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Abstract

The resonant filtering method transforming frequency modulated radiation field into a train of

short pulses is proposed to be applied in optical domain. Effective frequency modulation can be

achieved by electro-optic modulator. Due to frequency modulation narrow-spectrum CW radiation

field is seen by the resonant filter as a comb of equidistant spectral components separated by the

modulation frequency. Tuning narrow-bandwidth filter in resonance with n-th spectral component

of the comb transforms the radiation field into bunches of pulses with n pulses in each bunch. The

transformation is explained by the interference of the coherently scattered resonant component

of the field with the whole comb. Constructive interference results in formation of pulses, while

destructive interference is seen as dark windows between pulses. It is indicated that the optimal

thickness of the resonant filter is several orders of magnitude smaller than the necessary thickness

of the dispersive filters used before in optical domain to produce short pulses from the frequency

modulated field.

PACS numbers: 42.50.Gy, 42.25.Bs, 42.50.Nn
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I. INTRODUCTION

Generating pedestal-free optical pulses with high peak power from a low-power laser is of

great interest in optical communication [1]. Existing devices generally employ electro-optic

amplitude modulators [2], acousto-optic modulators [3–5], frequency chirping followed by

dispersive compensators [6–10], and dispersive modulators [11, 12]. Application of the rapid

π-phase-shift technique for CW radiation field with subsequent filtering by the optically

thick resonant absorber is also capable to produce short pulses in a controllable way [13–19].

However, this technique demands very fast phase switch, otherwise the amplitudes of the

pulses reduce appreciably.

Recently, original technique for producing short pulses was reported in [20, 21]. This

technique was experimentally tested with gamma photons having long coherence length

(long duration of a single-photon wave packet) and the method of splitting of a single photon

into pulses [20, 21] was proposed to create time-bin qubits, whose concept was introduced

before in [22, 23] for optical photons. This technique could be also practical for protocols of

memory-based quantum networks [24–27], which require narrow-band photons with optimal

temporal waveforms to interact with atoms efficiently.

The method of single photon shaping [20, 21] is based on frequency modulation of the ra-

diation field, which is also one of the basic elements of the frequency chirping, implemented

in [7, 8] by electro-optic modulator. However, in spite of following dispersion compensator,

which is accomplished in [7, 8] by near resonance absorber containing alkaline vapor, subse-

quent absorption (removal) of a particular spectral component is used [20, 21]. This removal

method is much more flexible compared with the frequency chirping followed by a dispersive

compensators [7, 8] and allows fine control of the duration and repetition rate of the pulses.

In this paper we analyze the capabilities of the removal method for application in optical

domain and compare it with dispersion compensator method. The removal method could

be implemented with cold atoms, atomic vapors, and organic molecules doped in polymer

matrix. They could serve as filters to remove single frequency component of the comb spec-

trum produced by electro-optical modulator from CW radiation field. Cold atoms possess

almost naturally broadened Lorentzian absorption lines while atomic vapors at low pres-

sure demonstrate the Doppler-broadened absorption lines. The effect of the wings of these

lines on the shape of the pulses is discussed. The proposed method is capable to produce
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nanosecond or subnanonesocond pulses, which could be directly resolved in time by modern

detectors with no use of cross-correlation technique, based on Mach-Zehnder interferometer

with a delay line in one of the arms.

There are also proposals and experimental implementations producing short pulses by

strong laser excitation of atoms [28–32] and molecules [33–37]. The proposals [28–32] con-

sider time-dependent perturbation of the excited atomic energy level by the strong far off-

resonance laser due to Stark effect. The method [33–37] is based on the stimulated Raman

scattering of a strong bichromatic laser radiation, which produces large molecular coherence

employing electromagnetically induced transparency scheme.

In this paper the techniques based on using strong radiation fields are not considered,

since the main focus of interest is the transformation of very weak fields into pulses with con-

trollable waveforms. High efficiency and low losses of the transformation are quite important

from the viewpoint of applications in telecommunication.

The paper is organized as follows. In Sec. II, a general formalism of the resonant filtering

of phase modulated field is presented. In Sec. III, the resonant filtering through laser-cooled

atoms is discussed. In Sec. IV, atomic vapor of hot atoms is considered as a resonant filter.

In Sec. V, creation of femtosecond pulses by filtering high order harmonics of the phase

modulated field through atomic vapor is proposed. In Sec. VI, comparison of the resonant

filtering with dispersive filters is discussed.

