
ISSN 0012-2661, Differential Equations, 2011, Vol. 47, No. 8, pp. 1130–1138. c© Pleiades Publishing, Ltd., 2011.
Original Russian Text c© R.Z. Dautov, A.I. Mikheeva, 2011, published in Differentsial’nye Uravneniya, 2011, Vol. 47, No. 8, pp. 1119–1126.

NUMERICAL METHODS

Implicit Euler Scheme
for an Abstract Evolution Inequality

R. Z. Dautov and A. I. Mikheeva
Kazan Federal University, Kazan, Russia

Received December 10, 2010

Abstract—For a triple {V, H, V ∗} of Hilbert spaces, we consider an evolution inclusion of the
form u′(t)+A(t)u(t)+ ∂φ(t, u(t)) � f(t), u(0) = u0, t ∈ (0, T ], where A(t) and φ(t, ·), t ∈ [0, T ],
are a family of nonlinear operators from V to V ∗ and a family of convex lower semicontinuous
functionals with common effective domain D(φ) ⊂ V . We indicate conditions on the data under
which there exists a unique solution of the problem in the space H1(0, T ; V )∩W 1

∞(0, T ; H) and
the implicit Euler method has first-order accuracy in the energy norm.

DOI: 10.1134/S0012266111080076

The aim of the present paper is to state conditions guaranteeing the first-order accuracy of the
implicit Euler method in the energy norm for the following problem: find a function u(t) ∈ D(φ)
with u(0) = u0 such that the inequality

〈u′(t) + A(t)u(t) − f(t), v − u(t)〉 + φ(t, v) − φ(t, u(t)) ≥ 0 (1)

holds for each v ∈ D(φ) and for almost all t ∈ (0, T ], which is equivalent to the relation u′(t) +
A(t)u(t) + ∂φ(t, u(t)) � f(t), where ∂φ : V → V∗ is the subdifferential of φ. This problem was
earlier considered in [1, 2] for the case in which the functional φ does not explicitly depend on t.
(The operators A(t) were assumed in [1] to be linear, and the case of A(t) = 0 was considered
in [2].) We generalize the results of these papers by using the studies in [1]. The energy norm is
defined by the formula

‖v‖E = ‖v‖L∞(0,T ;H) + ‖v‖L2(0,T,V ).

1. NOTATION AND ASSUMPTIONS

Let V and H be separable Hilbert spaces with dense continuous embeddings V ⊂ H = H∗ ⊂ V ∗,
and let 〈· , ·〉 be the duality pairing between V ∗ and V . For a given Banach space X, we define the
spaces Lp(0, T ;X) and W k

p (0, T ;X), p ∈ [1,∞], k ≥ 0, and the norms in them in a standard way
(e.g., see [3, Chap. 4]). Set

V = L2(0, T ;V ), V∗ = L2(0, T ;V ∗), H1(0, T ;X) = W 1
2 (0, T ;X),

D(φ) = {v ∈ V : φ(t, v(t)) ∈ L1(0, T )}.

We impose the following constraints on data of problem (1) :
(A1) A(t)0 = 0; the estimates

〈A(t)u − A(t)v, u − v〉 ≥ α‖u − v‖2
V , α = const > 0,

‖A(t)u − A(t)v‖V ∗ ≤ m0(t)‖u − v‖V , ‖A′(t)v‖V ∗ ≤ m1(t)‖v‖V ,

M = ‖m0‖L2(0,T ) + ‖m1‖L2(0,T ) < ∞

[A′(t) = dA(t)/dt] hold for arbitrary u, v ∈ V and for almost all t ∈ [0, T ].
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(A2) The functional v → φ(t, v) is proper convex and lower semicontinuous on V for each
t ∈ [0, T ], and its effective domain

D(φ) = {v ∈ V : φ(t, v) < ∞}

is independent of t; 0 ∈ D(φ).
(A3) If χ : [0, T ] → V ∗ is a subgradient of φ at zero, i.e., if φ(t, v) − φ(t, 0) ≥ 〈χ(t), v〉 for all

v ∈ D(φ), then χ ∈ H1(0, T ;V ∗).

