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 35 
Abstract 36 

Two mathematical models, an analytical and numerical, describe 2D Darcian  seepage of in 37 

subsurface irrigation from a ditch, with pore moisture sucked up and laterally from a non-standard 38 

“emitter”, which is engineered as a channel of a small depth with a lined (impervious bottom). For 39 

steady flow in a homogeneous,  saturated, rigid,  isotropic porous medium a boundary value 40 

problems to Laplace’s equation for characteristic functions of the piezometric head and stream 41 

function is solved by the method of hodograph, i.e. conformal mapping of two polygons in complex 42 

plains onto each other via a reference plane. For a transient saturated-unsaturated seepage from th 43 

ditch or a buried permeable pipe in this ditch, initial boundary value problems (IBVPs) to the 44 

Richards equation are numerically solved using HYDRUS2D package. Both models give the vector 45 

fields of specific discharge (Darcian velocity) and scalar fields of pressure head, volumetric 46 

moisture content, isotachs, as well as flow nets. Applications of the models are to design and 47 

construction of urban and agricultural soils (“constructozems”), as porous composites, with the  aim 48 

at optimizing the soil moisture consumption by the plants by minimizing evaporation and deep 49 

percolation.  For this purpose a lens (or double-periodic cluster of lenses) made of peat or other 50 

relatively coarse material is buried under the ground surface. This lens(es) is surrounded by a fine-51 

textured indigenous soil.  The pore water motion to/from the lens, acting intermittently as a draining 52 

entity (collecting pore water from the ambient soil) and  a  subsurface irrigator (emitting water to 53 

this soil),  in such an engineered smartly-heterogenized vadose zone  becomes essentially 2-D. Our 54 

models substantiate the field experiments by Kornev (1935) who backfilled ditches and generated 55 

capillarity-maintained  “wet bulbs” in the root zone.  We also complete Vedernikov’s (1940) 56 

analytical solution for steady 2-D seepage from a trapezoidal ditch having a zero-depth water level.  57 

Keywords: subsurface capillarity-driven irrigation, complex potential and hodograph domains, 58 

conformal mappings, HYDRUS2D modeling.   59 

 60 

1. Introduction 61 

Mathematical modeling of steady-state Darcian  seepage of an incompressible fluid (pore water 62 

in our case) in homogeneous,  saturated, rigid isotropic porous media involves solving boundary 63 

value problems (BVP) to Laplace’s equation, with respect to the piezometric head (see e.g. Strack, 64 

1989). If the medium is anisotropic, a more general elliptic partial differential equation (PDE) 65 

models flows in soils (see e.g. Polubarinova-Kochina, 1962, hereafter abbreviated as PK-62). In 66 

these models, the capillarity of soil is ignored that is correct for flow in dams’ foundations and 67 
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confined aquifers. For steady flows through earth dams and in unconfined aquifers a phreatic 68 

surface (free boundary)  emerges, with a capillary fringe and the vadose zone above it that requires 69 

solving BVPs to parabolic PDEs. In transient saturated-unsaturated flows, initial boundary value 70 

problems (IBVPs) have to be solved, with  the Richards equation describing variations of the 71 

pressure head, volumetric moisture content, fluxes and other flow parameters (see e.g. Radcliffe and  72 

Šimůnek 2018, Namaghi et al., 2015).  In applications to geotechnical engineering (e.g. in design of 73 

earth dams), analytical and numerical methods (AaNM), as well as sandbox physical modeling 74 

experiments are used (see e.g. Cedergren, 1989, Fawzy et al., 2024). In this paper, we apply AaNM, 75 

viz. the theory of holomorphic functions (PK-62,  Strack, 1989) and finite element method, realized  76 

in the software HYDRUS2D (Šimůnek  et al. 2016) to model seepage flows from buried subsurface 77 

emitters placed under row crops.  78 

 79 

In subsurface irrigation, most common technique of water supply is through perforated plastic 80 

pipes placed at the depth of several cm-tens of cm, in the root zone of plants, with mathematical 81 

models for seepage from such type of sources (see e.g.  Lamm et al., 2007). Kornev (1921, 1935, 82 

hereafter abbreviated as K-35) and Vedernikov (1939, 1940, abbreviated as V-40), correspondingly, 83 

worked on irrigation projects, which  involved furrows (surface irrigation) and uncommon 84 

subsurface emitters.  The work in K-35 and V-40 was not completed in the sense of both 85 

engineering realization and modeling. We engage the modern modeling tools of AaNM, viz. 86 

computer algebra (Wolfram’s, 1991, Mathematica) and  HYDRUS2D, to advance the Kornev-87 

Vedernikov experimental-analytical legacy and make it user-friendly for irrigation engineers. 88 

