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Abstract: Some of the complexities of surgical interventions include neurological and psychiatric disturbances. 
Prompt identification and early treatment of these complications are pivotal in achieving excellent clinical 
results. Recognizing major adverse events such as stroke, seizure or delirium is usually straight-forward, 
however the discovery of less frequent or more subtle post-operative changes such as cognitive dysfunction 
might be delayed due to lack of appropriate diagnostic tools. This review summarizes biological markers that 
can be utilized as surrogates in evaluating surgery-related neuro-psychiatric disorders. 
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BACKGROUND 
 Impaired central nervous system (CNS) functioning 
is among the many complications of surgical 
procedures. Their temporal characteristics including 
onset and duration are extremely diverse, and present 
with sundry severity: from resolving spontaneously to 
needing routine treatment, they can also lead to life-
threatening conditions that require emergency 
intervention. The clinical presentations vary along a 
spectrum from neurological abnormalities to psychiatric 
manifestations such as stroke, seizure, delirium, 
affective disorders and cognitive dysfunction. 
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 From a holistic point of view, a surgical patient is an 
individual and not a “pack of organs”, therefore post-
procedural brain lesions should not be addressed 
separately from the intervention. Patients undergoing 
operations, however, are hospitalized surgically and 
cared for by physicians trained mainly in surgery with 
some qualification in internal medicine but usually 
limited substantial knowledge and skill in neurology or 
psychiatry. Conversely, brain specialists may not 
necessarily be surgical experts. Therefore, in contrast 
to the most robust and relatively common 
complications that are well-known to any doctor, the 
less conspicuous or infrequent ones are not easily and 
immediately recognized in the peri-operative phase, 
and even if identified they might pose a diagnostic and 
treatment challenge even with the close team-work of 
inter-disciplinary specialists. In such cases an 
extensive medical evaluation is classically undertaken, 
including physical examination with neuro-psychiatric 
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assessment, routine laboratory studies, toxicology 
screen and para-neoplastic panel, brain and body 
imaging, and sometimes even supplemented by EEG 
and lumbar puncture. Despite massive medical 
assessment, however, many relatively rare 
complications go unrecognized or are mis-diagnosed. 
 Even though most of the post-procedural neuro-
psychiatric dysfunctions are well characterized, the 
patho-physiology of a handful of less well-known 
adverse events such as post-operative cognitive 
decline (POCD) is poorly understood despite an 
increasing effort to pin-point risk factors or biological 
markers that could be linked to them. This paper 
dissects the clinically relevant bio-markers with respect 
to such surgical complications. 

RISK FACTORS 
 The development of surgery-related adverse events 
might depend on pre-existing pathological conditions, 
medications used, tissue damage induced by the 
procedure per se, and post-operative care of the 
patients. For example diabetes, atrial fibrillation (with or 
without thrombus in the heart) and carotid artery 
stenosis are risk factors of major neurological events 
such as stroke [1]. In addition, high creatinine-levels, 
hypertension, smoking and previous stroke all increase 
the incidence of post-surgical delirium [2]. Deep hypo-
thermic circulatory arrest, aortic calcification or 
atheroma, and critical pre-operative state are 
independent risk factors for seizures after cardiac 
surgery [3]. 
 A more subtle neuro-psychiatric complication 
following operations is POCD. Cognitive dysfunction 
has recently been recognized to be a common problem 
observed after various surgical interventions: it has a 
high incidence, especially following coronary artery 
bypass grafting (CABG) where it occurs in half of the 
patients at discharge, and approximately 36% at 6 
weeks, 24% at 6 months, and 42% at 5 years [4] after 
surgical revascularization of the coronaries. Clinically 
relevant, persistent and slowly progressive changes in 
the mental processes also exist after heart operations. 
Lately, the term post-operative Alzheimer’s disease 
(POAD) has also been coined and described [5]. Pre-
operative parameters, such as advanced age, 
diabetes, renal failure and low education, as well as 
intra-operative hypo-tension, hypoxia, certain 
medications and even infections are all associated with 
POCD [6-8]. 