II. BASIC IDEA

CW radiation field E(t) = E0 exp(−iωrt + ikz) after passing through the electro-optic

modulator acquires phase modulation

EEO(t) = E(t)eim sinΩt, (1)

where Ω and m are the frequency and index of phase modulation. According to Jacobi-Anger

expansion

EEO(t) = E(t)
+∞∑

n=−∞
Jn(m)eimΩt, (2)

this field is transformed into an equidistant frequency comb with spectral components ωn =

ωr−nΩ, where Jn(m) is the Bessel function of the n-th order. Fourier transform of the field
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is

EEO(ω) = E0

+∞∑
n=−∞

Jn(m)δ(ω − ωn), (3)

where δ(x) is the Dirac delta function. If CW radiation field has finite spectral width, then

δ function is to be substituted by fr(ω − ωn) describing the spectrum of the CW field.

We transmit the frequency comb through the resonant filter with a single absorption

line F (ω − ωf ) centered at frequency ωf . We select the filter whose absorption linewidth

Γf is much smaller than the distance Ω between neighboring components of the frequency

comb. Such a filter is capable to remove selectively one of the spectral components of the

comb. Below we don’t show explicit spatial dependence of the field amplitude hiding it into

parameters of the filtered field.

By changing the carrier frequency of the CW radiation field we tune the n-th component

of the comb ωn = ωr−nΩ close to resonance with the filter frequency ωf . Then the radiation

field at the exit of the filter is transformed as

EfnA(ω) = EEO(ω) + E0Jn(m) [T (∆n)− 1] δ(ω − ωn), (4)

where ∆n = ωn − ωf and T (∆n) is a transmission function of the filter, which depends on

its absorption coefficient and physical thickness (see Sec. III). In general, the transmission

function T (∆n) is a complex function, which takes into account attenuation of the field

amplitude and phase shift due to the frequency dependent refraction index (dispersion)

after passing through the filter of length L.

For the optically thick filter at exact resonance T (0) = T0 tends to zero. Indexes n

and A in EfnA(ω) mean that n-th component of the comb is in resonance with the filter

and solution is approximate since in Eq. (4) we disregard the interaction of nonresonant

components with the filter. Small contribution from these components due to dispersion

will be taken into account in Sec. III.

Equation (4) has a simple physical meaning. It is constructed such that the first term in

square brackets just describes the amplitude of the attenuated spectral component, which is

in resonance and proportional to Jn(m)T0. The second term removes from the comb EEO(ω)

the resonant component to avoid taking it into account twice. Within this approximation,

other spectral components pass through the resonant filter with no change.

Inverse Fourier transformation of eq. (4) results in

EfnA(t) = E0e
−iωrt

[
eim sinΩt + (T0 − 1)Jn(m)einΩt

]
. (5)
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The interpretation of this result is based on the interference of the incident and coherently

scattered radiation fields [21]. The latter is described by the second term in the square

brackets in Eq. (5). Therefore, for the frequency comb whose n-th spectral component

interacts with the filter, just this component is coherently scattered by the atoms in the

filter. The scattered field interferes with the whole frequency comb at the exit of the filter.

Therefore the output radiation field reveals unusual properties.

The intensity of the field at the exit of the filter IfnA(t) = |EfnA(t)|2 is described by

equation

IfnA(t) = I0

[
1− 2Sn cos ψn(t) + S2

n

]
, (6)

where I0 = |E0|2, Sn = (1 − T0)Jn(m), and ψn(t) = nΩt −m sin Ωt. If the filter is opaque

for the resonant component, the amplitude of the scattered field almost coincides with the

amplitude of the resonant component and Sn → Jn(m). The phases of these fields are

opposite, therefore, if cos ψn(t) is positive we have destructive interference seen as a drop of

intensity IfnA(t). If cos ψn(t) is negative, the comb and the scattered resonant component

interfere constructively producing pulses. The interference becomes pronounced if Jn(m) has

global maximum. For different spectral components n this maximum is achieved at different

values of the modulation index m. We denote these values as mn, which are m1 = 1.8,

m2 = 3.1, m3 = 4.2, ... The phase difference of the comb EEO(t) (whose phase evolves

as m sin Ωt) and the scattered field Esct(t) (whose phase evolves as nΩt) is ψn(t) + π if

Jn(m) > 0. The evolution of ψn(t) in time fully describes the formation of the pulses and

the dark windows between them.