K-35 developed two original systems of subsurface irrigation (SI, see e.g. Goyal, 2014 for a 89 

recent review of this method of microirrigation) of crops’ root zones in semi-arid and arid regions 90 

of France and the USSR.  Moisture was sucked from buried horizontal, systematic “line 2D 91 

sources” (the terminology of Strack, 1989) by the ambient natural dry soil and transpirative uptake 92 

by crops’ roots. The source of  “sub-root zone” water was:  93 

A) Unglazed clay-made pipes, where water was under negative pressure (tension). 94 

Mathematical models of seepage from these systematic buried emitters were developed by PK-62 95 

and Strack (1989).  96 

B) Ditches, backfilled to a certain depth by a coarse (“imported”)  porous medium, which was 97 

capped at the top by the “natural”  fine-textured soil.  98 

In this paper, we focus on K-35 system B). An elementary cell of a periodic system, a rectangle 99 

M1M2M3M4, is depicted in Fig.1 (a vertical cross-section perpendicular to the ditch axis).  100 
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 101 
Fig.1 Vertical cross-section of seepage domain for K-35 trapezoidal ditch. 102 

 103 

A lens BB1C1C  in Fig.1 is filled with peat, fascines, sand or other highly permeable medium. 104 

The lens is trapezoidal with the angle of bank slope ωπ, 0 < ω < 1/2, the bottom width b and height 105 

c. The depth of burial, e, is counted from a horizontal soil surface M2M3 to B1C1 (the “cap” of the 106 

backfilling). Such engineered soil composites are successfully used as “constructozems” 107 

(Bakhmetova et al., 2022)  in arid irrigated agriculture, desert afforestation,  and urban landscaping. 108 

The technology  increases the topsoil water retention and protects it from secondary salinization. 109 

Peat or synthetic gel-forming polymer super-absorbents can be also used as backfilling.  110 

High total water capacity (up to 90-95 vol. % for peat and up to 60-70 vol.% for 0.1-0.3 mass% 111 

mixtures of gels with soil) and “field capacity” (40-60% at pressure heads of –100 kPa) guarantee 112 

reliable retention of irrigation water when introducing 1-2 parallel lenses of these artificial materials 113 

into the topsoil (see e.g. Arkhangelskaya, 2024). The pore water accumulation of layered soil 114 

composites is enhanced by the effect of capillary barriers, the physical phenomenon widely used in 115 

geotechnical engineering (see e.g. Radclif and Šimůnek, 2010, Feng et al., 2025). Field tests of 116 

layered constructozems confirmed a reduction (by 40–70%)  in unproductive water losses to deep 117 

percolation and evaporation.  The productive water consumption by plants increased up to 70–118 

130%, the total volume of irrigation water dropped by 20–50%.  The dry aboveground 119 
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(photosynthetic) biomass  increased  up to 1.7–2.5 times,  and the belowground root phytomass 120 

increased up to 1.5–2 times in tested fresh crop yields (see e.g. Deeb et al., 2024). Separation of the 121 

topsoils from subsoils by a  capillary barrier made of coarse-textured materials or water repellents 122 

reliably protects the root zone from secondary salinization by interrupting the capillary rise of 123 

water-soluble salts from saline groundwater and deep highly salinized soil strata. During 124 

unexpected catastrophic downpours, as, for example, in the United Arab Emirates and Oman in 125 

April 2024, the coarse-textured subsoil screen acts as a drainage system.  126 

So far,  design of constructozems used numerical modeling (HYDRUS-1D package) of 1-D 127 

water and solutes transport and root water consumption in the "soil-plant-material" system. 128 

However, the 1D models are applicable only in the case of flat landscapes with plane-parallel lenses 129 

of soil modifiers. In the case of a relief with slopes, as well as for local soil constructions (tree and 130 

shrub pits, holes for vegetable crops with drip irrigation, etc.), a more complex flow of water with 131 

dissolved substances takes place that requires 2,3-D modeling.  132 

In our model, we study an elementary cell of a periodic SI system (Fig.1). The horizontal and 133 

vertical sizes of this cell (the flow domain  for a saturated-unsaturated seepage) are L and d, 134 

respectively. A system of Cartesian coordinates (x,y) has its origin at point O, the middle of the 135 

ditch bed BC.  The complex physical coordinate is           z = x  i y. The natural soil profile may 136 

have a substratum of thickness ds. 137 

After the Spring snowmelt (in crop fields with hydromorphic soils of  Russia, see e.g. Kovalev, 138 

2019),  rare torrential Summer  rains and/or  periodic sprinkling from above in the hyperarid climate 139 

of Arabia, the lens works as a drain.  The progressive and rapid drawdown of the phreatic curve is 140 

illustrated in Fig.1 for two time instances: t1 and t2. During hot and dry seasons (few weeks in 141 

