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Abstract

Two mathematical models, an analytical and numerical, describe 2D Darcian seepage of in
subsurface irrigation from a ditch, with pore moisture sucked up and laterally from a non-standard
“emitter”, which is engineered as a channel of a small depth with a lined (impervious bottom). For
steady flow in a homogeneous, saturated, rigid, isotropic porous medium a boundary value
problems to Laplace’s equation for characteristic functions of the piezometric head and stream
function is solved by the method of hodograph, i.e. conformal mapping of two polygons in complex
plains onto each other via a reference plane. For a transient saturated-unsaturated seepage from th
ditch or a buried permeable pipe in this ditch, initial boundary value problems (IBVPs) to the
Richards equation are numerically solved using HYDRUS2D package. Both models give the vector
fields of specific discharge (Darcian velocity) and scalar fields of pressure head, volumetric
moisture content, isotachs, as well as flow nets. Applications of the models are to design and
construction of urban and agricultural soils (“constructozems”), as porous composites, with the aim
at optimizing the soil moisture consumption by the plants by minimizing evaporation and deep
percolation. For this purpose a lens (or double-periodic cluster of lenses) made of peat or other
relatively coarse material is buried under the ground surface. This lens(es) is surrounded by a fine-
textured indigenous soil. The pore water motion to/from the lens, acting intermittently as a draining
entity (collecting pore water from the ambient soil) and a subsurface irrigator (emitting water to
this soil), in such an engineered smartly-heterogenized vadose zone becomes essentially 2-D. Our
models substantiate the field experiments by Kornev (1935) who backfilled ditches and generated
capillarity-maintained “wet bulbs” in the root zone. We also complete Vedernikov’s (1940)
analytical solution for steady 2-D seepage from a trapezoidal ditch having a zero-depth water level.
Keywords: subsurface capillarity-driven irrigation, complex potential and hodograph domains,
conformal mappings, HYDRUS2D modeling.

1. Introduction
Mathematical modeling of steady-state Darcian seepage of an incompressible fluid (pore water
in our case) in homogeneous, saturated, rigid isotropic porous media involves solving boundary
value problems (BVP) to Laplace’s equation, with respect to the piezometric head (see e.g. Strack,
1989). If the medium is anisotropic, a more general elliptic partial differential equation (PDE)
models flows in soils (see e.g. Polubarinova-Kochina, 1962, hereafter abbreviated as PK-62). In

these models, the capillarity of soil is ignored that is correct for flow in dams’ foundations and
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confined aquifers. For steady flows through earth dams and in unconfined aquifers a phreatic
surface (free boundary) emerges, with a capillary fringe and the vadose zone above it that requires
solving BVPs to parabolic PDEs. In transient saturated-unsaturated flows, initial boundary value
problems (IBVPs) have to be solved, with the Richards equation describing variations of the
pressure head, volumetric moisture content, fluxes and other flow parameters (see e.g. Radcliffe and
Simtinek 2018, Namaghi et al., 2015). In applications to geotechnical engineering (e.g. in design of
earth dams), analytical and numerical methods (AaNM), as well as sandbox physical modeling
experiments are used (see e.g. Cedergren, 1989, Fawzy et al., 2024). In this paper, we apply AaNM,
viz. the theory of holomorphic functions (PK-62, Strack, 1989) and finite element method, realized
in the software HYDRUS2D (Simtnek et al. 2016) to model seepage flows from buried subsurface

emitters placed under row crops.

In subsurface irrigation, most common technique of water supply is through perforated plastic
pipes placed at the depth of several cm-tens of cm, in the root zone of plants, with mathematical
models for seepage from such type of sources (see e.g. Lamm et al., 2007). Kornev (1921, 1935,
hereafter abbreviated as K-35) and Vedernikov (1939, 1940, abbreviated as V-40), correspondingly,
worked on irrigation projects, which involved furrows (surface irrigation) and uncommon
subsurface emitters. The work in K-35 and V-40 was not completed in the sense of both
engineering realization and modeling. We engage the modern modeling tools of AaNM, viz.
computer algebra (Wolfram’s, 1991, Mathematica) and HYDRUS2D, to advance the Kornev-
Vedernikov experimental-analytical legacy and make it user-friendly for irrigation engineers.

