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Abstract—This paper provides the foundations of an original theory of quasi-reproducible experi-
ments (QRE) based on the testable hypothesis that there exists an essential correlation (memory)
between successive measurements. Based on this hypothesis, which the authors define for brevity
as the verified partial correlation principle (VPCP), it can be proved that there exists a universal
fitting function (UFF) for quasi-periodic (QP) and quasi-reproducible (QR) measurements. In
other words, there is some common platform or “bridge” on which, figuratively speaking, a true
theory (claiming to describe data from first principles or verifiable models) and an experiment offering
this theory for verification measured data, maximally “cleaned” from the influence of uncontrollable
factors and apparatus/soft wire function, meet. The proposed theory has been tested on eddy
covariance ecological data, specifically measuring only the concentration of CH4, CO2 and water
vapors of H2O in the local atmosphere where the corresponding detectors for measuring of the
desired gases content are located. For these tested eddy covariance data associated with the
presence of two gases CH4, CO2 and H2O vapors in atmosphere there is no simple hypothesis
containing a minimal number of the fitting parameters, and, therefore, the fitting function that
follows from this theory can serve as the only and reliable quantitative description of this kind of
data belonging to the tested complex system. Applications of this theory to practical applications,
the place of this theory among other alternative approaches, (especially touching the professional
interests of ecologists) and its further development are discussed at the end of this paper.
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The list of the main abbreviations
They are given in the alphabetic order: AFR—amplitude-frequency response; (F)LLSM—

(functional) linear least square method; GPD—the generalized Prony decomposition; IM—Intermediate
Model; IE—“Ideal Experiment”; QRE(s)—Quasi-reproducible experiment(s); QPE(s)—Quasi-
periodic experiment(s); VPCP—Verified partial correlation principle.

1. INTRODUCTION AND FORMULATION OF THE PROBLEM

Is it possible to construct a “universal” fitting function for a nonstationary QR experiment? Such a
question will seem absurd and meaningless to any experienced researcher. Everybody knows how the
traditional interaction between theory and experiment takes place. Theory proposes models, hypotheses
based on some assumptions and postulates. The experiment, in turn, tests these hypotheses, trying
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to eliminate to the maximum extent possible the influence of uncontrollable factors and distortions
(interferences) introduced by the measuring equipment (it is usually defined as a hardware/apparatus
function). What can be introduced fundamentally new to this traditional scheme? What if we imagine
that it could find some verified or tested principle that virtually all measurements obey? If such a principle
is found, then from its mathematical formulation it would be possible to derive some “universal” fitting
function, which would make it possible to describe all measurements. The authors define this principle
as the verified partial correlation principle (VPCP). Thus, based on the VPCP, it will be possible to obtain
a general mathematical model (defined as an intermediate model—IM) to which all measurements
satisfying this principle will have to obey. What is this principle that most measurements satisfy? If
we unfold the VPCP, it is formulated as follows: successive measurements retain partial correlation
(memory) among themselves and remain fully or partially correlated as a result of a series of successive
measurements. Of course, here it is necessary to make clarifications about the nature and type of these
measurements and to translate this imprecise verbal formulation into a strict mathematical language.
Therefore, it is necessary to first conduct several concepts and then translate this principle into the
language of mathematical formulae. By an “ideal” experiment (IE) the authors understand such an
experiment when a sequence of measurements m (m = 0, 1, 2, ...,M − 1) carried out for some average
period T with respect to the controlling external variable x leads to the same value of the measured
response function F (x). In this sense, all measurements corresponding to an IE are completely or
absolutely correlated. Mathematically, this statement looks as follows

F (x+mT ) = F (x), m = 0, 1, . . . ,M − 1. (1)

Here the controlled (manipulated) variable x can coincide with a time variable (t), frequency (ω), wave-
length (λ), etc. Since the experiment performed on this set of variables is a single-factor experiment,
the other controlled variables affecting the response function are assumed to be unchanged within some
range of their values during the single-factor experiment. The solution to this functional equation (1) is
a periodic segment of the corresponding Fourier series. For discrete data, the Fourier series segment, is
usually written in the form

F (x) ∼= Pr(x) = A0 +

K�1∑

k=1

[
Ack cos

(
2πk

x

T

)
n+Ask sin

(
2πk

x

T

)]
. (2)

The parameter T defines some average measurement period with respect to the input variable x. It
follows from this simple equation (1) that expression (2) can be used as a fitting function for the response
function in the IM. In this idealized case, the intermediate model (IM) coincides with the solution of the
Fourier series segment, and the coefficients of this expansion can act as fitting parameters corresponding
to the IE. Actually, the fitting parameters can form the desired AFR. It is quite obvious that the IE
requirement (1) is not realized in reality and analysis of various data shows that instead of equation (1) a
more general functional equation should be written