Russia and permanently in the Gulf countries), the lens acts as a moisture emitter for the “natural” 142 

soil. Therefore, the more pore water is stored in the lens and the more is uptaken by the root zone in 143 

the finer soil, the better.  In other words, the infiltrated water, which was stored during the drainage 144 

phase, is “absorbed” (K-35 terminology) by a desiccated soil during the irrigation phase.  Also, if 145 

the infiltrated pore water storage in the coarser component of the composite is insufficient, then a 146 

systemic supply to the lens from a tank placed on the ground surface is set up (see K-35 for details).   147 

We consider the case of the triad of hydraulic conductivities of the composite (lens-soil-148 

substratum in Fig.1), which  obey  the double inequality Kb > K > Ku . We model seepage during a 149 

dry  Summer season in K-35 such that the water level above BOC in Fig.1 is maintained low, 150 

aiming at reducing deep percolation and increasing water use efficiency. Irrigation of the root-151 

containing zone is controlled by seepage from the horizontal segment BOC (a zero-pressure isobar).  152 
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Flow is determined by gravity, Darcian resistance of the composite porous matrix and capillarity of 153 

the fine-textured soil (Lamm et al., 2007). 154 

The analytical and numerical models give the following: 155 

• the seepage flow rate per unit length of the lens Q [m2/s in SI],   156 

• isobars p = const (p is the pressure head [m]), 157 

• the position of the curves  AE1 and DE2  (along these streamlines  p = -pc = const), which 158 

cap the capillary fringe (CF),  159 

• the flow net, 160 

• isotachs |V


| = const , where V


 is the vector of Darcian velocity ([m/s]),  161 

• isohumes,   162 

• isochrones t = const for marked pore water particles,  163 

• time-variation of flow characteristics at selected observational points,  164 

among others. 165 

 166 

2. Methods 167 

2.1 Analytical Model 168 

In this subsection, we follow V-40  and engage the hodograph method (see PK-62, Samal and 169 

Mishra, 2017, 2022, Strack, 1989, Bakker and Post, 2022)  to analyze the steady-state, tension-170 

saturated, 2-D seepage in a homogeneous flow domain, Gz, laterally sandwiched between the two 171 

branches of  free surfaces (CF boundaries). Muromtsev (1991) reported on intricate subzoning of 172 

CFs but in our model we neglect such hairsplitting.  Thus, CF in Fig.1 is capped from above by an 173 

equipotential horizontal segment of the ditch bed and two slanted segments of the ditch slopes 174 

(streamlines). In the analytical model, we assume that the size L (Fig.1) is large enough such that 175 

the free surfaces AE1 and BE2 generated by the K-35 neighbouring irrigation ditches do not intersect 176 

with each other.  177 

The Darcy law states ( , )V x y K h= − ∇


 where h(x,y) = p(x,y)  y  is the total (piezometric)  head 178 

and p is the pressure head. The velocity potential,  K hϕ = − , a stream function is ψ  and a 179 

complex potential is iw ϕ ψ= + . A complex Darcian velocity is V = u  iv, where u(x,y) and v(x,y) 180 

are the horizontal and vertical components of  V


.  181 

During hot and dry Summers, water is channeled (see K-35) perpendicular to the plane of Fig.1. 182 

Positive values of p in the ditch and in the adjacent “natural” soil is maintained by a finite water 183 



7 
 

7 
 

depth flowing to the ditch from a positive-pressure surface tank. A certain slope in the direction 184 

perpendicular to the plane of Fig.1 (e.g. the topographic slope in Manning’s formula) may be 185 

needed if the ditch is long. In our analytical model, a zero-depth ponding of the interface between a 186 

coarse filling of the trapezium and the subjacent fine-textured soil makes the whole domain Gz 187 

tension saturated.  We recall that seepage from a non-buried Riesenkampf’s zero-depth channel 188 

(PK-62, Section 6, Chapter 5) was also purely tension-saturated.   Point O in Fig.1 is fiducial such 189 

that along BOC 0pϕ = = , while, owing to symmetry, 0ψ = along OE0. According to the 190 

Vedernikov-Bouwer model, the branches E1A and E2D of the CF boundary are streamlines along 191 

which / 2Qψ = , cp p= − , where pc [m] is the height of capillary rise of the soil (see PK-62, and 192 

