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In the letter we define the notion of a quantum resistant ((¢, )-resistant) hash function which
consists of a combination of pre-image (one-way) resistance (¢-resistance) and collision

resistance (6-resistance) properties.

We present examples and discussion that supports the idea of quantum hashing. We
present an explicit quantum hash function which is ‘balanced’, one-way resistant and
collision resistant and demonstrate how to build a large family of quantum hash functions.
Balanced quantum hash functions need a high degree of entanglement between the qubits.
We use a phase transformation technique to express quantum hashing constructions, which
is an effective way of mapping hash states to coherent states in a superposition of time-bin
modes. The phase transformation technique is ready to be implemented with current optical

technology.
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1. Introduction

Quantum cryptography describes the use of quantum
mechanical effects (a) to break cryptographic systems and
(b) to perform cryptographic tasks. Quantum factoring
algorithms and quantum algorithms for finding discrete
logarithms are famous results that belong to the first direc-
tion. Quantum key distribution and constructing quantum
digital signature schemes belongs to the second direction of
quantum cryptography.

Gottesman and Chuang proposed in 2001 a quantum digi-
tal signature system [1] which is based on a quantum one-
way function. This is also an issue for other protocols (see
for example [2]). In [3, 4] we explicitly defined the notion of
quantum hashing as a generalisation of classical hashing and
presented examples of quantum hash functions. It appears
that the Gottesman—Chuang quantum signature schemes are
based on functions which are actually quantum hash func-
tions. Those functions have an ’unconditionally one-way’
property which is based on the Holevo theorem [5]. More
information on the role of quantum hashing for post-quan-
tum cryptography, the possible application of quantum hash-
ing for quantum signature protocols, and the technological
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expectations for the realisation of quantum signature schemes
are presented in [6].

Let us recall that in a classical setting a cryptographic hash
function & should have the following three properties [7]. (1)
Pre-image resistance: given A(x), it should be difficult to find
x; that is, these hash functions are one-way functions. (2)
Second pre-image resistance: given xj, it should be difficult
to find an x,, such that i(x) = h(x). (3) Collision resistance:
it should be difficult to find any distinct pair xj, x,, such that
h(x;) = h(x). Note that there are no one-way functions that
are known to be provably more difficult to invert than to com-
pute; the security of the cryptographic hash functions is ‘com-
putationally conditional’.

Informally speaking, a quantum hash function v [3, 4] is a
function that maps words (over an alphabet ¥) of length k to
quantum pure states of s-qubits (¢ : £* — (H2)®9); it also has
the following properties:

(i) The function ) must be one-way resistant. In the quantum
case this means that k > .

(ii) The function 1) must be collision resistant. In the quantum
case this means that for different word w, w’ states |)(w))
and |y (w’)) must be ‘almost orthogonal’ (6-orthogonal) [4].
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A quantum collision resistant property covers both second
pre-image resistance and collision resistance properties for
the quantum setting.

In papers [8, 9] we considered a quantum branching pro-
gram as a computational model which, we believe, is an ade-
quate quantum technological model for presenting quantum
communication protocols and quantum cryptographic signa-
ture schemes based on hashing.

In this letter we define the notion of a (e, §)-hash func-
tion where values € and 6 are numerical characteristics of the
above two properties: (i) one-way resistance and (ii) collision
resistance properties. The notion of the (e, 6)-hash function
is an explicit generalisation of our constructions [3, 4]. We
present examples and further discussion that supports the idea
of quantum hashing as outlined in our papers. We present a
quantum hash function which is ‘balanced’, one-way resistant
and collision resistant.

We present quantum ‘balanced’ hashing constructions based
on a phase transformation presentation [10] instead of an ampli-
tude transformation [4]. The phase transformation is required
to map quantum hash states into a sequence of coherent states.
Note that quantum signature protocols using coherent states can
be practically implemented today using technology that uses
only a sequence of coherent states, linear optics operations,
and measurements with single-photon threshold detectors.
See [7, 11, 12] for more information and citations.

