Оглавление

КРАТКОЕ СОДЕРЖАНИЕ РАЗДЕЛА	2	
Многомерные пространства. Топология	6	
Дифференциальное исчисление в <i>R</i> ⁿ	9	
Экстремумы функции нескольких переменных	12	

КРАТКОЕ СОДЕРЖАНИЕ РАЗДЕЛА

Соберем оглавления всех лекций, посвященных многомерным пространствам.

Лекция 9. Многомерные пространства. Топология

Повторение (топология прямой)	3
Предельная точка и предел	3
Функция непрерывна	
Свойства функций, непрерывных в точке	4
Свойства функций, непрерывных на отрезке	4
ПРОСТРАНСТВО R ^N	6
МЕТРИКА И НОРМА В МНОГОМЕРНОМ ПРОСТРАНСТВЕ	7
Свойства метрик и окрестностей	10
Типы множеств пространства	11
Свойства открытых и замкнутых множеств	

НЕПРЕРЫВНОСТЬ И ПРЕДЕЛ	12
Повторный пределПредел по направлению	13
Глобальные свойства непрерывных функций	
Полнота n-мерного пространства Компактные множества в Rn Свойства функции, непрерывной на компакте	19
Лекция 10. Дифференциальное исчисление в Г ПОВТОРЕНИЕ (ДИФФЕРЕНЦИРОВАНИЕ НА ПРЯМОЙ)	
ДИФФЕРЕНЦИРУЕМЫЕ ФУНКЦИИ	3
Дифференциал и частные производные Арифметические свойства дифференциала	5
Производные по направлению Геометрическая интерпретация	<u>C</u>
Существование дифференциала	

СТАРШИЕ ДИФФЕРЕНЦИАЛЫ И ПРОИЗВОДНЫЕ	17
Формула Тейлора в дифференциалах	20
Лекция 11. Неявные функции	
ТЕОРЕМЫ О НЕЯВНО ЗАДАННОЙ ФУНКЦИИ	2
ФУНКЦИИ, ЗАДАННЫЕ СИСТЕМОЙ УРАВНЕНИЙ	9
Системы большой размерности	15
Лекция 12_13. Экстремумы функции нескольких пе возрастание и убывание. Связь с градиентом	•
ЛОКАЛЬНЫЙ ЭКСТРЕМУМ	6
Экстремум неявно заданной функцииПример вычисления экстремума неявно заданной функции	
УСЛОВНЫЙ ЭКСТРЕМУМ	18
Случай нескольких уравнений связи	26

НАИБОЛЬШЕЕ И НАИМЕНЬШЕЕ ЗНАЧЕНИЯ	28
ПРИЛОЖЕНИЕ. ДВА УРАВНЕНИЯ СВЯЗИ	37
Достаточные условия. Второй дифференциал	38

Можно убрать материал-повторение и заменить деление на лекции делением по темам.

МНОГОМЕРНЫЕ ПРОСТРАНСТВА. ТОПОЛОГИЯ

ПРОСТРАНСТВО \mathbb{R}^n

Определение \mathbb{R}^n

МЕТРИКА И НОРМА В МНОГОМЕРНОМ ПРОСТРАНСТВЕ

Свойства метрик и окрестностей

Метрика, расстояние (евклидово, манхэттенское, равномерное)

Окрестность: открытый «шар». Евклидово – «обычное» расстояние. Равномерное – сводится к расстояниям по координатам.

Равносильность разных способов введения метрики

Норма вектора (расстояние от 0)

Норма и расстояние – взаимосвязаны (в \mathbb{R}^n)

Неравенство треугольника

Типы множеств пространства

Открытые и замкнутые множества

Свойства открытых и замкнутых множеств: объединение и пересечение; конечного или счетного числа множеств

Непрерывность и предел

Непрерывность в точке

Предел в точке (кратный предел: двойной, тройной и т.д.)

Повторный предел

Предел по направлению

Главное: эти пределы все разные и не порождают один другой

Разнообразие разрывов (нет классификации)

Глобальные свойства непрерывных функций

Теорема о покоординатной сходимости: сведение к одномерному случаю. (равносильность евклидовой и равномерной метрики). (Лекция 2-7)

NB. Последовательность в \mathbb{R}^n — несколько функций одного аргумента. Функция — одна функция от нескольких аргументов. Для нее нет покоординатных определений.