K-35 developed two original systems of subsurface irrigation (SI, see e.g. Goyal, 2014 for a
recent review of this method of microirrigation) of crops’ root zones in semi-arid and arid regions
of France and the USSR. Moisture was sucked from buried horizontal, systematic “line 2D
sources” (the terminology of Strack, 1989) by the ambient natural dry soil and transpirative uptake
by crops’ roots. The source of “sub-root zone” water was:

A) Unglazed clay-made pipes, where water was under negative pressure (tension).
Mathematical models of seepage from these systematic buried emitters were developed by PK-62
and Strack (1989).

B) Ditches, backfilled to a certain depth by a coarse (“imported”) porous medium, which was
capped at the top by the “natural” fine-textured soil.

In this paper, we focus on K-35 system B). An elementary cell of a periodic system, a rectangle

M1M2M3Msa, is depicted in Fig.1 (a vertical cross-section perpendicular to the ditch axis).
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Fig.1 Vertical cross-section of seepage domain for K-35 trapezoidal ditch.

A lens BB:C:C in Fig.1 is filled with peat, fascines, sand or other highly permeable medium.
The lens is trapezoidal with the angle of bank slope oz, 0 < @ < 1/2, the bottom width b and height
c. The depth of burial, e, is counted from a horizontal soil surface M2Ms to B1C1 (the “cap” of the
backfilling). Such engineered soil composites are successfully used as “constructozems”
(Bakhmetova et al., 2022) in arid irrigated agriculture, desert afforestation, and urban landscaping.
The technology increases the topsoil water retention and protects it from secondary salinization.
Peat or synthetic gel-forming polymer super-absorbents can be also used as backfilling.

High total water capacity (up to 90-95 vol. % for peat and up to 60-70 vol.% for 0.1-0.3 mass%
mixtures of gels with soil) and “field capacity” (40-60% at pressure heads of —100 kPa) guarantee
reliable retention of irrigation water when introducing 1-2 parallel lenses of these artificial materials
into the topsoil (see e.g. Arkhangelskaya, 2024). The pore water accumulation of layered soil
composites is enhanced by the effect of capillary barriers, the physical phenomenon widely used in
geotechnical engineering (see e.g. Radclif and Simanek, 2010, Feng et al., 2025). Field tests of
layered constructozems confirmed a reduction (by 40-70%) in unproductive water losses to deep
percolation and evaporation. The productive water consumption by plants increased up to 70-

130%, the total volume of irrigation water dropped by 20-50%. The dry aboveground
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(photosynthetic) biomass increased up to 1.7-2.5 times, and the belowground root phytomass
increased up to 1.5-2 times in tested fresh crop yields (see e.g. Deeb et al., 2024). Separation of the
topsoils from subsoils by a capillary barrier made of coarse-textured materials or water repellents
reliably protects the root zone from secondary salinization by interrupting the capillary rise of
water-soluble salts from saline groundwater and deep highly salinized soil strata. During
unexpected catastrophic downpours, as, for example, in the United Arab Emirates and Oman in
April 2024, the coarse-textured subsoil screen acts as a drainage system.

So far, design of constructozems used numerical modeling (HYDRUS-1D package) of 1-D
water and solutes transport and root water consumption in the "soil-plant-material” system.
However, the 1D models are applicable only in the case of flat landscapes with plane-parallel lenses
of soil modifiers. In the case of a relief with slopes, as well as for local soil constructions (tree and
shrub pits, holes for vegetable crops with drip irrigation, etc.), a more complex flow of water with
dissolved substances takes place that requires 2,3-D modeling.

In our model, we study an elementary cell of a periodic SI system (Fig.1). The horizontal and
vertical sizes of this cell (the flow domain for a saturated-unsaturated seepage) are L and d,
respectively. A system of Cartesian coordinates (x,y) has its origin at point O, the middle of the
ditch bed BC. The complex physical coordinate is Zz = X iy. The natural soil profile may
have a substratum of thickness ds.

After the Spring snowmelt (in crop fields with hydromorphic soils of Russia, see e.g. Kovalev,
2019), rare torrential Summer rains and/or periodic sprinkling from above in the hyperarid climate
of Arabia, the lens works as a drain. The progressive and rapid drawdown of the phreatic curve is
illustrated in Fig.1 for two time instances: t; and t>. During hot and dry seasons (few weeks in
Russia and permanently in the Gulf countries), the lens acts as a moisture emitter for the “natural”
soil. Therefore, the more pore water is stored in the lens and the more is uptaken by the root zone in
the finer soil, the better. In other words, the infiltrated water, which was stored during the drainage
phase, is “absorbed” (K-35 terminology) by a desiccated soil during the irrigation phase. Also, if
the infiltrated pore water storage in the coarser component of the composite is insufficient, then a
systemic supply to the lens from a tank placed on the ground surface is set up (see K-35 for details).

