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1.  Introduction

Quantum cryptography describes the use of quantum 
mechanical effects (a) to break cryptographic systems and 
(b) to perform cryptographic tasks. Quantum factoring 
algorithms and quantum algorithms for finding discrete 
logarithms are famous results that belong to the first direc-
tion. Quantum key distribution and constructing quantum 
digital signature schemes belongs to the second direction of 
quantum cryptography.

Gottesman and Chuang proposed in 2001 a quantum digi-
tal signature system [1] which is based on a quantum one-
way function. This is also an issue for other protocols (see 
for example [2]). In [3, 4] we explicitly defined the notion of 
quantum hashing as a generalisation of classical hashing and 
presented examples of quantum hash functions. It appears 
that the Gottesman–Chuang quantum signature schemes are 
based on functions which are actually quantum hash func-
tions. Those functions have an ’unconditionally one-way’ 
property which is based on the Holevo theorem [5]. More 
information on the role of quantum hashing for post-quan-
tum cryptography, the possible application of quantum hash-
ing for quantum signature protocols, and the technological 

expectations for the realisation of quantum signature schemes 
are presented in [6].

Let us recall that in a classical setting a cryptographic hash 
function h should have the following three properties [7]. (1) 
Pre-image resistance: given h(x), it should be difficult to find 
x; that is, these hash functions are one-way functions. (2) 
Second pre-image resistance: given x1, it should be difficult 
to find an x2, such that ( ) ( )=h x h x1 2 . (3) Collision resistance: 
it should be difficult to find any distinct pair x1, x2, such that 
( ) ( )=h x h x1 2 . Note that there are no one-way functions that 

are known to be provably more difficult to invert than to com-
pute; the security of the cryptographic hash functions is ‘com-
putationally conditional’.

Informally speaking, a quantum hash function ψ [3, 4] is a 
function that maps words (over an alphabet Σ) of length k to 
quantum pure states of s-qubits ( → ( )ψ Σ ⊗H: k s2 ); it also has 
the following properties:

	 (i)	The function ψ must be one-way resistant. In the quantum 
case this means that k  >  s.

	(ii)	The function ψ must be collision resistant. In the quantum 
case this means that for different word ′w w,  states ( )⟩ψ| w  
and ( )⟩ψ| ′w  must be ‘almost orthogonal’ (δ-orthogonal) [4].
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A quantum collision resistant property covers both second 
pre-image resistance and collision resistance properties for 
the quantum setting.

In papers [8, 9] we considered a quantum branching pro-
gram as a computational model which, we believe, is an ade-
quate quantum technological model for presenting quantum 
communication protocols and quantum cryptographic signa-
ture schemes based on hashing.

In this letter we define the notion of a ( )δε , -hash func-
tion where values ε and δ are numerical characteristics of the 
above two properties: (i) one-way resistance and (ii) collision 
resistance properties. The notion of the ( )δε , -hash function 
is an explicit generalisation of our constructions [3, 4]. We 
present examples and further discussion that supports the idea 
of quantum hashing as outlined in our papers. We present a 
quantum hash function which is ‘balanced’, one-way resistant 
and collision resistant.

We present quantum ‘balanced’ hashing constructions based 
on a phase transformation presentation [10] instead of an ampli-
tude transformation [4]. The phase transformation is required 
to map quantum hash states into a sequence of coherent states. 
Note that quantum signature protocols using coherent states can 
be practically implemented today using technology that uses 
only a sequence of coherent states, linear optics operations, 
and measurements with single-photon threshold detectors.  
See [7, 11, 12] for more information and citations.

2.  Quantum ( )δε , -resistant hash function

Let us recall that mathematically a qubit is described as a unit 
vector in the two-dimensional Hilbert complex space H2. Let 

⩾s 1. Let ( )⊗H s2  be the 2s-dimensional Hilbert space, describ-
ing the states of s qubits. For the integer { }∈ … −j 0, , 2 1s  
let σ σ σ= … s1  be a binary presentation of j. We use (as 
usual) notations ⟩| j  and ⟩σ|  to denote the quantum state 

〉 〉 〉 〉� �σ σ σ σ| | = | ⊗ ⊗ |s s1 1 .
We let q be a prime power and Fq be a finite field of order 

q. Let Σk be a set of words of length k over a finite alpha-
bet Σ. Let X be a finite set. In this letter we let = ΣX k, or 