BIO-MARKER SOURCES 
 The probable diagnosis of cognitive disorders is 
made through clinical manifestations using neuro-
psychiatric tests, and is only confirmed after a post-
mortem examination of the brain as part of an autopsy. 
Bio-markers, therefore, are invaluable tools in 
identifying such maladies, and they also serve as 
surrogates in monitoring disease progression, 
response to treatment or even to predict the 
development of certain pathologies. The current state-

of-the-art strongly suggests that no single bio-indicator 
yet considered can be used reliably for the diagnosis of 
POCD. It is widely acknowledged that the best possible 
marker or set of markers is likely to come from the 
integration of parameters derived from different types 
of biomedical data and clinical information. No such 
bio-markers exist at present and the goal is to develop 
such a marker or a small set of biological markers for 
the assessment and care for cognitive impairment on 
an individual basis and for the prediction of cognitive 
decline in surgical subjects. 
 The cerebro-spinal fluid (CSF) is considered to be a 
“window to the brain”, and although it is an important 
seedbed of bio-markers, lumbar puncture involves 
invasiveness and an element of risk. Various 
alternative sources include blood (both cellular blood, 
such as lymphocytes, and the non-cellular part, i.e. 
serum), fibroblasts (usually skin biopsies or even hair 
follicles), urine, saliva, tear, etc. Although these are 
more easily accessible than CSF, however they may 
not genuinely reflect cerebral changes as the blood-
brain barrier (BBB) serves as a border between the 
CNS and the rest of the body. Even if some 
metabolites (e.g. protein or lipid markers) cross or are 
transferred through the BBB, they may rapidly degrade 
or be excreted, making them improbable bio-identifiers. 
Nevertheless, the importance of evaluating non-CNS 
bio-marker sources is based on the emerging 
hypothesis that psychiatric disorders are actually 
systemic diseases with molecular alterations found in 
both central and peripheral tissues with the most 
prominent pathology in the brain functions [9-13]. 

BIO-MARKERS IN POCD AND POAD 
β-Amyloid Peptide (βAP) and tau 
 βAP-induced neuro-toxicity is a pathognomonic 
factor in Alzheimer’s dementia (AD). According to the 
amyloid-theory, this physiological peptide is deposited 
in the brain of affected individuals to form senile 
plaques and disrupt technically every cellular function. 
As a result of various perturbed signaling mechanisms, 
pathologically hyper-phosphorylated microtubule-
associated protein tau is also accumulated into intra-
neuronal neuro-fibrillary tangles (NFTs). Cross-
sectional AD studies typically demonstrate elevated 
levels of different epitopes of phospho-tau (p-tau) and a 
decreased concentration of the 42 amino-acid variant 
of βAP (βAP1-42) in the CSF as a result of the ongoing 
patho-physiological processes in the brain. Combining 
these markers for AD diagnosis is at present the only 
bio-marker that meets the consensus diagnostic criteria 
[14-18]: the ratio of βAP1-42/p-tau (Qa/t) confirms AD 
[19]. Although this is only diagnostic when measured 
from CSF, however low plasma βAP levels or βAP1-