Vedernikov, 1939  for tabulated values of this constant for various soils. For sandy soils and peat, 193 

for example, PK-62, her Table 5, p.19 reports pc=100-150 cm for sandy soils and 120-150 cm for 194 

peat).   195 

Strictly speaking, for a composite dyad of fine and coarse soils in Fig.1, there is a mild vertical 196 

capillary rise in the backfilling. A horizontal segment BbCb (Fig.1, dashed line) “caps” a tension-197 

saturated zone (CF) inside the peat filling of the trapezium. In our analytical model, we ignore 198 

seepage in this coarse backfilling.   199 

The complex potential domain Gw is a half-strip shown in Fig.2a (zigzagged blue lines here and 200 

in other Figures indicate the interior of the domains in complex plains).  We assume that the 201 

substratum M1M4 is deep enough such that points E1, E2 and E0 collapse into a single point E, the 202 

infinity on the Riemann sphere. Therefore, in the vernacular of Strack (1989) a generalized dipole is 203 

made by a source of a finite length b, placed at y = 0, and a sink at infinity ( y → −∞ ).  204 

 205 
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Fig.2 Complex potential domain (a), hodograph domain (b), inverted hodograph domain (c), 206 

reference half-plane (d). 207 

 208 

The finite-length segments BA and CD on the banks of the trapezium are streamlines along 209 

which the pressure head drops from 0 to –pc. A dotted curve in Fig.1 exemplifies an “intermediate” 210 

isobar sandwiched between BOC and free boundaries.  A dashed curve in Fig.1 is a streamline 211 

which starts at the horizontal bottom of the ditch (sufficiently close to point C). Along this flow 212 

path a water particle moves, first, vertically down (gravity prevails), after that it moves up 213 

(capillarity prevails) and, finally, descends vertically down again (gravity again takes over 214 

capillarity).    215 

The potential Aϕ  at points A and D is a part of solution. The whole Gz is tension-saturated, i.e.  216 

-pc <  p(x,y) < 0 there.  217 

 The hodograph domain, GV, corresponding to Gz, is depicted in Fig.2b.  This domain is a 218 

circular pentagon bounded by two rays DC and AB, a circle AED of a radius K, centered at the point 219 

V = -i K/2 and a semi-infinite vertical cut BOC with its tip at the point V = -i V0 , where V0  (a part 220 

of solution) is the magnitude of Darcian velocity at point O. Velocity at points A and D is zero and 221 

at points B and C is infinite. Our GV is a special case of one in V-40 (see Fig.147 in PK-62). We 222 

mirror GV with respect to the axis v = 0 in the V-plane. That gives a circular pentagon in the plane of 223 

a holomorphic function dw/dz = u - iv. After that, we use the method of inversion (see PK-62, 224 

Section 5, Ch. 5) and get the polygon GΩ shown in Fig.2c, where Ω = dz/dw is another holomorphic 225 

function.  226 

PK-62 (pp.160-162) reported the V-40 solution to a more general problem for a finite depth 227 

of water inside the trapezium. V-40 obtained his solution and presented results in an inverse 228 

manner, viz. he specified two conformal mapping (so-called “accessory”) parameters. Next, he 229 

evaluated the geometrical sizes of the channel and the depth of water in it. After 1950, Vedernikov 230 

could not complete the analysis which he started in V-40.  We use a direct method, i.e. specify the 231 

physical (including geometrical) parameters and find an unknown conformal mapping (accessory) 232 

parameter. As compared with the epoch of V-40 and even Aravin and Numerov (1953), PK-62, we 233 

have computer algebra (Wolfram’s, 1991, Mathematica, Python, MatLab, etc.) arsenals to solve a 234 

nonlinear equation with respect to this parameter. We also operate HYDRUS2D for modeling 235 

geometries and soil compositions more general than one in V-40.      236 
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 Thus, we apply the Schwarz-Christoffel formula to map Gw and GΩ onto the upper half-237 

plane Gζ   of the reference plane ζ = ξ + iη  (Fig.2d) with the correspondence of points 238 

0, 1, 1, 1/ , 1/ ,O B C A D Eκ κ→ → → − → → − → ∞ , where 0 < κ < 1 is a mapping 239 

parameter. The corresponding mapping functions are: 240 

i arcsinQw ζ
π

= − ,    (1) 241 

2 1/2 2 2 1

0
0

d i( )    i (1 ) (1 ) d
d

z R
w V

ζ ω ωζ τ τ κ τ τ− − −Ω = = − − − =∫242 

 ( )2 1/2 2 2
2

0

i / 2 i(0) (1 ) (1 ) ( )
(1 )
R f f

V
ω ωζ κ ζ ζ

ω κ
+ −= − − − −

−
,                                                      (2) 243 

where  244 

                     

