

1

2 **Analytical and HYDRUS2D Modeling for Buried Peat-filled Trapezoidal Ditches as**
3 **Subsurface Capillarity-Driven Irrigating Units: the Kornev-Vedernikov 2-D Seepage**
4 **Revisited**

5

6 *Anvar Kacimov¹, Yurii Obnosov^{2,5}, Tatyana Nikonenkova³, Andrey Smagin^{4,5}*

7 ¹Department of Soils, Water and Agricultural Engineering, Sultan Qaboos University, Oman

8 ²Institute of Mathematics and Mechanics, Kazan Federal University, Kazan, Russia

9 Emails: anvar@squ.edu.om; akacimov@gmail.com

10 ORCID ID: orcid.org/0000-0003-2543-3219

11 ²Institute of Mathematics and Mechanics, Kazan Federal University, Kazan, Russia

12 Emails: yobnosov@kpfu.ru; yurii.obnosov@gmail.com

13 ORCID ID: orcid.org/0000-0001-9220-7989

14 ³[Institute of Ecology and Geography](#), Kazan Federal University, Kazan, Russia

15 Email: nikonentv@gmail.com

16 ORCID ID 0000-0002-8871-216

17 ⁴Department of Soil Physics and Melioration, Faculty of Soil Sciences, Lomonosov Moscow State
18 University, Moscow, 119991 Russia

19 ⁵Institute of Forest Science, Russian Academy of Sciences, Uspenskoe, 143030 Russia

20 Email: avsmag1965@gmail.com

21 ORCID ID: orcid.org/0000-0002-3483-3372

22 Short title for running head: Capillarity-Driven Seepage

23 Submitted to Modeling Earth Systems and Environment (Springer),

24 <https://link.springer.com/journal/40808>

25

26 Address for correspondence:

27 Prof. Kacimov A.R.,

28 Department of Soils, Water and Agricultural Engineering

29 Sultan Qaboos University Al-Khod 123, PO Box 34 Sultanate of Oman

30 Tel (968) 24141-3668 Fax (968) 24413-418

31 Emails: anvar@squ.edu.om

32 akacimov@gmail.com

33 Omani page:

34 <https://www.squ.edu.om/agr/Departments/Soils-Water-and-Agricultural-Engineering/Faculties/Prof-Anvar-Kacimov>

35

36 **Abstract**

37 Two mathematical models, an analytical and numerical, describe 2D Darcian seepage of in
 38 subsurface irrigation from a ditch, with pore moisture sucked up and laterally from a non-standard
 39 “emitter”, which is engineered as a channel of a small depth with a lined (impervious bottom). For
 40 steady flow in a homogeneous, saturated, rigid, isotropic porous medium a boundary value
 41 problems to Laplace’s equation for characteristic functions of the piezometric head and stream
 42 function is solved by the method of hodograph, i.e. conformal mapping of two polygons in complex
 43 plains onto each other via a reference plane. For a transient saturated-unsaturated seepage from th
 44 ditch or a buried permeable pipe in this ditch, initial boundary value problems (IBVPs) to the
 45 Richards equation are numerically solved using HYDRUS2D package. Both models give the vector
 46 fields of specific discharge (Darcian velocity) and scalar fields of pressure head, volumetric
 47 moisture content, isotachs, as well as flow nets. Applications of the models are to design and
 48 construction of urban and agricultural soils (“constructozems”), as porous composites, with the aim
 49 at optimizing the soil moisture consumption by the plants by minimizing evaporation and deep
 50 percolation. For this purpose a lens (or double-periodic cluster of lenses) made of peat or other
 51 relatively coarse material is buried under the ground surface. This lens(es) is surrounded by a fine-
 52 textured indigenous soil. The pore water motion to/from the lens, acting intermittently as a draining
 53 entity (collecting pore water from the ambient soil) and a subsurface irrigator (emitting water to
 54 this soil), in such an engineered smartly-heterogenized vadose zone becomes essentially 2-D. Our
 55 models substantiate the field experiments by Kornev (1935) who backfilled ditches and generated
 56 capillarity-maintained “wet bulbs” in the root zone. We also complete Vedernikov’s (1940)
 57 analytical solution for steady 2-D seepage from a trapezoidal ditch having a zero-depth water level.
 58 **Keywords:** subsurface capillarity-driven irrigation, complex potential and hodograph domains,
 59 conformal mappings, HYDRUS2D modeling.

60

61 **1. Introduction**

62 Mathematical modeling of steady-state Darcian seepage of an incompressible fluid (pore water
 63 in our case) in homogeneous, saturated, rigid isotropic porous media involves solving boundary
 64 value problems (BVP) to Laplace’s equation, with respect to the piezometric head (see e.g. Strack,
 65 1989). If the medium is anisotropic, a more general elliptic partial differential equation (PDE)
 66 models flows in soils (see e.g. Polubarnova-Kochina, 1962, hereafter abbreviated as PK-62). In
 67 these models, the capillarity of soil is ignored that is correct for flow in dams’ foundations and

68 confined aquifers. For steady flows through earth dams and in unconfined aquifers a phreatic
 69 surface (free boundary) emerges, with a capillary fringe and the vadose zone above it that requires
 70 solving BVPs to parabolic PDEs. In transient saturated-unsaturated flows, initial boundary value
 71 problems (IBVPs) have to be solved, with the Richards equation describing variations of the
 72 pressure head, volumetric moisture content, fluxes and other flow parameters (see e.g. Radcliffe and
 73 Šimůnek 2018, Namaghi et al., 2015). In applications to geotechnical engineering (e.g. in design of
 74 earth dams), analytical and numerical methods (AaNM), as well as sandbox physical modeling
 75 experiments are used (see e.g. Cedergren, 1989, Fawzy et al., 2024). In this paper, we apply AaNM,
 76 *viz.* the theory of holomorphic functions (PK-62, Strack, 1989) and finite element method, realized
 77 in the software HYDRUS2D (Šimůnek et al. 2016) to model seepage flows from buried subsurface
 78 emitters placed under row crops.

79

80 In subsurface irrigation, most common technique of water supply is through perforated plastic
 81 pipes placed at the depth of several cm-tens of cm, in the root zone of plants, with mathematical
 82 models for seepage from such type of sources (see e.g. Lamm et al., 2007). Kornev (1921, 1935,
 83 hereafter abbreviated as K-35) and Vedernikov (1939, 1940, abbreviated as V-40), correspondingly,
 84 worked on irrigation projects, which involved furrows (surface irrigation) and uncommon
 85 subsurface emitters. The work in K-35 and V-40 was not completed in the sense of both
 86 engineering realization and modeling. We engage the modern modeling tools of AaNM, *viz.*
 87 computer algebra (Wolfram's, 1991, *Mathematica*) and HYDRUS2D, to advance the Kornev-
 88 Vedernikov experimental-analytical legacy and make it user-friendly for irrigation engineers.

89 K-35 developed two original systems of subsurface irrigation (SI, see e.g. Goyal, 2014 for a
 90 recent review of this method of microirrigation) of crops' root zones in semi-arid and arid regions
 91 of France and the USSR. Moisture was sucked from buried horizontal, systematic "line 2D
 92 sources" (the terminology of Strack, 1989) by the ambient natural dry soil and transpirative uptake
 93 by crops' roots. The source of "sub-root zone" water was:

94 A) Unglazed clay-made pipes, where water was under negative pressure (tension).
 95 Mathematical models of seepage from these systematic buried emitters were developed by PK-62
 96 and Strack (1989).

97 B) Ditches, backfilled to a certain depth by a coarse ("imported") porous medium, which was
 98 capped at the top by the "natural" fine-textured soil.

99 In this paper, we focus on K-35 system B). An elementary cell of a periodic system, a rectangle
 100 $M_1M_2M_3M_4$, is depicted in Fig.1 (a vertical cross-section perpendicular to the ditch axis).

