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Введение

Данное учебно-методическое пособие включает минимум вводного кур-
са по группам Ли. Оно предназначено для студентов-математиков III-IV
курсов. Рассматриваются топологические группы и группы Ли, матрич-
ные группы Ли, а также алгебры, фуктор Ли, линейные представления
групп Ли, факторгруппы Ли и прямое произведение групп Ли.

Все задачи в пособии служат для контроля правильного усвоения ос-
новных понятий.

В пособии � — обозначает символ начала (конца) доказательства.
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0.1 Топологические группы и группы Ли

Группа G, одновременно являющаяся топологическим пространством, на-
зывается топологической группой, если отображения

f : G×G→ G, f(a, b) = ab, (1)

S : G→ G, S(a) = a−1 (2)

являются непрерывными.

Изоморфизм топологических групп — это гомеоморфизм, который яв-
ляется гомоморфизмом.

Топологические группы и их непрерывные гомоморфизмы составляют
категорию GR− TOP .

Лемма 1. Топологическая группа тогда и только тогда хаусдорфова,
когда ее единица замкнута.

� В хаусдорфовом пространстве любая точка замкнута, поэтому это
условие необходимо.

Достаточность. Диагональ ∆ ⊂ G × G является прообразом единицы
при непрерывном отбражении

G×G→ G, (a, b) 7→ ab−1.

Следовательно, диагональ — замкнутое множество. А это эквивалентно
тому, что G — хаусдорфово пространство. �

В дальнейшем мы будем рассматривать, если не оговорено противное,
хаусдорфовы топологические группы. Пусть a ∈ G. Левый и правый сдви-
ги

Lax = ax, Rax = xa (x ∈ G),

а также инволюция S есть гомеоморфизмы топологической группы G на
себя.

Следовательно, топология наG полностью определяется заданием базы
окрестностей единицы Σe. Эта база характеризуется свойствами.

1. Для любых U , V ∈ Σe существует такое W ∈ Σe, что W ⊂ U ∩ V .

2. Пересечение всех окрестностей из Σe содержит лишь единицу.
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3. Для всякого U ∈ Σe существует такое V ∈ Σe, что V V −1 ⊂ U .

4. Для всякого U ∈ Σe и любого a ∈ G существует такое V ∈ Σe, что
aV ⊂ U .

5. Для всякого U ∈ Σe и любого a ∈ G найдется такое V ∈ Σe, что

aV a−1 ⊂ U.

База окрестностей любого другого элемента a ∈ G получается из Σe ле-
выми (или правыми) сдвигами.

Подмножество H ⊂ G называется подгруппой топологической группы,
если H — подгруппа абстрактной группы, которая является замкнутым
подмножеством топологического пространства G.

Очевидно, что топологическая подгруппа является топологической
группой относительно индуцированной топологии.

Подгруппа N топологической группы называется ее нормальным дели-
телем, если N есть нормальный делитель абстрактной группы: aN = Na
для любого a ∈ G.

Подгруппа топологической группы называется дискретной, если она
дискретна как топологическая группа относительно индуцированной то-
пологии.

Топологическая группа называется простой, если всякий ее нормаль-
ный делитель дискретен или совпадает с самой группой.

Центром Z топологической группы G называется множество ее цен-
тральных элементов, т.е. элементов z ∈ G, перестановочных со всеми эле-
ментами из G : az = za для любого a ∈ G.

Группа G, одновременно являющаяся гладким многообразием, называ-
ется группой Ли (гладкой группой), если отображения

f : G×G→ G, f(a, b) = ab, (3)

S : G→ G, S(a) = a−1 (4)
являются гладкими.

Морфизмом (гладким гомоморфизмом) двух групп Ли называется го-
моморфизм абстрактных групп, являющийся гладким отображением мно-
гообразий.
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Две группы Ли называются изоморфными, если найдется морфизм од-
ной группы на другую, являющийся диффеоморфизмом (который в этом
случае называется изоморфизмом).

Все группы Ли и все их гомоморфизмы образуют категорию LIE.

Известно, что любая Cr-гладкая группа Cr-изоморфна аналитической
(класса Cω) группе. Кроме того, всякая группа Ли локально компактна,
поскольку всякое многообразие локально евклидово.

Очевидно, что группа Ли является топологической группой. В опре-
делении группы Ли условие гладкости отображения S на самом деле из-
лишне.

Теорема 1. Если для группы G, являющейся гладким многообразием
отображение f гладкое, то отображение S также гладкое, и, значит,
G — группа Ли.

Пусть (U, ψ) — карта единицы e группы Ли, ai — i-ая координата точки
a ∈ U (i = 1, . . . , r).

Тогда в этой окрестности групповые операции можно записать в коор-
динатах. Если a, b ∈ U , то

ci = f i(a1, . . . , ar, b1, . . . , br)

есть аналитические функции своих аргументов, которые называются груп-
повыми функциями.