The phase modulated field EEO(t) after passing through the resonant filter is transformed

into bunches of pulses. The number of pulses in a bunch is equal to the number of filtered

component of the frequency comb n. The intensity of the pulses is equal to [1+Sn(t)]2I0. For

example, the maximum intensities, predicted by Eq. (6) for optimal values of the modulation

index mn and opaque filter (T0 = 0), are Imax = 2.5I0 for n = 1, Imax = 2.1I0 for n = 2,

and Imax = 2.06I0 for n = 3. Thus, the intensity of the pulses exceeds almost two times

the intensity of the radiation field if it would not interact with the filter. The radiation

intensity between bunches is quite small because of destructive interference, which predicts

Imin = [1 − Sn(t)]2I0. For the same values of the parameters T0 and mn this intensity is

Imin = 0.175I0 for n = 1, Imin = 0.26I0 for n = 2, and Imin = 0.32I0 for n = 3, i.e., almost

an order of magnitude smaller compared with the pulse maxima.
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Within the period of the phase oscillation (TEO = 2π/Ω), induced by electro-optical

modulator, one can distinguish two intervals. Half of the period TEO/2 the phase ψn(t)

evolves almost linearly as (n + m)Ωt + C where C is constant but different for different

bunches. Within this half of the period the relation ψn(t) = (2k +1)π, where k is integer, is

satisfied n-times, producing pulses. During the other half of the period TEO/2 the evolution

of phase ψn(t) almost stops near the value 2kπ, resulting in destructive interference, seen as

dark windows.

III. FILTERING TROUGH COLD ATOMS

In this section we consider the frequency comb filtering through laser-cooled atoms with a

modest optical depth. As an example we take parameters of 85Rb atoms in a two-dimensional

magneto-optical trap, described, for example, in [13]. CW radiation field excites 85Rb D1-line

transition (λ = 795 nm). Since the absorption line is almost Lorentzian, the transmission

function in Eq. (4) can be described as [38]

T (∆n) = exp

(
− αLγ/2

γ − i∆n

)
, (7)

where α is the Beer’s law absorption coefficient, L is the length of atomic cloud, and γ is a

halfwidth of absorption line. If n-th component of the frequency comb is in exact resonance

with D1 line, then the transmission function is T (0) = exp(−αL/2). Atomic cloud with a

length of few millimeters demonstrates already optical depth αL = 5.

One can verify the approximate expression for the filtered field EfnA(t) (5) comparing it

with the exact expression, which could be obtained by the convolution of EEO(t) field

Efn(t) =

+∞∫

−∞

EEO(t− τ)R(τ)dτ, (8)

with the Green’s function of the absorber of thickness L [16, 17, 38]

R(t) = δ(t)−Θ(t)e−(iωf+γ)tj1(bt) (9)

where δ(t) is the Dirac δ function, Θ(t) is the Heaviside step function, j1(bt) =
√

b/tJ1

(
2
√

bt
)
, J1(x) is the Bessel function of the first order, and b = αLγ/2. For the

6



infinitely lasting field, Eq. (8) is reduced to

Efn(t) = EEO(t)− E(t)

+∞∫

0

j1(bτ)e(i∆−γ)τ+im sinΩ(t−τ)dτ. (10)

where ∆ = ωr − ωf . Index n in Efn(t) implies that we consider the case when n-th spectral

component of the comb is close to resonance with the filter, i.e., ∆ = nΩ + ∆n and ∆n is

close to zero.

Equation (10) takes into account the transformation of all spectral components of the

comb including those whose change is infinitely small since they are far from resonance with

the filter. Comparison of the time dependencies of the approximate intensity IfnA(t), Eq.

(6), and exact expression Ifn(t) = |Efn(t)|2, where ∆ = nΩ and ∆n = 0, is shown in Fig.

1 for n = 1, 2, and 3. Optimal values of the modulation index m = mn are adopted in

each case. The following parameters for the cold-atom filter: γ/2π = 3 MHz, αL = 5, and

b/2π = 7.5 MHz, are taken. We choose the modulation frequency of the field phase equal

to 30 MHz, satisfying well the condition that Ω is much larger than the spectral width of

absorption line of the filter Γf = 2γ.

In Fig. 1(a) pulse duration from shoulder to shoulder for n = 1 is slightly shorter than half

of the period of the phase oscillation TEO/2 = 16.7 ns, while duration of the dark window is

slightly longer than TEO/2. The pulsewidth at halfmaximum is close to but slightly shorter

than TEO/4 = 8.3 ns. If we have n > 1 pulses in a bunch (see Fig. 1), their pulsewidth

can be roughly estimated as TEO/4n. Therefore, if, for example, n = 3, the pulsewidth is

already close to 1 ns.