42/βAP1-40 ratio may also be markers of cognitive 
decline [20]. 
 Given the comparability of various cognitive 
disorders, several studies have investigated the role of 
βAP in POCD. Old mice submitted to abdominal (liver) 
surgery developed short-term (<5 days) POCD and 
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their brains showed gliosis, enhanced production of 
βAP, and hyper-phosphorylation of tau in the 
hippocampus [21], the mark of AD-like changes after 
major non-cardiac procedures. Significantly lower pre-
CABG levels of plasma βAP1-40 and βAP1-42 have been 
reported in patients who developed POCD 3 months 
after surgery [22]. Serum tau was also higher in 
individuals with neuro-cognitive deficits following 
cardio-pulmonary bypass (CPB) in comparison with 
those who did not develop this condition [23]. The CSF 
profile of βAP and tau 6-months after off-pump CABG 
(OP-CABG) is resembled to that seen in AD [24]. 
 The use of heart-lung machine or the type of 
surgery, therefore, might not be a key factor in these 
altered cognitive bio-markers. However, very nearly 
half of healthy patients aged 55 and older experience 
new onset, chronic (i.e. lasting at least a few months) 
deficits in memory and problem solving after 
anesthesia and non-cardiac surgery [25]. Recently, 
data has emerged that anesthetics interact with βAP 
and promote aggregation as one of the main molecular 
mechanism behind cognitive dysfunction following 
surgery: the smaller the drug, the easier for it to enter 
the cavity of the micro-aggregated βAP to advance 
oligomerization. This interaction is size-limited: larger 
anesthetics have no such effect as they do not fit in the 
pocket-like folded structure of βAP [26]. Tiny particles 
such as volatile narcotics are known to cause more 
pronounced cognitive disturbances than bulkier iv-
anesthetics. Halothan, therefore, is the most potent 
pro-POCD drug, whereas fluranes (iso-, sevo-, des-
flurane) and propofol are much safer in this respect, 
although they are all known to enhance βAP-
oligomerization [27]. Moreover, isoflurane increased 
βAP production and reduces cell viability [28]. In 
contrast, relatively huge molecules such as thiopental 
are not known to cause any cognitive dysfunction. In 
addition, it has been reported that anesthesia could 
induce hyper-phosphorylation of tau, which largely 
depends on hypothermia: normal body-temperature 
resulted in tau-dephosphorylation [29]. 

Apo-Lipoprotein E (apoE) 
 The apoE is a multi-functional protein that plays a 
key role in the metabolism of cholesterol and 
triglyceride. The three main apoE isoforms (E2, E3, 
and E4) are coded by 3 common alleles of apoE (ε2, ε3 
and ε4), resulting in 6 main genotypes (ε2/ε2, ε2/ε3, 
ε2/ε4, ε3/ε3, ε3/ε4, and ε4/ε4) [30]. Genetic 
variation/polymorphism of the apoE gene has been 
associated with variations of lipid plasma levels 
(dyslipidemia), relative risk of atherosclerosis, coronary 
artery/heart disease (CAD/CHD) and AD [31-39]. 
 The premature presence of Alzheimer’s hallmark 
lesions (i.e. cortical senile plaques and NFTs) in the 
brains of non-demented patients with ischemic heart 
disease (IHD) suggests a neuro-pathologic link 
between CAD and AD [40]. Aortic atherosclerosis 
correlates positively with cerebral β-amyloidosis as 
well. This is also confirmed by the finding that anti-
atherogenic therapies, including dietary regimens, may 

be effective in prevention and treatment of AD [41]. 
This is in part because of the underlying atherosclerotic 
lesions throughout the body, including the heart and 
brain: it is known that atherosclerosis is one of the 
(major) risk factors for AD [41]. Previous myocardial 
infarction (MI) or CAD also often occur in and may 
increase the risk of AD. Expression of apoE4 likely 
contribute to the development of CAD by elevating 
blood cholesterol and the risk of AD via proposed 
interactions with βAP and/or free radicals [42, 43]. As 
such, synergistic mechanisms may be involved in the 
pathogenesis of atherosclerosis and primary 
degenerative dementia of the Alzheimer-type [24]. 
 This stunningly unique inter-relationship is also 
signified during cardiac interventions. Patients 
undergoing (OP-) CABG are not rarely affected by 
poly-distrectual atherosclerotic disease, hypertension 
and diabetes: all factors related to the risk of 
progressive cognitive impairment. Not surprisingly, the 
apoE genotype is linked with a decline in cognitive 
performance 6 weeks after heart procedures involving 
CPB [44], but no association has been demonstrated 
among apoE genotype, various blood-based bio-
markers, and cognitive decline [45, 46] or post-
operative delirium [47, 48] following major non-cardiac 
surgery. The use of apoE as a cognitive bio-marker for 
POCD, however, is yet to be confirmed in large scale 
studies. 