F (x+ LT ) =
L−1∑

l=0

alF (x+ lT ) + b. (3)

It can be interpreted as follows: starting from some measurement L (L < M ), some measurements
become partially correlated and the realized experiment cannot generate fundamentally new measure-
ments. “New” measurements (starting from some L, M > L) become already dependent (correlated)
on the previous/“past” ones realized earlier, and the desired set of correlation coefficients al (l =
0, 1, ..., L − 1) can be found using the least squares method (LLSM). The solutions of this functional
equation are expressed as a generalized Prony decomposition (GPD). We consider this a fundamental
finding, as it shows the inapplicability of the formal Fourier decomposition for analyzing real data. The
adequate IM for data where the set of constants al (l = 0, 1, ..., L − 1) does not depend on the external
variable x, is exactly the solution of equation (3), acting as an alternative fitting function. Before giving
the general solution of equation (3) it is instructive to consider the partial case. Let l = 0, L = 1 in (3).
Therefore, we have

F (x+ T ) = a0F (x) + b. (4)
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Solution of (4) can be written as

F (x) =

⎛

⎜⎜⎜⎝

(a0)
x/T Pr(x) + b/(1 − a0), a0 > 0, a0 �= 1

|a0|x/T cos
(
π x
T

)
Pr(x) + b/(1 + a0), a0 < 0, a0 �= −1,

Pr(x) + b
(
x
T

)
, a0 = 1.

⎞

⎟⎟⎟⎠ . (5)

Here Pr(x) is a periodic function that is determined by expression (2). The most interesting conclusion
follows for a0 > 1. In this case, the exponential argument in (5) ln(a0) > 0 and, finally, we obtain the
increasing function. In means that the next measurement in (4) becomes important, while for a0 < 1
the next measurement becomes decreasing. Even the appearance of a constant b at a0 = 1 leads to
increasing solution proportional to x/T . How to understand (3) from another point of view? Let to
consider the following case

F (x) = f1(x) + f2(x), (6)

where functions f1(x) and f2(x) in (6) are periodic with the same period T (for simplicity ones put b = 0).
Taking into account equation (4) one can write

ETF (x) ≡ F (x+ T ) = λ1f1(x) + λ2f2(x),

(ET )
2F (x) ≡ F (x+ 2T ) = (λ1)

2f1(x) + (λ2)
2f2(x). (7)

Here we introduce the shifting operator ET associated with period T . With the help of this operator one
can rewrite the last line in (7) in very compact and clear form

(ET − λ1)(ET − λ2)F (x) = 0 or F (x+ 2T ) = a1F (x+ T ) + a0F (x). (8)

Therefore, equation (3) can be presented in the equivalent form with the help of application of the shifting
operators ET as

F (x+ LT ) =

L−1∏

l=0

(ET − λl)F (x) + b. (9)

Multiplying the terms in (9) it is easy to relate the set of the roots λl (l = 0, 1, . . . , L− 1) with coefficients
al using Vyet’s theorem, relating the coefficients of a polynomial to their roots. It makes sense to give
the solution of (3) in full, devoted to the consideration of this nontrivial problem. The solution of equation
(3) has the form

(A)
L−1∑

l=0

al �= 1, F (x) =
L∑

l=1

[λl]
x/T Prl(x) +

b

1−
∑L−1

l=0 al
,

(B)

L−1∑

l=0

al = 1, F (x) =

L∑

l=1

[λl]
x/T Prl(x) +

b

L−
∑L−1

l=0 lal

x

T
. (10)

Here the functions Prl(x) are the set of periodic functions (2), the set of constants λl (l = 1, 2, . . . , L) is
found as roots of the polynomial from equation

PL(λ) ≡ λL −
L−1∑

l=0

alλ
l = 0. (11)

Here we do not give solutions for complex-conjugate roots and the degenerate case (when the polyno-
mial PL(λ) has congruent roots); they are given in the publications [4, 5] cited above. We only note that
for the case of a negative root (λs < 0) the periodic function Prs(x) becomes already anti-periodic, and
the solution for this case can be given in the form of the expression

F (x) =
[
|κs|

]x/T
cos

(
π
x

T

)
Prs(x). (12)

Thus, for the case of QP measurements satisfying equation (4), the GPD segment (not Fourier!) written
in the form (4) acts as the IM. Further development of this idea and its verification on available data were