Small misfit between exact and approximate time dependencies is caused by the contri-

bution of two nearest neighbors ωn±1 = ωr − (n ± 1)Ω of the resonant spectral component

ωn. The corrected expression, which takes them into account, is easily found

Efn(t) ≈ EfnA(t) + En+1(t) + En−1(t), (11)

where

En±1(t) = E0e
−iωrt+i(n±1)ΩtJn±1(mn)

(
e

−b
γ−i(∆n∓Ω) − 1

)
. (12)

The field intensity, calculated with this correction, describes almost excellent the exact time

dependence of the filtered field intensity Ifn(t). As it is seen in Fig.1, the contribution of the

sidebands introduces the asymmetry of the pulse intensities within a bunch and after-ringing,

which appears in the beginning of dark windows.
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FIG. 1: (color on line) Time dependence of the intensity of the filtered radiation field Ifn, where n

means the number of the spectral component tuned in resonance with the filter. Solid line in red

corresponds to exact expression (10) and dotted line in blue represents the analytical approximation

(6). Both are normalized to the intensity of the incident radiation field I0. The modulation

frequency Ω/2π = 30 MHz is ten times larger than the halfwidth of the absorption line of the filter

γ/2π = 3 MHz, the optical depth of the filter is α0L = 5. The number of the spectral component n,

tuned in resonance (∆n = 0), and the optimal values of the modulation index are n = 1, m1 = 1.8

in (a), n = 2, m2 = 3.1 in (b), and n = 3 m3 = 4.2 in (c).
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FIG. 2: Time dependence of the intensity of the filtered radiation field for atomic cloud of the

length L = 1.5 cm, which corresponds to the optical depth α0L = 33 [13]. Other parameters and

notations are the same as in Fig. 1

Parameter b = αLγ/2 plays a crucial role in the radiation filtering since the transmission

function T (∆) = exp [−b/(γ − i∆)] essentially broadens if b becomes larger than γ. In this

case many spectral components of the comb are modified by the filter and the interference of

the comb with the scattered radiation field becomes messy. Figure 2 shows a comparison of

the time dependencies of exact intensity Ifn(t) and approximate one IfnA(t) for atomic cloud

with optical depth αL = 33, which is achieved in [13] with cloud length L = 1.5 cm. Instead

of nice pulses we see their appreciable distortion. This is not surprising since for this cloud

the parameter b/2π = 49.5 MHz is larger than the frequency comb spacing Ω/2π = 30 MHz
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FIG. 3: Comparison of the exact time dependence of the intensity of the filtered radiation field

Ifn(t) (solid line in red) with the approximate one IfnA(t) (blue dots) for atomic cloud with optical

depth α0L = 5. Modulation frequency is Ω/2π = 300 MHz. Other parameters and notations are

the same as in Fig. 1

and many sidebands of the resonant component contribute to the pulse generating. For these

values of the parameters it is necessary to take 8 neighboring components into account, i.e.,

four red detuned from resonance and four blue detuned. Then, the approximate expression

similar to Eq. (11) but with eight additional terms En±k(t), where k = 1, 2, 3, and 4, gives

the same result as the exact equation (10). Actually the exact equation can be expressed as

a result of filtering of all spectral components of the comb
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FIG. 4: (a) Time evolution of intensity of the filtered radiation field for atomic cloud with optical

depth α0L = 5. Modulation frequency is Ω/2π = 300 MHz. The sideband n = 5 is tuned in

resonance with the filter. The value of the modulation index m5 = 6.4 is close to 2π. (b) Zoom in

the first bunch of pules, shown in (a). Solid line in red shows Ifn(t) and blue dots correspond to

IfnA(t). Both are normalized to I0.

Efn(t) = EfnA(t) +
∞∑

k=1

[En+k(t) + En−k(t)] , (13)

where

En±k(t) = E0e
−iωrt+i(n±k)ΩtJn±k(mn)

(
e

−b
γ−i(∆n∓kΩ) − 1

)
. (14)

Contrary to the example of the optically thick filter modifying many spectral components

of the comb, we give another example when filtering becomes ideal. We take moderate optical

depth αL = 5, which corresponds to b/2π = 7.5 MHz, and increase modulation frequency

ten times to the value Ω/2π = 300 MHz. Then, the contribution of the sidebands becomes

negligible and the intensity of the filtered radiation is well described by approximate equation

(6) (see Fig. 3).

It is interesting to note that the phase modulation with frequency 300 MHz is capable
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to produce subnanosecond pulses. Tuning, for example, the 5-th sideband of the frequency

comb into resonance with the filter is capable to produce pulses with duration of 167 ps (see

Fig. 4).

Cold 85Rb atoms are not the only example of the narrow bandwidth filter. One can use

also a cloud of cold potassium (39K) atoms generated in a vapor-cell magneto optic trap

whose excitation on the 4S1/2(F = 1) ↔ 4P1/2(F = 2) transition (transition wave-length

770 nm) was studied in [39] for observation of optical precursors.