(A4)
∫ T

0
|φt(t, u(t))−φt(t, v(t))| dt ≤ �(‖u‖V , ‖v‖V)‖u−v‖V for all u, v ∈ D(φ), where the function

� is continuous function and nondecreasing with respect to each argument and φt(t, u) = dφ(t, u)/dt,
u ∈ D(φ).

(A5) f ∈ H1(0, T ;V ∗), u0 ∈ D(φ), and C0 = ‖u0‖V + infv∈M(u0,f) ‖v‖H < ∞, where the set

M(u0, f) = {w ∈ H : 〈w + A(0)u0 − f(0), v − u0〉 + φ(0, v) − φ(0, u0) ≥ 0 ∀ v ∈ D(φ)}

is nonempty.
Note that condition (A1) implies the continuity of the function t → A(t) on [0, T ] and the pseu-

domonotonicity and coercivity of A(t) for each t ∈ [0, T ] (e.g., see [4, p. 190]), and condition (A3)
permits one to assume without loss of generality that

φ(t, v) ≥ φ(t, 0) = 0 ∀ v ∈ D(φ).

In what follows, we assume that this condition is satisfied. Indeed, otherwise the problem can be
reduced to problem (1) with data f̄(t) = f(t) − χ(t) and φ̄(t, v) = φ(t, v) − φ(t, 0) − 〈χ(t), v〉 and
with the same solution u; moreover, one can readily see that conditions (A2), (A3), and (A5), as
well as condition (A4), remain valid for the new data, because ‖χ′(t)‖V ∗ ∈ L2(0, T ) and

|φ̄t(t, u) − φ̄t(t, v)| = |φt(t, u) − φt(t, v) + 〈χ′(t), u − v〉|
≤ |φt(t, u) − φt(t, v)| + ‖χ′(t)‖V ∗‖u − v‖V .

The condition C0 < ∞ in (A5) is the matching condition for the data and is necessary for the
problem to be solvable in the space E1 = H1(0, T ;V ) ∩ W 1

∞(0, T ;H). Indeed, if u ∈ E1, then
u ∈ C([0, T ];V ), u′ ∈ C([0, T ];H), and one can consider inequality (1) for t = 0 by continuity.
Then we obtain u′(0) ∈ M(u0, f) and C0 < ∞.

2. IMPLICIT EULER SCHEME

Let us fix the grid increment τ = T/N and the corresponding partition of the interval [−τ, T ]
into the elements In = [tn−1, tn), n = 0, 1, . . . , N , where tj = jτ , j = −1, 0, . . . , N . Set yn ≈ u(tn),
An = A(tn), fn = f(tn), φn(·) = φ(tn, ·), y−1 = u0, A(t−1) = A(0), f(t−1) = f(0), and φ(t−1, ·) =
φ(0, ·).

Let us define an implicit scheme as follows: find yn ∈ D(φ) such that the inequalities

〈(yn − yn−1)/τ + Anyn − fn, v − yn〉 + φn(v) − φn(yn) ≥ 0 ∀ v ∈ D(φ) (2)

hold for n = 0, 1, . . . , N . Note that, unlike the traditional statement of the implicit Euler scheme,
for n = 0, we solve the following problem to find y0 :

〈(y0 − u0)/τ + A(0)y0 − f(0), v − y0〉 + φ(0, v) − φ(0, y0) ≥ 0 ∀ v ∈ D(φ). (3)

This approximation proves useful in connection with condition (A5).
From inequality (2), we successively find yn (starting from y0). For yn ∈ D(ϕ) = D(φ), we

obtain the inequality

〈By − G, v − y〉 + ϕ(v) − ϕ(y) ≥ 0 ∀ v ∈ D(ϕ),

DIFFERENTIAL EQUATIONS Vol. 47 No. 8 2011



1132 DAUTOV, MIKHEEVA

where B = 1/τ + An is a pseudomonotone coercive operator from V into V ∗,

G = yn−1/τ + fn ∈ V ∗,

and ϕ(y) = φ(tn, y) is a proper convex lower semicontinuous functional on V . It is well known
that there exists a uniquely determined solution of this inequality (e.g., see [4, Th. 8.5, p. 265]).
Therefore, the sequence {yn}N

n=0 is well defined and lies in D(φ).

