ; X), p \in[1, \infty], k \geq 0$, and the norms in them in a standard way (e.g., see [3, Chap. 4]). Set

$$
\begin{aligned}
\mathcal{V}=L_{2}(0, T ; V), \quad \mathcal{V}^{*} & =L_{2}\left(0, T ; V^{*}\right), \quad H^{1}(0, T ; X)=W_{2}^{1}(0, T ; X), \\
\mathcal{D}(\phi) & =\left\{v \in \mathcal{V}: \phi(t, v(t)) \in L_{1}(0, T)\right\} .
\end{aligned}
$$

We impose the following constraints on data of problem (1):
$\left(A_{1}\right) A(t) 0=0$; the estimates

$$
\begin{aligned}
\langle A(t) u-A(t) v, u-v\rangle & \geq \alpha\|u-v\|_{V}^{2}, \quad \alpha=\text { const }>0 \\
\|A(t) u-A(t) v\|_{V^{*}} & \leq m_{0}(t)\|u-v\|_{V}, \quad\left\|A^{\prime}(t) v\right\|_{V^{*}} \leq m_{1}(t)\|v\|_{V}, \\
M & =\left\|m_{0}\right\|_{L_{2}(0, T)}+\left\|m_{1}\right\|_{L_{2}(0, T)}<\infty
\end{aligned}
$$

$\left[A^{\prime}(t)=d A(t) / d t\right]$ hold for arbitrary $u, v \in V$ and for almost all $t \in[0, T]$.
$\left(A_{2}\right)$ The functional $v \rightarrow \phi(t, v)$ is proper convex and lower semicontinuous on V for each $t \in[0, T]$, and its effective domain

$$
D(\phi)=\{v \in V: \phi(t, v)<\infty\}
$$

is independent of $t ; 0 \in D(\phi)$.
$\left(A_{3}\right)$ If $\chi:[0, T] \rightarrow V^{*}$ is a subgradient of ϕ at zero, i.e., if $\phi(t, v)-\phi(t, 0) \geq\langle\chi(t), v\rangle$ for all $v \in D(\phi)$, then $\chi \in H^{1}\left(0, T ; V^{*}\right)$.
$\left(A_{4}\right) \int_{0}^{T}\left|\phi_{t}(t, u(t))-\phi_{t}(t, v(t))\right| d t \leq \varrho\left(\|u\|_{\mathcal{V}},\|v\|_{\mathcal{V}}\right)\|u-v\|_{\mathcal{V}}$ for all $u, v \in \mathcal{D}(\phi)$, where the function ϱ is continuous function and nondecreasing with respect to each argument and $\phi_{t}(t, u)=d \phi(t, u) / d t$, $u \in D(\phi)$.
$\left(A_{5}\right) f \in H^{1}\left(0, T ; V^{*}\right), u_{0} \in D(\phi)$, and $C_{0}=\left\|u_{0}\right\|_{V}+\inf _{v \in M\left(u_{0}, f\right)}\|v\|_{H}<\infty$, where the set

$$
M\left(u_{0}, f\right)=\left\{w \in H:\left\langle w+A(0) u_{0}-f(0), v-u_{0}\right\rangle+\phi(0, v)-\phi\left(0, u_{0}\right) \geq 0 \forall v \in D(\phi)\right\}
$$

is nonempty.
Note that condition $\left(A_{1}\right)$ implies the continuity of the function $t \rightarrow A(t)$ on $[0, T]$ and the pseudomonotonicity and coercivity of $A(t)$ for each $t \in[0, T]$ (e.g., see [4, p. 190]), and condition (A_{3}) permits one to assume without loss of generality that

$$
\phi(t, v) \geq \phi(t, 0)=0 \quad \forall v \in D(\phi)
$$

In what follows, we assume that this condition is satisfied. Indeed, otherwise the problem can be reduced to problem (1) with data $\bar{f}(t)=f(t)-\chi(t)$ and $\bar{\phi}(t, v)=\phi(t, v)-\phi(t, 0)-\langle\chi(t), v\rangle$ and with the same solution u; moreover, one can readily see that conditions $\left(A_{2}\right),\left(A_{3}\right)$, and $\left(A_{5}\right)$, as well as condition $\left(A_{4}\right)$, remain valid for the new data, because $\left\|\chi^{\prime}(t)\right\|_{V^{*}} \in L_{2}(0, T)$ and

$$
\begin{aligned}
\left|\bar{\phi}_{t}(t, u)-\bar{\phi}_{t}(t, v)\right| & =\left|\phi_{t}(t, u)-\phi_{t}(t, v)+\left\langle\chi^{\prime}(t), u-v\right\rangle\right| \\
& \leq\left|\phi_{t}(t, u)-\phi_{t}(t, v)\right|+\left\|\chi^{\prime}(t)\right\|_{V^{*}}\|u-v\|_{V} .
\end{aligned}
$$

The condition $C_{0}<\infty$ in $\left(A_{5}\right)$ is the matching condition for the data and is necessary for the problem to be solvable in the space $E^{1}=H^{1}(0, T ; V) \cap W_{\infty}^{1}(0, T ; H)$. Indeed, if $u \in E^{1}$, then $u \in C([0, T] ; V), u^{\prime} \in C([0, T] ; H)$, and one can consider inequality (1) for $t=0$ by continuity. Then we obtain $u^{\prime}(0) \in M\left(u_{0}, f\right)$ and $C_{0}<\infty$.