2 2

2

2 2 2 2 2

2 2 2 2 1 2 2 2

1 1( ) F ,1;1 ;
2 1

1 3 1 1 (1 ) 12 F 1,1 ; ; i
1 2 1 1 (1/ 2 ) 1

f

k

ω

ω

κ ζζ ω
κ

κ κ π κ ω κ ζω ω
κ ζ κ ζ ζ ω ζ+

 −
= − = − 

   − − − Γ − −
− + −   − − − Γ − −   

        (3)                        245 

and  246 

( )2 2 2
1 2

(1 )(0) 1 2 1 F 1,1 ;3 / 2;1 i
(1/ 2 )

f k k
k ω

π ωω ω κ
ω+

 Γ −
= − − − + − +  Γ − 

  (4) 247 

Here F stands for the hypergeometric function 2 1F  and Γ for the gamma function (Abramowitz and 248 

Stegun, 1968). All multivalued complex functions above are fixed in the upper half-plane to be 249 

positive at 0 1ξ< < (see Henrici, 1993 for more details).  250 

The positive constant R, found from the condition (1) 0Ω = , is  251 

2
0

(1 2 )
F(1,1 ;3 / 2 ; )

R
V

ω
ω ω κ
+

=
+ +

.                                                           (5)  252 

At point E seepage is unidirectional, with a unit hydraulic gradient, i.e. we consider the regime 253 

without “backwater” (the vernacular of PK-62); a more general condition at infinity, with 254 

“backwater”  (zero velocity at infinity) can be analyzed as in PK-62.  From eqns. (2), (3) and the no 255 

“backwater” condition (i ) i / KΩ ∞ = −  we get 256 

( )2i 2 1/2 2 1/2

2 2 1 2 2 1 2 1 2
0 0

F 1,1 ;3 / 2 ;(1 ) (1 ) (1 / 2 )d d
(1 ) (1 ) 1 2 2 1 (1 )

ω ω

ω ω ω

ω ω κτ τ π ωτ τ τ τ
κ τ κ τ ω κ κ ω

∞ ∞− −

+ + +

+ +− + Γ +
= − = −

− + + − Γ +∫ ∫ .   (6) 257 
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Then, from eqns. (2), (4) follows   258 

 ( ) ( )2
2

2 1 2
0 0

F 1,1 ;3 / 2 ;1 1 1 2 (1/ 2 )F 1,1 ;3 / 2 ;
1 22 1 (1 )K V V ω

ω ω κω π ωω ω κ
ωκ κ ω+

 + +  + Γ + − + + = −   +− Γ +   

               (7) 259 

wherefrom  260 

( )0 2 1 2 2

(1 2 ) (1/ 2 )
2 1 (1 ) F 1,1 ;3 / 2 ;

V K
ω

ω π ω

κ κ ω ω ω κ+

+ Γ +
=

− Γ + + +
 .                                (8) 261 

Eqn.(1) at point A gives 262 

1 1Re (1/ ) Im arcsin arccoshA
Q Qwϕ κ
π κ π κ

 = = = 
 

.     (9) 263 

By the help of eqns. (1), (2) we find 264 

2

2 2 2 2
0

1 1( ) (0) arcsin ( )d
2 (1 ) 2 (1 ) 1O

Q R Rz f f
V

ωζ τζ ζ τ τ
π ω κ ω κ κ τ

    − = − −    − − −   
∫ ,               (10) 265 

where R and 0V  are expressed in eqns. (5) and (8) respectively. 266 

From eqn.(10), according to Fig.1a, follows  ( 1) / 2z b− = . Using the last condition, equation 267 

(3) and the resulting representation for (0)f , it can be shown that 268 

( )
( )

20

0 1 112 2 2
1

11 2 2/ 1 (0) ( )d
F(1,1 ;3 / 2 ; ) 1

Q bV f f
ω

ω

τω τ τ
ω ω κ π κ τ

+
−

  −+  = + −
  + + −  

∫  ,                                (11) 269 

where 270 
2

1 2 2

3 1( ) F 1,1 ; ;
2 1

f κτ ω
κ τ

 −
= + − 

.            (12) 271 

The equality /A A cK y pϕ + =   (the CF condition in the Vedernikov-Bouwer model, PK-62, 272 

which is – up to notations – equivalent to the Green-Ampt 1-D infiltration model), where Aϕ  is 273 

defined by eqn.(9), and Im (1/ ) Im ( 1/ )Ay z zκ κ= = − ,  results in a nonlinear equation with respect 274 

to κ : 275 

1/ 2
2

2 2 2
0 1

1 1 1 Sin 1F(1,1 ;3 / 2;1 ) arcosh ( )d
2 (1 ) 1

cpRR f
K V Q

ωκ ππω τω κ τ τ
κ ω κ κ τ

   −
− − + − + =   − −  

∫ .           (13) 276 

In eqn. (13), the  values  of R, 0V , and Q are determined via  eqns. (5), (8) and (11),  277 

respectively. We used the routine FindRoot of Wolfram’s (1991) Mathematica for solving 278 

eqn.(13). 279 
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2.2 HYDRUS model   280 