2. Quantum (e, d)-resistant hash function

Let us recall that mathematically a qubit is described as a unit
vector in the two-dimensional Hilbert complex space . Let
s> 1. Let (H?)®* be the 2*-dimensional Hilbert space, describ-
ing the states of s qubits. For the integer j€ {0,...,2° — 1}
let 0 =0y...0; be a binary presentation of j. We use (as
usual) notations |j) and |o) to denote the quantum state
o1} |y = |on) @ -+ @ |y

We let g be a prime power and I, be a finite field of order
g. Let X be a set of words of length k over a finite alpha-
bet ¥. Let X be a finite set. In this letter we let X = 32X, or
X ={0,...,q — 1}—the support of F,. For K = |X] and the
integer s > 1 we define a (K; s) quantum function as a unitary
transformation (determined by an element w € X) of the initial

state [0g) € (H?)®* to a quantum state [(w)) € (HH)ES

Vi {[Yo)} x X = (HAOBS  |yh(w)) = Uw)|1bo)

where U(w) is a unitary matrix. We let [1);) = |0) in the letter
and use (for short) the following notation (instead of the equa-
tion defined above)

@2.1)

U X (HOBDS or giw i)

2.1. One-way resistant function

We present the following definition of a quantum e-resistant
one-way function. Let ‘information extracting mechanism” M
be a function M : (H2)®* — X measuring the state|1)) € (H?)®*
and decoding the results of the measurements to X.

Definition 2.1. Let X be a random variable distributed over
X {PriX=w]:weX]}. Let ¥: X= (H)®* be a quantum
function. Let Y be any random variable over X obtained by
some mechanism M measuring the encoding v of X and de-
coding the result of the measurement to X. Let ¢ > 0. We call a
quantum function 1 a one-way e-resistant function if for any
mechanism M, the probability Pr[Y = X] that M success-
fully decodes Y is bounded by e

PrlY=X]<e.

For cryptographic purposes it is natural to expect that the
random variable X is uniformly distributed; we apply this
expectation to the rest of the letter.

A quantum state of s > 1 qubits can ‘carry’ an infinite amount

of information. On the other hand, the fundamental result of
quantum informatics which is known as Holevo’s theorem [5]
states that a quantum measurement can only give s bits of infor-
mation about the state. We will use here the following particular
version [13] of Holevo’s theorem.
Property 2.1 [Holevo-Nayak]. Let X be a random vari-
able uniformly distributed over k bit binary words {0, 1}*. Let
P {0, 1} = (HH)®* be a (2%; 5) quantum function. Let Y be
a random variable over X obtained by some mechanism M
making some measurement of the encoding 1 of X and decod-
ing the result of the measurement to {0, 1}*. Then our prob-
ability of correct decoding is given by

2S
Pr[Y:X]sy.

2.2. Collision resistant function

The following definition is presented in [4].

Definition 2.2. Let 6>0. We call a quantum function
Y : X = (H?)®* a collision é-resistant function if for any pair
w, w’ of different elements,

(W) (")) < 6.

What one needs for the realisation of quantum digital
signature schemes is an equality testing procedure for quan-
tum hashes |(v)) and |¢)(w)) in order to compare classical
messages v and w; see for example [1]. The SWAP-test is the
recognised quantum test for the equality of two unknown
quantum states |¢) and |¢)'). This test, which can be imple-
mented efficiently, takes two states ) and |¢') as input, and
returns ‘same’ with probability %(1 + [{|¢")P) otherwise
returning ‘different’ (see [1, 3] for more information).

The next test for equality was first mentioned in [1]. We
call this test the REVERSE-test [3]. The REVERSE-test was
proposed to check if a quantum state |¢)) is a hash of an ele-
ment v. Essentially the test applies the procedure that inverts
the creation of a quantum hash, i.e. it ‘uncomputes’ the hash
to the initial state.

Formally, in the procedure of quantum hashing let
the element w be given by unitary transformation U(w),
applied to the initial state |¢,). Usually we let |¢,) =|0), i.e.
[y(w)) = U(w)|0). Then the REVERSE-test, given v and
|)(w)), applies U~'(v) to the state |¢)(w)) and measures the
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resulting state in respect to the initial state |0). It outputs v = w
if the measurement outcome is |0). Denote by Prieverse[v = W]
the probability that the REVERSE-test having a quantum state
|t)(w)) and an element v outputs the result that v = w.
Property 2.2. Let hash function ¢ : w — |1(w)) satisfy the
following condition. For any two different elements v,w € X
it is true that|(»(v)|1)(w))| < 6. Then

Prieverse[v = wl < 52-

Proof. Using the property that unitary transformation keeps
the scalar product we have that Prieverse[v = w] = [(0|U~1)(v)
YW = U W) P = [(0)|[yw)) <62 d

2.3. One-way resistance and collision resistance

The above two definitions and considerations lead to the fol-
lowing formalisation of the quantum cryptographic (one-way
and collision resistant) function.

Definition 2.3. LetK =|X|ands > 1. Lete>0and 6 > 0. We
callafunction : X = (H2)®*aquantum (e, §)-resistant (K; s)-
hash function if 1) is the one-way e-resistant and the collision
O-resistant function.

We present below the following two simple examples to
demonstrate the above definitions. The first example was pre-
sented in [14] in terms of quantum automata.