Полнота *п*-мерного пространства

Теорема Больцано-Вейерштрасса (об ограниченной последовательности)

Какие определения полноты переносятся на Rn? (в Rn нет понятия супремума множества)

Есть понятие супремума значений функции, так как они лежат на прямой.

Компактные множества в \mathbb{R}^n

Компактные множества – обобщение отрезка. Нужны для перенесения глобальных свойств непрерывных функций.

Определение: ограниченное и замкнутое

Свойства функции, непрерывной на компакте

Какие свойства непрерывных функций можно перенести в *Rn*?

Ограниченность

Достижение sup, inf

Принимает промежуточные значения – нужно доп.условие (связность)

Равномерно непрерывна

Дифференциальное исчисление в R^N

Дифференцируемые функции

Дифференциал – более «первичное» понятие, чем производная Производная не порождает понятие дифференцируемости (и вообще не существует. Есть только частные производные)

Дифференциал и частные производные

Дифференциал определяется из формулы для дифференцируемой функции. (сначала – дифференцируемость, потом – дифференциал).

Дифференцируемость – свойство приращения функции. Оно связано с понятием о-малое. (Остаток – о-малое от расстояния, длины вектора приращения).

Два варианта остатка: евклидово и равномерное расстояние (покоординатное представление остатка).

Частные производные

Арифметические свойства дифференциала

Дифференциал суммы/разности/произведения/дроби Дифференциал сложной функции: несколько слагаемых Производные по направлению

Формула производной по направлению

Градиент (понятие, важное и в других разделах, например, в теории поля)

Существование дифференциала

Чем отличается от одномерного случая

Существования частных производных в точке недостаточно

Теорема о дифференцируемости (непрерывность частных производных)

Старшие дифференциалы и производные

dx, dy – константы

Формула второго дифференциала — квадратичная форма от dx, dy (см. линал и ангеом).

Теорема о смешанных производных — частный случай общей идеи перестановки предельных переходов. Так как производная — это предел.

(Аналог – теорема о перестановке повторных пределов).

Формула Тейлора в дифференциалах

Остаток – в форме Пеано (о-малое). То есть локальный вариант формулы.

ТЕОРЕМЫ О НЕЯВНО ЗАДАННОЙ ФУНКЦИИ

Определение неявно заданной функции

Отсутствии однозначности.

Выделение однозначной ветви по непрерывности

Пример: из точки на верхней полуокружности мы можем двигаться влево-вправо, но не может перейти на нижнюю полуокружность, не делая скачок. Точки, где мы переходим без скачка — точки на горизонтальном диаметре. Они — особые. Как их найти в общем виде?

Точки ветвления – особые точки

Две теоремы о неявной функции (первая теорема – о непрерывности, вторая – о дифференцируемости)

ФУНКЦИИ, ЗАДАННЫЕ СИСТЕМОЙ УРАВНЕНИЙ

Постановка задачи (переменных больше, чем уравнений) Якобиан (определитель из производных)

ЭКСТРЕМУМЫ ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ ЛОКАЛЬНЫЙ ЭКСТРЕМУМ

Возрастание и убывание. Связь с градиентом

Нельзя говорить, что функция возрастает (или убывает). Важно указывать в каком направлении.

Градиент – направление максимального роста, в противоположную сторону – самое быстрое убывание.

Локальный экстремум

Важна локальность: экстремум рассматривается в точке, внутренней по отношению к области определения. Важно, так как мы можем двигаться из точки в разных направлениях.

Определяется в два этапа:

- 1 найти критические точки (du=0)
- 2 исследовать второй дифференциал как квадратичную форму.

Особый случай – когда форма полуопределенная.

Условный экстремум

Экстремум с дополнительными ограничениями. Методы нахождения:

1 способ – решить уравнение связи и подставить значение в функцию (практически не применяется, так как решать большинство уравнений мы не умеем)

2 способ – продифференцировать уравнения, не решая, и найти критические точки. Замечание: исследование второго дифференциала надо проводить с учетом зависимости дифференциалов dx_i .

3 способ – использовать функцию Лагранжа (метод неопределенных коэффициентов). Это формализация метода 2.

Случай нескольких уравнений связи

Наибольшее и наименьшее значения

Наибольший ≠ максимальный. «Наибольший» и «наименьший» – нелокальные понятия. В процессе поиска используется как локальный, так и условный экстремумы (на границе).

Если граница не является гладкой, нужно исследовать границы гладких частей, то есть «границы границы» и т.д.

Достаточное условие использовать не обязательно.