IV. FILTERING TROUGH ATOMIC VAPOR

In this section we consider the filtering of the frequency comb through a vapor of 87Rb

atoms and take the parameters of the experiment [40] where spectral properties of the

electromagnetically induced transparency were studied. Assume that the fundamental fre-

quency of the comb is close to the S1/2, F = 1 → P1/2, F = 2 transition of the D1 line

of natural Rb (λ = 795 nm). The atoms are confined in a cell of length L = 5 cm. We

take two temperatures of Rb vapor (50 and 70◦C), which correspond to atomic densities

N1 = 6× 1010 cm−3 and N2 = 6× 1011 cm−3, respectively. Natural linewidth of the Rb D1

line is Γf/2π = γ/π = 5.4 MHz and Doppler broadening is ∆ωD/2π = 500 MHz. We take

the phase modulation frequency Ω/2π = 10 GHz, which is 20 times larger than the Doppler

width ∆ωD/2π = 500 MHz.

The transmission function for the atomic vapor is

TD(∆n) = exp[−α1,2LFD(∆n)/2], (15)

where α1,2 = 3N1,2λ
2/2π is the absorption coefficient of the naturally broadened line and

FD(∆n) is a Doppler broadened absorption line, which is

FD(∆n) =

√
ln 2

π

2γ

∆ωD

+∞∫

−∞

exp[− ln 2(2x/∆ωD)2]

γ − i(∆n + x)
dx. (16)

We have to emphasize that for both densities of Rb atoms the cell is optically thick, i.e.,

α1L = 905 and α2L = 9053. It is easy to show (see, for example, [41]) that at exact

resonance (∆n = 0) Eq. (16) can be approximated as

FD(0) =
√

π ln 2
2γ

∆ωD

. (17)
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Therefore for ∆n = 0 the effective optical depth, α1,2LFD(0), is reduced almost hundred

times since the Doppler width ∆ωD is two orders of magnitude larger than the natural

linewidth 2γ.

If |∆n| > 1.8∆ωD, then the absorption line reveals Lorenzian wings (see, for example,

Fig. 1 in Ref. [41]), which can be approximated as

FD(∆n) =
γ

γ − i∆n

. (18)

Therefore, the contribution of far wings of the dispersion χ′(∆n±k) ∼ Im FD(∆n±k) in the

filtering of nonresonant components ωr−(n±k)Ω of the frequency comb could be noticeable

if ∆n = 0. For example, the contribution of the nearest sidebands (k = ±1) of the resonant

component is proportional to

En±1(t) ∼ Jn±1(mn)
(
e∓ib1,2/Ω − 1

)
, (19)

where b1,2 = α1,2γ/2. For the atomic density N1 the ratio b1/Ω = 0.122 is small since b1/2π =

1.2 GHz and modification of the sidebands due to filtering does not influence significantly

the shape of the produced pulses. For the atomic density N2 the ratio b2/Ω = 1.22 is large

since b2/2π = 12 GHz and the sidebands change their phases due to filtering. In this case

one can expect appreciable corruption of the produced pulses. To verify these expectations

we calculate the intensity of the filtered comb taking into account the modification of many

sidebands. The number of them can be limited by ±kmax if the contribution of the next

sidebands ±(kmax + 1) does not change the signal.

Substituting the transmission function TD(∆n) into equations (5) and (14) one obtains the

modified Eq. (13), which describes the transformation of the frequency comb after passing

through the atomic-vapor filter. The substitution changes the functions Sn and En±k(t) to

Sn = Jn(mn)[1− TD(0)], (20)

En±k(t) = E0e
−iωrt+i(n±k)ΩtJn±k(mn) [TD(∓kΩ)− 1] , (21)

where ∆n = 0, which implies that the n-th spectral component is in exact resonance with

the filter.

For the Rb cell with atomic density N1 = 6× 1010 cm−3 it is enough to take into account

the contribution of two spectral components (n ± 1) neighboring the resonant component

n. For this density the effective optical depth of the cell at the absorption line center is
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FIG. 5: Time dependence of the intensity of the filtered radiation field Ifn(t) (solid line in red) for

atomic vapor with optical depth α1L = 905. Modulation frequency is Ω/2π/2π = 10 GHz. The

approximate time dependence of the intensity IfnA(t) is shown by blue dots. Other parameters

and notations are the same as in Fig. 1

α1LFD(0) = 14.4. The result of the comb filtering through the cell is shown in Fig. 5. If

n = 1, 2, or 3 spectral component is in resonance with the filter, the pulses with the width

25, 12.5, and 8.3 ps, respectively, are produced.