2. IMPLICIT EULER SCHEME

Let us fix the grid increment $\tau=T / N$ and the corresponding partition of the interval $[-\tau, T]$ into the elements $I_{n}=\left[t_{n-1}, t_{n}\right), n=0,1, \ldots, N$, where $t_{j}=j \tau, j=-1,0, \ldots, N$. Set $y^{n} \approx u\left(t_{n}\right)$, $A^{n}=A\left(t_{n}\right), f^{n}=f\left(t_{n}\right), \phi^{n}(\cdot)=\phi\left(t_{n}, \cdot\right), y^{-1}=u_{0}, A\left(t_{-1}\right)=A(0), f\left(t_{-1}\right)=f(0)$, and $\phi\left(t_{-1}, \cdot\right)=$ $\phi(0, \cdot)$.

Let us define an implicit scheme as follows: find $y^{n} \in D(\phi)$ such that the inequalities

$$
\begin{equation*}
\left\langle\left(y^{n}-y^{n-1}\right) / \tau+A^{n} y^{n}-f^{n}, v-y^{n}\right\rangle+\phi^{n}(v)-\phi^{n}\left(y^{n}\right) \geq 0 \quad \forall v \in D(\phi) \tag{2}
\end{equation*}
$$

hold for $n=0,1, \ldots, N$. Note that, unlike the traditional statement of the implicit Euler scheme, for $n=0$, we solve the following problem to find y^{0} :

$$
\begin{equation*}
\left\langle\left(y^{0}-u_{0}\right) / \tau+A(0) y^{0}-f(0), v-y^{0}\right\rangle+\phi(0, v)-\phi\left(0, y^{0}\right) \geq 0 \quad \forall v \in D(\phi) \tag{3}
\end{equation*}
$$

This approximation proves useful in connection with condition $\left(A_{5}\right)$.
From inequality (2), we successively find y^{n} (starting from y^{0}). For $y^{n} \in D(\varphi)=D(\phi)$, we obtain the inequality

$$
\langle B y-G, v-y\rangle+\varphi(v)-\varphi(y) \geq 0 \quad \forall v \in D(\varphi),
$$

where $B=1 / \tau+A^{n}$ is a pseudomonotone coercive operator from V into V^{*},

$$
G=y^{n-1} / \tau+f^{n} \in V^{*}
$$

and $\varphi(y)=\phi\left(t_{n}, y\right)$ is a proper convex lower semicontinuous functional on V. It is well known that there exists a uniquely determined solution of this inequality (e.g., see [4, Th. 8.5, p. 265]). Therefore, the sequence $\left\{y^{n}\right\}_{n=0}^{N}$ is well defined and lies in $D(\phi)$.

3. A PRIORI ESTIMATES

The piecewise constant and piecewise linear extensions of a grid function $g^{n}, n=-1,0, \ldots, N$, will be denoted by $g_{\tau}(t)$ and $\hat{g}_{\tau}(t), t \in[-\tau, T)$, respectively; by \check{u} we denote the shift $\check{u}(t)=u(t-\tau)$ of a function u. In addition, let $\ell(t)$ stand for the τ-periodic function equal to $\left(t-t_{n-1}\right) / \tau$ on the interval $\left[t_{n-1}, t_{n}\right)$. Then, for all $t \in(-\tau, T)$, we have ${ }^{1}$

$$
\begin{aligned}
& \hat{y}_{\tau}(t)=(1-\ell(t)) \check{y}_{\tau}(t)+\ell(t) y_{\tau}(t), \quad \hat{y}_{\tau}(t)-y_{\tau}(t)=(1-\ell(t))\left(\check{y}_{\tau}(t)-y_{\tau}(t)\right), \\
& \hat{y}_{\tau}^{\prime}(t)=\left(y_{\tau}(t)-\check{y}_{\tau}(t)\right) / \tau .
\end{aligned}
$$

Lemma 1. One has the estimates

$$
\left\|\left(A-A_{\tau}\right) v\right\|_{\mathcal{V}^{*}}+\tau\left\|\hat{A}_{\tau}^{\prime} v\right\|_{\mathcal{V}^{*}} \leq 2 M \tau\|v\|_{L_{\infty}(0, T ; V)}
$$

and

$$
\left\|f-f_{\tau}\right\|_{\mathcal{V}^{*}}+\tau\left\|\hat{f}_{\tau}^{\prime}\right\|_{\mathcal{V}^{*}} \leq 2 F \tau
$$

where $F=\|f\|_{H^{1}\left(0, T ; V^{*}\right)}$.
Proof. We have

$$
\begin{aligned}
\int_{0}^{T}\left\langle\left(A-A_{\tau}\right) v, w\right\rangle d t & =\sum_{n=1}^{N} \int_{I_{n}}\left\langle\left(A(t)-A\left(t_{n}\right)\right) v(t), w(t)\right\rangle d t=\sum_{n=1}^{N} \iint_{I_{n}}\left(\int_{t_{n}}^{t}\left\langle A^{\prime}(s) v(t), w(t)\right\rangle d s\right) d t \\
& \leq \sum_{n=1}^{N} \int\left(\int_{I_{n}} m_{1}(s) d s\right)\|v(t)\|_{V}\|w(t)\|_{V} d t \leq M \tau\|v\|_{L_{\infty}(0, T ; V)}\|w\|_{\mathcal{V}} .
\end{aligned}
$$

Hence it follows that $\left\|\left(A-A_{\tau}\right) v\right\|_{\mathcal{V}^{*}} \leq M \tau\|v\|_{L_{\infty}(0, T ; V)}$. The estimate $\left\|\hat{A}_{\tau}^{\prime} v\right\|_{\mathcal{V}^{*}} \leq M\|v\|_{L_{\infty}(0, T ; V)}$, as well as similar estimates for f, can be proved in a completely similar way.