LOBACHEVSKII JOURNAL OF MATHEMATICS Vol. 45 No. 8 2024



QUASI-REPRODUCIBLE EXPERIMENTS 3959

given in [5]. In particular, there it was shown how to go beyond the acceptable observation interval
given by the variable x and to suppress the partial memory influence occurring between measurements
in order to extract from the solutions of (4) only purely periodic functions that can correspond to IE
and be presented to a theoretical model (hypothesis) for verification. Of course, hypothesis (3) has
some limit of applicability, consisting in the fact that the set of parameters al (l = 0, 1, . . . , L− 1)
does not change during the experiment. In reality, in many experiments this set can change with the
changing of the external variable x, and the number of measurements in many experiments cannot be
large. Therefore, in order to go beyond equation (3), it is necessary to obtain analytical solutions for
the case when al → al(x) and to find the minimal limit of the number of measurements when additional
information expressed in the form of repeatability of measurements is important for finding the fitting
function following from IM. Recently, these solutions have been found and they are the ones that allow
making the proposed theory more flexible and adaptable to describe non-stationary experiments, when
the influence of uncontrollable factors in the measurement process may be significant. Therefore, it
makes sense to introduce the following distinctions in the terminology used. Under quasi-periodic (QP)
measurements we understand such measurements, when the experimental conditions allow to keep
the uncontrolled parameters strictly within the specified limits of permissible intervals and, therefore,
they can be considered approximately stationary (al are stayed const). Under quasi-reproducible (QR)
measurements we understand such measurements when the influence of uncontrollable factors becomes
significant (al(x) depends on the current variable x) and the experimental conditions are already non-
stationary. In this case, it becomes necessary to find solutions of a more general functional equation

F (x+ LT ) =
L−1∑

l=0

〈al(x)〉F (x + lT ). (13)

It turns out that it is possible to find analytical solutions of equation (13) for a wide class of functions
satisfying the periodicity condition. It is to outline the foundations of this more general theory, based
on a series of consecutive measurements, applicable to the description of QR experiments, its possible
generalizations and verification on available data, that this paper is mainly devoted. Of course, any
theory will be incomplete if it has not been tested by experiment. Therefore, the authors give a non-
trivial example based on the description of eddy covariance data in the frame of the proposed theory.
Moreover, the proposed algorithms are general enough, they can be applied to analyze many similar QR
experiments too.

2. BASIC THEORY OF THE QR EXPERIMENTS

2.1. Self-Consistent Solutions of Equation (13)

We can obtain solutions of the functional equation (13) provided that the “length” L, which
characterizes the memory between measurements, is assumed to be known. So, let us assume that
all consecutive measurements satisfy the equation

FL+m(x) =

L−1∑

l=0

〈al(x)〉Fl+m(x), m = 0, 1, . . . ,M − 1. (14)

In order to find the unknown functions 〈al(x)〉 (l = 0, 1, . . . , L; L < M ), one can generalize the LLSM
and require that the functional dispersion accepts the minimal value

σ(x) =
1

M − L

M−L−1∑

m=0

[
FL+m(x)−

L−1∑

l=0

〈al(x)〉Fl+m(x)

]2

= min . (15)

In order to get the desired solution, it is necessary to take the mean value over the remaining
measurements (l = 0, 1, . . . ,M − L− 1, L; L < M ). Taking the functional derivatives with respect to
unknown functions 〈al(x)〉, we obtain

− δσ(x)

δ〈al(x)〉
=

1

M − L

M−L−1∑

m=0

[
Fl+m(x)

(
FL+m(x)−

L−1∑

s=0

〈as(x)〉Fs+m(x)

)]
= 0. (16)
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Here we apply also the averaging procedure over all set of admissible measurements supposing that the
set of the functions 〈al(x)〉 (l = 0, 1, . . . , L; L < M ) does not depend on the index m. Introducing the
definitions of the pair correlation functions

KL,l =
1

M − L

M−L−1∑

m=0

FL+m(x)Fl+m(x), Ks,l =
1

M − L

M−L−1∑

m=0

Fs+m(x)Fl+m(x), (17)

s, l = 0, 1, . . . , L− 1, one can receive the system of linear equations for the calculation of unknown
functions 〈al(x)〉

L−1∑

s=0

Ks,l(x)〈as(x)〉 = KL,l(x). (18)

It makes sense to define this procedure as the functional linear least squares method (FLLSM), which
includes the ordinary LLSM as a partial case. Now let us return to equation (13). The solution of this
equation is sought in the form

F0(x) =
[
κ(x)

]x/T
Pr(x), Fm(x) =

[
κ(x)

]m+x/T
Pr(x). (19)

The functions 〈al(x)〉, κ(x± T ) = κ(x), Pr(x± T ) = Pr(x) in accordance with the suppositions made
above can be expressed approximately by the segment of the Fourier series in complete analogy with
expression (2)