3. A PRIORI ESTIMATES

The piecewise constant and piecewise linear extensions of a grid function gn, n = −1, 0, . . . , N ,
will be denoted by gτ (t) and ĝτ (t), t ∈ [−τ, T ), respectively; by ǔ we denote the shift ǔ(t) = u(t−τ)
of a function u. In addition, let 	(t) stand for the τ -periodic function equal to (t − tn−1)/τ on the
interval [tn−1, tn). Then, for all t ∈ (−τ, T ), we have1

ŷτ(t) = (1 − 	(t))y̌τ(t) + 	(t)yτ(t), ŷτ(t) − yτ(t) = (1 − 	(t))(y̌τ (t) − yτ(t)),
ŷ′

τ(t) = (yτ(t) − y̌τ(t))/τ.

Lemma 1. One has the estimates

‖(A − Aτ )v‖V∗ + τ‖Â′
τv‖V∗ ≤ 2Mτ‖v‖L∞(0,T ;V )

and
‖f − fτ‖V∗ + τ‖f̂ ′

τ‖V∗ ≤ 2Fτ,

where F = ‖f‖H1(0,T ;V ∗).

Proof. We have

T∫

0

〈(A − Aτ )v,w〉 dt =
N∑

n=1

∫

In

〈(A(t) − A(tn))v(t), w(t)〉 dt =
N∑

n=1

∫

In

( t∫

tn

〈A′(s)v(t), w(t)〉 ds

)

dt

≤
N∑

n=1

∫

In

(∫

In

m1(s) ds

)

‖v(t)‖V ‖w(t)‖V dt ≤ Mτ‖v‖L∞(0,T ;V )‖w‖V .

Hence it follows that ‖(A − Aτ)v‖V∗ ≤ Mτ‖v‖L∞(0,T ;V ). The estimate ‖Â′
τv‖V∗ ≤ M‖v‖L∞(0,T ;V ),

as well as similar estimates for f , can be proved in a completely similar way.

Lemma 2. Let y0 be a solution of problem (3). Then ‖y0 − u0‖2
H + ατ‖y0 − u0‖2

V ≤ C2
0τ

2.

Proof. Let w be some element of the set M(u0, f) [see condition (A5)]. We take v = y0 in the
inequality defining w and v = u0 in (3). By adding the resulting inequalities, we obtain

〈(y0 − u0)/τ − w + A(0)y0 − A(0)u0, y
0 − u0〉 ≤ 0.

Let us use the strong monotonicity of A. Then

‖y0 − u0‖2
H + ατ‖y0 − u0‖2

V ≤ τ‖w‖H‖y0 − u0‖H .

Hence it follows that ‖y0 − u0‖2
H + ατ‖y0 − u0‖2

V ≤ τ 2‖w‖2
H . By minimizing this estimate with

respect to w, we obtain the desired assertion.

1 At the points of discontinuity, ŷ′
τ is assumed to be left continuous; f̂τ and Âτ are defined in a similar way.
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Lemma 3. Let y be a solution of the scheme (2). Then2

‖yτ‖E ≤ C, ‖y̌τ‖E ≤ C, ‖ŷτ‖E ≤ C, C = c(T, α)(C0 + F ).

Proof. Let us multiply inequality (2) by τ and set v = 0. By virtue of conditions (A1) and (A3),
we obtain the inequality 〈yn − yn−1 + τAnyn, yn〉 ≤ τ〈fn, yn〉. We use the strong monotonicity An

(An0 = 0), the inequality

2〈u − v, u〉 = ‖u‖2
H + ‖u − v‖2

H − ‖v‖2
H ≥ ‖u‖2

H − ‖v‖2
H ∀u, v ∈ V, (4)

and the ε-inequality 2ab ≤ ε−1a2 + εb2, ε > 0, a, b ∈ R. As a result, we have

‖yn‖2
H − ‖yn−1‖2

H + 2ατ‖yn‖2
V ≤ 2τ‖fn‖V ∗‖yn‖V ≤ τε−1‖fn‖2

V ∗ + τε‖yn‖2
V .

By setting ε = α and by summing the resulting inequalities with respect to n from 1 to m ≤ N ,
we obtain the estimate

‖ym‖2
H + ατ

m∑

n=1

‖yn‖2
V ≤ ‖y0‖2

H + α−1τ

N∑

n=1

‖fn‖2
V ∗ ≤ C2, C = c(T, α)(C0 + F ),

since Lemmas 1 and 2 imply that ‖fτ‖V∗ ≤ 3F and ‖y0‖H ≤ ‖u0‖H + C0τ ≤ (1 + T )C0.
Consequently, we have the estimates

‖yτ‖L∞(0,T ;H) = max
1≤m≤N

‖ym‖H ≤ C, ‖yτ‖L2(0,T ;V ) ≤ C/α.