Lemma 2. Let y^{0} be a solution of problem (3). Then $\left\|y^{0}-u_{0}\right\|_{H}^{2}+\alpha \tau\left\|y^{0}-u_{0}\right\|_{V}^{2} \leq C_{0}^{2} \tau^{2}$.
Proof. Let w be some element of the set $M\left(u_{0}, f\right)$ [see condition $\left.\left(A_{5}\right)\right]$. We take $v=y^{0}$ in the inequality defining w and $v=u_{0}$ in (3). By adding the resulting inequalities, we obtain

$$
\left\langle\left(y^{0}-u_{0}\right) / \tau-w+A(0) y^{0}-A(0) u_{0}, y^{0}-u_{0}\right\rangle \leq 0 .
$$

Let us use the strong monotonicity of A. Then

$$
\left\|y^{0}-u_{0}\right\|_{H}^{2}+\alpha \tau\left\|y^{0}-u_{0}\right\|_{V}^{2} \leq \tau\|w\|_{H}\left\|y^{0}-u_{0}\right\|_{H}
$$

Hence it follows that $\left\|y^{0}-u_{0}\right\|_{H}^{2}+\alpha \tau\left\|y^{0}-u_{0}\right\|_{V}^{2} \leq \tau^{2}\|w\|_{H}^{2}$. By minimizing this estimate with respect to w, we obtain the desired assertion.

[^0]Lemma 3. Let y be a solution of the scheme (2). Then ${ }^{2}$

$$
\left\|y_{\tau}\right\|_{E} \leq C, \quad\left\|\check{y}_{\tau}\right\|_{E} \leq C, \quad\left\|\hat{y}_{\tau}\right\|_{E} \leq C, \quad C=c(T, \alpha)\left(C_{0}+F\right) .
$$

Proof. Let us multiply inequality (2) by τ and set $v=0$. By virtue of conditions $\left(A_{1}\right)$ and $\left(A_{3}\right)$, we obtain the inequality $\left\langle y^{n}-y^{n-1}+\tau A^{n} y^{n}, y^{n}\right\rangle \leq \tau\left\langle f^{n}, y^{n}\right\rangle$. We use the strong monotonicity A^{n} ($A^{n} 0=0$), the inequality

$$
\begin{equation*}
2\langle u-v, u\rangle=\|u\|_{H}^{2}+\|u-v\|_{H}^{2}-\|v\|_{H}^{2} \geq\|u\|_{H}^{2}-\|v\|_{H}^{2} \quad \forall u, v \in V, \tag{4}
\end{equation*}
$$

and the ε-inequality $2 a b \leq \varepsilon^{-1} a^{2}+\varepsilon b^{2}, \varepsilon>0, a, b \in R$. As a result, we have

$$
\left\|y^{n}\right\|_{H}^{2}-\left\|y^{n-1}\right\|_{H}^{2}+2 \alpha \tau\left\|y^{n}\right\|_{V}^{2} \leq 2 \tau\left\|f^{n}\right\|_{V^{*}}\left\|y^{n}\right\|_{V} \leq \tau \varepsilon^{-1}\left\|f^{n}\right\|_{V^{*}}^{2}+\tau \varepsilon\left\|y^{n}\right\|_{V}^{2}
$$

By setting $\varepsilon=\alpha$ and by summing the resulting inequalities with respect to n from 1 to $m \leq N$, we obtain the estimate

$$
\left\|y^{m}\right\|_{H}^{2}+\alpha \tau \sum_{n=1}^{m}\left\|y^{n}\right\|_{V}^{2} \leq\left\|y^{0}\right\|_{H}^{2}+\alpha^{-1} \tau \sum_{n=1}^{N}\left\|f^{n}\right\|_{V^{*}}^{2} \leq C^{2}, \quad C=c(T, \alpha)\left(C_{0}+F\right),
$$

since Lemmas 1 and 2 imply that $\left\|f_{\tau}\right\|_{\mathcal{V}^{*}} \leq 3 F$ and $\left\|y^{0}\right\|_{H} \leq\left\|u_{0}\right\|_{H}+C_{0} \tau \leq(1+T) C_{0}$.
Consequently, we have the estimates

$$
\left\|y_{\tau}\right\|_{L_{\infty}(0, T ; H)}=\max _{1 \leq m \leq N}\left\|y^{m}\right\|_{H} \leq C, \quad\left\|y_{\tau}\right\|_{L_{2}(0, T ; V)} \leq C / \alpha
$$

These two estimates imply the first assertion of the lemma. Since

$$
\left\|\check{y}_{\tau}\right\|_{L_{\infty}(0, T ; H)}=\max _{0 \leq m \leq N-1}\left\|y^{m}\right\|_{H}, \quad\left\|\check{y}_{\tau}\right\|_{\mathcal{V}}^{2} \leq \tau\left\|y^{0}\right\|_{V}^{2}+\left\|y_{\tau}\right\|_{\mathcal{V}}^{2}
$$

it is clear that $\left\|\check{y}_{\tau}\right\|_{E} \leq C$. The final estimate in the lemma follows from the inequality $\left\|\hat{y}_{\tau}\right\|_{E} \leq$ $\left\|\check{y}_{\tau}\right\|_{E}+\left\|y_{\tau}\right\|_{E}$.