Φ(x) = A0 +

K�1∑

k=1

[
Ack cos

(
2πk

x

T

)
+Ask sin

(
2πk

x

T

)]
. (20)

It is obvious that the decomposition coefficients Ack, Ask (k = 1, 2, . . . ,K) depends on the specific form
of the decomposed function. Inserting the probe/inoculating solution (16) in equation (14), we derive
equation for calculation of unknown functions κ(x) figuring in (19)

[
κ(x)

]L
−

L−1∑

l=0

〈al(x)〉
[
κ(x)

]l
= 0. (21)

If the functional roots κq(x), q = 1, 2, . . . , L can be calculated from (21), then the general solution for
the function Fm(x) is written in the form

F0(x) =
L∑

q=1

[
κq(x)

]x/T
Prq(x), Fm(x) =

L∑

q=1

[
κq(x)

]m+(x/T )
Prq(x), m = 0, 1, ...,M − 1. (22)

The number of periodic functions Prq(x) should coincide with number of functions κq(x), q =
1, 2, . . . , L, entering in the last expression (22). It is this expression that can be considered as a
general solution of the functional equation (8). This solution can be interpreted as follows: if successive
measurements are partially correlated with each other (“remember” each other) and can vary during
the average measurement period T , then the fitting function to describe these measurements is self-
consistent and is determined by the whole set of random measurements taking part in this process.
Obviously, this new result generalizes previous results [5] obtained for the case when the functions
〈al(x)〉 can be approximated by constants al. It would be desirable to obtain solutions of equation
(14) for the case when the functions 〈al(x)〉 are not completely periodic or obtained a priori from
other conditions. But, to the best of the authors knowledge, the mathematical theory of solutions of
functional equations is practically undeveloped [6] compared, for example, with a full-fledged theory of
solutions of differential or integral equations. Therefore, the proposed theory defines a new direction for
mathematicians working in the field of functional analysis and personally aiming at applications of their
results in physics, chemistry and engineering. For practical applications it makes sense to consider in
more detail the case of short memory with (L = 2), since the number of fitting parameters for this case
is minimal. As one can see below the long memory case L > 2 can be reduced also to the short memory
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case also. It is the results for this case that will be needed to describe real measurements, which are
given in the next section. For the case of short memory when L = 2 we obtain

F2+m(x) = 〈a1(x)〉F1+m + 〈a0(x)〉Fm, m = 0, 1, . . . ,M − 1. (23)

Equation (18) for this case accepts the form

K00(x)〈a0(x)〉+K10(x)〈a1(x)〉 = K20(x),

K10(x)〈a0(x)〉+K11(x)〈a1(x)〉 = K21(x). (24)

Solution of equation (23) is written as

F0(x) =
[
κ1(x)

]x/T
Pr1(x) +

[
κ2(x)

]x/T
Pr2(x), κ1,2 =

〈a1(x)〉
2

±

√(
〈a1(x)〉

2

)2

+ 〈a0(x)〉. (25)

If one of the roots in (25) becomes negative (for example, κ2(x) < 0), then the general solution for this
case (with extraction of the real part) cab be written as

F0(x) =
[
κ1(x)

]x/T
Pr1(x) +

[
|κ2(x)|

]x/T
cos

(
π
x

T

)
Pr2(x). (26)

If the order of measurements to assess the effect of nonstationary of the process as a whole is significant,
then the proposed theory allows us to recover the whole nonstationary sequence according to the
relations:

Fm(x) =
[
κ1(x)

]m+(x/T )
Pr1(x) +

[
κ2(x)

]m+(x/T )
cos

(
π(

x

T
+m)

)
Pr2(x),

Pr1,2(x) = A0 +

Km∑

k=1

[
Ac

(m)
k,1,2 cos

(
2πk

x

T

)
+As

(m)
k,1,2 sin

(
2πk

x

T

)]
, m = 0, 1, . . . ,M − 1. (27)

Here the functions Pr1,2(x± T ) = Pr1,2(x) keep their periodicity over the mean period T , however, the

decomposition coefficients Ac
(m)
k,1,2 and As

(m)
k,1,2 (k = 1, 2, . . . ,Km), figuring in (27), can be differed from

the case m = 0 and reflect the influence of possible instability during the whole measurement process.
If the true sequence of measurements is not essential and the results of measurements remain invariant
with respect to permutations of all measurements with each other, one can group all measurements into
three independent groups (a specific triad), and the case of long memory is reduced to the short memory
case again, considered above. This simple idea allows us to significantly reduce the number of fitting
parameters and to obtain again a fitting function with a minimum number of fitting parameters. This
procedure related to the formation of the necessary triad is described in the next subsection.