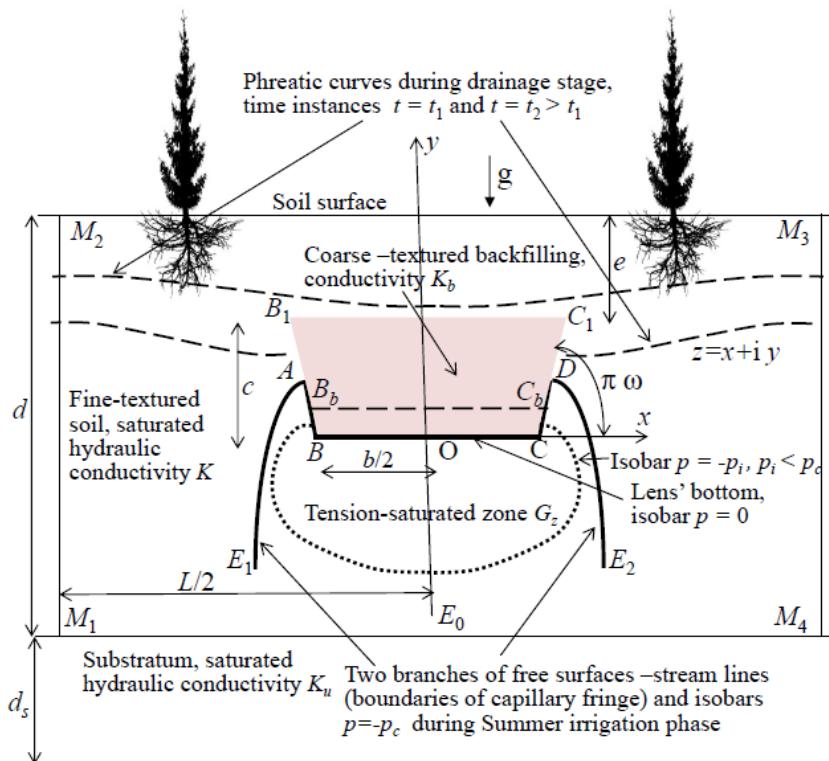


Fig.1 Vertical cross-section of seepage domain for K-35 trapezoidal ditch.

A lens BB_1C_1C in Fig.1 is filled with peat, fascines, sand or other highly permeable medium. The lens is trapezoidal with the angle of bank slope $\omega\pi$, $0 < \omega < 1/2$, the bottom width b and height h . The depth of burial, e , is counted from a horizontal soil surface M_2M_3 to B_1C_1 (the “cap” of the backfilling). Such engineered soil composites are successfully used as “constructozems” (Akhmetova et al., 2022) in arid irrigated agriculture, desert afforestation, and urban landscaping. The technology increases the topsoil water retention and protects it from secondary salinization. Peat or synthetic gel-forming polymer super-absorbents can be also used as backfilling.

High total water capacity (up to 90–95 vol. % for peat and up to 60–70 vol. % for 0.1–0.3 mass% textures of gels with soil) and “field capacity” (40–60% at pressure heads of –100 kPa) guaranteeable retention of irrigation water when introducing 1–2 parallel lenses of these artificial materials to the topsoil (see e.g. Arkhangelskaya, 2024). The pore water accumulation of layered soil composites is enhanced by the effect of capillary barriers, the physical phenomenon widely used in geotechnical engineering (see e.g. Radclif and Šimůnek, 2010, Feng et al., 2025). Field tests of layered constructozems confirmed a reduction (by 40–70%) in unproductive water losses to deep percolation and evaporation. The productive water consumption by plants increased up to 70–90%, the total volume of irrigation water dropped by 20–50%. The dry aboveground

120 (photosynthetic) biomass increased up to 1.7–2.5 times, and the belowground root phytomass
 121 increased up to 1.5–2 times in tested fresh crop yields (see e.g. Deeb et al., 2024). Separation of the
 122 topsoils from subsoils by a capillary barrier made of coarse-textured materials or water repellents
 123 reliably protects the root zone from secondary salinization by interrupting the capillary rise of
 124 water-soluble salts from saline groundwater and deep highly salinized soil strata. During
 125 unexpected catastrophic downpours, as, for example, in the United Arab Emirates and Oman in
 126 April 2024, the coarse-textured subsoil screen acts as a drainage system.

127 So far, design of constructozems used numerical modeling (HYDRUS-1D package) of 1-D
 128 water and solutes transport and root water consumption in the "soil-plant-material" system.
 129 However, the 1D models are applicable only in the case of flat landscapes with plane-parallel lenses
 130 of soil modifiers. In the case of a relief with slopes, as well as for local soil constructions (tree and
 131 shrub pits, holes for vegetable crops with drip irrigation, etc.), a more complex flow of water with
 132 dissolved substances takes place that requires 2,3-D modeling.

133 In our model, we study an elementary cell of a periodic SI system (Fig.1). The horizontal and
 134 vertical sizes of this cell (the flow domain for a saturated-unsaturated seepage) are L and d ,
 135 respectively. A system of Cartesian coordinates (x,y) has its origin at point O , the middle of the
 136 ditch bed BC . The complex physical coordinate is $z = x + iy$. The natural soil profile may
 137 have a substratum of thickness d_s .

138 After the Spring snowmelt (in crop fields with hydromorphic soils of Russia, see e.g. Kovalev,
 139 2019), rare torrential Summer rains and/or periodic sprinkling from above in the hyperarid climate
 140 of Arabia, the lens works as a drain. The progressive and rapid drawdown of the phreatic curve is
 141 illustrated in Fig.1 for two time instances: t_1 and t_2 . During hot and dry seasons (few weeks in
 142 Russia and permanently in the Gulf countries), the lens acts as a moisture emitter for the "natural"
 143 soil. Therefore, the more pore water is stored in the lens and the more is uptaken by the root zone in
 144 the finer soil, the better. In other words, the infiltrated water, which was stored during the drainage
 145 phase, is "absorbed" (K-35 terminology) by a desiccated soil during the irrigation phase. Also, if
 146 the infiltrated pore water storage in the coarser component of the composite is insufficient, then a
 147 systemic supply to the lens from a tank placed on the ground surface is set up (see K-35 for details).

148 We consider the case of the triad of hydraulic conductivities of the composite (lens-soil-
 149 substratum in Fig.1), which obey the double inequality $K_b > K > K_u$. We model seepage during a
 150 dry Summer season in K-35 such that the water level above BOC in Fig.1 is maintained low,
 151 aiming at reducing deep percolation and increasing water use efficiency. Irrigation of the root-
 152 containing zone is controlled by seepage from the horizontal segment BOC (a zero-pressure isobar).

153 Flow is determined by gravity, Darcian resistance of the composite porous matrix and capillarity of
 154 the fine-textured soil (Lamm et al., 2007).

155 The analytical and numerical models give the following:

- 156 • the seepage flow rate per unit length of the lens Q [m^2/s in SI],
- 157 • isobars $p = \text{const}$ (p is the pressure head [m]),
- 158 • the position of the curves AE_1 and DE_2 (along these streamlines $p = -p_c = \text{const}$), which
 159 cap the capillary fringe (CF),
- 160 • the flow net,
- 161 • isotachs $|\vec{V}| = \text{const}$, where \vec{V} is the vector of Darcian velocity ($[\text{m/s}]$),
- 162 • isohumes,
- 163 • isochrones $t = \text{const}$ for marked pore water particles,
- 164 • time-variation of flow characteristics at selected observational points,

165 among others.