Lemma 4. Let y be a solution of the scheme (2). Then $\left\|\hat{y}_{\tau}^{\prime}\right\|_{E} \leq C, C=C\left(T, \alpha, C_{0}, F, M, \varrho\right)$.
Proof. Let us introduce the notation $y_{t}^{n}=\left(y^{n+1}-y^{n}\right) / \tau$. Set $v=y^{n+1}$ in inequality (2) preliminarily divided by τ and $v=y^{n}$ in the same inequality at the next time step; by adding the resulting inequalities, we arrive at the relation

$$
\left\langle y_{t}^{n}-y_{t}^{n-1}, y_{t}^{n}\right\rangle+\left\langle A^{n} y^{n+1}-A^{n} y^{n}, y_{t}^{n}\right\rangle \leq \tau\left\langle f_{t}^{n}-A_{t}^{n} y^{n+1}, y_{t}^{n}\right\rangle+\tau^{-1} \Phi^{n},
$$

where $\Phi^{n}=\left(\phi\left(t^{n}, y^{n+1}\right)-\phi\left(t^{n+1}, y^{n+1}\right)\right)-\left(\phi\left(t^{n}, y^{n}\right)-\phi\left(t^{n+1}, y^{n}\right)\right)$. We again use the strong monotonicity of A^{n} and inequality (4) and obtain the relation

$$
\left\|y_{t}^{n}\right\|_{H}^{2}-\left\|y_{t}^{n-1}\right\|_{H}^{2}+2 \alpha \tau\left\|y_{t}^{n}\right\|_{V}^{2} \leq 2 \tau\left(\left\|f_{t}^{n}\right\|_{V^{*}}+\left\|A_{t}^{n} y^{n+1}\right\|_{V^{*}}\right)\left\|y_{t}^{n}\right\|_{V}+2 \Phi^{n} / \tau
$$

By applying the ε-inequality with $\varepsilon=\alpha$ to the right-hand side and by summing the resulting inequalities with respect to n from 0 to $m<N$, we obtain

$$
\left\|y_{t}^{m}\right\|_{H}^{2}+\alpha \tau \sum_{n=0}^{m}\left\|y_{t}^{n}\right\|_{V}^{2} \leq\left\|y_{t}^{-1}\right\|_{H}^{2}+\alpha^{-1} \tau \sum_{n=0}^{N-1}\left(\left\|f_{t}^{n}\right\|_{V^{*}}^{2}+\left\|A_{t}^{n} y^{n+1}\right\|_{V^{*}}^{2}\right)+2 \tau^{-1} \sum_{n=0}^{N-1} \Phi^{n}=S_{1}+S_{2}+S_{3} .
$$

Just as above, it follows from this estimate that

$$
\max _{0 \leq m \leq N-1}\left\|y_{t}^{m}\right\|^{2}+\tau \sum_{n=0}^{N-1}\left\|y_{t}^{n}\right\|_{V}^{2} \leq c S^{2}, \quad c=c(\alpha), \quad S^{2}=S_{1}+S_{2}+S_{3}
$$

[^1]This implies an estimate for the quantity required in the statement of the lemma,

$$
\begin{equation*}
\left\|\hat{y}_{\tau}^{\prime}\right\|_{E} \leq c S \tag{5}
\end{equation*}
$$

Let us estimate the terms occurring in S^{2}. By Lemma 2, we have

$$
\begin{equation*}
S_{1}=\tau^{-2}\left\|y^{0}-u_{0}\right\|_{H}^{2} \leq c C_{0}^{2} \tag{6}
\end{equation*}
$$

To estimate S_{2}, we use Lemma 1. Obviously,

$$
S_{2}=\alpha^{-1} \int_{0}^{T}\left(\left\|\hat{f}_{\tau}^{\prime}\right\|_{V^{*}}^{2}+\left\|\hat{A}_{\tau}^{\prime} y_{\tau}\right\|_{V^{*}}^{2}\right) d t=\alpha^{-1}\left(\left\|\hat{f}_{\tau}^{\prime}\right\|_{\mathcal{V}^{*}}^{2}+\left\|\hat{A}_{\tau}^{\prime} y_{\tau}\right\|_{\mathcal{V}^{*}}^{2}\right) \leq \alpha^{-1}\left(F^{2}+M^{2}\left\|y_{\tau}\right\|_{L_{\infty}(0, T ; V)}^{2}\right)
$$

Since $\left\|y_{\tau}\right\|_{L_{\infty}(0, T ; V)}^{2} \leq\left\|y^{0}\right\|_{V}^{2}+2\left\|\hat{y}_{\tau}^{\prime}\right\|_{L_{2}(0, T ; V)}\left\|y_{\tau}\right\|_{L_{2}(0, T ; V)}$, it follows from Lemmas 2 and 3 that

$$
\begin{equation*}
\left\|y_{\tau}\right\|_{L_{\infty}(0, T ; V)}^{2} \leq C\left(1+\left\|\hat{y}_{\tau}^{\prime}\right\|_{E}\right), \quad C=C\left(T, \alpha, C_{0}, F, M\right) \tag{7}
\end{equation*}
$$

Consequently,

$$
\begin{equation*}
S_{2} \leq C\left(1+\left\|\hat{y}_{\tau}^{\prime}\right\|_{E}\right) . \tag{8}
\end{equation*}
$$

Finally, let us estimate S_{3},

$$
\begin{aligned}
S_{3} & =-2 \tau^{-1} \sum_{n=0}^{N-1} \int_{t_{n}}^{t_{n+1}}\left(\phi_{t}\left(t, y^{n+1}\right)-\phi_{t}\left(t, y^{n}\right)\right) d t=-2 \tau^{-1} \int_{0}^{T}\left(\phi_{t}\left(t, y_{\tau}(t)\right)-\phi_{t}\left(t, \check{y}_{\tau}(t)\right)\right) d t \\
& \leq 2 \tau^{-1} \varrho\left(\left\|y_{\tau}\right\|_{\mathcal{V}},\left\|\check{y}_{\tau}\right\|_{\mathcal{V}}\right)\left\|y_{\tau}-\check{y}_{\tau}\right\|_{\mathcal{V}}=2 \varrho\left(\left\|y_{\tau}\right\|_{\mathcal{V}},\left\|\check{y}_{\tau}\right\|_{\mathcal{V}}\right)\left\|\hat{y}_{\tau}^{\prime}\right\|_{\mathcal{V}} .
\end{aligned}
$$