2.2. Clusterization Procedure and Reduction To an “Ideal Experiment”

As it was emphasized earlier in [5], the estimation of the “true” value ofL based on a common criterion
is an unsolved problem. If the assumption regarding permutations of measurements with each other
can be justified and seems quite reasonable, one can propose the following procedure for clustering and
partitioning all measurements into three groups (creating a specific triad). For this purpose, we will
consider the distribution of slopes (angle tangents) of each measurement with respect to their average
measurement whose angle tangent is equal or close to one

Slm = slope(〈y〉, ym) ≡ (ym · 〈y〉)
(〈y〉 · 〈y〉) , 〈y〉 = 1

M

M−1∑

m=0

ym, (A ·B) =

N∑

j=1

AjBj. (28)

The bracket in (28) defines the scalar product between two functions having j = 1, 2, . . . , N data mea-
sured points. We assume that the random measurements ym(x) for m = 0, 1, . . . ,M − 1 approximate
the functions Fm(x) (ym(x) ∼= Fm(x)), appearing in equation (27). If we construct a random distribution
slope function Slm depending on the measurement number m, then arrange all measurements in
descending order Sl0 > Sl1 > · · · > SlM−1. This distribution slope function can be divided into three
groups. The top group of measurements “up” has slopes localized in the interval (1 + Δ,max(Slm));
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the middle group (defined as “mn”) contains measurements with slopes in the interval (1−Δ, 1 + Δ);
and finally, the bottom group (denoted as “dn”) contains measurements with slopes (1−Δ,min(Slm)).
The value Δ for each set of the QR measurements is defined independently in each specific case. This
ordered curve Slm is important and reflects the quality of the performed measurements and the quality
of used equipment. How to find Δ based on expression (28)? One can divide the ordered curve Slm
after subtraction the unit value on two parts—positive part (0,max(Slm − 1) and the negative part
(min(Slm − 1), 0). In each part one takes the halves of each selected part, i.e., Δ1 = max(Slm − 1)/2

and Δ2 = min(Slm − 1)/2. These values can be used for division on the three desired parts/clusters.

The first group is formed as: (a) the distance from the initial point of the BLC (0,0) to the first
point of intersection (m1, 1 + Δ1) determines the number of measurements Nup(m = 1, 2, . . . ,m1 =
Nup) falling into the first (upper) group, they are characterized by the average Y up(x) curve; (b)
the distance between the two points (m1, 1 + Δ1), (m2, 1 + Δ2) of intersection of the straight line
with the BLC determines on the axis OX the number of measurements Nmn(m1 + 1,m2 − 1) falling
into the middle group “mn” with slopes close to unity; finally, (c) (m2, 1 + Δ2), (M − 1, 0) the last
group of measurements equaled Ndn falls into the lower group “dn” and is characterized by the
average curve Y dn(x). If the number of measurements Nmn > Nup+Ndn, then such a cycle of
measurements is rated as “good” and is relatively stable. In the case when Nmn ≈ Ndn ≈ Nup,
then such measurements are rated as “acceptable” (with a score of “satisfactory”) and finally, the case
when Nmn < Nup+Ndn is rated poorly and such measurements are generally rated as unsatisfactory.
Quantitatively, all three cases can be evaluated using a ratio:

Rt =

(
Nmn

Nup+Ndn+Nmn

)
· 100% =

(
Nmn

M

)
· 100%. (29)

In expression (29), parameter M determines the full number of measurements. Based on this evaluation,
the following criteria can be introduced: “excellent” and “good” grades are given to an experiment
when 60% < Rt < 100%; an “acceptable” or “satisfactory” grade is given to an experiment when
30% < Rt < 60%; and finally, a “poor” grade is given when 0 < Rt < 30%. Therefore, by creating this
triad from the original measurements, one can introduce the following definitions:

F0(x) ∼= 〈a1(x)〉F1(x) + 〈a2(x)〉F2,

F0(x) ≡ Y up(x) =
1

Nup

Nup−1∑

m=0

y(up)m (x), 1 + Δl < Slm < max(Slm),

F2(x) ≡ Y dn(x) =
1

Ndn

Ndn−1∑

m=0

y(dn)m (x), min(Slm) < Slm < 1−Δ2,

F1(x) ≡ Y mn(x) =
1

Nmn

Nmn−1∑

m=0

y(mn)
m (x), 1−Δ2 < Slm < 1 + Δ1. (30)

Here the Slm function defines a distribution of slopes arranged in decreasing order; the parameters Δ1,2,
related to the value of the confidence interval, are chosen independently for each series of measurements.
We have here added three “artificially” created measurements F2,1,0(x) to the previous set ym(x). As
a result of this procedure, the 〈a1,2(x)〉 functions independent of the index m remain almost the same
(for sufficiently large values of M ) compared to the case where no such clustering procedure was applied
to the original measurements. We also assume that the averaged function Y mn(x) is identified with
the initial measurement F1(x), while the other two measurements F0,2(x) coincide with the functions
Y up(x), Y dn(x), respectively. The solution of equation (30) is determined by expressions (26) and (27).
This clustering procedure turns out to be very efficient and can be applied to a wide range of cases. The
details of this procedure are described for a non-trivial example discussed below.