We consider the case of the triad of hydraulic conductivities of the composite (lens-soil-
substratum in Fig.1), which obey the double inequality Ky > K > Ky . We model seepage during a
dry Summer season in K-35 such that the water level above BOC in Fig.1 is maintained low,
aiming at reducing deep percolation and increasing water use efficiency. Irrigation of the root-

containing zone is controlled by seepage from the horizontal segment BOC (a zero-pressure isobar).
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Flow is determined by gravity, Darcian resistance of the composite porous matrix and capillarity of
the fine-textured soil (Lamm et al., 2007).
The analytical and numerical models give the following:
e the seepage flow rate per unit length of the lens Q [m?/s in SI],
e isobars p = const (p is the pressure head [m]),
e the position of the curves AE; and DE; (along these streamlines p = -pc = const), which
cap the capillary fringe (CF),

e the flow net,

e isotachs |\7 | = const , where \7 is the vector of Darcian velocity ([m/s]),
e isohumes,

e isochrones t = const for marked pore water particles,

e time-variation of flow characteristics at selected observational points,

among others.

2. Methods
2.1Analytical Model

In this subsection, we follow V-40 and engage the hodograph method (see PK-62, Samal and
Mishra, 2017, 2022, Strack, 1989, Bakker and Post, 2022) to analyze the steady-state, tension-
saturated, 2-D seepage in a homogeneous flow domain, G;, laterally sandwiched between the two
branches of free surfaces (CF boundaries). Muromtsev (1991) reported on intricate subzoning of
CFs but in our model we neglect such hairsplitting. Thus, CF in Fig.1 is capped from above by an
equipotential horizontal segment of the ditch bed and two slanted segments of the ditch slopes
(streamlines). In the analytical model, we assume that the size L (Fig.1) is large enough such that
the free surfaces AE1 and BE> generated by the K-35 neighbouring irrigation ditches do not intersect

with each other.
The Darcy law states \7(X, y) =-KVh where h(x,y) = p(x,y) y is the total (piezometric) head

and p is the pressure head. The velocity potential, ¢ =—-K h, a stream function is  and a

complex potential is w=g@+1y . A complex Darcian velocity is V = u iv, where u(x,y) and v(x,y)

are the horizontal and vertical components of V .
During hot and dry Summers, water is channeled (see K-35) perpendicular to the plane of Fig.1.

Positive values of p in the ditch and in the adjacent “natural” soil is maintained by a finite water
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depth flowing to the ditch from a positive-pressure surface tank. A certain slope in the direction
perpendicular to the plane of Fig.1 (e.g. the topographic slope in Manning’s formula) may be
needed if the ditch is long. In our analytical model, a zero-depth ponding of the interface between a
coarse filling of the trapezium and the subjacent fine-textured soil makes the whole domain G,
tension saturated. We recall that seepage from a non-buried Riesenkampf’s zero-depth channel
(PK-62, Section 6, Chapter 5) was also purely tension-saturated. Point O in Fig.1 is fiducial such
that along BOC ¢ = p =0, while, owing to symmetry, y = 0 along OE,. According to the

Vedernikov-Bouwer model, the branches E;A and E2D of the CF boundary are streamlines along

which v =5Q/2, p=—p,, where pc [m] is the height of capillary rise of the soil (see PK-62, and

Vedernikov, 1939 for tabulated values of this constant for various soils. For sandy soils and peat,
for example, PK-62, her Table 5, p.19 reports p.=100-150 cm for sandy soils and 120-150 cm for
peat).

Strictly speaking, for a composite dyad of fine and coarse soils in Fig.1, there is a mild vertical
capillary rise in the backfilling. A horizontal segment B,Ch (Fig.1, dashed line) “caps” a tension-
saturated zone (CF) inside the peat filling of the trapezium. In our analytical model, we ignore
seepage in this coarse backfilling.