Since the norms $\left\|y_{\tau}\right\|_{\mathcal{V}}$ and $\left\|\check{y}_{\tau}\right\|_{\mathcal{V}}$ are bounded uniformly with respect to τ by Lemma 3, we have

$$
S_{3} \leq C\left\|\hat{y}_{\tau}^{\prime}\right\|_{E}, \quad C=C\left(T, \alpha, C_{0}, F, \varrho\right) .
$$

By summing this estimate with (6) and (8), we obtain the estimate $S^{2} \leq C\left(1+\left\|\hat{y}_{\tau}^{\prime}\right\|_{E}\right)$. By using it in (5), we obtain the assertion of the lemma.

Lemma 5. The inequality

$$
\begin{equation*}
\left\langle\hat{y}_{\tau}^{\prime}+A(t) \hat{y}_{\tau}-f, v-\hat{y}_{\tau}\right\rangle+\phi(t, v)-\phi\left(t, \hat{y}_{\tau}\right) \geq-R_{\tau}(t, v) \tag{9}
\end{equation*}
$$

holds for all $t \in[0, T]$ and $v \in D(\phi)$; moreover, if $v \in \mathcal{D}(\phi)$, then there exists a constant C depending on $\|v\|_{\mathcal{V}}$ such that

$$
\int_{0}^{T} R_{\tau}(t, v(t)) d t \leq C\left(\tau^{2}+\tau\left\|\hat{y}_{\tau}-v\right\|_{\mathcal{V}}\right)
$$

Proof. Let $\sigma=\sigma(t), t \in[-\tau, T)$, be the piecewise constant extension of the grid function t_{n}, $\sigma(t)=t_{n}, t \in\left[t_{n-1}, t_{n}\right), n=0,1, \ldots, N$. By writing out the grid inequality (2) in the index-free form, for all $t \in(-\tau, T)$, we have

$$
\begin{equation*}
\left\langle\hat{y}_{\tau}^{\prime}+A_{\tau}(t) y_{\tau}-f_{\tau}, v-y_{\tau}\right\rangle+\phi(\sigma(t), v)-\phi\left(\sigma(t), y_{\tau}\right) \geq 0 \quad \forall v \in D(\phi) \tag{10}
\end{equation*}
$$

Since $\hat{y}_{\tau}, \check{y}_{\tau}$, and y_{τ} are related by the identities

$$
\hat{y}_{\tau}(t)=(1-\ell(t)) \check{y}_{\tau}(t)+\ell(t) y_{\tau}(t), \quad \hat{y}_{\tau}(t)-y_{\tau}(t)=(1-\ell(t))\left(\check{y}_{\tau}(t)-y_{\tau}(t)\right),
$$

it follows from the convexity of ϕ and inequality (10) that ($L=\left\langle A \hat{y}_{\tau}-A_{\tau} y_{\tau}, \hat{y}_{\tau}-v\right\rangle$)

$$
\begin{align*}
\left\langle\hat{y}_{\tau}^{\prime}+A \hat{y}_{\tau}\right. & \left.-f_{\tau} \hat{y}_{\tau}-v\right\rangle+\phi\left(\sigma, \hat{y}_{\tau}\right)-\phi(\sigma, v) \\
= & \left\langle\hat{y}_{\tau}^{\prime}+A_{\tau} y_{\tau}-f_{\tau}, \hat{y}_{\tau}-v\right\rangle+\phi\left(\sigma,(1-\ell) \check{y}_{\tau}+\ell y_{\tau}\right)-\phi(\sigma, v)+L \\
\leq & \left\langle\hat{y}_{\tau}^{\prime}+A_{\tau} y_{\tau}-f_{\tau}, y_{\tau}-v\right\rangle+\left\langle\hat{y}_{\tau}^{\prime}+A_{\tau} y_{\tau}-f_{\tau}, \hat{y}_{\tau}-y_{\tau}\right\rangle \\
& \quad+(1-\ell) \phi\left(\sigma, \check{y}_{\tau}\right)+\ell \phi\left(\sigma, y_{\tau}\right)-\phi(\sigma, v)+L \\
\leq & (1-\ell)\left[\left\langle\hat{y}_{\tau}^{\prime}+A_{\tau} y_{\tau}-f_{\tau}, \check{y}_{\tau}-y_{\tau}\right\rangle+\phi\left(\sigma, \check{y}_{\tau}\right)-\phi\left(\sigma, y_{\tau}\right)\right]+L . \tag{11}
\end{align*}
$$

By multiplying relation (10) for $t-\tau$ by $(1-\ell)$ and by setting $v=y$, we obtain the inequality

$$
(1-\ell)\left[\left\langle\hat{y}_{\tau}^{\prime}(t-\tau)+\check{A}_{\tau} \check{y}_{\tau}-\check{f}_{\tau}, y_{\tau}-\check{y}_{\tau}\right\rangle+\phi\left(\check{\sigma}, y_{\tau}\right)-\phi\left(\check{\sigma}, \check{y}_{\tau}\right)\right] \geq 0 .
$$