The next issue to be considered in this section is related to the reduction of real measurements to IE.
According to the definition given in [5] (see also definition (1)), by IE we mean the situation when

Fm(x) ≡ F (x+mT ) = Fm+1(x) ≡ F (x+ (m+ 1)T ), (31)
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Fig. 1. Initial data containing second data recorded during the first hour (black lines) and second hour (red lines),
correspondingly. In order to smooth these data and eliminate the HF fluctuations one can use expression (36). The
result is shown in the next figure.
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Fig. 2. Based on expression (36) one can integrate data and receive the smoothed curves that are suitable for the further
analysis. One can notice that integrated data demonstrate their oscillating character.

the response function (measurement result) remains the same for the whole series of measurements
included in one cycle. As mentioned above, in this case the IE coincides with the segment of the Fourier
series (2). Therefore, the question arises: is it possible to extract the purely periodic F-components
Prq(x) (q = 1, 2, . . . , L) from the general solution (22) and to present to theorists for comparison the
purified function, which should be compared with the hypothesis claiming to quantitatively describe the
experimental results from a microscopic point of view? It makes sense to show this procedure in detail
for the case of a “short” memory (L = 2), keeping in mind this situation as the most likely one. As
it has been shown above the case of a large number of measurements 2 < L < M at some reasonable
suppositions is reduced to the short memory case also.

1. L = 2, case when κ1,2(x) > 0

F0(x) =
[
κ1(x)

]x/T
Pr1(x) +

[
κ2(x)

]x/T
Pr2(x),

F1(x) = κ1(x)
1+(x/T )Pr1(x) + κ2(x)

1+(x/T )Pr2(x). (32)

From this system of equations, we can easily find the desired periodic function Pr(x), which will
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M − 1,M = 168). This curve defined by expression (28) helps to evaluate the number of slopes forming the “up”
of the slopes distribution (Nup = 64) and the slopes referring to the “dn” (Ndn = 50) and the middle of the curve
(Nmn = 54). Using expressions (30) one can use the corresponding analysis to consideration only three integrated
curves only. They are shown in the figure below.
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be represented as a linear combination of the functions

Pr1(x) =
[
κ1(x)

]−(x/T )F0(x)κ2(x)− F1(x)

κ2(x)− κ1(x)
,

Pr2(x) =
[
κ2(x)

]−(x/T )F1(x)− F0(x)κ1(x)

κ2(x)− κ1(x)
,

Pr(x) = w1Pr1(x) + w2Pr2(x). (33)
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function (38) is expressed in the form of the red solid line.
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previous figure 5.

Here, for “insurance”, we have introduced unknown weight constants w1 and w2 to use them
as fitting parameters at the final stage of comparison of the fitting function of the IE with the
hypothesis derived from a competing model or microscopic theory. Obviously, the zeros of the
functions κ1 and κ2 in (33) do not define the sought periodic functions, and the degenerated case
must be treated separately.

2. L = 2, the case when κ1(x) > 0 and κ2(x) < 0

F0(x) =
[
κ1(x)

]x/T
Pr1(x) +

[
|κ2(x)|

]x/T
cos

(
π
x

T

)
Pr2(x),
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Fig. 7. This significant figure demonstrates clearly the integrated curves that are “cleaned” from the influence of the
uncontrollable factors. These curves can be served as a specific “bridge” connecting the specific theory with experiment.
The optimal period Tmx as earlier is found from the criterion corresponding to the minimal error requirement (see
expression (37)).
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F1(x) = κ1(x)
1+(x/T )Pr1(x)− |κ2(x)|1+(x/T ) cos

(
π
x

T

)
Pr2(x). (34)

Solution in this case accepts the form

Pr1(x) =
[
κ1(x)

]−(x/T )F1(x) + |κ2(x)|F0(x)

κ1(x) + |κ2(x)|
,

Pr2(x) =
[
|κ2(x)|

]−(x/T )F0(x)κ1(x)− F1(x)

κ1(x) + |κ2(x)|
,

Pr(x) = w1Pr1(x) + w2Pr2(x). (35)

The cases when degenerate “roots” coincide identically with each other κ1(x) ≡ κ2(x) and the
case of complex-conjugate “roots” (κ1,2(x) = Re(κ(x)) ± iIm(κ(x))) are omitted. The authors
suggest that the inquisitive reader obtain them as an exercise. A careful analysis of this theory
shows that it allows going beyond the allowed values of the controlled variable x. This possibility
is considered in Mathematical Appendix 2.
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gas shown in Fig. 8. One notes that the periodic function Pr2(x) has significant values and, therefore, it is depicted on
the central figure separately.
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Fig. 10. The averaged integrated curves calculated for the vapors of H2O.