Inflammatory Markers 
 Escalating evidence indicates that immune 
mechanisms play a crucial role in POCD. Minor 
abdominal surgery induces glial activation and 
inflammatory response in the hippocampus that can be 
related to cognitive changes [49, 50]. Cytokines, 
especially inter-leukin (IL)-1β, are associated with 
memory impairment in an animal model of tibia surgery 
[51]. Plasma IL-6 and IL-8 is increased in elderly 
patients with delirium [52], and their concentration is 
also elevated following reconstruction of hip fracture 
[53]. However, pre-operative levels of IL-6, C-reactive 
protein (CRP) and insulin-like growth-factor-1 (IGF-1) 
do not correlate with delirium after hip-surgery [54]. On 
the other hand, serum cytokine levels are markedly 
increased within a few hours after heart procedures in 
patients who develop delirium, but not in those without 
any post-surgical psychological pathology [55]. 
Moreover, elevated IL-6 and CRP are associated with 
the POCD following CABG [56]. 
 Post-operatively deranged cytokine levels are seen 
not only in the serum, but also in the CSF of cardiac 
patients: acute over-production of the pro-inflammatory 
IL-6 normalizes within 6 months after the intervention 
along with a gradually increased suppressor IL-4 levels 
in the CSF, suggesting a regulated intra-thecal immune 
response. The delayed compensatory processes are 
intended to reduce cerebral inflammation and prevent 
the development of dementia after heart surgery [57]. 
The CABG-induced cytokine changes differ from those 
seen after major non-cardiac surgeries (e.g. 
hemicolectomy, esophagectomy), and correlate with 
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the pronounced incidence of cognitive impairment seen 
mainly after heart operations [58]. 
 Post-procedural infection is also a key instigator of 
POCD. Endo-toxins, lipo-poly-saccharide (LPS) 
components of the cell wall of Gram-negative bacteria, 
are potent activators of macrophages and dendritic 
cells. Decreased endo-toxin immunity contributes to 
elevated endo-toxin levels and the associated 
inflammatory reaction during contamination: the 
resulting intense signaling cascade and the secreted 
cytokines may set off cognitive changes. Indeed, low 
pre-operative anti-endo-toxin core IgM antibody levels 
have also been linked with increased risk of POCD 
following CABG [59, 60]. Anti-biotic cover in the peri-
operative period therefore prevents not only infections, 
but indirectly may also preclude cognitive changes. 

Cortisol 
 Serum cortisol is known to rise following any 
stressful situation. Apart from its many beneficial 
functions, gluco-corticoid treatment may induce acute 
psychosis and delirium [61-63]. Hippocampal atrophy is 
also seen in conditions with chronically elevated 
circulating cortico-steroid concentrations, such as in 
Cushing’s disease [64], and cognitive impairment might 
also ensue [65]. 
 As a fundamental cortisol-response to stressors, 
increased gluco-corticoid levels are also present 
following operative procedures [66]. Surgical stress-
induced higher cortisol has been associated with 
confusion and delirium after abdominal interventions 
[67, 68], and the same has been observed in cardiac or 
orthopedic surgery as well [69, 70]. 

Serum Anti-Cholinergic Activity (SAA) 
 The relationship of the cholinergic system to 
memory and cognitive functions is well established. 
However, many commonly prescribed drugs have anti-
cholinergic effects such as anti-emetics, anti-
spasmodics, broncho-dilators, anti-arrhythmic drugs, 
anti-histamines, analgesics, anti-hypertensives, anti-
parkinsonian agents, cortico-steroids, skeletal muscle 
relaxants, anti-ulcer drugs, sedative and psycho-tropic 
drugs. Additive long lasting anti-cholinergic side effects, 
therefore, are one of the main reasons for cognitive 
decline and delirium in the elderly [71]. The cumulative 
anti-cholinergic toxicity can be identified in the 
peripheral blood utilizing a muscarinic anti-cholinergic 
radio-receptor assay in comparison to atropine [72]. 
Because this serum assay is known to reflect CNS anti-
cholinergic status, SAA is described as a marker of 
cognitive dysfunction [73]. Indeed, higher SAA has 
been correlated with cognitive impairment or lower 
cognitive test scores (e.g. mini-mental state 
examination, MMSE) especially in dementia [74-76]. 
 Medications with anti-cholinergic properties (e.g. 
sedatives, narcotics, and antibiotics) are regularly 
applied in peri-operative conditions, and surgical 
patients are pre-medicated with central anti-
cholinergics such as scopolamine or midazolam, 