These two estimates imply the first assertion of the lemma. Since

‖y̌τ‖L∞(0,T ;H) = max
0≤m≤N−1

‖ym‖H , ‖y̌τ‖2
V ≤ τ‖y0‖2

V + ‖yτ‖2
V ,

it is clear that ‖y̌τ‖E ≤ C. The final estimate in the lemma follows from the inequality ‖ŷτ‖E ≤
‖y̌τ‖E + ‖yτ‖E .

Lemma 4. Let y be a solution of the scheme (2). Then ‖ŷ′
τ‖E ≤ C, C = C(T, α,C0, F,M, �).

Proof. Let us introduce the notation yn
t = (yn+1 − yn)/τ . Set v = yn+1 in inequality (2)

preliminarily divided by τ and v = yn in the same inequality at the next time step; by adding the
resulting inequalities, we arrive at the relation

〈yn
t − yn−1

t , yn
t 〉 + 〈Anyn+1 − Anyn, yn

t 〉 ≤ τ〈fn
t − An

t yn+1, yn
t 〉 + τ−1Φn,

where Φn = (φ(tn, yn+1)−φ(tn+1, yn+1))− (φ(tn, yn)−φ(tn+1, yn)). We again use the strong mono-
tonicity of An and inequality (4) and obtain the relation

‖yn
t ‖2

H − ‖yn−1
t ‖2

H + 2ατ‖yn
t ‖2

V ≤ 2τ(‖fn
t ‖V ∗ + ‖An

t yn+1‖V ∗)‖yn
t ‖V + 2Φn/τ.

By applying the ε-inequality with ε = α to the right-hand side and by summing the resulting
inequalities with respect to n from 0 to m < N , we obtain

‖ym
t ‖2

H + ατ
m∑

n=0

‖yn
t ‖2

V ≤ ‖y−1
t ‖2

H + α−1τ
N−1∑

n=0

(‖fn
t ‖2

V ∗ + ‖An
t yn+1‖2

V ∗) + 2τ−1

N−1∑

n=0

Φn = S1 + S2 + S3.

Just as above, it follows from this estimate that

max
0≤m≤N−1

‖ym
t ‖2 + τ

N−1∑

n=0

‖yn
t ‖2

V ≤ cS2, c = c(α), S2 = S1 + S2 + S3.

2 Here and throughout the following, various constants like c and C, possibly with subscripts, are independent of τ .
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This implies an estimate for the quantity required in the statement of the lemma,

‖ŷ′
τ‖E ≤ cS. (5)

Let us estimate the terms occurring in S2. By Lemma 2, we have

S1 = τ−2‖y0 − u0‖2
H ≤ cC2

0 . (6)

To estimate S2, we use Lemma 1. Obviously,

S2 = α−1

T∫

0

(
‖f̂ ′

τ‖2
V ∗ + ‖Â′

τyτ‖2
V ∗

)
dt = α−1

(
‖f̂ ′

τ‖2
V∗ + ‖Â′

τyτ‖2
V∗

)
≤ α−1

(
F 2 + M2‖yτ‖2

L∞(0,T ;V )

)
.

Since ‖yτ‖2
L∞(0,T ;V ) ≤ ‖y0‖2

V + 2‖ŷ′
τ‖L2(0,T ;V )‖yτ‖L2(0,T ;V ), it follows from Lemmas 2 and 3 that

‖yτ‖2
L∞(0,T ;V ) ≤ C(1 + ‖ŷ′

τ‖E), C = C(T, α,C0, F,M). (7)

Consequently,
S2 ≤ C(1 + ‖ŷ′

τ‖E). (8)

Finally, let us estimate S3,

S3 = −2τ−1

N−1∑

n=0

tn+1∫

tn

(φt(t, yn+1) − φt(t, yn)) dt = −2τ−1

T∫

0

(φt(t, yτ (t)) − φt(t, y̌τ (t))) dt

≤ 2τ−1�(‖yτ‖V , ‖y̌τ‖V)‖yτ − y̌τ‖V = 2�(‖yτ‖V , ‖y̌τ‖V)‖ŷ′
τ‖V .