By adding this quantity to the right-hand side in (11) and by making simple transformations, we obtain the desired inequality (9) with

$$
R_{\tau}(t, v)=r_{1}+r_{2}+r_{3}+r_{4}+r_{5}+L
$$

where

$$
\begin{aligned}
& r_{1}=(1-\ell)\left\langle\hat{y}_{\tau}^{\prime}-\hat{y}_{\tau}^{\prime}(t-\tau), \check{y}_{\tau}-y_{\tau}\right\rangle, \\
& r_{2}=(1-\ell)\left\langle\check{f}_{\tau}-f_{\tau}+A_{\tau} y_{\tau}-\check{A}_{\tau} \check{y}_{\tau}, \check{y}_{\tau}-y_{\tau}\right\rangle, \\
& r_{3}=(1-\ell)\left(\phi\left(\check{\sigma}, y_{\tau}\right)-\phi\left(\sigma, y_{\tau}\right)-\phi\left(\check{\sigma}, \check{y}_{\tau}\right)+\phi\left(\sigma, \check{y}_{\tau}\right)\right), \\
& r_{4}=\phi\left(\sigma(t), \hat{y}_{\tau}\right)-\phi\left(t, \hat{y}_{\tau}\right)-\phi(\sigma(t), v)+\phi(t, v), \quad r_{5}=\left\langle f-f_{\tau}, v-\hat{y}_{\tau}\right\rangle .
\end{aligned}
$$

Let us estimate the integral of each term in $R_{\tau}(t, v)$. Note that the identity

$$
\int_{0}^{T}(1-\ell) g_{\tau} d t=\frac{1}{2} \int_{0}^{T} g_{\tau} d t
$$

holds for any piecewise constant function g_{τ}. Since $\hat{y}_{\tau}^{\prime}(t)=\left(y_{\tau}(t)-\check{y}_{\tau}(t)\right) / \tau$, it follows from inequality (4) and Lemma 2 that

$$
\begin{aligned}
\int_{0}^{T} r_{1} d t & =\tau \int_{0}^{T}(1-\ell)\left\langle\hat{y}_{\tau}^{\prime}(t-\tau)-\hat{y}_{\tau}^{\prime}, \hat{y}_{\tau}^{\prime}\right\rangle d t=\frac{\tau}{2} \int_{0}^{T}\left\langle\left\langle\hat{y}_{\tau}^{\prime}(t-\tau)-\hat{y}_{\tau}^{\prime}, \hat{y}_{\tau}^{\prime}\right\rangle d t\right. \\
& \leq \frac{\tau}{2} \int_{0}^{T}\left(\left\|\hat{y}_{\tau}^{\prime}(t-\tau)\right\|_{H}^{2}-\left\|\hat{y}_{\tau}^{\prime}(t)\right\|_{H}^{2}\right) d t \leq \frac{\tau}{2} \int_{0}^{\tau}\left\|\frac{y^{0}-u_{0}}{\tau}\right\|_{H}^{2} d t \leq \frac{1}{2} C_{0}^{2} \tau^{2} .
\end{aligned}
$$

By taking into account the strong monotonicity of \check{A}_{τ}, the estimate (8) for the quantity S_{2}, and Lemma 4, we obtain the estimate

$$
\begin{aligned}
\int_{0}^{T} r_{2} d t & =\tau \int_{0}^{T}(1-\ell)\left\langle f_{\tau}-\check{f}_{\tau}+\check{A}_{\tau} \check{y}_{\tau}-A_{\tau} y_{\tau}, \hat{y}_{\tau}^{\prime}\right\rangle d t \\
& =\frac{\tau^{2}}{2} \int_{0}^{T}\left\langle\hat{f}_{\tau}^{\prime}-\hat{A}_{\tau}^{\prime} y_{\tau}, \hat{y}_{\tau}^{\prime}\right\rangle d t-\frac{1}{2} \int_{0}^{T}\left\langle\check{A}_{\tau} y_{\tau}-\check{A}_{\tau} \check{y}_{\tau}, y_{\tau}-\check{y}_{\tau}\right\rangle d t \\
& \leq \frac{\tau^{2}}{2}\left(\left\|\hat{f}_{\tau}^{\prime}\right\|_{\mathcal{V}^{*}}+\left\|\hat{A}_{\tau}^{\prime} y_{\tau}\right\|_{\mathcal{V}^{*}}\right)\left\|\hat{y}_{\tau}^{\prime}\right\|_{\mathcal{V}} \leq c \tau^{2}
\end{aligned}
$$

The following estimates are similar to the estimate of S_{3} in the proof of Lemma 4:

$$
\begin{aligned}
\int_{0}^{T} r_{3} d t & =\frac{1}{2} \int_{0}^{T} \int_{\sigma(t)}^{\check{\sigma}(t)}\left(\phi_{t}\left(\xi, y_{\tau}\right)-\phi_{t}\left(\xi, \check{y}_{\tau}\right)\right) d \xi d t=\frac{1}{2} \sum_{n=1}^{N} \int_{t_{n-1}}^{t_{n}} \int_{t_{n}}^{t_{n-1}}\left(\phi_{t}\left(\xi, y_{\tau}\right)-\phi_{t}\left(\xi, \check{y}_{\tau}\right)\right) d \xi d t \\
& =\frac{-\tau}{2} \int_{0}^{T}\left(\phi_{t}\left(\xi, y_{\tau}\right)-\phi_{t}\left(\xi, \check{y}_{\tau}\right)\right) d \xi \leq c \tau\left\|y_{\tau}-\check{y}_{\tau}\right\|_{\mathcal{V}}=c \tau^{2}\left\|\hat{y}_{\tau}^{\prime}\right\|_{\mathcal{V}} \leq c \tau^{2} \\
\int_{0}^{T} r_{4} d t & =\int_{0}^{T} \int_{t}^{\sigma(t)}\left(\phi_{t}\left(\xi, \hat{y}_{\tau}\right)-\phi_{t}(\xi, v)\right) d \xi d t \leq c(v) \tau\left\|\hat{y}_{\tau}-v\right\|_{\mathcal{V}}
\end{aligned}
$$

where $c(v)$ is bounded on $\mathcal{D}(\phi)$. From Lemma 1, we have

$$
\int_{0}^{T} r_{5} d t \leq\left\|f-f_{\tau}\right\|_{\mathcal{V} *}\left\|v-\hat{y}_{\tau}\right\|_{\mathcal{V}} \leq c \tau\left\|\hat{y}_{\tau}-v\right\|_{\mathcal{V}}
$$