3. VERIFICATION OF THE PROPOSED THEORY ON REAL DATA

In order to diminish the influence of strong variations of these high-frequency (HF), random factors
we integrate the initial data by means of trapezoid method preliminary normalizing them in accordance
with the following expressions

Yj =
yj −mean(y)

stdev(y)
, j = 1, 2, . . . , N,

Jj = Jj−1 +
1

2
(xj − xj−1)(Yj + Yj−1), J0 = 0. (36)

These expressions make the initial data yj : (a) dimensionless and (b) filtered. Integration procedure
eliminates the high-frequency fluctuations and smoothes possible outlies. After this preliminary manip-
ulation one can prepare the 3 rectangle matrices for each selected gas as CH4, CO2 and atmospheric
humidity H2O. Each matrix contains in total N rows ×M columns, where N contains 3600 data points
in each column (coinciding with 1 hour measurement) and M = 24× 7 = 168 hours per week.

Supposing that these prepared data can be classified as QR experiments one can obtain three
normalized and integrated curves Jr , (r = up,mn, dn) in accordance with clusterization procedure
described in the previous section. Our further goal is to describe these 9 curves for the three original
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Fig. 11. This figure shows the purified pure periodic curves Pr0,2(x) obtained from initial averaged curves for the H2O
shown in Fig. 10. One notes that the periodic function Pr2(x) has another scale and, therefore, it is depicted on the
central figure separately. We do not show a similar curve for Pr1(x) because it has location in very narrow scale [199.3–
199.5] and it cannot be shown in this picture.

matrices using a minimum number of fitting parameters. Attentive analysis shows that not disturbing
the validity of the proposed general theory, in expression (25) one can put simply Pr1(x) = Pr2(x) =
Pr(x). The functions κ1(x) and κ2(x) are defined in the same expression by the line below. The
unknown functions 〈a1(x)〉 and 〈a2(x)〉 serving for evaluation the desired roots κ1,2(x) are derived from
expressions (17) and (18). The unknown nonlinear parameter as the maximal period T value that figures
in definition of periodic function (2) can be calculated from the minimization of the relative error value

RelErr(Tmx, Rmin) = min

(
stdev(Jr(x)− F0(x, Tmx, Rmin))

mean|Jr(x)|

)
· 100%. (37)

Here the simplified fitting function F0(x, Tmx,Kmin) is determined as

F0(x, Tmx,Kmin) = A0 +G(x, Tmx)Ac0

+G(x, Tmx)

Kmin∑

k=1

[
Ack cos

(
2πk

x

Tmx

)
+Ask sin

(
2πk

x

Tmx

)]
, (38)

G(x, Tmx) =
(
κ1(x)

x/Tmx + κ2(x)
x/Tmx

)
.

In the last expression, it is convenient to use the normalized input variable xj = j/N in the interval [0,1].
Therefore, the most probable interval, where the value Tmx can be located, is determined as (0.5, 1.75).
This supposition was confirmed also numerically. From the simplified fitting function (38) it is easy to
find the periodic function (2) from (38) corresponding to the IE

Pr(x) ∼= A0 −Ac0 +
F0(x, Tmx,Kmin)−A0

G(x, Tmx)
. (39)

The simplified fitting function (38) (containing minimal number of the fitting parameters Prm =
[(Tmx, A0, Ac0) + 2Kmin]) allows to obtain the desired AFR (amplitude-frequency response) that con-
tains the leading minimal frequency ωmin = 2π/Tmx and the total segment of frequencies ωk = ωmink
located in the interval [1,Kmin].