Example 2.1. Let us encode numbers v from {0, ..., 2
by a single qubit as follows:

P V'—>COS( )|0)—|— m( )|1)

Extracting information from [¢)) by measuring |¢) in
respect to the basis {|0), |1)} gives the following result. The

k_l}

function v is one-way %—resistant (see property 2.1) and col-
lision cos(7/2¢~)-resistant. In accordance with the properties

2.1 and 2.2 the function v has a good one-way property, but it
has a bad resistance property for a large k.

Example 2.2. We consider a number v € {0, ..., 2 — 1} to
be also a binary word v € {0, 1}%. Let v = 0 ... . We encode
v by k qubits: ¢ : v —|v) =|o1) -+ | k).

Extracting information from ) by measuring|t)) in respect
to the basis {|0...0),...,|1... 1)} gives the following result.
The function ) is one-way 1-resistant and collision O-resist-
ant. So, in contrast to example 2.1 the encoding ¢ from the
example 2.2 is collision free; that is, for different words v and
w quantum states |¢(v)) and |¢)(v)) are orthogonal and there-
fore reliably distinguished, though we lost the one-way prop-
erty ¥ which is easily invertible.

The following result [4] shows that the quantum collision
O-resistant (K; s) function needs at least loglog K — c(6)
qubits.

Property 2.3 [4]. Let s>1 and K=|X|>4. Let
¥ X = (H?)®S be a §-resistant (K; s) hash function. Then

s>loglogK — loglog(l + J2/(1 - 6)) — 1.

Properties 2.3 and 2.1 provide a basis for building a ‘bal-
anced’ one-way e-resistance and collision d-resistance prop-
erties. That is, roughly speaking, if we need to hash elements

w from a domain X of cardinality K and if one can build for
a 6 >0 a collision é-resistant (K; s) hash function 1 with
s =~ loglog K — c(6) qubits then the function f will be approxi-
mately one-way (log K/K)-resistant.

3. ‘Balanced’ quantum hash functions
constructions

We start by recalling some definitions, notations, and facts
from [15]. For a field I, the discrete Fourier transform of a set

B C [, is the function
[ 27rwb]
> exp

beB

defined for every w € ;. Let \(B) = max,,_ | f3(w)|/|B|. For
6> 0 we define B CF, to be 6-good if A(B) < 6. By Bs, we
denote 0-good subset of I,. For a field I, let B C F,. For every
b e B and w € F, define a function £, : F, - I, and a family
Hp by the rule

hy(w) = bw

Sew) =

(mod gq), Hg = {hy: beB}.

We denote by Hs, the above set of functions and call Hs,
6-good if B = B , is 6-good.

Theorem 3.1. Let 6 >0 and q be prime powers. Let
Hs , = {h, ..., hr} be 6-good. Then for s = log T a function

27h;
[p,, (W) = )

el

is a collision d-resistant (q; s) quantum hash function.
Proof. For the proof see the ArXiv version [16]. O

]I ). (3.1)

e In [4] we defined a set of discrete functions as a quantum
hash generator if it allows a quantum hash function to be
built.

In the context of theorem 3.1 the set Hs, is a collision
oO-resistant hash generator; it generates the quantum hash func-

tion ¥ Hygr

3.1. Optimality of the hashing scheme

The following facts were presented in [15]. Let 6 = 8(g) be
any function tending to zero as g grows to infinity. Then there
exists the 6-good set Bs , with |Bs 4| = (log q/8(q))°™. Several
optimal (in the sense of the above lower bound) explicit con-
structions of 6-good sets Bs, were presented by different
authors. For those constructions

1
o(g) = Tog )P and |Bs 4| = (logq)°".

(logg
The following statement summarises theorem 3.1 and the
above considerations.
Corollary 3.1. Let q be a prime power, T(q) = (log q)°%,
and s =log T(q). Let e(q) = T(g)/q and 6(q) = 1/T(g). Let
Hjs 4 be 8(q)-good set of functions with |Hs 4|= T(q). Then

() Yn,, is the ‘balanced’ quantum (e(q),6(q))-resistant
quantum (T(q); s)-hash function.
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(ii) The number s of qubits is good in the sense of the lower
bound of property 2.3 which gives the following lower
bound

s>loglogqg — loglog(l + \/2/5) — 1.

We refer to paper [3] for more information on the practical
construction of the set Hs 4 and for the numerical results from
the genetic algorithm for the Hs 4 construction.

3.2. Balanced quantum hash function families

In [4] we offered a design, which allows a large amount of dif-
ferent balanced quantum hash functions to be built. The con-
struction is based on the composition of a classical e-universal
hash family [17] and a given family H; , of a quantum hash
generator. A resulting family of functions is a new quantum
hash generator. In particular, we present a quantum hash gen-
erator Ggs based on the Reed—Solomon code.

