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1. Introduction

Recall that a function f : [0, ∞) → R is called operator monotone if 0 ≤ A ≤ B ∈
B(H) implies that f(A) ≤ f(B), where B(H) stands for the ∗-algebra of all bounded 
linear operators on a Hilbert space H. The present paper is motivated by a result due to 
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T. Ando [2] (see also [5] and [17, Chapter 43]), which states that for any non-negative 
operator monotone function f and any (fully symmetric) unitarily invariant norm ‖·‖E
on B(H), we have

‖f(X) − f(Y )‖E ≤ ‖f(|X − Y |)‖E , X, Y ∈ B(H)+.

Recall that given two positive operators A and B, we say that A is submajorized by 
B (in the sense of Hardy, Littlewood and Pólya) if

n∑
k=0

μ(k,A) ≤
n∑

k=0

μ(k,B), n ≥ 0.

Here, μ is the singular value function. Submajorization is denoted A ≺≺ B.
A similar result to that of Ando can be stated in terms of submajorization. If f is 

operator monotone, then:

|f(X) − f(Y )| ≺≺ f(|X − Y |).

In this form, it follows that ‖f(X) − f(Y )‖E ≤ ‖f(|X − Y |)‖E for all fully symmetric 
norms ‖ · ‖E , although not for all unitarily invariant norms.

It is natural to consider whether this form of Ando’s inequality can be strengthened to 
uniform submajorization, a notion introduced in [11] (see also [12]). Given two positive 
operators A and B, one says that A is uniformly submajorized by B (written A � B) if 
there exists n ∈ N such that:

b∑
k=na

μ(k,A) ≤
b∑

k=a

μ(k,B), for all a, b ≥ 0 such that na < b.

Uniform submajorization is much stronger than submajorization, and A �B implies (in 
particular, and in contrast to submajorization) that if B is finite rank then A is finite 
rank (see Lemma 2.2).

It follows from A � B that ‖A‖E ≤ ‖B‖E for all symmetric norms E. This is the 
reason for the importance of uniform submajorization, and should be compared with the 
fact that A ≺≺ B implies that ‖A‖E ≤ ‖B‖E only for those norms E which are fully 
symmetric.

It is natural to ask if Ando’s inequality can be extended in at least some cases to uni-
form submajorization. Say that f satisfies Ando’s inequality for uniform submajorization 
if for all bounded positive linear operators X and Y we have

|f(X) − f(Y )| � f(|X − Y |).

It can be proved (see Theorem 4.5 below) that f obeys Ando’s inequality for uniform 
submajorization if f has the form
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f(t) = α + βt +
d−1∑
j=1

γjt

t + δj
(1.1)

for some α ∈ R, β, γj ≥ 0 and δj > 0, j = 1, . . . , n and d ≥ 1. We show that this is 
the only case. That is, an operator monotone function f satisfies Ando’s inequality for 
uniform submajorization if and only if f has the form (1.1).

Our proofs are based on the following observation:

Theorem 1.1. Let f be a Borel function on R. If for all bounded positive operators X
and Y such that X − Y has finite rank, the difference f(X) − f(Y ) also has finite rank, 
then f is rational.

Our proof of Theorem 1.1 is ultimately based on the theory of Hankel operators. Using 
a recent characterization of rational operator monotone functions due to Nagisa [13], we 
deduce the following:

Theorem 1.2. An operator monotone function f obeys Ando’s inequality for uniform 
submajorization if and only if f has the form (1.1).

The same result holds for uniform submajorization in the setting of an infinite factor.
The authors sincerely thank Dmitriy Zanin for useful discussions of the results pre-

sented in this paper, and Jinghao Huang for discussion concerning references and his 
contribution to the proof of Lemma 4.4. We also thank the anonymous reviewer for 
helpful comments and suggestions.

2. Preliminaries

We will present our results and proofs in the language of semifinite von Neumann alge-
bras and singular value functions. This has the advantage of some additional generality, 
but also simplifies the notation in some places and clarifies some computations.

2.1. Singular value functions

Let M be a semifinite von Neumann algebra on a separable Hilbert space H equipped 
with a faithful normal semifinite trace τ . We denote the norm of M simply by ‖ · ‖.

Let P(M) denote the lattice of all projections in M, 1 be the unit of M. A linear 
operator X : D (X) → H, where the domain D (X) of X is a linear subspace of H, is said 
to be affiliated with M if Y X ⊆ XY for every Y ∈ M′, where M′ is the commutant of M
(notation: XηM). For any self-adjoint operator A on H, its spectral measure is denoted 
by EA. A self-adjoint operator A is affiliated with M if and only if EA (B) ∈ P(M) for 
any Borel set B ⊆ R. A closed and densely defined operator AηM is called τ -measurable 
if τ(E|A|(s, ∞)) < ∞ for sufficiently large s, where |A| =

√
A∗A. We denote the set of 
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all τ -measurable operators by S(M, τ). For every A ∈ S(M, τ), we define its singular 
value function μ(A) by setting

μ(t, A) = inf{‖A(1 − P )‖ : P ∈ P(M), τ(P ) ≤ t}, t > 0.