The complex potential domain Gy is a half-strip shown in Fig.2a (zigzagged blue lines here and
in other Figures indicate the interior of the domains in complex plains). We assume that the
substratum M1M is deep enough such that points E1, E> and Eo collapse into a single point E, the
infinity on the Riemann sphere. Therefore, in the vernacular of Strack (1989) a generalized dipole is
made by a source of a finite length b, placed aty = 0, and a sink at infinity (Y — —o0)

Y (w=@+iy)
Ny c
c D Ey B ’
1072
G, (FlFu+iv)
0 4 T
E, A/D | u
. P 4\{
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a) B A E,
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A D
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Fig.2 Complex potential domain (a), hodograph domain (b), inverted hodograph domain (c),
reference half-plane (d).

The finite-length segments BA and CD on the banks of the trapezium are streamlines along
which the pressure head drops from 0 to —pc. A dotted curve in Fig.1 exemplifies an “intermediate”
isobar sandwiched between BOC and free boundaries. A dashed curve in Fig.1 is a streamline
which starts at the horizontal bottom of the ditch (sufficiently close to point C). Along this flow
path a water particle moves, first, vertically down (gravity prevails), after that it moves up
(capillarity prevails) and, finally, descends vertically down again (gravity again takes over
capillarity).

The potential ¢, at points A and D is a part of solution. The whole G; is tension-saturated, i.e.

-pc< p(x,y) <0 there.

The hodograph domain, Gy, corresponding to G, is depicted in Fig.2b. This domain is a
circular pentagon bounded by two rays DC and AB, a circle AED of a radius K, centered at the point
V = -i K/2 and a semi-infinite vertical cut BOC with its tip at the point V = -i Vo , where Vo (a part
of solution) is the magnitude of Darcian velocity at point O. Velocity at points A and D is zero and
at points B and C is infinite. Our Gy is a special case of one in V-40 (see Fig.147 in PK-62). We
mirror Gy with respect to the axis v = 0 in the V-plane. That gives a circular pentagon in the plane of
a holomorphic function dw/dz = u - iv. After that, we use the method of inversion (see PK-62,
Section 5, Ch. 5) and get the polygon Ga shown in Fig.2c, where Q = dz/dw is another holomorphic
function.

PK-62 (pp.160-162) reported the V-40 solution to a more general problem for a finite depth
of water inside the trapezium. V-40 obtained his solution and presented results in an inverse
manner, viz. he specified two conformal mapping (so-called “accessory”) parameters. Next, he
evaluated the geometrical sizes of the channel and the depth of water in it. After 1950, Vedernikov
could not complete the analysis which he started in V-40. We use a direct method, i.e. specify the
physical (including geometrical) parameters and find an unknown conformal mapping (accessory)
parameter. As compared with the epoch of VV-40 and even Aravin and Numerov (1953), PK-62, we
have computer algebra (Wolfram’s, 1991, Mathematica, Python, MatLab, etc.) arsenals to solve a
nonlinear equation with respect to this parameter. We also operate HYDRUS2D for modeling

geometries and soil compositions more general than one in V-40.
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Thus, we apply the Schwarz-Christoffel formula to map Gw and Ga onto the upper half-
plane G¢ of the reference plane ¢{=¢&+in (Fig.2d) with the correspondence of points
0—-0B—>1C—>-1A>1/x,D—>-1/x,E —>oo, Where 0 < x<1 is a mapping

parameter. The corresponding mapping functions are:

Q

W=—i—=arcsing, (1)
T

Q) = & =iR[ ele) P ) e =

dw vV,
iR/2 i
— f 0 _ 1_ 2\w+1/2 1_ 2 #2 7a)f o
w(l_Kz)( (0)- (¢ (1-4°¢?) £ () v @
where
1., &7
f(;’):F[—,l,l—a),—zjz
2 1-x ) (3)
PP F(1,1+a);§; L j—i Vr_ [k T-o) [1—1&:2)
1_’(24’2 2 l—KZQ'Z Kir2e 1—6;2 T(l/2-w) 1_4,2
and

£(0) = —1-K? (260 1-K2 F(L1+ @;3/ 21— &%) +i 7l (1) j @)

K*2°I'(1/ 2 — )
Here F stands for the hypergeometric function ,F and I for the gamma function (Abramowitz and

Stegun, 1968). All multivalued complex functions above are fixed in the upper half-plane to be
positive at 0 < & <1(see Henrici, 1993 for more details).