leading to an increased anti-cholinergic burden around 
the procedure. These drugs are likely to have a more 
toxic effect during surgery or in an ageing brain 
because of increased permeability of the BBB, slower 
metabolism and drug elimination, and poly-pharmacy 
[71]. Consequently, association between SAA and 
delirium has been reported in various clinical settings, 
including surgical patients [74, 77]. 

S100β and Neuron-Specific Enolase (NSE) 
 The brain-derived S100β protein and NSE have 
recently emerged as potential serum and CSF markers 
for ischemic cerebral injury. Their levels are also 
elevated after both adult and pediatric cardiac 
procedures [24, 78, 79], and this increase is even more 
prolonged (>30 hr) after heart surgery with CPB [23, 
80]. Serum NSE is presumed to be an important bio-
marker for early cognitive dysfunction 36 hr post-CABG 
[81] where coronary atherosclerosis is a key role-
player, but not in other type of heart operation [82, 83]. 
S100β might also be a good predictor of neurological 
outcome after cardiac surgery, and its level 24 hr after 
surgery possesses around 90% sensitivity and 
specificity for cerebral lesions. However, ischemic heart 
can also release S100β, suggesting that the source of 
this bio-marker can be the cardiac injury and may not 
always genuinely reflect intra-thecal damage [84]. 
Nonetheless, significantly increased S100β level is also 
present in delirium in major non-cardiac (e.g. 
orthopedic) surgical elderly patients [70]. 
Table 1. Summary of bio-markers. 
 

Bio-
Marker 

Relevance in Cognitive  
Impairment Associated with 

βAP AD, CABG 

tau CPB 

p-tau AD 

apoE CPB 

IL-1β animal model of tibia surgery 

IL-6 hip fracture, CABG 

IL-8 hip fracture 

cortisol abdominal interventions, cardiac and/or orthopedic 
surgery 

SAA dementia 

S100β (pediatric) cardiac procedures, major non-cardiac 
(e.g. orthopedic) surgical elderly patients 

NSE (pediatric) cardiac procedures, CABG 

Imaging 
Radiological Markers 
 Computerized tomographic (CT) and structural 
magnetic resonance imaging (sMRI) of AD brains show 
thin cortical gyri of the postero-temporal and postero-
parietal lobes, enlarged (lateral) ventricles, and atrophy 
of the hippocampus. These findings, however, are not 
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specific. Apart from measuring cortex volumes, task-
activated functional MRI (fMRI) studies have found 
decreased cortical activity in the hippocampal and 
para-hippocampal regions and in the medial temporal 
lobe. Because these changes can also predict memory 
decline [85, 86], radiological approaches may be 
important to investigate cognitive deficit after surgery 
as well. 
 Reduced activity in the pre-frontal region was 
detected after on-pump GABG using fMRI, and 
changes in the signal intensity correlated with the 
number of micro-emboli and cognitive impairment [87, 
88]. Although peri-operative ischemic lesions 
underscore vascular dementia (VD), new such brain 
lesions do not explain POCD after CABG or valve 
procedures [89, 90]. This is also confirmed by the fact 
that despite trans-cranial ultra-sound (doppler)-
recordings demonstrate rare gaseous and/or solid 
micro-emboli during OP-CABG when compared to 
procedures involving heart-lung machine, POCD and 
ischemic lesions found at sMRI are seen after non-CBP 
coronary surgeries at a rate similar to that reported for 
on-pump CABG [91-93]. Cognitive changes, however, 
have been more convincingly linked with asymmetrical 
cerebral blood flow following carotid endarterectomy, 
as demonstrated by magnetic resonance perfusion 
scans [94]. Apart from these functional alterations, no 
cortical volumetric MRI changes are known to exist 
after surgery that can relate to POCD. 
Electro-Encephalo-Graphy (EEG) 
 EEG is a non-invasive tool for examining neuro-
physiological temporal dynamics by monitoring the 
summation of electrical activity of multiple neuronal 
populations. AD is characterized by an increase of 
power in the lower frequencies (<4Hz δ, and 4-8Hz θ 
waves), reduced higher frequencies (8-13Hz α, and 13-
30Hz β), and decreased synchronization of the very 
high frequency (30-100Hz γ-band activity) [95, 96]. 
These functional changes are attributable to the 
cholinergic cellular loss, and reflect the functional 
disconnection of neuro-cognitive networks leading to 
reduced information transmission among cortical areas. 
 Because impaired cognitive performance correlates 
with the shift of the power spectrum to lower 
frequencies, less complex activity, and reduced 
coherences among cortical regions / fast rhythms, 
alterations in the EEG pattern have also been used to 
investigate POCD. Slowed mean EEG frequency has 
been consistently reported following CABG, but not 
after major non-cardiac procedures, however its 
predictive value in evaluating post-surgical cerebral 
functional deficit is weak [97, 98]. 