166

167 2. Methods

168 2.1 Analytical Model

169 In this subsection, we follow V-40 and engage the hodograph method (see PK-62, Samal and
 170 Mishra, 2017, 2022, Strack, 1989, Bakker and Post, 2022) to analyze the steady-state, tension-
 171 saturated, 2-D seepage in a homogeneous flow domain, G_z , laterally sandwiched between the two
 172 branches of free surfaces (CF boundaries). Muromtsev (1991) reported on intricate subzoning of
 173 CFs but in our model we neglect such hairsplitting. Thus, CF in Fig.1 is capped from above by an
 174 equipotential horizontal segment of the ditch bed and two slanted segments of the ditch slopes
 175 (streamlines). In the analytical model, we assume that the size L (Fig.1) is large enough such that
 176 the free surfaces AE_1 and BE_2 generated by the K-35 neighbouring irrigation ditches do not intersect
 177 with each other.

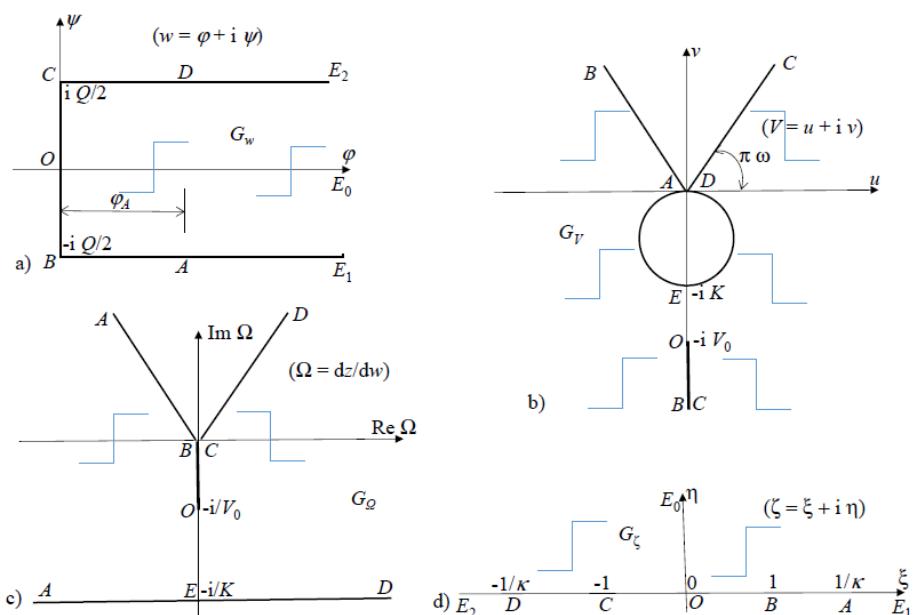
178 The Darcy law states $\vec{V}(x, y) = -K \nabla h$ where $h(x, y) = p(x, y)$ y is the total (piezometric) head
 179 and p is the pressure head. The velocity potential, $\varphi = -K h$, a stream function is ψ and a
 180 complex potential is $w = \varphi + i\psi$. A complex Darcian velocity is $V = u - iv$, where $u(x, y)$ and $v(x, y)$
 181 are the horizontal and vertical components of \vec{V} .

182 During hot and dry Summers, water is channeled (see K-35) perpendicular to the plane of Fig.1.
 183 Positive values of p in the ditch and in the adjacent “natural” soil is maintained by a finite water

184 depth flowing to the ditch from a positive-pressure surface tank. A certain slope in the direction
 185 perpendicular to the plane of Fig.1 (e.g. the topographic slope in Manning's formula) may be
 186 needed if the ditch is long. In our analytical model, a zero-depth ponding of the interface between a
 187 coarse filling of the trapezium and the subjacent fine-textured soil makes the whole domain G_z
 188 tension saturated. We recall that seepage from a non-buried Riesenkampf's zero-depth channel
 189 (PK-62, Section 6, Chapter 5) was also purely tension-saturated. Point O in Fig.1 is fiducial such
 190 that along BOC $\varphi = p = 0$, while, owing to symmetry, $\psi = 0$ along OE_0 . According to the
 191 Vedernikov-Bouwer model, the branches E_1A and E_2D of the CF boundary are streamlines along
 192 which $\psi = \mp Q/2$, $p = -p_c$, where p_c [m] is the height of capillary rise of the soil (see PK-62, and
 193 Vedernikov, 1939 for tabulated values of this constant for various soils. For sandy soils and peat,
 194 for example, PK-62, her Table 5, p.19 reports $p_c=100-150$ cm for sandy soils and 120-150 cm for
 195 peat).

196 Strictly speaking, for a composite dyad of fine and coarse soils in Fig.1, there is a mild vertical
 197 capillary rise in the backfilling. A horizontal segment B_bC_b (Fig.1, dashed line) "caps" a tension-
 198 saturated zone (CF) inside the peat filling of the trapezium. In our analytical model, we ignore
 199 seepage in this coarse backfilling.

200 The complex potential domain G_w is a half-strip shown in Fig.2a (zigzagged blue lines here and
 201 in other Figures indicate the interior of the domains in complex plains). We assume that the
 202 substratum M_1M_4 is deep enough such that points E_1 , E_2 and E_0 collapse into a single point E , the
 203 infinity on the Riemann sphere. Therefore, in the vernacular of Strack (1989) a generalized dipole is
 204 made by a source of a finite length b , placed at $y = 0$, and a sink at infinity ($y \rightarrow -\infty$).



206 Fig.2 Complex potential domain (a), hodograph domain (b), inverted hodograph domain (c),
 207 reference half-plane (d).

208

209 The finite-length segments BA and CD on the banks of the trapezium are streamlines along
 210 which the pressure head drops from 0 to $-p_c$. A dotted curve in Fig.1 exemplifies an “intermediate”
 211 isobar sandwiched between BOC and free boundaries. A dashed curve in Fig.1 is a streamline
 212 which starts at the horizontal bottom of the ditch (sufficiently close to point C). Along this flow
 213 path a water particle moves, first, vertically down (gravity prevails), after that it moves up
 214 (capillarity prevails) and, finally, descends vertically down again (gravity again takes over
 215 capillarity).

216 The potential φ_A at points A and D is a part of solution. The whole G_z is tension-saturated, i.e.
 217 $-p_c < p(x,y) < 0$ there.

218 The hodograph domain, G_V , corresponding to G_z , is depicted in Fig.2b. This domain is a
 219 circular pentagon bounded by two rays DC and AB , a circle AED of a radius K , centered at the point
 220 $V = -i K/2$ and a semi-infinite vertical cut BOC with its tip at the point $V = -i V_0$, where V_0 (a part
 221 of solution) is the magnitude of Darcian velocity at point O . Velocity at points A and D is zero and
 222 at points B and C is infinite. Our G_V is a special case of one in V-40 (see Fig.147 in PK-62). We
 223 mirror G_V with respect to the axis $v = 0$ in the V -plane. That gives a circular pentagon in the plane of
 224 a holomorphic function $dw/dz = u - iv$. After that, we use the method of inversion (see PK-62,
 225 Section 5, Ch. 5) and get the polygon G_Ω shown in Fig.2c, where $\Omega = dz/dw$ is another holomorphic
 226 function.

227 PK-62 (pp.160-162) reported the V-40 solution to a more general problem for a finite depth
 228 of water inside the trapezium. V-40 obtained his solution and presented results in an inverse
 229 manner, *viz.* he specified two conformal mapping (so-called “accessory”) parameters. Next, he
 230 evaluated the geometrical sizes of the channel and the depth of water in it. After 1950, Vedernikov
 231 could not complete the analysis which he started in V-40. We use a direct method, i.e. specify the
 232 physical (including geometrical) parameters and find an unknown conformal mapping (accessory)
 233 parameter. As compared with the epoch of V-40 and even Aravin and Numerov (1953), PK-62, we
 234 have computer algebra (Wolfram’s, 1991, *Mathematica*, Python, MatLab, etc.) arsenals to solve a
 235 nonlinear equation with respect to this parameter. We also operate HYDRUS2D for modeling
 236 geometries and soil compositions more general than one in V-40.