Since the norms ‖yτ‖V and ‖y̌τ‖V are bounded uniformly with respect to τ by Lemma 3, we have

S3 ≤ C‖ŷ′
τ‖E , C = C(T, α,C0, F, �).

By summing this estimate with (6) and (8), we obtain the estimate S2 ≤ C(1 + ‖ŷ′
τ‖E). By using

it in (5), we obtain the assertion of the lemma.

Lemma 5. The inequality

〈 ŷ′
τ + A(t)ŷτ − f, v − ŷτ〉 + φ(t, v) − φ(t, ŷτ ) ≥ −Rτ(t, v) (9)

holds for all t ∈ [0, T ] and v ∈ D(φ); moreover , if v ∈ D(φ), then there exists a constant C
depending on ‖v‖V such that

T∫

0

Rτ (t, v(t)) dt ≤ C(τ 2 + τ‖ŷτ − v‖V).

Proof. Let σ = σ(t), t ∈ [−τ, T ), be the piecewise constant extension of the grid function tn,
σ(t) = tn, t ∈ [tn−1, tn), n = 0, 1, . . . , N . By writing out the grid inequality (2) in the index-free
form, for all t ∈ (−τ, T ), we have

〈ŷ′
τ + Aτ (t)yτ − fτ , v − yτ〉 + φ(σ(t), v) − φ(σ(t), yτ ) ≥ 0 ∀ v ∈ D(φ). (10)

Since ŷτ , y̌τ , and yτ are related by the identities

ŷτ(t) = (1 − 	(t))y̌τ (t) + 	(t)yτ(t), ŷτ(t) − yτ(t) = (1 − 	(t))(y̌τ (t) − yτ(t)),
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it follows from the convexity of φ and inequality (10) that (L = 〈Aŷτ − Aτyτ , ŷτ − v〉)

〈ŷ′
τ + Aŷτ − fτ , ŷτ − v〉 + φ(σ, ŷτ ) − φ(σ, v)

= 〈ŷ′
τ + Aτyτ − fτ , ŷτ − v〉 + φ(σ, (1 − 	)y̌τ + 	yτ) − φ(σ, v) + L

≤ 〈ŷ′
τ + Aτyτ − fτ , yτ − v〉 + 〈ŷ′

τ + Aτyτ − fτ , ŷτ − yτ〉
+ (1 − 	)φ(σ, y̌τ ) + 	φ(σ, yτ ) − φ(σ, v) + L

≤ (1 − 	)[〈ŷ′
τ + Aτyτ − fτ , y̌τ − yτ〉 + φ(σ, y̌τ ) − φ(σ, yτ )] + L. (11)

By multiplying relation (10) for t − τ by (1 − 	) and by setting v = y, we obtain the inequality

(1 − 	)[〈ŷ′
τ (t − τ) + Ǎτ y̌τ − f̌τ , yτ − y̌τ〉 + φ(σ̌, yτ) − φ(σ̌, y̌τ )] ≥ 0.

By adding this quantity to the right-hand side in (11) and by making simple transformations,
we obtain the desired inequality (9) with

Rτ(t, v) = r1 + r2 + r3 + r4 + r5 + L,

where
r1 = (1 − 	)〈ŷ′

τ − ŷ′
τ(t − τ), y̌τ − yτ〉,

r2 = (1 − 	)〈f̌τ − fτ + Aτyτ − Ǎτ y̌τ , y̌τ − yτ〉,
r3 = (1 − 	)(φ(σ̌, yτ ) − φ(σ, yτ ) − φ(σ̌, y̌τ ) + φ(σ, y̌τ )),
r4 = φ(σ(t), ŷτ ) − φ(t, ŷτ ) − φ(σ(t), v) + φ(t, v), r5 = 〈f − fτ , v − ŷτ〉.