Neuro-Psychiatric (Cognitive Function) Tests 
 MMSE is a widely accepted neuro-cognitive test 
frequently used to evaluate patients after surgical 
procedures as well. Scores less than 25 (out of 30) are 
indicative of impaired cognitive function. Although a 
general decline in MMSE after CABG or other types of 
surgery has been demonstrated in several reports, this 

decrease is not clinically relevant [24] and usually lasts 
for a few days/weeks only, unless other neuro-
psychiatric co-morbidity also develops. 
 Elderly patients submitted to CABG who suffered 
post-procedural multiple brain infarctions as identified 
by MRI had significantly reduced scores in the 
Hasegawa dementia score (HDS), a modification of 
MMSE, when compared to those with only small or no 
such lesions at all [99]. Ischemic brain lesions after 
valve replacement, however, produced no difference in 
the psychometric tests scores [90]. Considering that 
patients with CAD may have generalized arterial 
disease affecting the brain vessels as well, individuals 
with cerebral atherosclerosis – being a risk factor for 
AD and other cognitive disorders – presumably have a 
reduced cognitive functional reserve capacity, making 
these patients vulnerable to POCD [100]. Indeed, pre-
existing cognitive impairment might influence the 
appearance of post-operative mental complications, 
and might be a significant predictor for a development 
of POCD following surgery [4, 101]. MMSE, therefore, 
could serve useful as a marker of POCD in IHD. 
 In addition to CABG, 54% of elderly patients with 
hip fracture submitted to surgery had MMSE<23 before 
the operation, and this figure increased to 66% the 
following day of the procedure, but normalized to 58% 
on day #5 after the intervention [102]. Moreover, a 
slight (ie. clinically not relevant) but significant 
reduction in MMSE was also observed in patients who 
underwent elective hip or knee surgery within a week 
[103, 104]. 
 Interestingly, although most of the studies show a 
reduction in the neuro-cognitive scores after various 
types of surgery, carotid endarterectomy triggers a 
significant improvement in MMSE [105, 106] perhaps 
due to an increased cerebral blood-flow following the 
intervention. 