237 Thus, we apply the Schwarz-Christoffel formula to map G_w and G_Ω onto the upper half-
 238 plane G_ζ of the reference plane $\zeta = \xi + i\eta$ (Fig.2d) with the correspondence of points
 239 $O \rightarrow 0, B \rightarrow 1, C \rightarrow -1, A \rightarrow 1/\kappa, D \rightarrow -1/\kappa, E \rightarrow \infty$, where $0 < \kappa < 1$ is a mapping
 240 parameter. The corresponding mapping functions are:

241
$$w = -i \frac{Q}{\pi} \arcsin \zeta, \quad (1)$$

242
$$\Omega(\zeta) = \frac{dz}{dw} = iR \int_0^\zeta \tau (1-\tau^2)^{\omega-1/2} (1-\kappa^2 \tau^2)^{-\omega-1} d\tau - \frac{i}{V_0} =$$

 243
$$= \frac{iR/2}{\omega(1-\kappa^2)} \left(f(0) - (1-\zeta^2)^{\omega+1/2} (1-\kappa^2 \zeta^2)^{-\omega} f(\zeta) \right) - \frac{i}{V_0}, \quad (2)$$

244 where

245
$$f(\zeta) = F\left(\frac{1}{2}, 1; 1-\omega; \frac{1-\kappa^2 \zeta^2}{1-\kappa^2}\right) =$$

$$-2\omega \frac{1-\kappa^2}{1-\kappa^2 \zeta^2} F\left(1, 1+\omega; \frac{3}{2}; \frac{1-\kappa^2}{1-\kappa^2 \zeta^2}\right) - i \frac{\sqrt{\pi}}{k^{1+2\omega}} \sqrt{\frac{1-\kappa^2}{1-\zeta^2}} \frac{\Gamma(1-\omega)}{\Gamma(1/2-\omega)} \left(\frac{1-\kappa^2 \zeta^2}{1-\zeta^2}\right)^\omega \quad (3)$$

246 and

247
$$f(0) = -\sqrt{1-k^2} \left(2\omega \sqrt{1-k^2} F\left(1, 1+\omega; 3/2; 1-\kappa^2\right) + i \frac{\sqrt{\pi} \Gamma(1-\omega)}{k^{1+2\omega} \Gamma(1/2-\omega)} \right) \quad (4)$$

248 Here F stands for the hypergeometric function ${}_2F_1$ and Γ for the gamma function (Abramowitz and
 249 Stegun, 1968). All multivalued complex functions above are fixed in the upper half-plane to be
 250 positive at $0 < \xi < 1$ (see Henrici, 1993 for more details).

251 The positive constant R , found from the condition $\Omega(1) = 0$, is

252
$$R = \frac{(1+2\omega)}{V_0 F(1, 1+\omega; 3/2+\omega; \kappa^2)}. \quad (5)$$

253 At point E seepage is unidirectional, with a unit hydraulic gradient, i.e. we consider the regime
 254 without “backwater” (the vernacular of PK-62); a more general condition at infinity, with
 255 “backwater” (zero velocity at infinity) can be analyzed as in PK-62. From eqns. (2), (3) and the no
 256 “backwater” condition $\Omega(i\infty) = -i/K$ we get

257
$$\int_0^\infty \tau \frac{(1-\tau^2)^{\omega-1/2}}{(1-\kappa^2 \tau^2)^{\omega+1}} d\tau = - \int_0^\infty \tau \frac{(1+\tau^2)^{\omega-1/2}}{(1+\kappa^2 \tau^2)^{\omega+1}} d\tau = \frac{F(1, 1+\omega; 3/2+\omega; \kappa^2)}{1+2\omega} - \frac{\sqrt{\pi} \Gamma(1/2+\omega)}{2\kappa^{2\omega+1} \sqrt{1-\kappa^2} \Gamma(1+\omega)}. \quad (6)$$

258

Then, from eqns. (2), (4) follows

259

$$\left(\frac{1}{K} - \frac{1}{V_0} \right) F(1, 1+\omega; 3/2 + \omega; \kappa^2) = \frac{1+2\omega}{V_0} \left(\frac{\sqrt{\pi} \Gamma(1/2 + \omega)}{2\kappa^{2\omega+1} \sqrt{1-\kappa^2} \Gamma(1+\omega)} - \frac{F(1, 1+\omega; 3/2 + \omega; \kappa^2)}{1+2\omega} \right) \quad (7)$$

260 wherefrom

261

$$V_0 = K \frac{(1+2\omega)\sqrt{\pi}\Gamma(1/2 + \omega)}{2\kappa^{2\omega+1} \sqrt{1-\kappa^2} \Gamma(1+\omega) F(1, 1+\omega; 3/2 + \omega; \kappa^2)}. \quad (8)$$

262 Eqn.(1) at point A gives

263

$$\varphi_A = \operatorname{Re} w(1/\kappa) = \frac{Q}{\pi} \operatorname{Im} \left(\arcsin \frac{1}{\kappa} \right) = \frac{Q}{\pi} \operatorname{arccosh} \frac{1}{\kappa}. \quad (9)$$

264 By the help of eqns. (1), (2) we find

265

$$z(\zeta) = \frac{Q}{\pi} \left(\left(\frac{R}{2\omega(1-\kappa^2)} f(0) - \frac{1}{V_0} \right) \arcsin \zeta - \frac{R}{2\omega(1-\kappa^2)} \int_0^\zeta \left(\frac{1-\tau^2}{1-\kappa^2 \tau^2} \right)^\omega f(\tau) d\tau \right), \quad (10)$$

266 where R and V_0 are expressed in eqns. (5) and (8) respectively.

267

From eqn.(10), according to Fig.1a, follows $z(-1) = b/2$. Using the last condition, equation

268 (3) and the resulting representation for $f(0)$, it can be shown that

269

$$Q = bV_0 / \left(1 + \frac{1+2\omega}{F(1, 1+\omega; 3/2 + \omega; \kappa^2)} \left[f_1(0) - \frac{2}{\pi} \int_{-1}^0 \frac{(1-\tau^2)^\omega}{(1-\kappa^2 \tau^2)^{\omega+1}} f_1(\tau) d\tau \right] \right), \quad (11)$$

270 where

271

$$f_1(\tau) = F\left(1, 1+\omega; \frac{3}{2}; \frac{1-\kappa^2}{1-\kappa^2 \tau^2}\right). \quad (12)$$

272

The equality $\varphi_A / K + y_A = p_c$ (the CF condition in the Vedernikov-Bouwer model, PK-62,

273

which is – up to notations – equivalent to the Green-Ampt 1-D infiltration model), where φ_A is

274

defined by eqn.(9), and $y_A = \operatorname{Im} z(1/\kappa) = \operatorname{Im} z(-1/\kappa)$, results in a nonlinear equation with respect

275

to κ :

276

$$\left(\frac{1}{K} - \frac{1}{V_0} - R F(1, 1+\omega; 3/2; 1-\kappa^2) \right) \operatorname{arccosh} \frac{1}{\kappa} + \frac{R \operatorname{Sin} \pi \omega}{2\omega(1-\kappa^2)} \int_1^{1/\kappa} \left(\frac{\tau^2 - 1}{1 - \kappa^2 \tau^2} \right)^\omega f(\tau) d\tau = \frac{\pi p_c}{Q}. \quad (13)$$

277

In eqn. (13), the values of R , V_0 , and Q are determined via eqns. (5), (8) and (11),

278

respectively. We used the routine **FindRoot** of Wolfram's (1991) *Mathematica* for solving

279

eqn.(13).