Let g be a prime power, let k <n < g, let [, be a finite field.
A Reed-Solomon (RS) code is a linear code Cgs : (F)* — ()"
defined as follows. Each word w € (E,)k, W = WoW] ... Wp_118
associated with the polynomial P,(x) = Zf‘;ol wx'. Pick n
distinct elements (evaluation points) A = {ay, ...,a,} of F,.
A common special case is n = g — 1 with the set of evaluat-
ing points being A = F,\ {0}. To encode word w we evaluate
P, (x) at all n elements a € A Crs(w) = (B,(a1) ... By(a,)).

We define family Frs = { f, : a € A} based on the RS code
Crs as follows. For a € A define f, : (Fq)k — [F, by the rule
fuw) = Py(a). Let Hs y = {hy, ..., hr} be a 6-good set of func-
tions, satisfying corollary 3.1. Composition

Grs = Frs 0 Hs g = {8 1 § = hi(f,)), hj € Hs g, f,,, € Frs}

is a quantum hash generator. Let s = logn + log T. Ggrs gen-
erates the function ¥, : (F,)* = (H*)®* for a word w € (F,)*
by the rule

nr 2, (w)
or)) = e 3 exp[i%]

|
nT =

(3.2)
here |j) denotes a basis quantum state, where /j is treated as a
concatenation of the binary representations of / and j.
Property 3.1. Let g be a prime power and let
2 < k < n < g Thenforarbitrarys € (0, 1)thefunctiom) ¢ dsan(e, A)
resistant (¢; s) quantum hash function, where ¢ < (¢ log g)/g*,
A< L+ 5, and s < log(qlog g) + 2log 1/6 + 4.

Letc > 1.If we select n = ck, then A < 1/c¢ + 6 and in accord-
ance to property 2.3 there exist the constants c;(A) and ¢(A) such
that log(g log ¢) — c1(A) < s <log(glog g) + c2(A). Thus, RS
codes provide balanced parameters for resistance values € and A
and for a number s of qubits for the hash function ¥gs.

4. Presenting quantum hash states via coherent
states

Written in the form given in (3.1) and (3.2), the hash
states [y, (W) € (HO®S, welF, and |[¢rs(w)) € (HA)®Y,

4

we (E,)k,needahighdegreeofentanglementbetweenthesqubits.
A number of papers [7, 11, 12] consider the idea of presenting
quantum fingerprinting states via coherent states and devel-
oped signature constructions based on such coherent states.

Following ideas presented in [11, 12], we map the hash
state [y, (W)) € (HAO®s for w [, to a coherent state as fol-
lows. For short we let Hs , = H in the rest of the section. Let
T = 2°. First, we define hash mode (H-hash mode) ay ,, as

r [ 2mhj(w) ] b
J

1
ag.w Nii ]Z::lexp i
where b; € {by, ..., br} is the annihilation operator of the jth
optical mode. The hash state is a single-photon state in the
hash mode: [y(W)) = ay ,,|0).
Next, we define the coherent hash state as
|, Yy(w)) = Dy ,()|0), with the parameter «, where

Dy (o) = exp [aaLyw — ofay ,,]is the displacement operator.

According to [12] the state |1y (w)) is mapped to |a, Y (w)):

(67

JT

T
27h;
) — |a,wH(w)>—‘ng’|exp[i ”;(W)]

. 2hy
where |exp [1 i)

]%)j is a coherent state with an ampli-

tude —= in the jth mode.
Similarly one can map the hash state |[¢gs(W)) € (H>)®s
with w € (F,)* to a coherent state.

5. Conclusion

The definition 2.3 of a quantum (e, ¢)-resistant hash function
combines together the notions of quantum one-way e-resistant
and quantum collision d-resistant functions. Examples 2.1 and
2.2 demonstrate that in the quantum setting the one-way resis-
tance property and the collision resistance property can correlate:
the ‘more’ a quantum function is one-way resistant the ‘less’ it
is collision resistant and vice versa. Such correlation leads to the
notion of a balanced quantum hash function. In [4] we offered a
design, which allows a large amount of different balanced quan-
tum hash functions to be built. Note that a realisation of such
quantum functions—as the balanced quantum hash function
requires a high degree of entanglement between the qubits—
makes such a state difficult to create with current technology.

Applying the ‘phase transformation’ presentation of quan-
tum hash states [10] and using the mapping balanced quan-
tum hash states to coherent states we can use quantum optic
technology to develop quantum signature schemes based on
balanced quantum hash functions.
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