Equivalently, for positive self-adjoint operators A ∈ S(M, τ), we have

nA(s) = τ(EA(s,∞)), μ(t, A) = inf{s : nA(s) < t}, t > 0.

If M = B(H) and τ is the standard trace Tr, then it is not difficult to see that S(M) =
S(M, τ) = M and

μ(n,A) = μ(t, A), t ∈ [n, n + 1), n ∈ N.

The sequence {μ(n, A)}n≥0 is just the sequence of singular values of the operator A ∈
B(H). If we consider M = L∞(X, m) for some σ-finite measure space (X, m) as an 
Abelian von Neumann algebra acting via multiplication on the Hilbert space L2(X, m), 
with the trace given by integration with respect to m, then S(M, τ) consists of all 
measurable functions on X which are bounded except on a set of finite measure. In 
this case for f ∈ S(M, τ), the generalized singular value function μ(f) is precisely the 
classical decreasing rearrangement of the absolute value |f |.

We record for our use the inequality:

μ(t + s,A + B) ≤ μ(t, A) + μ(s,B), t, s ≥ 0, A,B ∈ S(M, τ). (2.1)

See [12, Corollary 2.3.16].
For more details on generalized singular value functions, we refer the reader to [9] and 

[12].

2.2. Hardy–Littlewood–Pólya submajorization

If A, B ∈ S(M, τ), then we say that B is submajorized by A (in the sense of Hardy–
Littlewood–Pólya), denoted by μ(B) ≺≺ μ(A) or simply B ≺≺ A if

t∫
0

μ(s,B)ds ≤
t∫

0

μ(s,A)ds, t ≥ 0.

Ando’s inequality for submajorization holds in the semifinite setting (see [5]). That 
is, if f is an operator monotone function on [0, ∞), then for all 0 ≤ A, B ∈ S(M, τ),

t∫
μ(s, f(A) − f(B)) ds ≤

t∫
μ(s, f(|A−B|)) ds for all t ≥ 0. (2.2)
0 0
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2.3. Uniform submajorization

As mentioned in the introduction, uniform submajorization is a strengthening of sub-
majorization in the sense of Hardy, Littlewood and Pólya. First introduced in [11], the 
notion was used extensively in [12] (see Section 3.4 there).

As indicated in the introduction, uniform submajorization is defined as follows:

Definition 2.1. Let A, B ∈ S(M, τ). We say that A is uniformly submajorized by B
(written A � B) if there exists n ≥ 1 such that

b∫
na

μ(s,A)ds ≤
b∫

a

μ(s,B)ds, for all a, b ≥ 0 such that na < b.

Note that in the case when M = B(H) and τ is the canonical trace, this reduces to the 
definition of uniform submajorization given in the introduction. Clearly, if μ(A) ≤ μ(B), 
then A � B with n = 1.

Recall that the support projection supp(A) of an element A ∈ S(M, τ) is defined as 
the maximal projection p ∈ P(M) such that A(1 − p) = 0.

Lemma 2.2. If 0 ≤ A, B ∈ S(M, τ) with A � B and τ(supp(B)) < ∞, then

τ(supp(A)) ≤ n · τ(supp(B)) < ∞

where n is the integer appearing in the definition of uniform submajorization.

Proof. If λ = τ(supp(B)) < ∞, then μ(t, B) = 0 for t > λ. It follows from the definition 
of uniform submajorization that for N sufficiently large we have:

N∫
nλ

μ(s,A) ds ≤
N∫
λ

μ(s,B) ds = 0.

Since μ is positive and decreasing, it follows that μ(s, A) = 0 for all s > nλ. Therefore,

τ(supp(A)) ≤ n · τ(supp(B)). �
In the case M = B(H) and τ is the classical trace, we obtain the following:

Corollary 2.3. If 0 ≤ A, B ∈ B(H) and A � B and B has finite rank, then A has finite 
rank.
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3. Proof of Theorem 1.1

We work on the Hilbert space L2(R). Let H be the Hilbert transform, defined via 
Fourier multiplication:

Hξ(t) = (2π)−1
∞∫

−∞

∞∫
−∞

sgn(ω)eiω(t−s)ξ(s) dsdω

when ξ is a Schwartz class function on R [10, Section 4.1]. Here, sgn(ω) = 1 if ω ≥ 0 and 
sgn(ω) = −1 if ω < 0. Parseval’s theorem implies that the Hilbert transform uniquely 
extends to a unitary and self-adjoint operator on L2(R), so in particular we have H2 = 1, 
where 1 is the identity operator on L2(R).