280 **2.2 HYDRUS model**

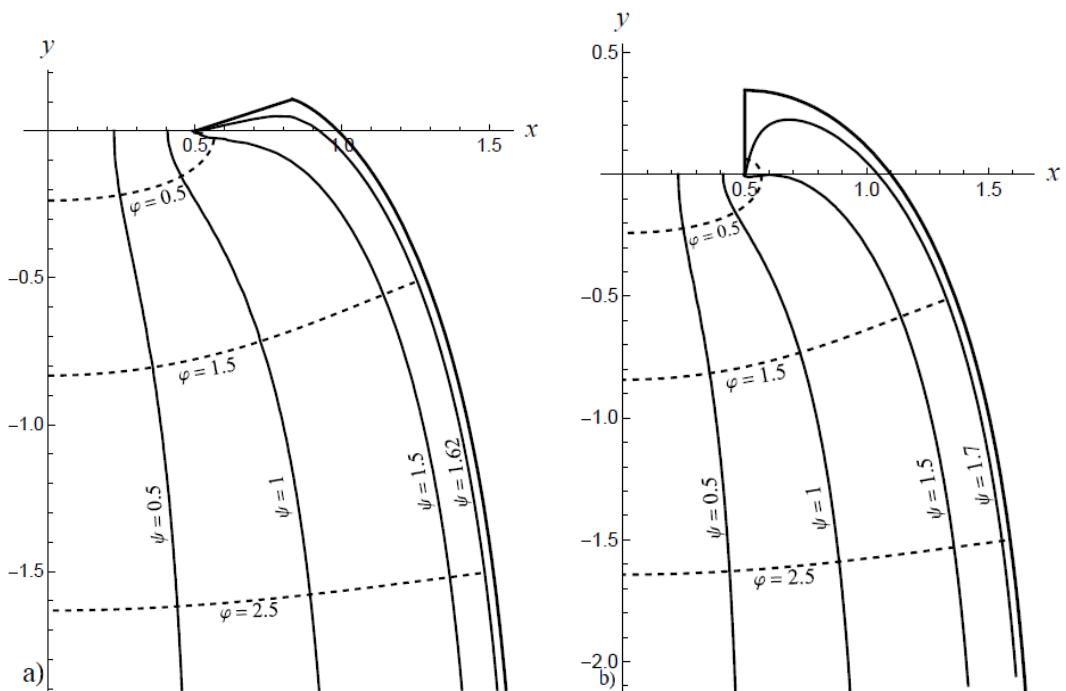
281 Due to the symmetry of the flow domain (Fig.1) we consider its right half only. The Richards PDE
 282 is solved in HYDRUS package (see e.g. Radcliffe and Šimůnek, 2018 for more details) with respect
 283 to $p(x,z,t)$ by the method of finite elements. In subsection 2.1, seepage was steady state and,
 284 therefore, the Vedernikov-Bouwer model reduces Richards' PDE to the Laplace PDE, for which
 285 BVPs are solved by various methods of the theory of holomorphic functions (Aravin and Numerov,
 286 1953, PK-62, Strack, 1989). In subsection 2.2, we deal with transient seepage (time, t , is an
 287 independent physical variable), in which the analogues of analytical free surfaces are asymptotically
 288 attained by moving boundaries (Crank, 1984). Consequently, initial boundary value problems
 289 (IBVP) are solved by HYDRUS2D (no analytical solutions are available for these IBVPs).

290 **3. Results**

291 In the analytical model we introduce dimensionless quantities: $(z^*, w^*, V^*, R^*, Q^*, b^*) = (z/p_c, w/(K p_c), V/K, R^* K, Q/(K p_c), b/p_c)$ and – for the sake of brevity – drop the superscript “*”. We
 292 used the routines **Re** and **Im** of *Mathematica* and in Fig.3 plotted the flow nets (see Cedergren,
 293 1989 for the details related to these nets) for $b = 1$, $\omega = 0.1$ and 0.5 , panels (a) and (b), respectively.
 294 The lower panel (c) in Fig.3 zooms one streamline ($\psi = 1.7$, $\omega = 0.5$), which starts at the bottom of
 295 the ditch, close to its corner (point C in Fig.1). This streamline has a local minimum and global
 296 maximum, i.e. has a non-trivial shape, if compared with “standard” streamlines for seepage from
 297 soil channels without capillarity (PK-62). The intricacy of the form of the streamlines, which start
 298 on OC and are adjacent to point C , geometrically demonstrate the interaction of three physical

300 seepage-controlling factors, *viz.* gravity, Darcian resistance of the porous skeleton and capillarity.

301



302

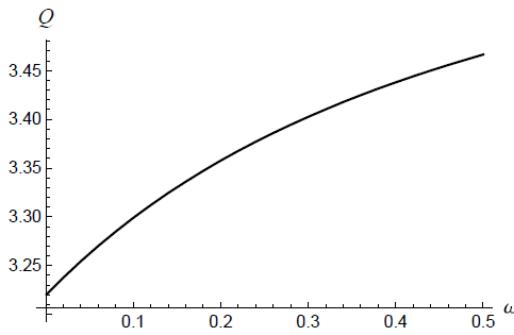
303 Fig.3. Flow net for $b = 1$, $\omega = 0.1$ (a) and $\omega = 0.5$ (b), zoomed non-trivial streamline with a local
304 minimum near the ditch bed (c).

305 In Table 1 the accessory parameter κ , seepage flow rate Q and minimal velocity magnitude
306 along the trapezium bed V_0 for several ditch slopes are computed for $b = 1$.

ω	0.001	0.1	0.2	0.3	0.4	0.5
κ	0.66079	0.722784	0.767840	0.801263	0.826804	0.846834
$Q(\omega, \kappa)$	3.22055	3.298939	3.357662	3.402614	3.437979	3.466441
$V_0(\omega, \kappa)$	2.17890	2.168398	2.158476	2.149812	2.142405	2.136100

307

308 Table 1. Accessory parameter κ , flow rate Q and minimal velocity magnitude V_0 (along the
309 trapezium bed) for several ditch slopes ($b = 1$).



310

311 Fig.4. Seepage flow rate as a function of ω the V-40 trapezium slope ($b = 1$).312 In Fig.4, the function $Q(\omega)$ is plotted for $b = 1$. Riesenkampf's solution (see PK-62, pp. 313 162-166) for $\omega = 0$ yields (in modern notations) the following nonlinear equation with respect to Q :

314
$$\frac{2Q \exp[-\pi/Q]}{\pi^2} \Phi[\exp[-2\pi/Q], 2, 1/2] = b, \quad (14)$$

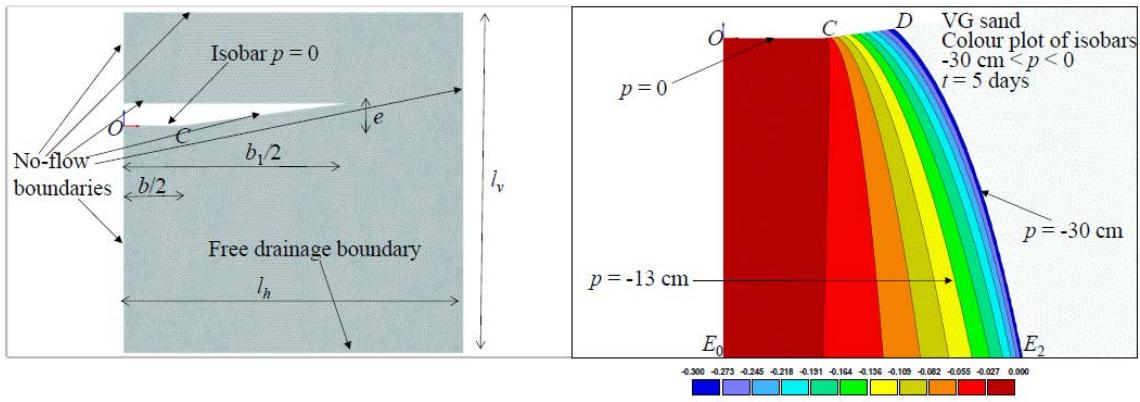
315 where $\Phi[z, s, a]$ is the Lerch transcendent (**LerchiPhi** in a *Mathematica* routine, Wolfram, 1991).316 For the case of $b = 1$ in Figs.3-4 and Table 1, eqn. (14), solved by the **FindRoot** routine of 317 *Mathematica*, gives $Q = 3.21962$ that is less than only 0.05% less than the corresponding value for 318 $\omega = 0.001$. Overall, in the whole range of practical values of the trapezium slope, its impact on Q is 319 minor, i.e. the Riesenkampf solution- in comport with the comparison theorems (Goldstein and 320 Entov, 1994) - gives not only a lower bound of Q for any trapezium of a given b , but even a very 321 good approximation for any ω . Most wadis in the Gulf (see e.g. Sen, 2008) are ephemeral or 322 intermittent streams, *viz.* they do not flow or flow with a small water depth (except of course, the 323 rare and short flashflood events) and, therefore, the slope of their banks is not important if the value 324 of Q is of concern.325 For the sake of brevity, we drop the results of analytical computations for other values of b .326 In the numerical model, which works with dimensional quantities, we selected several 327 Kornev's subsurface irrigation designs. In HYDRUS, computer programs with models of specific 328 flow patterns are called "Projects" and the vertical coordinate is z .