Due to the symmetry of the flow domain (Fig.1) we consider its right half only. The Richards PDE 281 

is solved in HYDRUS package (see e.g. Radcliffe and Šimůnek, 2018 for more details) with respect 282 

to p(x,z,t) by the method of finite elements. In subsection 2.1, seepage was steady state and,  283 

therefore,   the Vedernikov-Bouwer model reduces Richards’ PDE to the Laplace PDE, for which 284 

BVPs are solved by various methods of the theory of holomorphic functions (Aravin and Numerov, 285 

1953, PK-62, Strack,1989). In  subsection 2.2, we deal with transient seepage (time, t, is an 286 

independent physical variable), in which the analogues of analytical free surfaces are asymptotically 287 

attained by moving boundaries (Crank, 1984). Consequently, initial boundary value problems 288 

(IBVP) are solved by HYDRUS2D (no analytical solutions are available for these IBVPs). 289 

3. Results 290 

 In the analytical model we introduce dimensionless quantities: (z*, w*,V*, R* , Q* , b*
 )= (z/pc

 , 291 

w/(K pc), V/K ,R*K, Q/(K pc),  b/pc) and – for the sake of brevity  -  drop the superscript “*”. We 292 

used the routines Re and Im of Mathematica and in Fig.3 plotted the flow nets (see Cedergren, 293 

1989 for the details related to these nets) for b = 1, ω = 0.1 and 0.5, panels (a) and (b), respectively. 294 

The lower panel (c) in Fig.3 zooms one streamline (ψ =1.7, ω = 0.5), which  starts at the bottom of 295 

the ditch, close to its corner (point C in Fig.1). This streamline has a local minimum and global 296 

maximum, i.e. has a non-trivial shape, if compared with “standard” streamlines for seepage from 297 

soil channels without capillarity (PK-62). The intricacy of the form of the streamlines, which start 298 

on OC and are adjacent to point C, geometrically demonstrate the interaction of three physical 299 
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seepage-controlling factors, viz. gravity, Darcian resistance of the porous skeleton and capillarity.300 

       301 

 302 
Fig.3. Flow net for b = 1, ω = 0.1 (a) and ω = 0.5 (b), zoomed non-trivial streamline with a local 303 

minimum near the ditch bed (c). 304 

In Table 1 the accessory parameter κ, seepage flow rate Q and  minimal velocity magnitude 305 

along the trapezium bed V0 for several ditch slopes are computed for b =1. 306 

ω 0.001 0.1 0.2 0.3 0.4 0.5 

κ 0.66079 0.722784 0.767840 0.801263 0.826804 0.846834 

Q(ω,κ) 3.22055 3.298939 3.357662 3.402614 3.437979 3.466441 

V0(ω,κ) 2.17890 2.168398 2.158476 2.149812 2.142405 2.136100 

 307 

Table 1. Accessory parameter κ, flow rate Q and minimal velocity magnitude V0 (along the 308 

trapezium bed) for several ditch slopes (b =1). 309 
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 310 
Fig.4. Seepage flow rate as a function of ω the V-40 trapezium slope (b =1).  311 

In Fig.4, the function Q(ω) is plotted for b = 1.  Riesenkampf’s  solution (see PK-62, pp. 312 

162-166) for ω = 0 yields (in modern notations) the following nonlinear equation with respect to Q:   313 

2

2 exp[ / ] [ exp[ 2 / ], 2,1/ 2]Q Q Q bπ π
π

−
Φ − = ,

                                               
 (14) 314 

where [ , , ]z s aΦ   is the Lerch transcendent (LerchiPhi in a Mathematica routine,  Wolfram, 1991).   315 

For the case of b = 1 in Figs.3-4 and Table 1, eqn. (14), solved by the FindRoot routine of 316 

Mathematica, gives   Q = 3.21962 that is less than only 0.05% less than the corresponding value for 317 

ω = 0.001. Overall, in the whole range of practical values of the trapezium slope, its impact on Q is 318 

minor, i.e. the Riesenkampf solution- in comport with the comparison theorems (Goldstein and 319 

Entov, 1994) - gives not only a lower bound of Q for any trapezium of a given b, but even   a very 320 

good approximation for any ω.  Most wadis in the Gulf (see e.g. Sen, 2008) are ephemeral or 321 

intermittent streams, viz. they  do not flow or flow with a small water depth (except of course, the 322 

rare and short flashflood events) and, therefore, the slope of their banks is not important if the value 323 

of Q is of concern.     324 

For the sake of brevity, we drop the results of analytical computations for other values of b.  325 

In the numerical model, which works with dimensional quantities, we selected several 326 