The Hilbert transform H ′ on the unit circle T = {z ∈ C : |z| = 1} is defined 
similarly, as the Fourier multiplication:

H ′ξ(z) =
∑
n∈T

sgn(n)znξ̂(n)

where ξ̂(n) is the nth Fourier coefficient of ξ ∈ C∞(T ). The operators H and H ′ are 
unitarily equivalent, with the unitary equivalence being given by the Cayley transform. 
To be precise, if ω(t) = t−i

t+i is the Cayley transform, then the operator:

Uξ(t) = 1√
π

ξ(ω−1(t))
t + i

is a unitary equivalence between L2(T ) (where T is equipped with its normalized Haar 
measure) and L2(R) such that HU = UH ′. This follows from the Paley–Wiener theorem 
[14, Theorem 19.2], which characterizes the images of 2H + 1 and 2H ′ + 1 as being the 
boundary values of holomorphic functions in the unit disc and the upper half-plane 
respectively, and the fact that ω is a conformal equivalence between the upper half-plane 
and the interior of the unit disc.

Given a bounded function h ∈ L∞(R), let Mh be the operator of pointwise multipli-
cation by h on L2(R), Mhξ(t) = h(t)ξ(t) for ξ ∈ L2(R) and t ∈ R.

The following result concerning commutators of the form [H, Mh] is essential to our 
approach. We explain how it can be deduced from a characterization of finite rank Hankel 
matrices, originally due to L. Kronecker (see [15, Section 1.1.3])

Proposition 3.1. Let h be a bounded function on the real line. Then the commutator

[H,Mh] = HMh −MhH : L2(R) → L2(R)

has finite rank if and only if h is a rational function.
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Proof. If h ∈ L∞(R), then U∗MhU is the function of pointwise multiplication by h ◦ω−1

on T .
As discussed above, we have HU = UH ′, where H ′ is the Hilbert transform on the 

unit circle. Therefore:

U∗[H,Mh]U = [H ′,Mh◦ω−1 ].

Necessary and sufficient criteria for a commutator of a pointwise multiplier and the 
Hilbert transform on the circle to be finite rank are known (see [15, Section 1.3]). In 
the Fourier basis, the commutator [H ′, Mh◦ω−1 ] is unitarily equivalent to a direct sum 
of Hankel matrices. It follows from a theorem of Kronecker [15, Theorem 1.3.1] that the 
commutator [H ′, Mh◦ω−1 ] has finite rank if and only if h ◦ω−1 is rational. Thus, [H, Mh]
has finite rank if and only if h is rational. �
Lemma 3.2. Let f : R → R be a Borel function. If f ◦ h is rational for every bounded 
real-valued rational function h, then f is rational.

Proof. Let h1(t) = 1
1+t2 : this is a bounded rational function. Then by assumption, 

g = f ◦ h1 is rational. If s ∈ (0, 1), then there exists t =
√
s−1 − 1 such that h1(s) = t. 

We have

f(s) = f(h1(t)) = g(t) = g(
√
s−1 − 1), s ∈ (0, 1).

Set

g1(u) = g(u) + g(−u)
2 , g2(u) = g(u) − g(−u)

2u , u ∈ R.

Obviously, g1 and g2 are even rational functions such that g(u) = g1(u) + ug2(u). We 
have

f(s) = g1(
√

s−1 − 1) + g2(
√
s−1 − 1) ·

√
s−1 − 1, s ∈ (0, 1).

Since gk are even rational functions, it follows that the functions

s → gk(
√
s−1 − 1), s ∈ (0, 1),

admit rational extensions Rk. Thus,

f(s) = R1(s) + R2(s) ·
√

s−1 − 1, s ∈ (0, 1).

Similarly, consider a function h2(t) = 2
1+t2 . There exist rational functions R3 and R4

such that
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f(s) = R3(s) + R4(s) ·
√

2s−1 − 1, s ∈ (0, 2).

Combining the last 2 equalities, we obtain

(R1 −R3)(s) + R2(s) ·
√

s−1 − 1 = R4(s) ·
√

2s−1 − 1, s ∈ (0, 1).

Taking squares, we obtain

R6(s) ·
√

s−1 − 1 = R5(s), s ∈ (0, 1),

where

R5(s) = R2
4(s) · (2s−1 − 1) − (R1 −R3)2(s) −R2

2(s) · (s−1 − 1),

R6(s) = 2(R1 −R3)(s)R2(s), s ∈ R.

Since both R5 and R6 are rational functions and since s →
√
s−1 − 1, s ∈ (0, 1), is not, 

it follows that R5 = R6 = 0. Thus, R2 · (R1 −R3) = 0.
If R1 = R3, then

R2(s) ·
√

s−1 − 1 = R4(s) ·
√

2s−1 − 1, s ∈ (0, 1).

Since both R2 and R4 are rational functions and since s →
√

s−1−1
2s−1−1 , s ∈ (0, 1), is not, 

it follows that R2 = R4 = 0.
Hence, f(s) = R1(s), s ∈ (0, 1). In other words, f is rational on the interval (0, 1). 

Similarly, one can show it is rational on every interval (0, α), α > 0, and an every interval 
(−α, 0), α > 0. Thus, f is rational on R+ and on R−.