329

330 Project 1. Without any loss of generality we select the V-40 trapezium, having $\pi\omega = \arctan(2/15)$. 331 Other geometrical parameters of the elementary cell are: $l_v = l_h = 300$ cm, $b = 50$ cm, $e = 20$ cm, b_1 332 = 200 cm (Fig.5, left panel). Therefore, physically the distance between the axes of Kornev's 333 ditches (periodic-systematic SI of row crops, like maize in K-35) is 600 cm. The soil is the Van 334 Genuchent (VG) sand (see the HYDRUS soil catalogue), for which the VG hydraulic parameters

335 are $K = 712.8$ cm/day, $\alpha = 0.145$ 1/cm and $n = 2.68$. The FE mesh discretization parameters were:
 336 14212 nodes, 27906 triangular 2D and 528 1D elements.

337 Our IVP, which geometrically and in the asymptotic limit $t \rightarrow \infty$ is close to one in
 338 subsection 2.1. We used the initial condition, which is default in HYDRUS, *viz.* $p(x,z,0) = -100$ cm
 339 that corresponds to an almost irreducible volumetric moisture content $\theta_r = 0.045$ of the VG sand.
 340 The origin of HYDRUS Cartesian coordinates (xOz) is now at the midpoint of the trapezium bed
 341 such that the soil surface is at the horizon $z = 100$ cm and the free drainage horizon is at $z = -200$



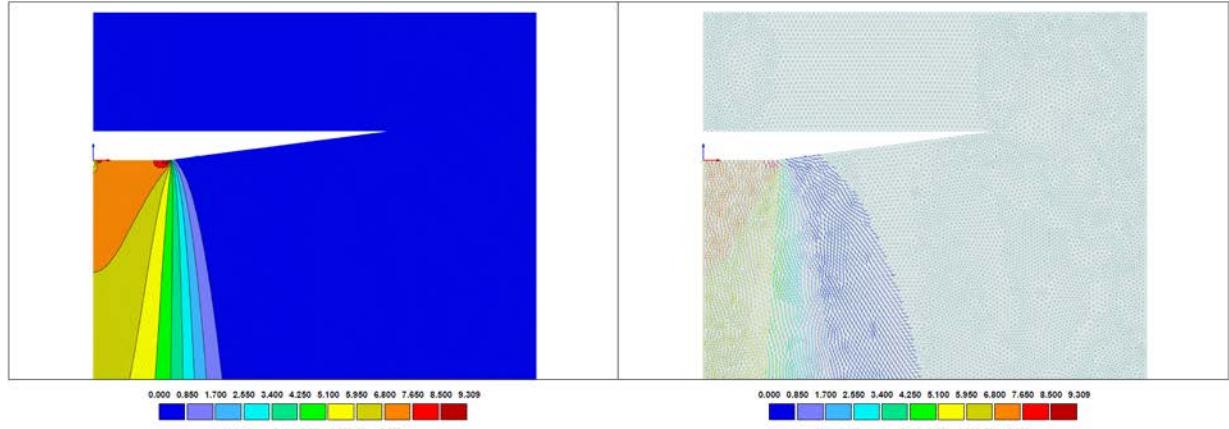
342 cm.

343 Fig.5. HYDRUS2D geometry, FE nodes, boundary conditions (left panel); isobars in Project
 344 1 (right panel).

345 The boundary conditions for the HYDRUS octagon in Fig.5 are: no flow everywhere, except the
 346 outlet free drainage horizon ($z = -200$ cm) and the zero-pressure inlet OC (a segment of a width
 347 $b/2=50$ cm), *i.e.* we have a simple flow tube. Physically, the condition at OC means that the water
 348 level in the buried ditch is zero but water is continuously injected into the ditch from an external
 349 tank, as K-35 did in his irrigated crop fields. Therefore, the V-40 and K-35 problems are
 350 mathematically matched in terms of boundary conditions. We also note that evaporation from the
 351 soil surface and transpiration by the plants' roots are ignored.

352 The total HYDRUS simulation time is 5 days, although steady state seepage is attained in half a
 353 day. The right panel in Fig.5 demonstrates the palette of isobars, plotted in the range $-30 \text{ cm} < p < 0$
 354 for $t = 5$ days. The isobars $p = 0$, -13 cm and -30 cm are arrowed. The analytical and numerical
 355 solutions can be matched by comparing the free boundary $p = -p_c$ in subsection 2.1 with one of the
 356 isobars in Fig.5. Obviously, none of the HYDRUS isobars is a streamline, contrary to the analytical
 357 solution where the CF boundary (free surface) is. In Fig.6, we plotted the HYDRUS isotachs (left
 358 panel) and the vector-field of Darcian velocity. Fig.6 demonstrates that high velocities are
 359 concentrated near the trapezium corner C , where the hydraulic gradients are almost 2 that exceeds

360 the PK-62 limit of 1 at which porous media are stable in the sense of suffusion and other types of
 361 seepage-induced instability. Therefore, the bed of our HYDRUS trapezium is a line of potential
 362 lessivage for the subjacent ambient soil.

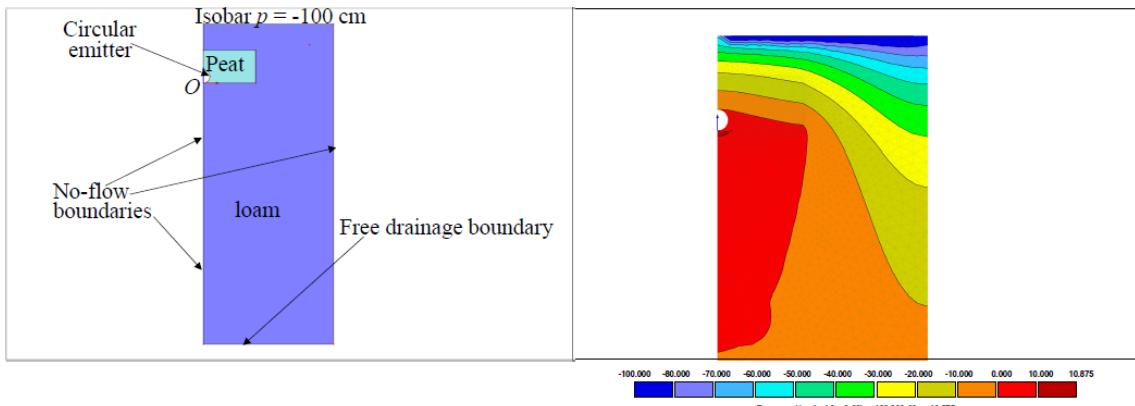


363
 364 Fig.6. Isotachs and Darcian velocities in HYDRUS Project 1.

365
 366 The HYDRUS dimensional, almost steady-state flow rate for the seepage domain in Fig.5 is Q_H
 367 $= 3.93 * 10^4 \text{ cm}^2/\text{day}$.