In order to save place for demonstration of similar figures associated with all data, we demonstrate
the processing details for CO2 measured data only. Other data are processed by similar way. In Fig. 1,
we demonstrate the initial data (the first two columns from the initial matrix N = 3600 ×M = 168).
Integration procedure performed with accordance of expression (36) is shown in Fig. 2. As it has
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Table 1. Collection of the basic fitting parameters related to CH4, CO2 and H2O

Basic parameters CH4 CO2 H2O

RelError(%) 3.14244 0.38908 0.50246

Tmx −0.01066 2.36204E-4 2.4294E-5

A0 −215.377 0.00615 −0.00962

Ac0 −57.7857 −0.00592 0.0068

Ack , Ask for (k = 1,Kmin) 406.089 0.00418 0.00168

339.818 −4.08188E − 5 0.00243

98.7791 3.71344E-4 −0.00113

113.73 −3.38628E − 4 7.7525E-4

−251.434 6.52879E-4 −8.3221E − 4

−163.355 −1.07774E − 4 2.86282E-4

−104.081 1.92741E-4 −5.94241E − 4

−79.3113 1.08318E-5 5.39341E-5

92.1547 4.94373E-5 −3.20753E − 4

44.3654 −5.17735E − 5 −4.8566E − 5

51.029 1.87263E-4 −2.9099E − 4

27.6791 1.22959E-4 −1.57504E − 4

−17.7267 1.0636E-4 −1.54041E − 4

−5.60207 4.00495E-5 −1.39499E − 4

−12.4916 4.53336E-5 −9.02014E − 5

−4.56507 5.47098E-5 −9.0448E − 5

1.26814 −6.70257E − 5 −2.41301E − 5

0.15116 2.87109E-6 −1.0391E − 4

1.28586 −3.67108E − 5 −3.95203E − 5

0.25297 −5.73328E − 5 −7.22104E − 5

0.01024 −1.33468E − 5 −3.59246E − 6

0.00543 1.39172E-5 −4.72613E − 5

-0.02703 1.30144E-5 3.27143E-5

been mentioned above, Fig. 2 demonstrates the effectiveness of integration procedure. It eliminates
the HF fluctuations and allows to receive the smoothed curves for the further analysis. In Fig. 3,
we show the distribution of the slopes (after elimination of the unit value). One can divide the whole
segment with boundaries (min(Sl),max(Sl)) on almost equal three segments: (1/3max(Sl),max(Sl)
for F0(x)), (1/3min(Sl), 1/3max(Sl) for F1(x)) and (min(Sl), 1/3min(Sl) for F2(x)). The number
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of measurements in each selected segment is shown in Fig. 3. This information helps in obtaining the
desired averaged functions F0,1,2 from expression (30). Fig. 4 demonstrate the final result. Then, these
three curves can be fitted by the simplified fitting function (38). Only one nonlinear fitting parameter as
Tmx can be found from minimization of the relative error (38), supposing that this parameter is located in
the interval [0.5T, 1.75T ]. Other fitting parameters (A0, Ac0, Ack, Ask, (k = 1, 2 . . . ,Kmin)) are found
by the LLSM. The fit of these three curves is shown in Fig. 5. The distribution of the AFRs taken

in the form of modules and phases Amdk = (Ac2k +As2k)
1/2, Phk = tan−1

(
Ask
Ack

)
for three averaged

functions F0,1,2 are shown in Fig. 6.
The most interesting result from this research is shown in Figs. 7, 9, and 11. One can eliminate

the influence of uncontrolled factors and get the pure periodic functions Pr0,1,2(x) based on expression
(39). As one notice from these figures the purified periodic functions have different scales and can be
significantly different from the initial functions F0,1,2(x). The basic fitting parameters associated with
function (38) are collected in Table 1.

4. RESULTS AND DISCUSSION

In this paper, the authors proposed the theory for the QRE(s) that based on the given sampling of
successive measurements. They should be given in the form of the rectangle matrix N ×M , where
(j = 1, 2, . . . , N ) includes in itself the number of data points corresponding to one experiment realized
during one period T, while index m = 1, 2, . . . ,M determines the whole cycle of successive/repeatable
measurements realized during the whole observation period M · T . Thanks to algorithm described in the
paper one can receive only 3 key averaged measurements, see expression (30), that can be fitted by the
simplified fitting function (38). This function plays a double role (a) the fit of the averaged measurements
and (b) extraction the pure periodic function (39) corresponding to an “ideal experiment“. Other 2
important results can be formulated as follows.

1. Creation of the completely computerized laboratories, where “input” coincides with initial data
presented in the form of the matrix N ×M , while the “output” coincides with limited number of
the fitting parameters Prm = [(Tmx, A0, Ac0) + 2Kmin]) followed from expression (39).

2. The creation of new metrological standard based on comparison of the “pattern” detector/device
with the tested ones based on the optimal number of the fitting parameters Prm that are obtained
from the registered fluctuations.

The problem that is needed in further research follows from the solution (19) based on the supposition
〈al(x)〉, κ(x± T ) = κ(x), Pr(x± T ) = Pr(x). What new solutions will the rejection of this assumption
lead to? The answer to this question requires further research.
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