Let us estimate the integral of each term in Rτ (t, v). Note that the identity

T∫

0

(1 − 	)gτ dt =
1
2

T∫

0

gτ dt

holds for any piecewise constant function gτ . Since ŷ′
τ(t) = (yτ(t) − y̌τ(t))/τ , it follows from

inequality (4) and Lemma 2 that

T∫

0

r1 dt = τ

T∫

0

(1 − 	)〈ŷ′
τ (t − τ) − ŷ′

τ , ŷ
′
τ〉 dt =

τ

2

T∫

0

〈ŷ′
τ(t − τ) − ŷ′

τ , ŷ
′
τ 〉 dt

≤ τ

2

T∫

0

(‖ŷ′
τ (t − τ)‖2

H − ‖ŷ′
τ (t)‖2

H) dt ≤ τ

2

τ∫

0

∥
∥
∥
∥
y0 − u0

τ

∥
∥
∥
∥

2

H

dt ≤ 1
2
C2

0τ 2.

By taking into account the strong monotonicity of Ǎτ , the estimate (8) for the quantity S2, and
Lemma 4, we obtain the estimate

T∫

0

r2 dt = τ

T∫

0

(1 − 	)〈fτ − f̌τ + Ǎτ y̌τ − Aτyτ , ŷ
′
τ 〉 dt

=
τ 2

2

T∫

0

〈f̂ ′
τ − Â′

τyτ , ŷ
′
τ〉 dt − 1

2

T∫

0

〈Ǎτyτ − Ǎτ y̌τ , yτ − y̌τ〉 dt

≤ τ 2

2
(‖f̂ ′

τ‖V∗ + ‖Â′
τyτ‖V∗)‖ŷ′

τ‖V ≤ cτ 2.
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The following estimates are similar to the estimate of S3 in the proof of Lemma 4 :
T∫

0

r3 dt =
1
2

T∫

0

σ̌(t)∫

σ(t)

(φt(ξ, yτ) − φt(ξ, y̌τ )) dξ dt =
1
2

N∑

n=1

tn∫

tn−1

tn−1∫

tn

(φt(ξ, yτ) − φt(ξ, y̌τ )) dξ dt

=
−τ

2

T∫

0

(φt(ξ, yτ ) − φt(ξ, y̌τ )) dξ ≤ cτ‖yτ − y̌τ‖V = cτ 2‖ŷ′
τ‖V ≤ cτ 2,

T∫

0

r4 dt =

T∫

0

σ(t)∫

t

(φt(ξ, ŷτ ) − φt(ξ, v)) dξ dt ≤ c(v)τ‖ŷτ − v‖V ,

where c(v) is bounded on D(φ). From Lemma 1, we have
T∫

0

r5 dt ≤ ‖f − fτ‖V∗‖v − ŷτ‖V ≤ cτ‖ŷτ − v‖V .

Finally, by taking into account Lemma 1 and inequality (7), we obtain the estimate
T∫

0

Ldt ≤
T∫

0

‖Aŷτ − Aτyτ‖V ∗‖ŷτ − v‖V dt ≤
T∫

0

(‖Aŷτ − Ayτ‖V ∗ + ‖(A − Aτ)yτ‖V ∗)‖ŷτ − v‖V dt

≤ (τM‖ŷ′
τ‖V∗ + Mτ‖yτ‖L∞(0,T ;V))‖ŷτ − v‖V ≤ cτ‖ŷτ − v‖V ,

because ŷτ − yτ = τ(	− 1)ŷ′
τ . By summing this estimate with the estimates for the integrals of the

remaining terms in Rτ (t, v), we arrive at the definitive conclusion of the lemma.

4. EXISTENCE OF A SOLUTION. ERROR ESTIMATE

Lemma 6. Let ŷτ and ŷk be the solutions of the scheme (2) with time increments τ and
k = T/M, respectively. Then ‖ŷτ − ŷk‖E ≤ c(τ + k), where c is a constant independent of τ
and k.

Proof. By Lemma 5, the inequality

〈ŷ′
k + Aŷk − f, v − ŷk〉 + φ(t, v) − φ(t, ŷk) ≥ −Rk(t, v) (12)

holds for t ∈ [0, T ] and v ∈ D(φ); moreover, if v ∈ D(φ), then
∫ T

0
Rk(t, v(t)) dt ≤ C(k2+k‖ŷk−v‖V),

C = C(‖v‖V).
By setting v = ŷk in inequality (9) and v = ŷτ in (12) and by adding the resulting inequalities,

we obtain 〈ŷ′
k − ŷ′

τ + Aŷk − Aŷτ , ŷk − ŷτ〉 ≤ Rk(t, ŷτ) + Rτ(t, ŷk). Hence we have the inequality

d

dt
‖ŷk − ŷτ‖2

H + 2α‖ŷk − ŷτ‖2
V ≤ 2(Rk(t, ŷτ ) + Rτ(t, ŷk)).