{ }= … −X q0, , 1 —the support of Fq. For = | |XK  and the 
integer ⩾s 1 we define a (K; s) quantum function as a unitary 
transformation (determined by an element ∈Xw ) of the initial 
state ⟩ ( )ψ| ∈ ⊗H s

0
2  to a quantum state ( )⟩ ( )ψ| ∈ ⊗Hw s2

{ ⟩} → ( ) ( )⟩ ( ) ⟩⊗ψ ψ ψ ψ| × | = |HX w U w: s
0

2
0� (2.1)

where U(w) is a unitary matrix. We let 〉 〉ψ| = |00  in the letter 
and use (for short) the following notation (instead of the equa-
tion defined above)

→ ( ) ( )⟩⊗ψ ψ ψ|�HX w w:  or  :s2

2.1.  One-way resistant function

We present the following definition of a quantum ε-resistant 
one-way function. Let ‘information extracting mechanism’ M 
be a function ( ) →⊗M H X: s2  measuring the state ⟩ ( )ψ| ∈ ⊗H s2  
and decoding the results of the measurements to X.

Definition 2.1.  Let X be a random variable distributed over 
X Pr X w w:{ [ ] }= ∈X . Let → ( )ψ ⊗HX: s2  be a quantum 
function. Let Y be any random variable over X obtained by 
some mechanism M measuring the encoding ψ of X and de-
coding the result of the measurement to X. Let >ε 0. We call a 
quantum function ψ a one-way ε-resistant function if for any 
mechanism M, the probability Pr [Y  =  X ] that M success-
fully decodes Y is bounded by ε

[ ] ⩽= εPr Y X .

For cryptographic purposes it is natural to expect that the 
random variable X is uniformly distributed; we apply this 
expectation to the rest of the letter.

A quantum state of ⩾s 1 qubits can ‘carry’ an infinite amount 
of information. On the other hand, the fundamental result of 
quantum informatics which is known as Holevo’s theorem [5] 
states that a quantum measurement can only give s bits of infor-
mation about the state. We will use here the following particular 
version [13] of Holevo’s theorem.
Property 2.1 [Holevo–Nayak].  Let X be a random vari-
able uniformly distributed over k bit binary words {0, 1}k. Let 

{ } → ( )ψ ⊗H: 0, 1 k s2  be a (2k; s) quantum function. Let Y be 
a random variable over X obtained by some mechanism M 
making some measurement of the encoding ψ of X and decod-
ing the result of the measurement to {0, 1}k. Then our prob-
ability of correct decoding is given by

[ ] ⩽=Pr Y X
2

2
.

s

k

2.2.  Collision resistant function

The following definition is presented in [4].
Definition 2.2.  Let δ> 0. We call a quantum function 

→ ( )ψ ⊗HX: s2  a collision δ-resistant function if for any pair 
′w w,  of different elements,

⟨ ( ) ( )⟩ ⩽ψ ψ δ| ′w w .

What one needs for the realisation of quantum digital 
signature schemes is an equality testing procedure for quan-
tum hashes ( )⟩ψ| v  and ( )⟩ψ| w  in order to compare classical 
messages v and w; see for example [1]. The SWAP-test is the 
recognised quantum test for the equality of two unknown 
quantum states ⟩ψ|  and ⟩ψ| ′ . This test, which can be imple-
mented efficiently, takes two states ⟩ψ|  and 〉ψ| ′  as input, and 
returns ‘same’ with probability ( 〈 〉 )ψ ψ+ | ′11

2
2  otherwise 

returning ‘different’ (see [1, 3] for more information).
The next test for equality was first mentioned in [1]. We 

call this test the REVERSE-test [3]. The REVERSE-test was 
proposed to check if a quantum state ⟩ψ|  is a hash of an ele-
ment v. Essentially the test applies the procedure that inverts 
the creation of a quantum hash, i.e. it ‘uncomputes’ the hash 
to the initial state.

Formally, in the procedure of quantum hashing let 
the element w be given by unitary transformation U(w), 
applied to the initial state ⟩φ| 0 . Usually we let ⟩ ⟩φ| =|00 , i.e. 