Let f+ and f− be rational functions such that f = f+ on R+ and f = f− on R−. By 
subtracting f− from f , we may assume without loss of generality that f− = 0. Consider 
the function h3(t) = t

1+t2 . By assumption, f ◦ h3 = (f+ ◦ h3) · χ(0,∞) is rational on R. 
However, every rational function with infinitely many zeroes is 0. Hence, f+ ◦ h3 = 0. 
Thus, f+ = 0 and, therefore in this case we have f = 0. This proves that f is rational. �

The proof of Theorem 1.1 follows very similar lines to the methods of Aleksandrov 
and Peller [1, Section 9].

Proof of Theorem 1.1. We may assume without loss of generality that f(0) = 0. Let h
be a bounded real-valued rational function on R, and let

X = HMhH, Y = Mh.

We have that:

X − Y = HMhH −Mh = [H,Mh]H.
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Since h is rational, [H, Mh] has finite rank due to Proposition 3.1, and so X − Y has 
finite rank. Thus, f(|X − Y |) has finite rank.

Recall that H is unitary. It follows that for any Borel function f we have:

f(X) = HMf◦hH.

Thus,

f(X) − f(Y ) = HMf◦hH −Mf◦h = [H,Mf◦h]H.

By assumption, f(X) − f(Y ) has finite rank, and thus [H, Mf◦h] has finite rank. There-
fore the “only if” component of Proposition 3.1 implies that f ◦ h is rational. Since h
is an arbitrary bounded rational function, it follows from Lemma 3.2 that f is itself 
rational. �
4. Proof of Theorem 1.2

We now explain how Theorem 1.2 follows from Theorem 1.1. Lemma 2.2 implies 
that if f is an operator monotone function satisfying Ando’s inequality for uniform 
submajorization then f has the property that if f(|X−Y |) has finite rank then |f(X) −
f(Y )| has finite rank for all bounded positive linear operators X and Y .

Note that if X−Y has finite rank, then f(|X−Y |) also has finite rank. It now follows 
from Theorem 1.1 that f is rational. However, a recent result of Nagisa [13] states that 
a rational operator monotone function necessarily has the form (1.1).

Remark 4.1. If (M, τ) is an infinite semifinite factor (that is, the centre of M is trivial 
and τ(1) = ∞), then there exists a subalgebra N ⊆ M and a unitary equivalence 
N ≈ B(L2(R)) (this essentially follows from [18, Theorem 4.22]). Hence, if f obeys 
Ando’s inequality for uniform submajorization in the von Neumann algebra M, then by 
restricting to the subalgebra N it follows that f obeys Ando’s inequality for uniform 
submajorization in B(H), and hence by the above argument f has the form (1.1).

To complete the proof, we only need to prove the converse statement: if f has the 
form (1.1) then f obeys Ando’s inequality for uniform submajorization. For the sake of 
maximal generality and also notational simplicity, we prove this theorem in the language 
of semifinite von Neumann algebras.

We recall that τ(supp(X + Y )) ≤ τ(supp(X)) + τ(supp(Y )) for X, Y ∈ S(M, τ), 
τ(supp(ZX)) ≤ τ(supp(X)) if Z ∈ S(M, τ) and τ(supp(XZ)) ≤ τ(supp(X)) if Z =
Z∗ ∈ M is invertible.

Lemma 4.2. If f has the form (1.1) and 0 ≤ A, B ∈ M are self-adjoint operators such 
that τ(supp(A −B)) is finite, then:
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τ(supp(f(A) − f(B))) ≤ d · τ(supp(A−B)).

(Recall that d is the number of summands in (1.1).)

Proof. By definition we have

f(A) − f(B) = β(A−B) −
d−1∑
j=1

γjδj(A + δj)−1(A−B)(B + δj)−1.

Therefore,

τ(supp(f(A) − f(B))) ≤ τ(supp(A−B)) +
d−1∑
j=1

τ(supp(A−B))

= d · τ(supp(A−B)). �
The following assertion is standard (compare it with e.g. Lemma 1.3 in [4], [6]). For 

convenience of the reader, we provide a direct argument. For technical reasons, we work 
over an atomless von Neumann algebra. Recall that a semifinite von Neumann algebra 
M is called atomless if M contains no non-zero minimal projections. Any von Neumann 
algebra (in particular, B(H)) may be embedded into an atomless von Neumann algebra 
in a way which preserves the trace. For example, we may consider the embedding M ↪→
M ⊗ L∞(0, 1), where L∞(0, 1) is considered as an Abelian von Neumann algebra with 
finite trace given the Lebesgue integral, and M is mapped into the first tensor factor.

The same argument in [6, Lemma 2.5] yields the following lemma (see Lemma 7.7, 
Chapter III, in the forthcoming book [7] for a complete proof).

Lemma 4.3. Suppose that the von Neumann algebra M is non-atomic and 0 ≤ T ∈
S (M, τ). Let λ = μ (t, T ) for some t ∈ (0,∞) satisfying t ≤ τ (1). If λ > μ∞ := μ(∞; T )
or λ = 0, then there exists e ∈ P (M) such that

eT (λ,∞) ≤ e ≤ eT [λ,∞) and τ (e) = t.

The following lemma is folklore (see e.g. [6,7] for the case of finite von Neumann 
algebras). We give a full proof below for completeness in the setting of general semifinite 
von Neumann algebras.