The positive constant R, found from the condition Q(1) =0, is

B (1+2w)
V,FL1+@;3/2+w;x?) "

(5)

At point E seepage is unidirectional, with a unit hydraulic gradient, i.e. we consider the regime
without “backwater” (the vernacular of PK-62); a more general condition at infinity, with
“backwater” (zero velocity at infinity) can be analyzed as in PK-62. From egns. (2), (3) and the no
“pbackwater” condition Q(io) =-i/K we get

o)t @) FLlre3i2+ek’)  JZT/2+0)

7 —dr= —dr= - . (6)
* (%) © (L) 1+2w 262" \1- KT (1+ @)
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Then, from eqns. (2), (4) follows

{i_ij':(llﬂo 312+ wix 2) L+ 20 Val(/2+0) —F(1’1+w;3/2+w;’() (7)
KV, Vo | 262\ 1- KT (1+ o) 1+ 20
wherefrom
L+ 207l (1 2+ )
Vo 2041 2 2\ (8)
262 1= " T(1+ o) F(11+ ;3/ 2+ ik
Eqgn.(1) at point A gives
@ ,=Rew(l/x) :glm(arcsin 1) =9arccosh£. 9
T K T K

By the help of egns. (1), (2) we find

R 1 . R 172
2(8) == [{mf(O)IJarcsm( 7ol j( — j f(r)dr} (10)

where R and V, are expressed in egns. (5) and (8) respectively.

From eqn.(10), according to Fig.1a, follows z(-1)=b/2. Using the last condition, equation

(3) and the resulting representation for f (0), it can be shown that

a)

1+ 2w 29 1—r
=bV./| 1+ 0)-< f q | 1
0 ’ F(L1+®;3/ 2+ w;x%) 1(0) ,ZJ; e (o+l (r)dr (11)
where
3 1-«x°
He F(l’“ PR j (12)

The equality ¢, / K+y, = p. (the CF condition in the Vedernikov-Bouwer model, PK-62,
which is — up to notations — equivalent to the Green-Ampt 1-D infiltration model), where ¢, is
defined by eqn.(9), and y, =Imz(1/«x)=1Imz(-1/«), results in a nonlinear equation with respect

to x:

Uk @
i—i—RF(ll-l-a) 3/2;1-«%) arcoshi Rsmmj r-t f(T)dT=”—p°- (13)
K V, Kk 20(+«%) 1 |« Q

In eqgn. (13), the wvalues of R, V,, and Q are determined via eqns. (5), (8) and (11),

respectively. We used the routine FindRoot of Wolfram’s (1991) Mathematica for solving
eqn.(13).

10
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2.2 HYDRUS model

Due to the symmetry of the flow domain (Fig.1) we consider its right half only. The Richards PDE
is solved in HYDRUS package (see e.g. Radcliffe and Simtnek, 2018 for more details) with respect
to p(x,z,t) by the method of finite elements. In subsection 2.1, seepage was steady state and,
therefore, the Vedernikov-Bouwer model reduces Richards’ PDE to the Laplace PDE, for which
BVPs are solved by various methods of the theory of holomorphic functions (Aravin and Numerov,
1953, PK-62, Strack,1989). In subsection 2.2, we deal with transient seepage (time, t, is an
independent physical variable), in which the analogues of analytical free surfaces are asymptotically
attained by moving boundaries (Crank, 1984). Consequently, initial boundary value problems
(IBVP) are solved by HYDRUS2D (no analytical solutions are available for these IBVPS).

3. Results

In the analytical model we introduce dimensionless quantities: (z°, w",V", R*, Q" , b")= (z/pc,
w/(K pc), VIK ,R*K, Q/(K pc), b/pc) and — for the sake of brevity - drop the superscript “*”. We
used the routines Re and Im of Mathematica and in Fig.3 plotted the flow nets (see Cedergren,
1989 for the details related to these nets) for b =1, @ = 0.1 and 0.5, panels (a) and (b), respectively.
The lower panel (c) in Fig.3 zooms one streamline (v =1.7, @ = 0.5), which starts at the bottom of
the ditch, close to its corner (point C in Fig.1). This streamline has a local minimum and global
maximum, i.e. has a non-trivial shape, if compared with “standard” streamlines for seepage from
soil channels without capillarity (PK-62). The intricacy of the form of the streamlines, which start

on OC and are adjacent to point C, geometrically demonstrate the interaction of three physical

