Concerning the Theory of τ-Measurable Operators Affiliated to a Semifinite von Neumann Algebra

A. M. Bikchentaev*
Kazan Federal University, Kazan, Russia
Received November 24, 2014

Abstract

Let \mathscr{M} be a von Neumann algebra of operators in a Hilbert space \mathscr{H}, let τ be an exact normal semifinite trace on \mathscr{M}, and let $L_{1}(\mathscr{M}, \tau)$ be the Banach space of τ-integrable operators. The following results are obtained. If $X=X^{*}, Y=Y^{*}$ are τ-measurable operators and $X Y \in L_{1}(\mathscr{M}, \tau)$, then $Y X \in L_{1}(\mathscr{M}, \tau)$ and $\tau(X Y)=\tau(Y X) \in \mathbb{R}$. In particular, if $X, Y \in \mathscr{B}(\mathscr{H})^{\text {sa }}$ and $X Y \in \mathfrak{S}_{1}$, then $Y X \in \mathfrak{S}_{1}$ and $\operatorname{tr}(X Y)=\operatorname{tr}(Y X) \in \mathbb{R}$. If $X \in L_{1}(\mathscr{M}, \tau)$, then $\tau\left(X^{*}\right)=\overline{\tau(X)}$. Let A be a τ-measurable operator. If the operator A is τ-compact and $V \in \mathscr{M}$ is a contraction, then it follows from $V^{*} A V=A$ that $V A=A V$. We have $A=A^{2}$ if and only if $A=\left|A^{*}\right||A|$. This representation is also new for bounded idempotents in \mathscr{H}. If $A=A^{2} \in L_{1}(\mathscr{M}, \tau)$, then $\tau(A)=\tau\left(\sqrt{|A|}\left|A^{*}\right| \sqrt{|A|}\right) \in \mathbb{R}^{+}$. If $A=A^{2}$ and A (or A^{*}) is semihyponormal, then A is normal, thus A is a projection. If $A=A^{3}$ and A is hyponormal or cohyponormal, then A is normal, and thus $A=A^{*} \in \mathscr{M}$ is the difference of two mutually orthogonal projections $\left(A+A^{2}\right) / 2$ and $\left(A^{2}-A\right) / 2$. If $A, A^{2} \in L_{1}(\mathscr{M}, \tau)$ and $A=A^{3}$, then $\tau(A) \in \mathbb{R}$.

DOI: 10.1134/S0001434615090035
Keywords: von Neumann algebra, τ-measurable operator, τ-compact operator, Banach space of τ-integrable operators, Hilbert space, idempotent, hyponormal operator, semihyponormal operator, cohyponormal operator.

1. INTRODUCTION

Let \mathscr{M} be a von Neumann algebra of operators in a Hilbert space \mathscr{H}, let τ be an exact normal semifinite trace on \mathscr{M}, and let $L_{1}(\mathscr{M}, \tau)$ be the Banach space of τ-integrable operators. In this paper, we obtain the following results on the algebraic and order properties of the trace τ and the elements of the $*$-algebra $\widetilde{\mathscr{M}}$ of all τ-measurable operators.

If $X, Y \in \widetilde{\mathscr{M}^{\text {sa }}}$ and $X Y \in L_{1}(\mathscr{M}, \tau)$, then

$$
Y X \in L_{1}(\mathscr{M}, \tau) \quad \text { and } \quad \tau(X Y)=\tau(Y X) \in \mathbb{R}
$$

(Theorem 3.1). In particular, if $X, Y \in \mathscr{B}(\mathscr{H})^{\mathrm{sa}}$ and $X Y \in \mathfrak{S}_{1}$, then

$$
Y X \in \mathfrak{S}_{1} \quad \text { and } \quad \operatorname{tr}(X Y)=\operatorname{tr}(Y X) \in \mathbb{R}
$$

If $X \in L_{1}(\mathscr{M}, \tau)$, then

$$
\tau\left(X^{*}\right)=\overline{\tau(X)}
$$

(Theorem 3.3). If the operator A is τ-compact and $V \in \mathscr{M}$ is a contraction, then it follows from $V^{*} A V=A$ that

$$
V A=A V
$$

(Theorem 3.4). An example of an unbounded operator $A \in \widetilde{\mathscr{M}}$ with $A=A^{2}$ is given (Example 4.2).

[^0]
[^0]: *E-mail: Airat.Bikchentaev@kpfu.ru, Airat.Bikchentaev@ksu.ru