Lemma 4.4. Let M be an atomless von Neumann algebra. If T = T ∗ ∈ M and if t ∈
(0, ∞), then there exists e ∈ P(M) such that τ(1 − e) = t and

μ(s, eTe) = μ(s + t, T ), s > 0.

Moreover, if μ(t; T ) > μ(0; T ) or μ(t; T ) = 0, then e can be chosen to be commuting with 
T .
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Proof. Assume that T ≥ 0. Let λ = μ(t, T ).
Step 1. Note that if a projection e commutes with T , then μ(eTe) = μ(Te) = μ(|T |e). 

Hence, it suffices to prove the case when T is positive.
If μ(t, T ) > μ(∞, T ) or μ(t, T ) = 0. By Lemma 4.3, there exists a projection q ∈ M

such that

eT (λ,∞) ≤ q ≤ eT [λ,∞) and τ (q) = t.

This implies that q commutes with T .
In particular, for any Borel set B ∈ B (R), we have

eT (1−q) (B) = (1 − q) eT (B) = eT (B) (1 − q) ,

and hence,

eT (1−q) (r,∞) = (1 − q) eT (r,∞) =
{

eT (r,∞) − q if r < λ

0 if r ≥ λ
.

It follows that

d (r;T (1 − q)) =
{

d (r;T ) − τ (q) if r < λ

0 if r ≥ λ
. (4.1)

Observe that (4.1) may also be written as d (r;T (1 − q)) = (d (r;T ) − τ (q))+. Indeed, 
if r < λ, then q ≤ eT [λ,∞) ≤ eT (r,∞) and so, d (r;T ) − τ (q) ≥ 0. If r ≥ λ, then 
eT (r,∞) ≤ eT (λ,∞) ≤ q and so, d (r;T ) − τ (q) ≤ 0. Consequently, if 0 ≤ t < τ

(
q⊥

)
, 

then

μ (t;T (1 − q)) = inf {r ∈ R : d (r;T (1 − q)) ≤ t}

= inf
{
r ∈ R : (d (r;T ) − τ (q))+ ≤ t

}
= inf {r ∈ R : d (r;T ) − τ (q) ≤ t} = μ (t + τ (q) ;T ) .

It suffices to take e as 1 − q.
Step 2. Assume that μ(t, T ) = μ(∞, T ). Recall that μ(∞, T ) is also given by

μ∞ := inf{s ≥ 0 : d(s; |T |) < ∞}. (4.2)

It follows that for any ε > 0,

d(μ∞ − ε; |T |) = ∞.

Since μ(t, T ) = μ∞, it follows that d(μ∞; |T |) < ∞. Hence, for any ε > 0, we have
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τ(e|T |(μ∞ − ε, μ∞]) = d(μ∞ − ε; |T |) − d(μ∞; |T |) = ∞. (4.3)

By d(|T |) = d(μ(T )), we have (see also [7, Lemma 7.7 (ii)])

d(μ∞; |T |) ≤ t.

Let a := t − d(μ∞; |T |) ≥ 0.
(i). If τ(e|T |{μ∞}) = ∞, then we may take p as a subprojection of e|T |{μ∞} with 

τ(p) = a. In particular, p commutes with T . Take e = 1 − (p + e|T |(μ∞, ∞)). It is clear 
that μ(s + t; T ) = μ(s; e|T |e) = μ(s; eTe) = μ∞ for any s > 0.

(ii). Now, assume that τ(e|T |{μ∞}) < ∞. Then, for any ε > 0, by (4.3), we have

τ(e|T |(μ∞ − ε, μ∞)) = ∞. (4.4)

In particular, for a fixed ε, there exists a sufficiently small δ > 0 such that

τ(e|T |(μ∞ − ε, μ∞ − δ)) ≥ a.

Since M is atomless, it follows that we can take a subprojection p of e|T |(μ∞−ε, μ∞−δ)
with τ(p) = a. Define

e = 1 − (p + e|T |(μ∞,∞)) = e|T |[0, μ∞] − p.

Note that p1 := e|T |[μ∞− δ, μ∞], p2 := e|T |(μ∞−ε, μ∞− δ) −p and p3 := e|T |[0, μ∞−ε]
are pairwise orthogonal. Moreover, since p1, p3 commute with T , it follows that

eTe = (e|T |[0, μ∞] − p)T (e|T |[0, μ∞] − p)

= (p1 + p2 + p3)T (p1 + p2 + p3)

= (p1 + p2 + p3)Tp1 + (p1 + p2 + p3)Tp2 + (p1 + p2 + p3)Tp3

= (p1 + p2 + p3)p1Tp1 + (p1 + p2 + p3)Tp2 + (p1 + p2 + p3)p3Tp3

= p1Tp1 + (p1 + p2 + p3)Tp2 + p3Tp3

= p1Tp1 + p1Tp2 + p2Tp2 + p3Tp2 + p3Tp3

= p1Tp1 + p2Tp2 + p3Tp3

= e|T |[μ∞ − δ, μ∞]Te|T |[μ∞ − δ, μ∞]

+ (e|T |(μ∞ − ε, μ∞ − δ) − p)T (e|T |(μ∞ − ε, μ∞ − δ) − p)

+ e|T |[0, μ∞ − ε]Te|T |[0, μ∞ − ε].