11
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300 seepage-controlling factors, viz. gravity, Darcian resistance of the porous skeleton and capillarity.
x ot
X
301
v
0.00001 ¢ /
OI5 0 56006 0 5{]IU12 X
—0.00001 ¢
-0.00002 -
302 c)
303 Fig.3. Flow netforb =1, ®=0.1 (a) and @ = 0.5 (b), zoomed non-trivial streamline with a local
304  minimum near the ditch bed (c).
305 In Table 1 the accessory parameter «, seepage flow rate Q and minimal velocity magnitude
306  along the trapezium bed Vo for several ditch slopes are computed for b =1.
w 0.001 0.1 0.2 0.3 0.4 0.5
K 0.66079 | 0.722784 | 0.767840 | 0.801263 | 0.826804 | 0.846834
Q(w,x) |3.22055 | 3.298939 | 3.357662 | 3.402614 | 3.437979 | 3.466441
Vo(w,x) | 2.17890 | 2.168398 | 2.158476 | 2.149812 | 2.142405 | 2.136100
307
308 Table 1. Accessory parameter «, flow rate Q and minimal velocity magnitude Vo (along the
309 trapezium bed) for several ditch slopes (b =1).
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. . . . .
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Fig.4. Seepage flow rate as a function of @ the VV-40 trapezium slope (b =1).
In Fig.4, the function Q(w) is plotted for b = 1. Riesenkampf’s solution (see PK-62, pp.

162-166) for w = 0 yields (in modern notations) the following nonlinear equation with respect to Q:

Qe 1Ql g oot 27 1Q1,2,1/21=b, (a4
v/

where ®|[z,s,a] is the Lerch transcendent (LerchiPhi in a Mathematica routine, Wolfram, 1991).
For the case of b = 1 in Figs.3-4 and Table 1, egn. (14), solved by the FindRoot routine of
Mathematica, gives Q = 3.21962 that is less than only 0.05% less than the corresponding value for
® = 0.001. Overall, in the whole range of practical values of the trapezium slope, its impact on Q is
minor, i.e. the Riesenkampf solution- in comport with the comparison theorems (Goldstein and
Entov, 1994) - gives not only a lower bound of Q for any trapezium of a given b, but even a very
good approximation for any . Most wadis in the Gulf (see e.g. Sen, 2008) are ephemeral or
intermittent streams, viz. they do not flow or flow with a small water depth (except of course, the
rare and short flashflood events) and, therefore, the slope of their banks is not important if the value
of Q is of concern.

For the sake of brevity, we drop the results of analytical computations for other values of b.

In the numerical model, which works with dimensional quantities, we selected several
Kornev’s subsurface irrigation designs. In HYDRUS, computer programs with models of specific

flow patterns are called “Projects” and the vertical coordinate is z.

Project 1. Without any loss of generality we select the V-40 trapezium, having nw = arctan(2/15).
Other geometrical parameters of the elementary cell are: Iy = I, = 300 cm, b = 50 cm, e = 20 cm, by
=200 cm (Fig.5, left panel). Therefore, physically the distance between the axes of Kornev’s
ditches (periodic-systematic SI of row crops, like maize in K-35) is 600 cm. The soil is the Van
Genuchent (VG) sand (see the HYDRUS soil catalogue), for which the VG hydraulic parameters

13
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are K = 712.8 cm/day, a = 0.145 1/cm and n = 2.68. The FE mesh discretization parameters were:
14212 nodes, 27906 triangular 2D and 528 1D elements.

Our IBVP, which geometrically and in the asymptotic limit t — oo is close to one in
subsection 2.1. We used the initial condition, which is default in HYDRUS, viz. p(x,z,0) = -100 cm
that corresponds to an almost irreducible volumetric moisture content & = 0.045 of the VG sand.
The origin of HYDRUS Cartesian coordinates (xOz) is now at the midpoint of the trapezium bed

such that the soil surface is at the horizon z = 100 cm and the free drainage horizon is at z = -200

7 y D VG sandl Pl
our plot oI 1sobar
//' Isobarp =0 ‘ A h 0 cm l< <0

P / % =
) 7 o -
Vi s g
Neflsw—6 = a2
boundaries _B/2

: p =.30em
Pree'dramagf boundary

I \

0300 4273 245 0218 0191 0184 0136 0008 0082 0055 0027 0000
I I ]
cm [ ———

Fig.5. HYDRUS2D geometry, FE nodes, boundary conditions (left panel); isobars in Project
1 (right panel).
The boundary conditions for the HYDRUS octagon in Fig.5 are: no flow everywhere, except the
outlet free drainage horizon (z = -200 cm) and the zero-pressure inlet OC (a segment of a width
b/2=50 cm), i.e. we have a simple flow tube. Physically, the condition at OC means that the water
level in the buried ditch is zero but water is continuously injected into the ditch from an external
tank, as K-35 did in his irrigated crop fields. Therefore, the V-40 and K-35 problems are
mathematically matched in terms of boundary conditions. We also note that evaporation from the
soil surface and transpiration by the plants’ roots are ignored.

