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Abstract-The problem of determining the propagation constants of dielectric-waveguide eigenmodes
is considered. A set of singular integral equations is obtained by methods of potential theory. Conditions
that are sufficient for the nontrivial solutions ofthis set to correspond to nontrivial solutions ofthe prob-
lem considered are presented. A method for calculating approximate values of the propagation constants
is proposed.

This paper is devoted to determining the propagation constants of eigenmodes of dielectric waveguid_e_s

by methodi of potential theory. The ray method, the method of normal waves, asymptotic methods [1,2],
the finite-difference method [3], the method of integral equations [4-6], the method of partial domains, vari-
ational methods, etc. U-9) have been applied to the anzrlysis of dielectric waveguides. Integral equations in

[ffi] were constructed on the basis of Green's identity. In recent years, the representation of fields in the

forrnof single-layer potentials has been used successfully in solving spectral problems of wave scatt-ering

by open screens and the. probt9ry9f 
-al.fraction 

of electromagnetic waves [ 10- I 2] . Such an approach allows
one to econolruze considerably CPU time.

In this paper, we obtain a homogeneous set of real singular integral equations by representilg tlt" desired
functions in ihe form of single-layer potentials. We present sufficient conditions for the nontrivial solutions
of the set of integral equations to correspond to nontrivial solutions of the original problem. We propose_ a

method for calculating approximate values of propagation constants. As test examples, we solved the prob-
lems for waveguides of 

-eltiptical, 
rectangular, and triangular cross-sections, as well as for dielectric strip

waveguides.

1. The problem of determining the propagatiorl constants of eigenmodes of a cylindrical dielectric
waveguide with a constant rettactive index n1, surrounded by a medium with a constant refractive index n,,

is reduced (see, e.g., [7]) to the determination of the values of the parameter B from the interval G = (kfl2,
ftyr1) such that there exist nontrivial exponentially decreasing solutions of the set

A,tt+^trztt =0, Arz+Ltv =0, (x,y)e S, Ltr-pzu

that satisfy the boundary conditions

= 0, Av -p'u = 0, (-r,y) € S, (l)

lt -Lt = 0, v*-rz- = 0,

;(o* 
+s,.,#). ;(o* 

* u,'$) = o,

7(o# 
- u,'H). ;(o# - u,'H) = o, (x, v) e c

(2)

Here,Sisaboundeddomainrviththeboundary C;X2=ttn?-9';p'=9'-ttu);kt=o2esps;eeancltrrs
are the permittivity and the permeability of vacuum, respectively; or is the frequency of electromagnetic

oscillations; Ej=tonzj;Ouldt' is the derivative normal to the contour C; Er/dt is the derivative tangential to

the contour C; and/* (/-) is the liniit value of the function/from the interior (exterior) of the contour C'

\k132
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Using the representation of the functions a and rz in the form of single-layer potentials I l3], we obtain a
nonlinear spectral problem for the following set of real integral equations:

Ir gr - Tzgz = 0, ZrVr -Tzyz = 0,

(3)

Here,l

= J**,, M, M o)e(Mo)dc,o,
C

MeC,i=1,2,

= LznKo(P'u*,)'

)[ot,r, 
* ',,(jo, * "'*,)] 

. 
][0",r, 

* r,'(- )w,* r,o,)] = o,

)lo*,r,- r',,(iv, * t,*,)] * {[or,e, - u,'(- )r,*",rr] = 0, M e c.

(ri0@) = Ja,{u, M)tp(M)dcr,, (P,<p)(M)

C

(Ki<il@) = Ifiar, M, Mo)<p(Ms)dcyo,

C

QJM,Mo) = -ifor*r*ro), @z(M,Mo)

M = (x,l), Mo = (ro, !o), rypo = JG-*o)z +(y-yi'.
The operators f have logarithmic singularities, the kernels of the operators Pi are continuous, and K, are
singular integral operators with a Cauchy kernel.

Let us analyze the relation between the solutions to problems (l), (2), and (3). The proof of the following
lemma is similar to the proof of Theorem 2 in I l5] :

Lemma l. If, for a certain F = Fo e G, the potential u given by the relation

u(M) = IrrW,Mr)<p(M)dCyo, Me Rt\S
c

vanishes in R2\S , then its density e = 0 on C.

Lemma 2. If, for a certain P = Fo e G, the potential u given by the relatiort

u(M) = I*,r*,Mo)<p(M)dCrn, MeS
C

vanishes in S and the problent

TrQr = 0, MeC (4)

has only a trivial solution, then the density g = 0 on C.

The validity of this lemma follows from the continuity of the single-layer potential with the kernel @1.