Note that τ(eTe|T |[μ∞−δ,μ∞][μ∞− δ′, μ∞]) = τ(e|T |[μ∞− δ′, μ∞]) (4.4)= ∞ for any positive 
number δ′ < δ. Hence, by the definition of singular value function in terms of distribution 
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function, we obtain that μ(Te|T |[μ∞ − δ, μ∞]) = μ∞ is a constant on R+. Recall that 
p1, p2, p3 are pairwise orthogonal. Hence, the supports of

p1Tp1, p2Tp2, and p3Tp3

are pairwise disjoint. Moreover, ‖p2Tp2‖∞ , ‖p3Tp3‖∞ ≤ μ∞ − δ. Hence, for any θ > 0, 
we have

d(μ∞ − δ + θ; eTe) = d(μ∞ − δ + θ; p1Tp1 ⊕ p2Tp2 ⊕ p3Tp3) = d(μ∞ − δ + θ; p1Tp1).

Since μ(p1Tp1) 
(4.4)= μ∞, it follows that μ(eTe) = μ∞.

The proof is complete. �
Theorem 4.5. Let (M, τ) be a semifinite von Neumann algebra, and let f have the form 
(1.1). Then for all 0 ≤ A, B ∈ M we have:

|f(A) − f(B)| � f(|A−B|)

with n ≤ 4d.

Proof. Without loss of generality M is atomless. Fix 0 < a, b < ∞ such that 4da < b. 
Using Lemma 4.4 select a projection p such that τ(1 − p) = a and such that

μ(t, p(A−B)p) = μ(t + a,A−B), t > 0.

Since f is increasing, it follows that

μ(f(|pAp− pBp|)) = f(μ(|pAp− pBp|)) = f(μ(p(A−B)p)).

Thus,

μ(t, f(|pAp− pBp|)) = μ(t + a, f(|A−B|)), t > 0. (4.5)

Now, we write

f(A) − f(B) = (f(pAp) − f(pBp)) + (f(A) − f(pAp)) + (f(pBp) − f(B)).

Using (2.1), we have:

μ(t, f(A) − f(B)) ≤ μ(t− 4da, f(pAp) − f(pBp)) + μ(2da, f(A) − f(pAp))

+ μ(2da, f(B) − f(pBp)).

By writing
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A− pAp = A(1 − p) + (1 − p)Ap

it is clear that τ(supp(A − pAp)) ≤ 2a. Therefore by Lemma 4.2, τ(supp(f(A) −
f(pAp))) ≤ 2da. Thus,

μ(2da, f(A) − f(pAp)) = 0 and, similarly, μ(2da, f(B) − f(pBp)) = 0.

We conclude that

μ(t, f(A) − f(B)) ≤ μ(t− 4da, f(pAp) − f(pBp)), t > 4da.

Hence,

b∫
4da

μ(s, f(A) − f(B)) ds ≤
b∫

4da

μ(s− 4da, f(pAp) − f(pBp))ds

=
b−4da∫
0

μ(s, f(pAp) − f(pBp))ds.

By Ando’s inequality in the semifinite setting (2.2), we have

f(pAp) − f(pBp) ≺≺ f(|pAp− pBp|).

Thus,

b∫
4da

μ(s, f(A) − f(B))ds ≤
b−4da∫
0

μ(s, f(|pAp− pBp|))ds

(4.5)=
b−4da∫
0

μ(s + a, f(|A−B|))ds

≤
b∫

a

μ(s, f(|A−B|))ds. �

5. Consequences of Ando’s inequality for uniform submajorization

While the class of operator monotone functions satisfying Ando’s inequality for uni-
form submajorization is quite small, it is worthwhile to explore the consequences of the 
inequality in the cases where it holds.
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5.1. Inequalities for symmetric norms

A Banach subspace (E, ‖ · ‖E) of S(M, τ) is said to be a symmetric operator space 
if B ∈ E, A ∈ S(M, τ) and μ(A) ≤ μ(B) implies that A ∈ E and ‖A‖E ≤ ‖B‖E . A 
symmetric operator space (E, ‖ · ‖E) is called fully symmetric if A ∈ S(M, τ), B ∈ E

and A ≺≺ B implies that A ∈ E and ‖A‖E ≤ ‖B‖E (for these and related notions 
see [8, Section 4] and [12, Section 2.5]). Fully symmetric operator spaces are precisely 
those symmetric operator spaces which are exact interpolation spaces for the couple 
(L1(M, τ), M). Ando’s inequality (2.2) implies that ‖f(A) −f(B)‖E ≤ ‖f(|A −B|)‖E for 
operator monotone f and fully symmetric operator spaces E. However, there are symmet-
ric operator spaces which are not exact interpolation spaces for the couple (L1(M, τ), M)
and therefore not fully symmetric [11,16].