Other Possible Markers 
Neuro-Filament Heavy Chain (NfH) 
 Neuro-filament is a cyto-skeletal structural protein, 
whose heavy-chain isoform is a marker for axonal 
degeneration. Serum NfH is also elevated in hyper-
acute brain damage, and although there is no evidence 
that it is a specific indicator of neuro-cognitive 
impairment, NfH is accumulated in different brain 
diseases including multiple sclerosis [107], amyotrophic 
lateral sclerosis (ALS) [108], vascular dementia and AD 
[109]. Even though it can be measured from blood and 
is associated with axonal and neuronal degeneration, 
there is yet no evidence that NfH could be used as a 
bio-marker for POCD. However, serum NfH is reported 
to be a sensitive bio-marker for diffuse ischemic brain 
damage following carotid endarterectomy [110]. 
Iso-Prostane (isoP) 
 βAP-induced neuro-toxicity involves uncontrolled 
oxidative stress that leads to excessive formation of 
free-radicals. Their target includes fatty acids to 
produce, among others, prostaglandin-like isoP. It is 
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not only an accurate indicator of lipid peroxidation, but 
also a bio-marker in AD. Although it is not specific for 
the disease, however isoP demonstrates the greatest 
increase of all CSF proteins over the course of 
dementia, suggesting that it is a good candidate to 
monitor disease progression [111]. 
Hypoxia 
 Acute anemia has been shown to result in impaired 
working memory and learning in older hypertensive rats 
[112], however this was matched by an age-dependent 
increase in molecular markers of cellular hypoxia, such 
as the hypoxia-inducible factor (ie. anemic hypoxia). 
Patients who developed cognitive deficit 4 days after 
laparoscopic cholecystectomy had more nitric oxide 
(NO) post-operatively when compared to those without 
POCD [113]. Over-expression of the vaso-dilator NO 
may alleviate cognitive disturbances caused by surgical 
vaso-contriction-related brain hypoxia. This is 
supported by the finding that polymorphism in the 
promoter region of inducible NO-synthase provides 
protection against moderate/severe cognitive 
dysfunction 1 month after carotid endarterectomy [114]. 
Decreased peri-operative regional cerebral oxygen-
saturation has also been observed in post-surgical 
delirium [115]. These suggest that low cerebral 
perfusion and/or hypoxia might be an important marker 
for predicting post-operative delirium/POCD. 
Future Markers 
 Several proteins have been identified as potential 
bio-markers in plasma and serum of AD patients 
reflecting a variety of patho-physiological processes. 
These include inflammation (cytokines, acute phase 
proteins, complement-factor-H), oxidative stress (isoP, 
homo-cystein), lipid metabolism (total cholesterol, apoE 
and other apo-lipo-proteins such as apoA1, apoJ), 
enzymes and anti-proteases (α1-anti-chymotrypsin, α2-
macroglobulin), etc. [20]. The majority of these 
constitute verified or candidate AD risk factors [116], 
whose potential to become clinically exploitable 
biological markers for cognitive dysfunction needs 
replication in POCD as well. 
 Discovery of such future bio-indicators, however, is 
marred by several factors. Traditional marker studies 
have analyzed one gene or protein at a time out of a 
possible ~40,000 genes or ~500,000 proteins based on 
a priori assumption on the pathogenesis of the disease. 
Previous reports, therefore, evaluated arbitrarily 
selected molecules only, and could have provided 
limited findings as they might have missed important 
ones that were not included in the study. In order to 
identify all possible markers, a global proteomics 
method has been used to assess CSF following CABG. 
Utilizing surface-enhanced laser desorption / ionization 
time-of-flight (SELDI-TOF) mass-spectrometry (MS), an 
analysis detected 16 proteins which were substantially 
altered after heart surgery These molecules were 
recognized based on their mass/charge (m/z) ratio, and 
their identification is underway. Although naming of 
these peptides is un-resolved, the handful of these 
CSF markers discriminated a sub-group of individuals 

from POCD, POAD or from any known cognitive 
disorders based on clinical characteristics and specific 
CSF protein profile. This new type of post-procedural 
neuro-psychiatric syndrome demonstrated complete 
separation of patients from other forms of post-surgical 
cognitive impairment, confirming the value of this new 
set of bio-markers [5]. Histo-pathological hallmarks, if 
any, are to be described once evaluation of brains of 
these patients will be available post-mortem. 

CONCLUSION 
 Recognizing cognitive impairment is rather 
challenging, as their diagnosis is mainly based on 
subjective patient interviews and neuro-psychiatric 
tests. Many cases after CABG remain largely 
undetected or simply neglected because the underlying 
cardio-vascular disease or other major surgical 
complications appear to be more “important” or severe. 
The use of objective bio-markers may help prompt 
identification of POCD. However, although correlation 
between various markers and cognitive decline exists, 
current data are sometimes still controversial and 
therefore prospective confirmation of bio-indicators in 
controlled matched populations is warranted. 
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