( )⟩ ( ) ⟩ψ| = |w U w 0 . Then the REVERSE-test, given v and 
( )⟩ψ| w , applies U−1(v) to the state ( )⟩ψ| w  and measures the 
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resulting state in respect to the initial state ⟩|0 . It outputs v  =  w 
if the measurement outcome is ⟩|0 . Denote by [ ]=Pr v wreverse  
the probability that the REVERSE-test having a quantum state 

( )⟩ψ| w  and an element v outputs the result that v  =  w.
Property 2.2.  Let hash function ( )⟩ψ ψ|�w w:  satisfy the 
following condition. For any two different elements ∈Xv w,  
it is true that ⟨ ( ) ( )⟩ ⩽ψ ψ δ|v w . Then

[ ] ⩽ δ=Pr v w .reverse
2

Proof.  Using the property that unitary transformation keeps 
the scalar product we have that Pr v w U v0reverse

1[ ] 〈 〉( )= = | | −  
( )〉 〈 ( )( )〉 〈 ( ) ( )〉 ⩽ψ ψ ψ δ| = | | = | | |−w U v w v w .2 1 2 2 2  � □

2.3.  One-way resistance and collision resistance

The above two definitions and considerations lead to the fol-
lowing formalisation of the quantum cryptographic (one-way 
and collision resistant) function.
Definition 2.3.  Let =| |XK  and ⩾s 1. Let >ε 0 and δ> 0. We 
call a function → ( )ψ ⊗HX: s2  a quantum ( )δε , -resistant (K; s)- 
hash function if ψ is the one-way ε-resistant and the collision 
δ-resistant function.

We present below the following two simple examples to 
demonstrate the above definitions. The first example was pre-
sented in [14] in terms of quantum automata.
Example 2.1.  Let us encode numbers v from { }… −0, , 2 1k  
by a single qubit as follows:

⟩ ⟩ψ
π π
| + |� ⎜ ⎟ ⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠v

v v
: cos

2

2
0 sin

2

2
1 .

k k

Extracting information from ⟩ψ|  by measuring ⟩ψ|  in 
respect to the basis { ⟩ ⟩}| |0 , 1  gives the following result. The 

function ψ is one-way 1

2k-resistant (see property 2.1) and col-

lision ( )π −cos /2k 1 -resistant. In accordance with the properties 

2.1 and 2.2 the function ψ has a good one-way property, but it 
has a bad resistance property for a large k.
Example 2.2.  We consider a number { }∈ … −v 0, , 2 1k  to 
be also a binary word { }∈v 0, 1 k. Let σ σ= …v k1 . We encode 
v by k qubits: ⟩ ⟩ ⟩ψ σ σ| =| |� �v v: k1 .

Extracting information from ⟩ψ|  by measuring ⟩ψ|  in respect 
to the basis { ⟩ ⟩}| … … | …0 0 , , 1 1  gives the following result. 
The function ψ is one-way 1-resistant and collision 0-resist-
ant. So, in contrast to example 2.1 the encoding ψ from the 
example 2.2 is collision free; that is, for different words v and 
w quantum states ( )⟩ψ| v  and ( )⟩ψ| v  are orthogonal and there-
fore reliably distinguished, though we lost the one-way prop-
erty ψ which is easily invertible.

The following result [4] shows that the quantum collision  
δ-resistant (K; s) function needs at least ( )δ−K clog log  
qubits.
Property 2.3 [4].  Let ⩾s 1 and K 4⩾= | |X . Let 

→ ( )ψ ⊗HX: s2  be a δ-resistant (K; s) hash function. Then

( )⩾ ( )δ− + − −s Klog log log log 1 2/ 1 1.

Properties 2.3 and 2.1 provide a basis for building a ‘bal-
anced’ one-way ε-resistance and collision δ-resistance prop-
erties. That is, roughly speaking, if we need to hash elements 

w from a domain X of cardinality K and if one can build for 
a δ> 0 a collision δ-resistant (K; s) hash function ψ with 

( )δ≈ −s K clog log  qubits then the function f will be approxi-
mately one-way ( )K Klog / -resistant.