368 For the sake of brevity, we skip over the sensitivity analysis, in which we truncated-
 369 expanded (from the right and beneath) the flow domain in Fig.5, refined the FE mesh, changed the
 370 initial conditions for p , and varied the VG constants (α, n, k) .

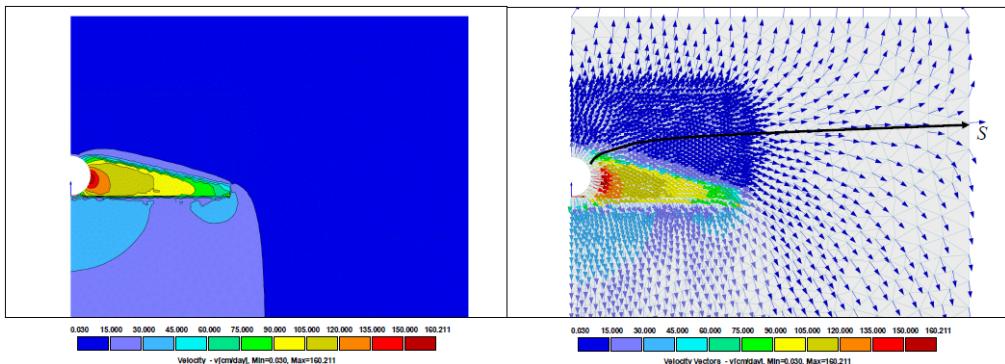
371
 372 Project 2. Now we consider a saturated-unsaturated seepage from a circular emitter having the
 373 diameter of 10 cm. K-35 placed such positive-pressure pipes at the bottom of ditches. The width
 374 and height of our rectangular ditch are 40 cm and 25 cm, correspondingly (Fig.7, left panel). The
 375 soil surface is 45 cm above the ditch bed. The HYDRUS flow rectangle is 100 cm wide and 245 cm
 376 tall. The ambient soil is the VG loam (see the HYDRUS soil catalogue), which is characterized by
 377 $(\alpha, n, K) = (0.036 \text{ 1/cm}, 1.56, 25 \text{ cm/day})$. The VG parameters for our peat are: $K_u = 480 \text{ cm/day}$, α
 378 $= 0.0381/\text{day}$, $n = 1.216$, $\theta_s = 0.916$, $\theta_r = 0.02$. These parameters are consistent with ones reported
 379 by Boelter et al. (1977) and were experimentally obtained in our lab for the backfilling of the
 380 lenses, earlier modeled in HYDRUS-1D only. The lenses were designed and constructed as
 381 experimental constructozems for blue spruce seedlings (*Picea pungens* Engelm.) in the
 382 Serebryanoborsky forest, The Forestry Institute, the Russian Academy of Sciences, Moscow.



383
384 Fig.7. HYDRUS Project 2 flow domain with a perforated pipe emitting water into a peat-filled
385 rectangular ditch embedded into an ambient loam (left panel) and isobars at $t = 60$ days (right
386 panel).

387 The topsoil boundary condition is now $p = -100$ cm, i.e. a pretty high dryness of the loam is
388 imposed on the soil surface. The mesh is coarser than in Project 1 but is refined near the emitting
389 semi-circle, along which the boundary condition is a hydrostatic pressure distribution with $p=0$ at
390 the apex of the semi-circle and $p = 10$ cm at its lowest point. Thus, the flow domain is not a simple
391 flow tube as in Project 1 above.

392 Isobars for $t = 60$ days (almost steady-state seepage) are shown in Fig.7, right panel.



393
394 Fig.8. HYDRUS isolachs (left panel) and velocity vectors at $t = 60$ days (right panel) in the
395 vicinity of K-35 ditch.

396 At $t = 60$ days, a snapshot of isolachs and of the vector field of the Darcian velocity is
397 shown in Fig.8. A separatrix (only schematically sketched) is depicted as an arrowed streamline
398 with a stagnation point S at the right boundary of the HYDRUS flow domain. This streamline is a
399 watershed boundary between what seeps from the emitter to the atmosphere and what descends to
400 deep percolation.

401 We also modeled a three-component composite soil with a VG clay substratum (for the sake
402 of brevity we do not add the corresponding HYDRUS-generated Figures). Specifically, we

403 modified the flow domain in Fig.7 (left panel) by adding a VG clay layer having $d_s = 10$ cm (see
 404 Fig.1) and the pentad of VG hydraulic parameters $K_u = 0.1$ cm/day, $\alpha = 0.008$ 1/day, $n = 1.09$,
 405 $\theta_s = 0.38$, $\theta_r = 0.068$. The flow topology drastically changed, as compared with what is depicted in
 406 Figs. 7-8. Specifically, the abscissa of the stagnation point S decreased from $z_s = 15$ cm (Fig.8 left
 407 panel) to $z_s = -69$ cm. The “inverted” (the terminology of Sopocleous, 2002) water table $p = 0$
 408 which “hangs” under the K-35 in Fig.7 (right panel) is transformed into a “normal” (almost
 409 horizontal) water table. In other words, the deep clay layer (Fig.1) makes soil under emitter fully
 410 saturated with an almost linear (in z) increase of positive p within the loam stratum. The deep
 411 drainage flow rate decreases to 8.67 cm²/day as compared with 1500 cm²/day in Project 2. All
 412 these results warn: the soil heterogeneity (even trivial layering) and seepage conditions at infinity,
 413 deep under the soil surface are very important (see e.g. Philip et al., 1989) if simulation times are
 414 long (“seasonal” - “annual” – “decadal” – “centennial” – “millennial”), rather than short (a single
 415 “irrigation” or “rainfall” event).

416

417 **4. Conclusions**

418 Steady, 2D seepage from a trapezoidal channel into a capillary soil, in which the tension-
 419 saturated zone and CF are modeled by the Vedernikov-Bouwer approximation of the soil hydraulic
 420 conductivity. The modern tools of computer algebra made possible solution of a nonlinear equation
 421 with respect to the accessory parameter in a conformal mapping, reconstruction of the flow net,
 422 determination of the seepage flow rate as a function of the slope of the V-40 trapezium. Our
 423 analytical solution for an arbitrary slope of the trapezium matches well the Riesenkampf one for
 424 zero-depth channels.

425 In HYDRUS2D modeling, which is versatile in demonstrating how the unsaturated soils
 426 uptake moisture from a buried, subirrigation source and spread it up and laterally, against gravity.
 427 Our analytical and HYDRUS simulations showed how the seepage flow rate from a non-trivial
 428 subsurface source (a backfilled ditch with an impermeable bed as a barrier to deep percolation)
 429 depends on the width of the ditch, slope of the bank and hydraulic properties of the soil or soil
 430 composite through which moisture is spread from the buried K-35 emitter. We also plotted the
 431 palettes and contours of isobars, isohumes, isotachs, and flow nets which demonstrate the
 432 efficiency of the K-35 subsurface irrigation method. Of special interest are the “free boundaries”
 433 in the analytical model, viz. the water table or the “cap” of CF. They are plotted and compared with
 434 ones compute by HYDRUS.

435

436 **On behalf of all authors, the corresponding author states that there is no conflict of**
437 **interest.**

438 **Acknowledgements**

439 This work was funded by SQU, grants IG/AGR/SWAE/22/02, IG/VC/WRC/21/01,
440 DR/RG/17 and by Russian Scientific Foundation, interdisciplinary project no. 23-64-10002.
441 Valuable comments by an anonymous referee are appreciated.

442

443 **References**

444

445 Abramowitz M, and Stegun IA (1968) Handbook of Mathematical Functions With Formulas,
446 Graphs, and Mathematical Tables (Vol. 55). US Government printing office, Washington

447

448 Aravin VI, Numerov SN (1953) Theory of Fluid Flow in Undeformable Porous Media.
449 Gostekhizdat, Moscow (in Russian). English Translation: Israel Program for Scientific
450 Translation, Jerusalem, 1965.