The total HYDRUS simulation time is 5 days, although steady state seepage is attained in half a
day. The right panel in Fig.5 demonstrates the palette of isobars, plotted in the range -30 cm<p <0
for t = 5 days. The isobars p = 0, -13 cm and -30 cm are arrowed. The analytical and numerical
solutions can be matched by comparing the free boundary p = -pc in subsection 2.1 with one of the
isobars in Fig.5. Obviously, none of the HYDRUS isobars is a streamline, contrary to the analytical
solution where the CF boundary (free surface) is. In Fig.6, we plotted the HYDRUS isotachs (left
panel) and the vector-field of Darcian velocity. Fig.6 demonstrates that high velocities are

concentrated near the trapezium corner C, where the hydraulic gradients are almost 2 that exceeds
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the PK-62 limit of 1 at which porous media are stable in the sense of suffusion and other types of
seepage-induced instability. Therefore, the bed of our HYDRUS trapezium is a line of potential

lessivage for the subjacent ambient soil.

0000 0850 1700 2530 2400 4350 5100 G850 6800 TEH0 500 9309 0,000 0.850 1700 2850 3400 4260 5100 5950 £.800 T.680 9.500 9,308

EECOOEE . | [ e e ||

Velocity - v[miday], Mins0.g00, Max=B308  velocityVestors +v[miday], Min=0.000, Max=9.203

Fig.6. Isotachs and Darcian velocities in HYDRUS Project 1.

The HYDRUS dimensional, almost steady-state flow rate for the seepage domain in Fig.5 is Qu
= 3.93 *10* cm?/day.
For the sake of brevity, we skip over the sensitivity analysis, in which we truncated-
expanded (from the right and beneath) the flow domain in Fig.5, refined the FE mesh, changed the

initial conditions for p, and varied the VG constants («, n, k).

Project 2. Now we consider a saturated-unsaturated seepage from a circular emitter having the
diameter of 10 cm. K-35 placed such positive-pressure pipes at the bottom of ditches. The width
and height of our rectangular ditch are 40 c¢cm and 25 cm, correspondingly (Fig.7, left panel). The
soil surface is 45 cm above the ditch bed. The HYDRUS flow rectangle is 100 cm wide and 245 cm
tall. The ambient soil is the VG loam (see the HYDRUS soil catalogue), which is characterized by
(e, n, K) = (0.036 1/cm, 1.56, 25 cm/day). The VG parameters for our peat are: Ky =480 cm/day, a
=0.0381/day, n =1.216, &= 0.916, 6 = 0.02. These parameters are consistent with ones reported
by Boelter et al. (1977) and were experimentally obtained in our lab for the backfilling of the
lenses, earlier modeled in HYDRUS-1D only. The lenses were designed and constructed as
experimental constructozems for blue spruce seedlings (Picea pungens Engelm.) in the

Serebryanoborsky forest, The Forestry Institute, the Russian Academy of Sciences, Moscow.
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. 00 cm
Circular

emitter—_

B\Io-ﬂ(?ix_—--'-
oundaries .
Free drainage boundary

0000 0000 10000 10875

s B —— ||

Presaurs Head - hfcnd, MIn=100.000, Max=10.675

Fig.7. HYDRUS Project 2 flow domain with a perforated pipe emitting water into a peat-filled
rectangular ditch embedded into an ambient loam (left panel) and isobars at t = 60 days (right
panel).

The topsoil boundary condition is now p =-100 cm, i.e. a pretty high dryness of the loam is
imposed on the soil surface. The mesh is coarser than in Project 1 but is refined near the emitting
semi-circle, along which the boundary condition is a hydrostatic pressure distribution with p=0 at
the apex of the semi-circle and p = 10 cm at its lowest point. Thus, the flow domain is not a simple
flow tube as in Project 1 above.

Isobars for t = 60 days (almost steady-state seepage) are shown in Fig.7, right panel.