3.  ‘Balanced’ quantum hash functions 
constructions

We start by recalling some definitions, notations, and facts 
from [15]. For a field Fq, the discrete Fourier transform of a set 
⊆ FB q is the function

( ) ∑
π

=
∈

⎡
⎣⎢

⎤
⎦⎥

f w
wb

q
exp i

2
B

b B

defined for every ∈ Fw q. Let ( ) ( )λ = | | | |≠B f w Bmax /w B0 . For 
δ> 0 we define ⊆ FB q to be δ-good if ( ) ⩽λ δB . By δB q,  we 
denote δ-good subset of Fq. For a field Fq, let ⊆ FB q. For every 
∈b B and ∈ Fw q, define a function →F Fh :b q q and a family 

HB by the rule

( ) ( ) { }= = ∈h w bw q H h b Bmod , : .b B b

We denote by δH q,  the above set of functions and call δH q,   
δ-good if = δB B q,  is δ-good.
Theorem 3.1.  Let δ> 0 and q be prime powers. Let 

{ }= …δH h h, ,q T, 1  be δ-good. Then for =s Tlog  a function

( )⟩
( )

⟩∑ψ
π

| = |
=

δ

⎡
⎣⎢

⎤
⎦⎥

w
T

h w

q
j

1
exp i

2
.H

j

T
j

1
q,� (3.1)

is a collision δ-resistant (q; s) quantum hash function.
Proof.  For the proof see the ArXiv version [16].

�
□

	 •	 In [4] we defined a set of discrete functions as a quantum 
hash generator if it allows a quantum hash function to be 
built.

In the context of theorem 3.1 the set δH q,  is a collision  
δ-resistant hash generator; it generates the quantum hash func-
tion ψ δH q, .

3.1.  Optimality of the hashing scheme

The following facts were presented in [15]. Let ( )δ δ= q  be 
any function tending to zero as q grows to infinity. Then there 
exists the δ-good set δB q,  with ( ( )) ( )δ| | =δB q qlog /q

O
,

1 . Several 
optimal (in the sense of the above lower bound) explicit con-
structions of δ-good sets δB q,  were presented by different 
authors. For those constructions

q
q

B q
1

log
and log .

O q
O

1 ,
1( )

( )
( )( )

( )δ = | | =δ

The following statement summarises theorem 3.1 and the 
above considerations.
Corollary 3.1.  Let q be a prime power, ( ) ( ) ( )=T q qlog O 1 , 
and ( )=s T qlog . Let ( ) ( )=ε q T q q/  and ( ) ( )δ =q T q1/ . Let 

δH q,  be ( )δ q -good set of functions with ( )| |=δH T qq, . Then

	 (i)	ψ δH q,  is the ‘balanced’ quantum ( ( ) ( ))δε q q, -resistant 
quantum (T(q); s)-hash function.

Laser Phys. Lett. 00 (2015) 000000
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	(ii)	The number s of qubits is good in the sense of the lower 
bound of property 2.3 which gives the following lower 
bound

( )⩾ δ− + −s qlog log log log 1 2/ 1.

We refer to paper [3] for more information on the practical 
construction of the set δH q,  and for the numerical results from 
the genetic algorithm for the δH q,  construction.

3.2.  Balanced quantum hash function families

In [4] we offered a design, which allows a large amount of dif-
ferent balanced quantum hash functions to be built. The con-
struction is based on the composition of a classical ε-universal 
hash family [17] and a given family δH q,  of a quantum hash 
generator. A resulting family of functions is a new quantum 
hash generator. In particular, we present a quantum hash gen-
erator GRS based on the Reed–Solomon code.

Let q be a prime power, let ⩽ ⩽k n q, let Fq be a finite field. 
A Reed–Solomon (RS) code is a linear code ( ) → ( )F FC : q

k
q

n
RS  

defined as follows. Each word ( )∈ Fw q
k, = … −w w w wk0 1 1 is 

associated with the polynomial ( ) = ∑ =
−P x w xw i

k
i

i
0
1 . Pick n 

distinct elements (evaluation points) { }= …A a a, , n1  of Fq. 
A common special case is n  =  q  −  1 with the set of evaluat-
ing points being { }= FA \ 0q . To encode word w we evaluate 
Pw(x) at all n elements ∈a A ( ) ( ( ) ( ))= …C w P a P aw w nRS 1 .