We integrate this inequality with respect to t ∈ (0, s), s ≤ T , set s = T on the right-hand side, use
the estimates for the integrals of Rk and Rτ , and take into account the relation

‖ŷk(0) − ŷτ(0)‖H ≤ ‖ŷτ(0) − u0‖H + ‖ŷk(0) − u0‖H ≤ c(k + τ).

As a result, we obtain the inequality

‖(ŷk − ŷτ)(s)‖2
H + 2α

s∫

0

‖ŷk − ŷτ‖2
V dt ≤ ‖ŷk(0) − ŷτ(0)‖2

H + c(τ 2 + k2) + c(τ + k)‖ŷk − ŷτ‖V

≤ c(τ + k)2 + c(τ + k)‖ŷk − ŷτ‖V .

This implies the assertion of the lemma.
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Theorem 1. The following assertions hold.
(a) There exists a unique solution u of problem (1). It satisfies the inclusion u ∈ H1(0, T ;V ) ∩

W 1
∞(0, T ;H).
(b) Let u and ū be the solutions of problem (1) with input data {u0, f} and {ū0, f̄}, respectively ;

then ‖ū − u‖E ≤ c(‖ū0 − u0‖H + ‖f̄ − f‖V∗).
(c) If ŷτ is the piecewise linear extension of the solution of the implicit scheme (2), then

‖u − ŷτ‖E ≤ cτ .

Proof. We start the proof from assertion (b). Set v = ū(t) and v = u(t) in inequality (1)
defining u and ū, respectively. By adding the resulting inequalities, we obtain

〈(ū − u)′, ū − u〉 + 〈Aū − Au, ū − u〉 ≤ 〈f̄ − f, ū − u〉 ≤ ‖f̄ − f‖V ∗‖ū − u‖V .

This implies the estimate

d

dt
‖ū − u‖2

H + α‖ū − u‖2
V ≤ α−1‖f̄ − f‖2

V ∗ ,

whence, in turn, we obtain the stability estimate in assertion (b); note that it guarantees the
uniqueness of the solution.

To prove assertion (a), we arbitrarily fix v ∈ D(φ). By integrating inequality (9), we obtain the
relation

T∫

0

(〈ŷ′
τ + Aŷτ − f, v − ŷτ〉 + φ(t, v) − φ(t, ŷτ )) dt + ετ ≥ 0, ετ ≤ c(τ 2 + τ‖ŷτ − v‖V). (13)

From the a priori estimates, we have

ŷτ , ŷ
′
τ ∈ E = L2(0, T ;V ) ∩ L∞(0, T ;H);

moreover, ‖ŷτ‖E + ‖ŷ′
τ‖E ≤ C uniformly with respect to τ . It follows from Lemma 6 that the

sequence {ŷτ , τ = T/N, N = 1, 2, . . .} is a Cauchy sequence in E. Therefore, it strongly con-
verges to some element u ∈ E; in a standard way, one can show that ŷ′

τ weakly converges to u′

in L2(0, T ;V ), and ‖u‖E + ‖u′‖E ≤ C. By virtue of the lower semicontinuity of the functional
v → φ(t, v), t ∈ [0, T ], we have

φ(t, u) ≤ lim inf
τ→0

φ(t, ŷτ );

i.e., u ∈ D(φ). Therefore, by taking into account the continuity of the operators A(t), t ∈ [0, T ],
and by passing to the limit in (13), we obtain the inequality

T∫

0

(〈u′(t) + A(t)u(t) − f(t), v(t) − u(t)〉 + φ(t, v(t)) − φ(t, u(t))) dt ≥ 0.

This implies inequality (1), because v is arbitrary. Since the estimate

‖ŷτ (0) − u0‖H ≤ C0τ

holds by Lemma 2, it follows that u(0) = u0 and u is a solution of problem (1).
To prove assertion (c), it suffices to pass to the limit as k → 0 in the estimate in Lemma 6.
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