Kornev’s subsurface irrigation designs.  In HYDRUS, computer programs with models of specific 327 

flow patterns are  called “Projects” and the vertical coordinate is z.  328 

 329 

Project 1. Without any loss of generality we select the V-40 trapezium, having πω = arctan(2/15). 330 

Other geometrical parameters of the elementary cell are: lv = lh = 300 cm, b = 50 cm, e = 20 cm, b1 331 

=200 cm (Fig.5, left panel).  Therefore, physically the distance between the axes of Kornev’s 332 

ditches (periodic-systematic SI of row crops, like maize in K-35) is 600 cm. The soil is the Van 333 

Genuchent (VG) sand (see the HYDRUS soil catalogue), for which the VG hydraulic parameters 334 
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are K = 712.8 cm/day, α = 0.145 1/cm and n = 2.68.  The FE mesh discretization parameters were: 335 

14212 nodes, 27906 triangular 2D and 528 1D elements.   336 

Our IBVP, which geometrically and in the asymptotic limit t → ∞  is close to one in 337 

subsection 2.1. We used the initial condition, which is default in HYDRUS, viz. p(x,z,0) = -100 cm 338 

that corresponds to an almost irreducible volumetric moisture content θr = 0.045 of the VG sand. 339 

The origin of HYDRUS Cartesian coordinates (xOz) is now at the midpoint of the trapezium bed 340 

such that the soil surface is at the horizon z = 100 cm and the free drainage horizon is at z = -200 341 

cm.   342 

Fig.5. HYDRUS2D geometry, FE nodes, boundary conditions (left panel); isobars in Project 343 

1 (right panel). 344 

The boundary conditions for the HYDRUS octagon in Fig.5 are: no flow everywhere, except the 345 

outlet free drainage horizon (z = -200 cm) and the zero-pressure inlet OC (a segment of a width 346 

b/2=50 cm), i.e. we have a simple flow tube. Physically, the condition at OC means that the water 347 

level in the buried ditch is zero but water is continuously injected into the ditch from an external 348 

tank, as K-35 did in his irrigated crop fields.  Therefore, the V-40 and K-35 problems are 349 

mathematically matched in terms of boundary conditions. We also note that evaporation from the 350 

soil surface and transpiration by the plants’ roots are ignored.   351 

The total HYDRUS simulation time is 5 days, although steady state seepage is attained in half a 352 

day. The right panel in Fig.5 demonstrates the palette of isobars, plotted in the range -30 cm < p < 0 353 

for t = 5 days. The isobars p = 0, -13 cm and -30 cm are arrowed. The analytical and numerical 354 

solutions can be matched by comparing the free boundary p = -pc in subsection 2.1 with one of the 355 

isobars in Fig.5. Obviously, none of the HYDRUS isobars is a streamline, contrary to the analytical 356 

solution where the CF boundary (free surface) is. In Fig.6, we plotted the HYDRUS isotachs (left 357 

panel) and the vector-field of Darcian velocity. Fig.6 demonstrates that high velocities are 358 

concentrated near the trapezium corner C, where the hydraulic gradients are almost 2 that exceeds 359 
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the PK-62 limit of 1 at which porous media are stable in the sense of suffusion and other types of 360 

seepage-induced instability. Therefore, the bed of our HYDRUS trapezium is a line of potential 361 

lessivage for the subjacent ambient soil. 362 

363 
Fig.6. Isotachs and Darcian velocities in HYDRUS  Project 1.  364 

 365 

The HYDRUS dimensional, almost steady-state flow rate for the seepage domain in Fig.5 is QH 366 

= 3.93 *104 cm2/day. 367 

 For the sake of brevity, we skip over the sensitivity analysis, in which we truncated-368 

expanded  (from the right and beneath) the flow domain in Fig.5,  refined the FE mesh, changed the 369 

initial conditions for p, and varied the VG constants  (α, n, k).  370 

 371 

Project 2. Now we consider a saturated-unsaturated seepage from a circular emitter having the 372 

diameter of 10 cm.  K-35  placed such positive-pressure pipes at the bottom of ditches. The width 373 

and height of our rectangular ditch are 40  cm and 25 cm, correspondingly (Fig.7, left panel). The  374 

soil surface is 45 cm above the ditch bed. The HYDRUS flow rectangle is 100 cm wide and 245 cm 375 

tall.  The ambient soil is the VG loam (see the HYDRUS soil catalogue), which is characterized by 376 

(α, n, K) = (0.036 1/cm, 1.56, 25 cm/day). The VG parameters for our peat are:  Ku = 480 cm/day, α 377 