Lemmas I and2 imply the following theorem.

Theorem l. If, for a cerTain F = Fo e G, problem (4) has only a trivial solution and system (3) has a
nontrivial solution, then the latter corresponds to a nontrivial solution of problem ( I ), (2).

2. Following [0, l2], in order to solve the problern numerically, we replace (3) by a set of linear alge-
braic equations by approximating the integral operators by the Galerkin method. As basis functions, we use
the trigonometric functions. Integrating by parts, we preliminarily reduce the integral operators with the

I We use the notation from [l4] for special functions.
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Cauchy kernel to integro-differential operators with a lognrithmic singularity. The logarithmic singularities
of the kernels are separated analytically. Approximate values of p are determined from the conditions

det(A(B)) = 0,

det(D(F)) * 0,

where A is the matrix of the set of equations constructed and D is the matrix that arises upon discretizing
the operator I'.

A similar numerical method for solving a nonlinear spectral problem for a scalar integral operator func-
tion with a logarithmic singularity was substantiated in [6, p. 168]. This method is based essentially on the
results of I l7].

3. In order to assess the efficiency of the method described, we solved problem (1), (2) for waveguides
of elliptic, rectangular, and triangular cross-sections, as well as for dielectric strip waveguides.

The dispersion characteristics of the fundamental modes of an elliptic cross-section waveguide with the
ratio of semiaxes equal to l.3l were constructed by the method proposed. It was found that even for the
number of basis functions N = 2 they coincided exactly, up to a graphical representation, with the dispersion
characteristics [18] obtained by the method of separation of variables. A further increase in N did not
improve the computational accuracy.

The solution of problem ( I ), (2) for a waveguide of rectangular cross-section was based on the approx-
imation of the contour by the curve [4]

r(,) = [(ry)'".(#)'"]-'", ,e to,2nt.

As M * -, this curve tends to a rectangle with sides 2c and2b.

As in [9], we obtained the dispersion characteristics: the dependence of h =plk0 on p =Zbl]v,],,=Znla,
for fixed values of €1, €2, and alb. The results of computations for a/b = 1.5, tr = 2.08, and e2 = I are shown
in Fig. I by a solid curve for the fundamental modes and by a dashed curve for higher-order modes. The
circles indicate the experimental data of [9]. The results demonstrated in Fig. I were obtained for N = 3.
The method exhibits a stable internal convergence. For instance, the modulus of the difference between the
valuesof/robtainedforN=KandN=K+ldidnotexceedA=10-2forK=2,L,=lOaforK=3,and
A= l0{ for K= 4. All computations were carried out for M =20. A furtherincrease in Mdid not influence
the accuracy of the computations.

We also considered problem (l), (2) for a waveguide with a cross-section in the form of an equilateral
triangle. The contour was approximated by a curvilinear triangle I l2]. The results of calculations were com-
pared with those obtained by the pointwise matching method in [20]. The accuracy of the calculated prop-

(5a)

(sb)

4 0.6

Fig. l.

COIvIPUTATIONAL

0.8 1.0
p

Fig.2.

IVIATHEMATICS AND IVIATHEMATICAL PHYSICS Vol. 38 No. I 1998



/

DETERMINATION OF THE PROPAGATION CONSTANTS I.]5

agation constants of the fundamental modes of a triangular cross-section waveguide and the internal con-
vergence of the method were of the same order as in the previous case.

We also solved problem (l), (2) for dielectric strip waveguides [19], i.e., waveguides of rectangular
cross-section that are situated on a dielectric substrate or embedded into the letter. Similarly to [21], the
solution was based on the approximate separation of the fundamental modes into electric and magnetic
modes. In this case, set (3) is decomposed into two independent sets similar to those described in [2]. As
the kernel @2, w€ used the Green's function of the Helmholtz equation with piecewise-constant coefficients

[22].The results of calculations for a waveguide situated on a substrate (for er=2.52, tz = I, er = 2.085,
andalb = 1.5) are represented in Fig.2by a solid curve forthe fundamental E-polarized waves and by a
dashed curve for H-polanzed waves. Here, t1, t2, and t3 are the dielectric pennittivities of the cylinder, the
surrounding medium, and the substrate, respectively. The circles represent the experimental data of [9].
The results shown in Fig. 2 were obtained for N = 2.The accuracy of the method depends on the parameters
N and M, just as in the case of a homogeneous surrounding medium.

Note that, in order to verify the fulfillment of condition (5b), we determined all roots of the equation
det(D(F)) = 0 in each case and compared these roots with the solutions of equation (5a).
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