We define family { }= ∈F f a A:aRS  based on the RS code 
CRS as follows. For ∈a A define ( ) →F Ff :a q

k
q by the rule 

( ) ( )=f w P aa w . Let { }= …δH h h, ,q T, 1  be a δ-good set of func-
tions, satisfying corollary 3.1. Composition

{ ( ) }= = = ∈ ∈δ δ�G F H g g h f h H f F: , ,q jl j a j q aRS RS , , RSl l

is a quantum hash generator. Let = +s n Tlog log . GRS gen-
erates the function ( ) → ( )ψ ⊗HF:G q

k s2
RS  for a word ( )∈ Fw q

k 
by the rule

( )⟩
( )

⟩∑ψ
π

| = |
= =

⎡
⎣
⎢

⎤
⎦
⎥w

nT

g w

q
lj

1
exp i

2
G

l j

n T
jl

1, 1

,

RS� (3.2)

here ⟩|lj  denotes a basis quantum state, where lj is treated as a 
concatenation of the binary representations of l and j.
Property 3.1.  Let q be a prime power and let 

⩽ ⩽<k n q2 . Then for arbitrary ( )δ∈ 0, 1  the function ψGRS is an ( )∆ε , - 
resistant (qk; s) quantum hash function, where ⩽ ( )ε q q qlog / k, 

⩽ δ∆ +−k

n

1 , and ⩽ ( ) δ+ +s q qlog log 2 log 1/ 4.

Let c  >  1. If we select n  =  ck, then δ∆< +c1/  and in accord-
ance to property 2.3 there exist the constants ( )∆c1  and ( )∆c2  such 
that ( ) ( ) ⩽ ⩽ ( ) ( )− ∆ + ∆q q c s q q clog log log log1 2 . Thus, RS 
codes provide balanced parameters for resistance values ε and ∆ 
and for a number s of qubits for the hash function ψRS.

4.  Presenting quantum hash states via coherent 
states

Written in the form given in (3.1) and (3.2), the hash 
states ( )⟩ ( )ψ| ∈ ⊗

δ HwH
s2

q, , ∈ Fw q, and ( )⟩ ( )ψ| ∈ ⊗Hw s
RS

2 , 

( )∈ Fw q
k, need a high degree of entanglement between the s qubits.  

A number of papers [7, 11, 12] consider the idea of presenting 
quantum fingerprinting states via coherent states and devel-
oped signature constructions based on such coherent states.

Following ideas presented in [11, 12], we map the hash 
state ( )⟩ ( )ψ| ∈ ⊗

δ HwH
s2

q,  for ∈ Fw q to a coherent state as fol-
lows. For short we let =δH Hq,  in the rest of the section. Let 
T  =  2s. First, we define hash mode (H-hash mode) aH, w as

( )
∑

π
=

=

⎡
⎣⎢

⎤
⎦⎥

a
T

h w

q
b

1
exp i

2
,H w

j

T
j

j,
1

where { }∈ …b b b, ,j T1  is the annihilation operator of the jth 
optical mode. The hash state is a single-photon state in the 
hash mode: ( )⟩ ⟩ψ| = |w a 0H H w, .

Next, we define the coherent hash state as 
( )⟩ ( ) ⟩α ψ α| = |w D, 0H H w, , with the parameter α, where 

( ) [ ]†α α α= −D a aexp *H w H w H w, , ,  is the displacement operator. 
According to [12] the state ( )⟩ψ| wH  is mapped to ( )⟩α ψ| w, H :

( )⟩ → ( )⟩
( )

⟩ψ α ψ
π α

| | = |
=

⨂
⎡
⎣⎢

⎤
⎦⎥

w w
h w

q T
, exp i

2
,H H

j

T

j
j

1

where ⟩( )| π α⎡
⎣

⎤
⎦exp i

h w

q T j
2 j  is a coherent state with an ampli-

tude α
T

 in the jth mode.
Similarly one can map the hash state w s

RS
2( )〉 ( )ψ| ∈ ⊗H  

with ( )∈ Fw q
k to a coherent state.

5.  Conclusion

The definition 2.3 of a quantum ( )δε , -resistant hash function 
combines together the notions of quantum one-way ε-resistant 
and quantum collision δ-resistant functions. Examples 2.1 and 
2.2 demonstrate that in the quantum setting the one-way resis-
tance property and the collision resistance property can correlate: 
the ‘more’ a quantum function is one-way resistant the ‘less’ it 
is collision resistant and vice versa. Such correlation leads to the 
notion of a balanced quantum hash function. In [4] we offered a 
design, which allows a large amount of different balanced quan-
tum hash functions to be built. Note that a realisation of such 
quantum functions—as the balanced quantum hash function 
requires a high degree of entanglement between the qubits—
makes such a state difficult to create with current technology.

Applying the ‘phase transformation’ presentation of quan-
tum hash states [10] and using the mapping balanced quan-
tum hash states to coherent states we can use quantum optic 
technology to develop quantum signature schemes based on 
balanced quantum hash functions.
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