Finally, by taking into account Lemma 1 and inequality (7), we obtain the estimate

$$
\begin{aligned}
\int_{0}^{T} L d t & \leq \int_{0}^{T}\left\|A \hat{y}_{\tau}-A_{\tau} y_{\tau}\right\|_{V^{*}}\left\|\hat{y}_{\tau}-v\right\|_{V} d t \leq \int_{0}^{T}\left(\left\|A \hat{y}_{\tau}-A y_{\tau}\right\|_{V^{*}}+\left\|\left(A-A_{\tau}\right) y_{\tau}\right\|_{V^{*}}\right)\left\|\hat{y}_{\tau}-v\right\|_{\mathcal{V}} d t \\
& \leq\left(\tau M\left\|\hat{y}_{\tau}^{\prime}\right\|_{\mathcal{V}^{*}}+M \tau\left\|y_{\tau}\right\|_{L_{\infty}(0, T ; \mathcal{})}\right)\left\|\hat{y}_{\tau}-v\right\|_{\mathcal{V}} \leq c \tau\left\|\hat{y}_{\tau}-v\right\|_{\mathcal{V}}
\end{aligned}
$$

because $\hat{y}_{\tau}-y_{\tau}=\tau(\ell-1) \hat{y}_{\tau}^{\prime}$. By summing this estimate with the estimates for the integrals of the remaining terms in $R_{\tau}(t, v)$, we arrive at the definitive conclusion of the lemma.

4. EXISTENCE OF A SOLUTION. ERROR ESTIMATE

Lemma 6. Let \hat{y}_{τ} and \hat{y}_{k} be the solutions of the scheme (2) with time increments τ and $k=T / M$, respectively. Then $\left\|\hat{y}_{\tau}-\hat{y}_{k}\right\|_{E} \leq c(\tau+k)$, where c is a constant independent of τ and k.

Proof. By Lemma 5, the inequality

$$
\begin{equation*}
\left\langle\hat{y}_{k}^{\prime}+A \hat{y}_{k}-f, v-\hat{y}_{k}\right\rangle+\phi(t, v)-\phi\left(t, \hat{y}_{k}\right) \geq-R_{k}(t, v) \tag{12}
\end{equation*}
$$

holds for $t \in[0, T]$ and $v \in D(\phi)$; moreover, if $v \in \mathcal{D}(\phi)$, then $\int_{0}^{T} R_{k}(t, v(t)) d t \leq C\left(k^{2}+k\left\|\hat{y}_{k}-v\right\|_{\mathcal{V}}\right)$, $C=C\left(\|v\|_{\mathcal{V}}\right)$.

By setting $v=\hat{y}_{k}$ in inequality (9) and $v=\hat{y}_{\tau}$ in (12) and by adding the resulting inequalities, we obtain $\left\langle\hat{y}_{k}^{\prime}-\hat{y}_{\tau}^{\prime}+A \hat{y}_{k}-A \hat{y}_{\tau}, \hat{y}_{k}-\hat{y}_{\tau}\right\rangle \leq R_{k}\left(t, \hat{y}_{\tau}\right)+R_{\tau}\left(t, \hat{y}_{k}\right)$. Hence we have the inequality

$$
\frac{d}{d t}\left\|\hat{y}_{k}-\hat{y}_{\tau}\right\|_{H}^{2}+2 \alpha\left\|\hat{y}_{k}-\hat{y}_{\tau}\right\|_{V}^{2} \leq 2\left(R_{k}\left(t, \hat{y}_{\tau}\right)+R_{\tau}\left(t, \hat{y}_{k}\right)\right) .
$$

We integrate this inequality with respect to $t \in(0, s), s \leq T$, set $s=T$ on the right-hand side, use the estimates for the integrals of R_{k} and R_{τ}, and take into account the relation

$$
\left\|\hat{y}_{k}(0)-\hat{y}_{\tau}(0)\right\|_{H} \leq\left\|\hat{y}_{\tau}(0)-u_{0}\right\|_{H}+\left\|\hat{y}_{k}(0)-u_{0}\right\|_{H} \leq c(k+\tau) .
$$

As a result, we obtain the inequality

$$
\begin{aligned}
\left\|\left(\hat{y}_{k}-\hat{y}_{\tau}\right)(s)\right\|_{H}^{2}+2 \alpha \int_{0}^{s}\left\|\hat{y}_{k}-\hat{y}_{\tau}\right\|_{V}^{2} d t & \leq\left\|\hat{y}_{k}(0)-\hat{y}_{\tau}(0)\right\|_{H}^{2}+c\left(\tau^{2}+k^{2}\right)+c(\tau+k)\left\|\hat{y}_{k}-\hat{y}_{\tau}\right\|_{\mathcal{V}} \\
& \leq c(\tau+k)^{2}+c(\tau+k)\left\|\hat{y}_{k}-\hat{y}_{\tau}\right\|_{\mathcal{V}} .
\end{aligned}
$$

This implies the assertion of the lemma.