If atomic density is increased by the order of magnitude to N2 = 6 × 1011 cm−3, then

eight sidebands of the resonant component n ± 1, n ± 2, n ± 3, and n ± 4 give noticeable
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FIG. 6: Time dependence of intensity of the radiation field filtered through the atomic vapor with

the optical depth α2L = 9053 (solid line in red). Other parameters and notations are the same as

in Fig. 5

contribution. Therefore, the intensity modulation of the filtered comb becomes messy (see

Fig. 6). Actually, for n = 2 and n = 3 it is necessary to take into account the contribution

of 14 sidebands (up to n± 7).

To obtain nice and clean pulses it is preferable to use a filter with a smaller optical

depth. An example of filtering by a cell with optical depth αL = 453 is shown in Fig. 7.

The filter is tuned in resonance with the spectral component n = 10 of the frequency comb,
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FIG. 7: (a) Time dependence of intensity of the radiation field filtered through the atomic vapor

with the optical depth α0L = 453. The spectral component n = 10 is tuned in resonance with the

filter and the phase modulation index is m10 = 11.8. (b) The content of a bunch of pulses. (c)

Zoom in a central part of the bunch. Other parameters and notations are the same as in Fig. 5

produced by phase modulation with the optimal value of the modulation index m10 = 11.8

(which is close to 2π). Such a filtering is capable to produce pulses as short as 2.5 ps, which

are grouped in bunches consisting of 10 pulses. Thus, by phase modulation technique and

subsequent filtering it is possible to create pulses whose duration is 40 times shorter than

the modulation period.
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V. FEMTOSECOND PULSES

It is also possible to create femtosecond pulses if high order harmonic of the frequency

comb is removed. For simplicity we consider an ensemble of two-level atoms, for exam-

ple, a vapor of alkaline atoms. We take the modulation frequency of the radiation field

equal to Ω/2π = 10 GHz. If the modulation index is m100 = 104, the amplitude of the

frequency component ωr − 100Ω takes its first maximum value, which is proportional to

J100(104) = 0.144. Removal of this spectral component of the comb by atomic filter leads

to high frequency oscillations of the transmitted field intensity. Duration of the pulses is

estimated as TEO/400 = 250 fs, where TEO is the phase modulation period. The neces-

sary modulation index m100 = 104 corresponds to a voltage, which is 33 times larger than

the have-wave voltage of electro-optical modulator. One can expect to reach this value by

increasing the voltage and/or the physical length of the modulator by an order of magni-

tude. This is technically possible if one employs electro-optical modulators, based on the

integrated-optical waveguides guiding the light along a determined path analogue to optical

fiber. Such modulators are fabricated in planar waveguiding substrates, which are 3 to 9 mi-

crons in width and depth (see, for example, specifications of JENOPTIK integrated-optical

modulators). Therefore, half-wave voltage is quite low and maximum applicable voltage,

which is approximately ±30 V, produces phase shift 20π for red light. Extending three

times the length of the electrodes, placed along the waveguide, and applying voltage ±15

V, one can reach the desirable modulation index.

Below, the simplified picture of the filtering of high order harmonics of the frequency comb

is illustrated. To avoid complicated expressions, we approximate the coherently scattered

component of the field in Eq. (6) as proportional to S100 = J100(m100), assuming that

the resonant absorption is close to 100%, i.e., TD(0) ≈ 0. We disregard the dispersive

contribution of the neighboring spectral components. Time dependence of the intensity

of the filtered radiation field is shown in Fig. 8 (a and c). The contrast of the pulses

is not as large as for filtering of low order harmonics. This is because the intensity of

the maxima and minima of the pulses can be estimated as Imax ≈ [1 + 2J100(104)]I0 and

Imin ≈ [1 − 2J100(104)]I0. Since J100(104) = 0.144, the maxima exceeds 30% the level of

the intensity of the incident radiation field, while minima are smaller than I0 on 30% of its

value.
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FIG. 8: (a) Time dependence of the intensity of the radiation field whose n = 100 spectral com-

ponent is removed by the filter. The modulation frequency is Ω/2π = 10 GHz. (b) Accumulative

result of the filtering of the additional four spectral components of the frequency comb (see the text

for details). (c) Zoom in a central part of the bunch. Accumulative effect is shown by solid line

(in read), while dotted line (in blue) demonstrates the result of the filtering of only one spectral

component with n = 100. Full width at half-maximum of the pulses is close to 250 fs as it is

expected from simple estimations.