15000 30000 8060 GO0 75000 S0060 15000 120060 135000 150000 tGaztT s 105000 120000 155000 150000 18021
[ e s B —— I e -]

Valoeity - v[emiday], MIn=1.630, Max=10.211 Valoctty Vctors - V[cmiaay). MINT0.030, Max=180.211

Fig.8. HYDRUS isotachs (left panel) and velocity vectors at t = 60 days (right panel) in the
vicinity of K-35 ditch.

At t = 60 days, a snapshot of isotachs and of the vector field of the Darcian velocity is
shown in Fig.8. A separatrix (only schematically sketched) is depicted as an arrowed streamline
with a stagnation point S at the right boundary of the HYDRUS flow domain. This streamline is a
watershed boundary between what seeps from the emitter to the atmosphere and what descends to
deep percolation.

We also modeled a three-component composite soil with a VG clay substratum (for the sake

of brevity we do not add the corresponding HYDRUS-generated Figures). Specifically, we
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modified the flow domain in Fig.7 (left panel) by adding a VG clay layer having ds= 10 cm (see
Fig.1) and the pentad of VG hydraulic parameters Ky =0.1 cm/day, « = 0.008 1/day, n = 1.09,
6 =0.38, 6 =0.068. The flow topology drastically changed, as compared with what is depicted in
Figs. 7-8. Specifically, the abscissa of the stagnation point S decreased from zs = 15 cm (Fig.8 left
panel) to zs =-69 cm. The “inverted” (the terminology of Sophocleous, 2002) water table p =0
which “hangs” under the K-35 in Fig.7 (right panel) is transformed into a “normal” (almost
horizontal) water table. In other words, the deep clay layer (Fig.1) makes soil under emitter fully
saturated with an almost linear (in z) increase of positive p within the loam stratum. The deep
drainage flow rate decreases to 8.67 cm?/day as compared with 1500 cm?/day in Project 2. All
these results warn: the soil heterogeneity (even trivial layering) and seepage conditions at infinity,
deep under the soil surface are very important (see e.g. Philip et al., 1989) if simulation times are
long (“seasonal” - “annual” — “decadal” — “centennial” — “millennial”), rather than short (a single

“irrigation” or “rainfall” event).

4. Conclusions

Steady, 2D seepage from a trapezoidal channel into a capillary soil, in which the tension-
saturated zone and CF are modeled by the VVedernikov-Bouwer approximation of the soil hydraulic
conductivity. The modern tools of computer algebra made possible solution of a nonlinear equation
with respect to the accessory parameter in a conformal mapping, reconstruction of the flow net,
determination of the seepage flow rate as a function of the slope of the V-40 trapezium. Our
analytical solution for an arbitrary slope of the trapezium matches well the Riesenkampf one for
zero-depth channels.

In HYDRUS2D modeling, which is versatile in demonstrating how the unsaturated soils
uptake moisture from a buried, subirrigation source and spread it up and laterally, against gravity.
Our analytical and HYDRUS simulations showed how the seepage flow rate from a non-trivial
subsurface source (a backfilled ditch with an impermeable bed as a barrier to deep percolation)
depends on the width of the ditch, slope of the bank and hydraulic properties of the soil or soil
composite through which moisture is spread from the buried K-35 emitter. We also plotted the
palettes and contours of isobars, isohumes, isotachs, and flow nets which demonstrate the
efficiency of the K-35 subsurface irrigation method. Of special interest are the “free boundaries”
in the analytical model, viz. the water table or the “cap” of CF. They are plotted and compared with
ones compute by HYDRUS.
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565 1) AaNM-= analytical and numerical methods

566 2) BVP=boundary value problem

567 3) CF=capillary fringe

568 4) IBVP= initial boundary value problem

569 5) K-35=Kornev V.G., 1935. Subsoil Irrigation (absorption irrigation method). Moscow,
570 Selkhozgiz (in Russian)

571 6) PDE=partial differential equation

572 7) PK-62= Polubarinova-Kochina, P.Ya., 1962. Theory of Ground-water Movement. Princeton
573 University Press, Princeton. Polubarinova-Kochina, P.Ya., 1977. Theory of Ground-water
574 Movement. Nauka, Moscow (in Russian)

575 8) SI=subsurface irrigation

576 9) V-40= Vedernikov, V. V., 1940. Account of soil capillarity on seepage from a canal,
577 Doklady AN SSSR, 28 (5) (in Russian)

578 10) VG=Van Gnuchten
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