As indicated in the introduction, A �B implies that if B ∈ E then ‖A‖E ≤ ‖B‖E for all 
symmetric operator spaces (E, ‖ · ‖E) (see [12, Corollary 3.4.3]). Therefore, Theorem 4.5
implies the following strengthening of Ando’s inequality for functions of the form (1.1):

Theorem 5.1. Let f be a function of the form (1.1). Then for all symmetric operator 
spaces (E, ‖ · ‖E), we have

‖f(A) − f(B)‖E ≤ ‖f(|A−B|)‖E .

5.2. Reverse inequalities

In Theorem 2 of [2], Ando proved that if g is the inverse to an operator monotone 
function, then for any fully symmetric norm ‖ · ‖ and all positive operators A and B we 
have

‖g(|A−B|)‖ ≤ ‖g(A) − g(B)‖.

See also [17, Theorem 43.2].
The following assertion is known (see e.g. [17, Equation (43.35)]), but we supply a 

short proof for convenience.

Proposition 5.2. Let f : [0, ∞) → [0, ∞) be operator monotone and invertible. Then f−1

is convex.

Proof. Since f is operator monotone, it follows firstly that f is smooth on (0, ∞) [17, 
Theorem 5.2] and secondly that f is concave [17, Corollary 14.5].

Let g = f−1. Then since g(f(x)) = x, we have:

g′(f(x))f ′(x) = 1, g′′(f(x))f ′(x)2 + g′(f(x))f ′′(x) = 0.

Since f ′ ≥ 0 and f ′′ ≤ 0, it follows that g′′(f(x)) ≥ 0, and hence g = f−1 is convex. �
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The following proposition shows that increasing convex functions are “almost” mono-
tone under uniform submajorization.

Proposition 5.3. Let 0 ≤ A, B ∈ M (where (M, τ) is an arbitrary semifinite von Neu-
mann algebra), and let F : [0, ∞) → [0, ∞) be an increasing convex function. If A � B, 
then for any ε > 0 we have F ( A

1+ε ) � F (B).

Proof. Note that A � B in the von Neumann algebra M if and only if μ(A) � μ(B) in 
the von Neumann algebra L∞(0, ∞) with the Lebesgue integral as trace.

A special case of [11, Example, page 100] (or [12, Theorem 3.4.2]), states that if 
μ(A) �μ(B) then for any ε > 0 there exist non-negative λ1, . . . , λN such that 

∑N
k=1 λk =

1 + ε, and elements Y1 . . . , YN ∈ L∞(0, ∞) such that

μ(A) =
N∑

k=1

λkYk

and

μ(Yk) ≤ μ(B), k = 1, . . . , N

Hence, μ(A)(1 + ε)−1 is a convex combination of {Y1, . . . , YN} ⊂ L∞(0, ∞). Since F is 
convex (Lemma 5.2), we have

F

(
μ(A)
1 + ε

)
≤

N∑
k=1

λk

1 + ε
F (μ(Yk)).

Since F is monotone, F (Yk) ≤ F (μ(B)) and therefore

F

(
μ(A)
1 + ε

)
≤

N∑
k=1

λk

1 + ε
F (μ(B)) = F (μ(B)).

Since F is a positive monotone function, we have μ(F (A(1 + ε)−1)) = F (μ(A)(1 + ε)−1)
and μ(F (B)) = F (μ(B)). Therefore,

μ

(
F

(
A

1 + ε

))
≤ μ(F (B)),

and hence

F

(
A

1 + ε

)
� F (B)

with n = 1. �
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Consider a function f of the form (1.1), and where f is also invertible. It follows from 
Proposition 5.2 that f−1 is convex, and hence Proposition 5.3 implies that if A �B then 
f−1( A

1+ε ) �f−1(B) for all ε > 0. This is the key component in the following result, which 
is a version of Theorem 2 in Ando’s paper [2].

Theorem 5.4. Let f be an invertible function of the form (1.1). Then for all bounded 
positive operators A and B and all ε > 0, we have

f−1
(
|A−B|
1 + ε

)
� |f−1(A) − f−1(B)|.

Proof. For bounded positive operators X and Y , Theorem 4.5 implies that:

|f(X) − f(Y )| � f(|X − Y |).

Inserting X = f−1(A) and Y = f−1(B) yields:

|A−B| � f(|f−1(A) − f−1(B)|).

Since f−1 is convex (Proposition 5.2), Proposition 5.3 implies that for every ε > 0 we 
have

f−1
(
|A−B|
1 + ε

)
� f−1(f(|f−1(A) − f−1(B)|)) = |f−1(A) − f−1(B)|. �

Note that the function f−1 in the above theorem may be irrational. For example, if

f(t) = t + t

1 + t
= t2 + 2t

1 + t
, t ≥ 0

then

f−1(s) = 1
2(s− 2 + (s2 + 2s + 4)1/2).

As in the previous subsection, it follows that for any ε > 0 and any symmetric operator 
space (E, ‖ · ‖E) we have the inequality∥∥∥∥f−1

(
|A−B|
1 + ε

)∥∥∥∥
E

≤ ‖f−1(A) − f−1(B)‖E .