The amplitudes of high harmonics of the frequency comb decrease with increase of their

number n since the first maxima of the Bessel functions Jn(mn) decrease with increase

of the order n. To achieve large contrast of the pulses, one can remove several spectral

components of the comb neighboring n = 100, if they have the same phase at time of the
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pulse formation. As an example we consider the case if filtering of the comb component

n = 100 is accompanied by filtering of the components with the numbers n + 2k, where

k takes values ±1 and ±2. These spectral components have the same phase as n = 100

spectral component at times when central pulses of the bunch are formed. The amplitude of

the filtered radiation filed with cumulative contribution of extra four spectral components

of the comb due to their removal by separate filters is approximated as

Ecum(t) = E(t)

[
eim sin Ωt −

2∑

k=−2

Jn+2k(m)ei(n+2k)Ωt

]
, (22)

where, for simplicity, it is supposed that TD(0) = 0. The intensity of the filtered radiation

field Icum(t) = |Ecum(t)|2 is shown in Fig. 8 (b and c). The central part of the pulse bunches

demonstrates good contrast. The maximum accumulative effect of five spectral components

is achieved if m = 103.

Cumulative filtering is possible if we have narrow bandwidth filters properly adjusted for

chosen spectral components of the frequency comb. By a set of cells with atomic vapors

it is hard to construct such a specific multifrequency filter having a large spacing between

the absorptive frequency components of the order of 20 GHz. However, for example, cesium

atoms have a large hyperfine splitting of the ground state seen as a spectral doublet with a

spacing equal to 9.2 GHz. If we reduce the modulation frequency of the field phase down

to Ω/2π = 4.6 GHz, populate properly ground state levels by pumping Cs atoms such that

both components of the doublet are strongly absorptive, then we could remove two spectral

components of the frequency comb. An example of cumulative filtering of two spectral

components 100Ω and 98Ω by cesium atoms is shown in Fig. 9 (b and c). The increase of

the intensity of the pulses is clearly seen. Since the modulation frequency is decreased by a

factor of two, the duration of pulses increases by the same factor to 500 fs.

Cumulative filtering of two spectral components by atoms with the spectral doublet

produces pulses with modest contrast. The ratio of the maxima of the pulse intensities to

their minima is close to three. To make pulse minima close to zero one can use destructive

interference of the filtered radiation field Ecum(t) with the field EEO(t) from the same electro-

optic modulator but with the opposite phase and reduced amplitude, i.e.,

Erdc(t) = Ecum(t)−REEO(t), (23)

where R is the amplitude reduction factor. For the case of the filtering with the doublet
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FIG. 9: (a) Time dependence of the intensity of the radiation field whose n = 100 spectral compo-

nent is removed by the filter. The modulation frequency is Ω/2π = 4.6 GHz and modulation index

is m100 = 104. (b) Accumulative result of the filtering of the additional spectral component n = 98

of the frequency comb by the doublet (see the text for details). The modulation index is m = 103.

(c) Zoom in a central part of the bunch. Accumulative effect is shown by solid line (in read), while

dotted line (in blue) demonstrates the result of the filtering of only one spectral component with

n = 100. Full width at half-maximum of the pulses is close to 500 fs as it expected from simple

estimations. (d) The result of the filtering with the doublet, followed by reduction of the field

amplitude due to the destructive interference with the reduced field from electro-optic modulator

whose phase is shifted by π. (e) Zoom in the central part of the pulse bunch, shown in (d).
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the reduction factor is R = 1 − J100(103) − J98(103). Then, due the interference the pulse

minima at the bunch center become zero, while the amplitude of the pulse maxima reduces

to the value 2[J100(103)− J98(103)]E0 = 0.55E0. The result of this interference is shown in

Fig. 9 (d and e) for the field intensity Irdc = |Erdc(t)|2.
Cumulative filtering is better to implement by organic molecules doped in polymer matrix,

which undergo persistent spectral hole burning at liquid helium temperature. In such a

filter the frequency resolution is limited by the width of the homogeneous zero-phonon lines

of the chromophore molecules. For example, waveguide narrowband optical filter, which

consists a planar waveguide with a thin polymer film containing molecules, which undergo

persistent spectral hole burning at liquid helium temperature, demonstrates transmission

bandwidth less than 1 GHz [42, 43]. Saturated holes are burned in waveguide geometry

by illumination in the transverse direction with low absorption, whereas the probing is

carried out in longitudinal wave guiding directions with high absorption. The waveguide

with spectral hole burning can act as integrated sub-gigahertz narrow-band filter, which is

proposed to observe slow light phenomenon [44, 45].

Comb structures of arbitrary shapes in transmission spectra were created experimentally

in organic molecules doped in a polymer [46, 47]. Therefore, one can expect that it is

experimentally possible to create a broad hole with, say, five absorptive peaks in it. For

cumulative filtering it is enough to create a broad hole with the width ∼ 10 cm−1 and five

absorptive peaks in it with 20 GHz spacing and widths less than 1 GHz.