451

452 Arkhangelskaya TA, Telyatnikova EV, Umarova AB (2024) Thermal diffusivity of soil-peat
453 mixtures: nonlinear dependence on peat Content. Moscow University Soil Science Bulletin, 79(4),
454 478-484.

455

456 Bakhmatova KA, Matynyan NN, Sheshukova AA (2022) Anthropogenic soils of urban parks: A
457 review. Eurasian Soil Science, 55(1), 64-80.

458

459 Bakker M, Post V (2022) Analytical Groundwater Modeling: Theory and Applications Using
460 Python. CRC, Boca Raton.

461

462 Boelter DH, Verry ES (1977) Peatland and water in the northern lake states (No. 31). USDA
463 Forest Service, North Central Forest Experiment Station.

464

465 Cedergren HR (1989) Seepage, Drainage and Flow Nets. Wiley, New York.

466

467 Crank J (1984) Free and Moving Boundary Problems. Clarendon Press, Oxford.

468

469 Deeb M, Smagin AV, Pauleit S, Fouché-Grobla O, Podwojewski P, Groffman PM (2024) The
470 urgency of building soils for Middle Eastern and North African countries: Economic,
471 environmental, and health solutions. *Science of the Total Environment*, 917, 170529.

472 <https://doi.org/10.1016/j.scitotenv.2024.170529>

473

474 Fawzy MA, Hassan NA, Saad NY, El-Molla DA (2024). Experimental and numerical modeling of
475 diaphragm grouting in earth dams considering construction defects. *Modeling Earth Systems and*
476 *Environment*, 10(2), 2159-2185.

477

478 Feng S, Zheng Y, Liu H, Li G, Qian X (2025) Numerical study of rainfall percolation through a
479 novel capillary barrier cover with a zipper-shape interface between fine-and coarse-grained soils.
480 *Waste Management*, 191, 220-229.

481

482 Goldstein R, Entov V (1994) Qualitative Methods in Continuum Mechanics. Chapman and Hall,
483 New York.

484

485 Goyal MR (ed.) (2014) Sustainable Practices in Surface and Subsurface Micro Irrigation. Apple
486 Academic Press, New York.

487

488 Henrici P (1993) Applied and Computational Complex Analysis. Volume 3: Discrete Fourier
489 Analysis, Cauchy Integrals, Construction of Conformal Maps, Univalent Functions. Wiley. New
490 York.

491

492 Kornev VG (1921) Method and device for subsurface irrigation using pipes. USSR patent N 139.

493 Корнев В.Г., 1921. Способ и устройство для подпочвенного орошения с применением труб.

494 Патент СССР, N 139.

495

496 Kornev VG (1935) Subsoil Irrigation (absorption irrigation method). Moscow, Selkhozgiz (in
497 Russian). Корнев В.Г., 1935. Подпочвенное орошение (метод абсорбционного орошения).
498 Москва, Сельхозгиз.

499

500 Kovalev IV (2019) Transformation of semi-hydromorphic soils drained with plastic and pottery
501 drainage. In the collection “*Soil reclamation for sustainable development of agriculture*”, 30-38.
502 Materials of the International Scientific and Practical Conference, Kirov, Vyatka State Agricultural
503 Academy (in Russian). Ковалев, И.В., 2019. Трансформация полугидроморфных почв,
504 осущеных пластмассовым и гончароным дренажом. В сборнике «Мелиорация почв для
505 устойчивого развития сельского хозяйства», 30-38. Материалы Международной научно-
506 практической конференции, Киров, Вятская Государственная Сельскохозяйственная
507 Академия.

508

509 Lamm FR, Ayars JE, Nakayama FS (eds.) (2023). Microirrigation for Crop Production: Design,
510 Operation, and Management. Elsevier, Amsterdam.

511

512 Muromtsev NA (1991) Soil Hydrophysics for the Purpose of Reclamation. Leningrad,
513 Gidrometeoizdat (in Russian). Муромцев НА (1991). Мелиоративная гидрофизика почв.
514 Ленинград, Гидрометеоиздат.

515

516 Namaghi H, Li S, Jiang L (2015). Numerical simulation of water flow in a large waste rock pile,
517 Haizhou coal mine, China. Modeling Earth Systems and Environment, 1, 1-10.

518

519 Philip JR, Knight JH., Waechter RT (1989) Unsaturated seepage and subterranean holes:
520 Conspectus, and exclusion problem for circular cylindrical cavities. Water Resources Research,
521 25(1),16-28.

522

523 Polubarinova-Kochina PYa (1962) Theory of Ground Water Movement. Princeton University
524 Press, Princeton. Second edition of the book in Russian is published in 1977, Nauka, Moscow.

525

526 Radcliffe DE, Šimůnek J (2018) Soil Physics With HYDRUS: Modeling and Applications. CRC,
527 Boca Raton.

528

529 Robinson NI (2023) New analysis and numerical values for the classical dam problem. Advances
530 in Water Resources, 175, p.104356.

531

532 Samal KP, Mishra GC (2017) Analysis of seepage from a triangular furrow considering soil
533 capillarity using inverse hodograph and conformal mapping technique. ISH Journal of Hydraulic
534 Engineering, 23(1), 1-12.

535

536 Samal KP, Mishra GC (2022) Analysis of seepage from parallel triangular furrows by inverse
537 hodograph and conformal mapping technique. In Jha et al. (eds.), “*Hydrological Modeling*”, Water
538 Science and Technology Library 109, pp. 459-478 , Springer https://doi.org/10.1007/978-3-030-81358-1_35

540

541 Sen, Z. (2008) Wadi Hydrology. CRC, Boca Raton.

542

543 Šimůnek J, van Genuchten MTh, Šejna M (2016) Recent developments and applications of the
544 HYDRUS computer software packages, Vadose Zone J., 15(7), doi: 10.2136/vzj2016.04.0033.

545

546 Sophocleous M (2002) Interactions between groundwater and surface water: the state of the science.
547 Hydrogeology J., 10, 52-67.

548

549 Strack ODL (1989) Groundwater Mechanics. Prentice-Hall, Inc., Englewood Cliffs.

550

551 Vedernikov VV (1939) Theory of Seepage and Its Applications to Problems of Irrigation and
552 Drainage, Gosstroizdat, Moscow (in Russian).

553

554 Vedernikov, V. V. (1940). Account of soil capillarity on seepage from a canal, Doklady AN SSSR,
555 28, (5) (in Russian).

556

557 Wang W, Wang X, Zhang A, Liu H., Huang Y (2025). Targeted strategy of straw derived hydrogels
558 for sustainable water and fertilizer. Science of The Total Environment, 959, p.178153.

559

560 Wolfram S (1991). *Mathematica*. A System for Doing Mathematics by Computer. Addison-
561 Wesley, Redwood City.

562

563

564 **LIST OF ABBREVIATIONS:**

565 1) AaNM= analytical and numerical methods
566 2) BVP= boundary value problem
567 3) CF=capillary fringe
568 4) IBVP= initial boundary value problem
569 5) K-35=Kornev V.G., 1935. *Subsoil Irrigation (absorption irrigation method)*. Moscow,
570 Selkhozgiz (in Russian)
571 6) PDE=partial differential equation
572 7) PK-62= Polubarinova-Kochina, P.Ya., 1962. *Theory of Ground-water Movement*. Princeton
573 University Press, Princeton. Polubarinova-Kochina, P.Ya., 1977. *Theory of Ground-water
574 Movement*. Nauka, Moscow (in Russian)
575 8) SI= subsurface irrigation
576 9) V-40= Vedernikov, V. V., 1940. Account of soil capillarity on seepage from a canal,
577 Doklady AN SSSR, 28 (5) (in Russian)
578 10) VG=Van Gnuchten