5.3. Inequalities for commutators

We now discuss a series of interesting results due to Bhatia and Kittaneh [3] closely 
related to Ando’s inequality.
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Theorem 1 of [3] can be restated in our language as the following: if f is an operator 
monotone function, then for all X ∈ Mn(C) and all 0 ≤ A, B ∈ Mn(C), we have the 
submajorization:

f(A)X −Xf(B) ≺≺ 1 + μ(0, X)2

2 f

(
2

1 + μ(n− 1, X)2 |AX −XB|
)
.

We note the following property of μ(∞, T ): if f : [0, ∞) → [0, ∞) is a decreasing 
function and T ≥ 0, then we have:

μ(0, f(T )) = f(μ(∞, T )). (5.1)

This follows from (4.2).

Remark 5.5. Strictly speaking the results of [3] were stated as an inequality for all uni-
tarily invariant norms on Mn(C). However, in the finite dimensional setting all unitarily 
invariant norms are fully symmetric, and therefore the result can equivalently be restated 
as a submajorization.

The following lemma is a variant of [3, Lemma 4], stated for uniform submajorization.

Lemma 5.6. Let (M, τ) be a semifinite von Neumann algebra, and let f be a function of 
the form (1.1). Let 0 ≤ A, B ∈ M, and let U ∈ M be unitary.

|f(A)U − Uf(A)| � f(|AU − UA|).

Proof. Let B = UAU∗. Then by Theorem 4.5, we have:

|f(A) − f(B)| � f(|A−B|) ⇒ f(A) − f(UAU∗) � f(|A− UAU∗|).

Since f(UAU∗) = Uf(A)U∗ and |A − UAU∗| = |AU − UA|, it follows that:

|f(A) − Uf(A)U∗| � f(|AU − UA|)

and therefore |f(A)U − Uf(A)| � f(|AU − UA|). �
Now we provide a variant of [3, Theorem 1]. The proof is essentially the same as that 

given in [3].

Corollary 5.7. Let (M, τ) be a semifinite von Neumann algebra. For all functions f of 
the form (1.1), and all 0 ≤ A, B ∈ M and X ∈ M, we have:

|f(A)X −Xf(B)| � 2
2 f

(
2

2 |AX −XB|
)
.
1 + μ(0, X) 1 + μ(∞, X)
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Proof. Initially consider the case X = X∗ and A = B, and define:

U = X + i

X − i
= 1 + 2i(X − i)−1.

That is, X = i 1+U
1−U = 2i(1 − U)−1 − i. Since U is unitary, Lemma 5.6 entails:

f(A)U − Uf(A) � f(|AU − UA|). (5.2)

We have:

f(A)X −Xf(A) = 2if(A)(1 − U)−1 − 2i(1 − U)−1f(A)

= 2i(1 − U)−1(Uf(A) − f(A)U)(1 − U)−1.

Therefore,

μ(f(A)X −Xf(A)) ≤ 2‖(1 − U)−1‖2μ(f(A)U − Uf(A)).

However, we can compute the norm of (1 − U)−1 as:

‖(1 − U)−1‖ =
∥∥∥∥X + i

2

∥∥∥∥ .
Since X is self-adjoint, we have:

∥∥∥∥X + i

2

∥∥∥∥2

= ‖X‖2 + 1
4 = μ(0, X)2 + 1

4 .

Therefore,

μ(f(A)X −Xf(A)) ≤ μ(0, X)2 + 1
2 μ(f(A)U − Uf(A)).

In particular,

f(A)X −Xf(A) � μ(0, X)2 + 1
2 (f(A)U − Uf(A)).

Combined with (5.2), we have:

f(A)X −Xf(A) � μ(0, X)2 + 1
2 f(|AU − UA|).

Using U = 1 + 2i(X − i)−1, the commutator AU − UA becomes
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AU − UA = 2iA(X − i)−1 − 2i(X − i)−1A

= 2i(X − i)−1(XA−AX)(X − i)−1.

Therefore,

μ(AU − UA) ≤ 2‖(X − i)−1‖2μ(AX −XA).

By the C∗-identity:

‖(X − i)−1‖ = ‖(X + i)−1(X − i)−1‖1/2 = ‖(X2 + 1)−1‖1/2.

However, note that (5.1) implies

‖(|X|2 + 1)−1‖ = 1
μ(∞, X)2 + 1 .

Therefore,

μ(AU − UA) ≤ 2
μ(∞, X)2 + 1μ(AX −XA).

Since f is monotone,

μ(f(|μ(AU − UA)|)) ≤ f(μ(AU − UA))

≤ f

(
2

1 + μ(∞, X)2μ(AX −XA)
)

= f

(
2

1 + μ(∞, X)2 |AX −XA|
)
.

This completes the proof in the case where X = X∗ and A = B.
The case A �= B may be deduced by substituting for A and X the elements

(
A 0
0 B

)
,

(
0 X
X∗ 0

)
∈ M2(C) ⊗M

respectively. �
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