Theorem 1. The following assertions hold.
(a) There exists a unique solution u of problem (1). It satisfies the inclusion $u \in H^{1}(0, T ; V) \cap$ $W_{\infty}^{1}(0, T ; H)$.
(b) Let u and \bar{u} be the solutions of problem (1) with input data $\left\{u_{0}, f\right\}$ and $\left\{\bar{u}_{0}, \bar{f}\right\}$, respectively; then $\|\bar{u}-u\|_{E} \leq c\left(\left\|\bar{u}_{0}-u_{0}\right\|_{H}+\|\bar{f}-f\|_{\mathcal{V}^{*}}\right)$.
(c) If \hat{y}_{τ} is the piecewise linear extension of the solution of the implicit scheme (2), then $\left\|u-\hat{y}_{\tau}\right\|_{E} \leq c \tau$.

Proof. We start the proof from assertion (b). Set $v=\bar{u}(t)$ and $v=u(t)$ in inequality (1) defining u and \bar{u}, respectively. By adding the resulting inequalities, we obtain

$$
\left\langle(\bar{u}-u)^{\prime}, \bar{u}-u\right\rangle+\langle A \bar{u}-A u, \bar{u}-u\rangle \leq\langle\bar{f}-f, \bar{u}-u\rangle \leq\|\bar{f}-f\|_{V^{*}}\|\bar{u}-u\|_{V} .
$$

This implies the estimate

$$
\frac{d}{d t}\|\bar{u}-u\|_{H}^{2}+\alpha\|\bar{u}-u\|_{V}^{2} \leq \alpha^{-1}\|\bar{f}-f\|_{V^{*}}^{2},
$$

whence, in turn, we obtain the stability estimate in assertion (b); note that it guarantees the uniqueness of the solution.

To prove assertion (a), we arbitrarily fix $v \in \mathcal{D}(\phi)$. By integrating inequality (9), we obtain the relation

$$
\begin{equation*}
\int_{0}^{T}\left(\left\langle\hat{y}_{\tau}^{\prime}+A \hat{y}_{\tau}-f, v-\hat{y}_{\tau}\right\rangle+\phi(t, v)-\phi\left(t, \hat{y}_{\tau}\right)\right) d t+\varepsilon_{\tau} \geq 0, \quad \varepsilon_{\tau} \leq c\left(\tau^{2}+\tau\left\|\hat{y}_{\tau}-v\right\|_{\nu}\right) . \tag{13}
\end{equation*}
$$

From the a priori estimates, we have

$$
\hat{y}_{\tau}, \hat{y}_{\tau}^{\prime} \in E=L_{2}(0, T ; V) \cap L_{\infty}(0, T ; H) ;
$$

moreover, $\left\|\hat{y}_{\tau}\right\|_{E}+\left\|\hat{y}_{\tau}^{\prime}\right\|_{E} \leq C$ uniformly with respect to τ. It follows from Lemma 6 that the sequence $\left\{\hat{y}_{\tau}, \tau=T / N, N=1,2, \ldots\right\}$ is a Cauchy sequence in E. Therefore, it strongly converges to some element $u \in E$; in a standard way, one can show that \hat{y}_{τ}^{\prime} weakly converges to u^{\prime} in $L_{2}(0, T ; V)$, and $\|u\|_{E}+\left\|u^{\prime}\right\|_{E} \leq C$. By virtue of the lower semicontinuity of the functional $v \rightarrow \phi(t, v), t \in[0, T]$, we have

$$
\phi(t, u) \leq \liminf _{\tau \rightarrow 0} \phi\left(t, \hat{y}_{\tau}\right) ;
$$

i.e., $u \in D(\phi)$. Therefore, by taking into account the continuity of the operators $A(t), t \in[0, T]$, and by passing to the limit in (13), we obtain the inequality

$$
\int_{0}^{T}\left(\left\langle u^{\prime}(t)+A(t) u(t)-f(t), v(t)-u(t)\right\rangle+\phi(t, v(t))-\phi(t, u(t))\right) d t \geq 0
$$

This implies inequality (1), because v is arbitrary. Since the estimate

$$
\left\|\hat{y}_{\tau}(0)-u_{0}\right\|_{H} \leq C_{0} \tau
$$

holds by Lemma 2, it follows that $u(0)=u_{0}$ and u is a solution of problem (1).
To prove assertion (c), it suffices to pass to the limit as $k \rightarrow 0$ in the estimate in Lemma 6 .

ACKNOWLEDGMENTS

The research was supported by the Russian Foundation for Basic Research (project no. 10-0100629).

REFERENCES

1. Savaré, G., Weak Solutions and Maximal Regularity for Abstract Evolution Inequalities, Adv. Math. Sci. Appl., 1996, no. 6, pp. 377-418.
2. Rulla, J., Error Analysis for Implicit Approximations to Solutions to Cauchy Problems, SIAM J. Numer. Anal., 1996, vol. 33, no. 1, pp. 68-87.
3. Gajewski, H., Gröger, K., and Zacharias, K., Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen, Berlin: Akademie-Verlag, 1974. Translated under the title Nelineinye operatornye uravneniya i operatornye differentsial'nye uravneniya, Moscow: Mir, 1978.
4. Lions, J.-L., Quelques méthodes de résolution des problèmes aux limites nonlinéaires, Paris: Dunod, 1969. Translated under the title Nekotorye metody resheniya nelineinykh kraevykh zadach, Moscow: Mir, 1972.

[^0]: ${ }^{1}$ At the points of discontinuity, \hat{y}_{τ}^{\prime} is assumed to be left continuous; \hat{f}_{τ} and \hat{A}_{τ} are defined in a similar way.

[^1]: ${ }^{2}$ Here and throughout the following, various constants like c and C, possibly with subscripts, are independent of τ.