VI. DISCUSSION

Resonant filtering by cold atoms is capable to produce nanosecond and picosecond pulses

in a controllable way. Nanosecond range could be achieved since cold-atom absorption lines

are homogeneously broadened and hence very narrow. This filtering could be applied to

create time bin qubits from single photon wave packets with a long coherence length. Several

examples of such a qubit formation are experimentally demonstrated in Refs. [20, 21], where

gamma-photons with coherence time 141 ns are transformed into a train of short pulses.

The absorption lines of the atomic vapors are Doppler broadened and they are relatively

broad. Since the frequency spacing of the filtered combs must be larger than the absorp-

tion linewidth ∆ωD, the vapor filtering is capable to produce picosecond or shorter pulses.
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Nanosecond pulses cannot be produced by the vapor filters because of large absorption

linewidth.

Both, cold and hot atomic filters are quite flexible in producing large variety of pulse

trains. By changing the modulation index or frequency one can change the pulse duration

and repetition time in a wide range. These filters should not be very thick and can have a

fixed density, which is not constrained by a desired pulse duration.

This is very different from dispersive filters [6–10], which involve frequency modulation

followed by dispersive compensator for producing short optical pulses. The idea of dispersive

filtering have been based on the concept of chirp radar [49–51]. In the chirp radar system

the transmitted pulse is of relatively long duration ∆t during which time the instantaneous

frequency is swept over the range ω → ω + ∆chirp satisfying the condition ∆chirp∆t À 1.

The return pulse is passed through a dispersive network providing a differential delay ∆t

over the frequency range ∆chirp. As a result, the energy at the beginning of the pulse is

delayed so as to reach the end of the network at the same time as the energy at the end

of the pulse. The duration of the compressed pulse produced this way is of the order of

δt ≈ 1/∆chirp ¿ ∆t.

In optical domain electrooptical modulation of the radiation frequency [7] spreads the field

spectrum over the range ωr−mΩ → ωr +mΩ. In this scheme dispersive properties of atoms

are used to create frequency-dispersive group velocities of the spectral components produced

by modulation. Therefore, dispersive filtering scheme requires resonant media with a very

large optical thickness and employ large offset ∆ = ωr−ωf between the radiation frequency

ωr and the absorption line center ωf (|∆| > mΩ + ∆ωD) to avoid the absorptive losses.

These constrains force to work with relatively small frequencies Ω and large modulation

index m. Then, many spectral components of the comb acquire appreciable dispersive

phase shifts with large difference between blue and red borders of the comb spectrum. The

disadvantage of the dispersive filter is a requirement of a fixed, certain value of the vapor

density, which is necessary for pulse compression for a given values of the modulation index

m and frequency Ω, and offset between the radiation frequency and the absorption line

center ∆. Any deviation from the predefined, fixed value of the vapor density essentially

reduces pulse production efficiency.
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VII. CONCLUSION

The resonant method of converting phase modulation into amplitude modulation of the

radiation field in optical domain is discussed. Phase modulation could be implemented by

electro-optic modulator, which converts a single line radiation field into a frequency comb

consisting of fundamental frequency ωr and sidebands spaced apart at distances that are

multiples of the modulation frequency, i.e., ωr ± nΩ (n = 1, 2, ...). The intensity of the

spectral components of the comb is proportional to J2
n(m), where m is the phase modulation

index. If the n-th spectral component of the comb is tuned in resonance with atoms in

the filter whose resonant absorption line is narrower than the frequency spacing Ω of the

comb, then the filtered field is transformed into pulses demonstrating a conversion of the

phase modulation into intensity modulation. The effect is explained by the interference

of the coherently scattered resonant component in the forward direction with the whole

comb. Constructive interference of the fields results in formation of pulses. Their destructive

interference is seen as dark windows. Three examples of the resonant filter are analyzed.

They are an ensemble of cold atoms, atomic vapor of alkaline atoms, and organic molecules

doped in polymer matrix. It is shown that it is preferable to work with the filters with

moderate optical depth. If the optical depth is large, then due to dispersive wings of the filter

many spectral components of the comb are modified producing pulse corruption. Creation

of nanosecond, subnanosecond, and femtosecond pulses is analyzed. The number of pulses

and their spacing is well controlled by the modulation frequency and modulation index.

The proposed method could be also applied for photon shaping. Single photons of spectral

widths ranging from several MHz up to 1 GHz could be modified to encode the information

into time-bin qubits.
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