= 0.0381/day, n = 1.216, θs = 0.916, θr = 0.02. These parameters are consistent with ones reported 378 

by  Boelter et al. (1977) and were experimentally  obtained in our lab for the backfilling of the 379 

lenses, earlier modeled  in HYDRUS-1D only. The lenses were designed and constructed as 380 

experimental constructozems for blue spruce seedlings (Picea pungens Engelm.) in the 381 

Serebryanoborsky forest, The Forestry Institute, the Russian Academy of Sciences, Moscow.  382 
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383 
Fig.7. HYDRUS Project 2 flow domain with a perforated pipe emitting water into a peat-filled 384 

rectangular ditch embedded into an ambient loam (left panel) and isobars at t = 60 days (right 385 

panel).  386 

The topsoil boundary condition is now p = -100 cm, i.e. a pretty high dryness of the loam is 387 

imposed on the soil surface. The mesh is coarser than in Project 1 but is refined near the emitting 388 

semi-circle, along which the boundary condition is a hydrostatic pressure distribution with p=0 at 389 

the apex of the semi-circle and p = 10 cm at its lowest point. Thus, the flow domain is not a simple 390 

flow tube as in Project 1 above.  391 

Isobars for t = 60 days (almost steady-state seepage)  are shown in Fig.7, right panel.  392 

 393 
Fig.8. HYDRUS isotachs  (left panel) and velocity vectors at t = 60 days (right panel) in the 394 

vicinity of K-35 ditch.  395 

At t = 60 days, a snapshot of isotachs and of the vector field of the  Darcian velocity is 396 

shown in Fig.8. A separatrix (only schematically sketched) is depicted as an arrowed streamline 397 

with a stagnation point S at the right boundary of the HYDRUS flow domain. This streamline is a 398 

watershed boundary between what seeps from the emitter to the atmosphere and what descends to 399 

deep percolation.  400 

We also modeled a three-component composite soil with a VG clay substratum (for the sake 401 

of brevity we  do not add the corresponding HYDRUS-generated Figures). Specifically, we 402 
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modified the flow domain in Fig.7 (left panel) by adding a VG clay layer having ds = 10 cm (see 403 

Fig.1) and the  pentad of  VG hydraulic  parameters  Ku = 0.1 cm/day, α = 0.008 1/day, n = 1.09,   404 

θs  = 0.38, θr  = 0.068. The flow topology drastically changed, as compared with what is depicted in 405 

Figs. 7-8. Specifically, the abscissa of the stagnation point S decreased from zs = 15 cm (Fig.8 left 406 

panel)  to zs  = -69 cm. The “inverted” (the terminology of Sophocleous, 2002) water table p = 0 407 

which “hangs” under the K-35 in Fig.7 (right panel) is transformed into a “normal” (almost 408 

horizontal) water table. In other words, the deep clay layer (Fig.1) makes soil under emitter fully 409 

saturated  with an almost linear (in z) increase of positive p within the loam stratum. The deep 410 

drainage flow rate decreases to 8.67 cm2/day as compared with 1500 cm2/day in Project 2.  All 411 

these results warn: the soil heterogeneity (even trivial layering) and seepage conditions at infinity, 412 

deep under the soil surface are very important (see e.g. Philip et al., 1989) if simulation times are 413 

long (“seasonal” - “annual” – “decadal” – “centennial” – “millennial”),  rather than short (a  single  414 

“irrigation” or “rainfall” event).  415 

 416 

4. Conclusions                                                        417 

Steady, 2D seepage from a trapezoidal channel into a capillary soil, in which the tension-418 

saturated zone and CF are modeled by the Vedernikov-Bouwer approximation of the soil hydraulic 419 

conductivity. The modern tools of computer algebra made possible solution of a nonlinear equation 420 

with respect to the accessory parameter in a conformal mapping, reconstruction of the flow net, 421 

determination of the seepage flow rate as a function of the slope of the V-40 trapezium. Our 422 

analytical solution for an arbitrary slope of the trapezium matches well the Riesenkampf one for 423 

zero-depth channels.   424 

In HYDRUS2D modeling, which is versatile in demonstrating how the unsaturated soils 425 

uptake moisture from a buried, subirrigation source and spread it up and laterally, against gravity.    426 

Our analytical and  HYDRUS simulations showed how the seepage flow rate from a non-trivial 427 

subsurface source (a backfilled ditch with an impermeable bed as a barrier to deep percolation) 428 

depends on the width of the ditch, slope of the bank and hydraulic properties of the soil or soil 429 

composite through which moisture is spread from the buried K-35 emitter. We also plotted the 430 

palettes and contours of  isobars, isohumes, isotachs, and flow nets which demonstrate the 431 

efficiency of the K-35 subsurface irrigation method. Of special interest are the “free  boundaries”  432 

in the analytical model, viz. the water table or the “cap” of CF. They are plotted and compared with 433 

ones compute by HYDRUS.  434 
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