Групповые функции удовлетворяют очевидным соотношениям

f i(a, e) = ai, f i(e, b) = bi,
∂f i

∂aj
|e=

∂f i

∂bj
|e= δij.

Подмножество H в группе Ли G называется подгруппой Ли, если H —
подгруппа, которая является аналитическим подмногообразием.

Матрица A порядка n называется неисключительной, если
det(E + A) 6= 0. Для такой матрицы существует матрица

A# = (E − A)(E + A)−1,

называемая ее кэли-образом.

8



Ясно, что множество R(n)0 всех неисключительных матриц открыто
в многообразии R(n) = R(n, n) всех квадратных n × n-матриц и потому
является гладким многообразием.

Теорема 2. Отображение A 7→ A# является инволютивным авто-
диффеоморфизмом многообразия R(n)0, т.е. для любой неисключитель-
ной матрицы A матрица A# также неисключительна, отображение
A 7→ A# многообразия R(n)0 в себя гладко и A## = A.

� Пусть B = A#. Тогда

E+B = E+(E−A)(E+A)−1 = [(E+A)+(E−A)](E+A)−1 = 2(E+A)−1.

Аналогично
E −B = 2A(E + A)−1.

Поэтому

det(E +B) 6= 0, B# = (E −B)(E +B)−1 = A.

Гладкость отображения A 7→ A# очевидна. �

Примеры групп Ли.

1. (Rn,+), а также любое конечномерное линейное пространство явля-
ется группой Ли по сложению.

2. Любая абстрактная (дискретная топологическая) группа будет груп-
пой Ли по отношению к гладкости, в которой она является нульмерным
многообразием.

3. Единичная окружность с уравнением |z| = 1, точками которой яв-
ляются комплексные числа z = eiθ, является группой Ли по умножению.

4. Множество R∗, (R∗+) ненулевых (положительных ненулевых) веще-
ственных чисел есть группа Ли по умножению. Аналогично, множество
ненулевых комплексных чисел является группой Ли по умножению.

5. Множество GL(n,R) (GL(n,C)) всех вещественных (комплексных)
невырожденных n-матриц является группой Ли по умножению. Ее можно
отождествить с группой GL(V ) всех линейных неособенных операторов в
векторном пространстве V n над полем R (C).

Многие часто встречающиеся топологические группы и группы Ли яв-
ляются замкнутыми подгруппами в GL(n,K), где K — поле комплексных
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или вещественных чисел. Они называются линейными или матричными
группами.

6. Пусть O(n) — группа всех ортогональных n-матриц. Покажем, что
это группа Ли по умножению.

Пусть A — неисключительная ортогональная матрица и B = A#. Тогда
A> = A−1 и

B> = (E + A>)−1(E − A>) = (E + A−1)−1(E − A−1) =

(E + A−1)−1A−1A(E − A−1) = (A(E + A−1))−1(A− E) =

(A+ E)−1(A− E) = −(E − A)(E + A)−1 = −B.
Обратно, если B> = −B, то

A> = (E +B>)−1(E −B>) = (E −B)−1(E +B) =

(E +B)(E −B)−1 = A−1,

Следовательно, матрица A ортогональна.

Таким образом, неисключительная матрица тогда и только тогда
ортогональна, когда ее кэли-образ является кососимметрической мат-
рицей.

Но все кососимметрические матрицы образуют линейное пространство
размерности n(n−1)

2 , следовательно, отображение A 7→ A# может быть
рассматриваемо как картирующее отображение множества (окрестности)
всех ортогональных неисключительных матриц O(n)0 (содержащее еди-
ничную матрицу) на множество всех кососимметрических неисключитель-
ных матриц.

Пусть C — произвольная ортогональная матрица. Множество O(n)0C
является окрестностью матрицы C.

Отображение AC 7→ A# есть картирующее отображение этой окрест-
ности на открытое множество неисключительных кососимметрических n-
матриц.

Таким образом, O(n) оказывается покрытой картами вида O(n)0C. Ес-
ли же

A1C1 = A2C2, где A1, A2 ∈ O(n)0,
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а C1, C2 — фиксированные матрицы, то A#
2 = g(A#

1 ), где g — некоторая
рациональная матричная функция, зависящая от C1, C2.

Следовательно, каждый элемент матрицыA#
2 является рациональной,

а значит, и гладкой функцией элементов матрицы A#
1 .

Таким образом, любые две карты вида O(n)0C согласованы друг с дру-
гом и, следовательно, составляют атлас.

Кэли-образ произведения двух матриц является, очевидно, рациональ-
ной функцией кэли-образов сомножителей.

Поэтому соответствующая гладкость на группе O(n) согласована с
умножением и O(n) является группой Ли.

Анализируя приведенное доказательство, можно сделать вывод о том,
что матричная группа будет группой Ли, если кэли-образы ее неисклю-
чительных матриц составляют открытое множество некоторого ли-
нейного пространства матриц.

О матричных группах, обладающих этим свойством говорят, что они
допускают конструкцию Кэли, а соответствующее линейное пространство
матриц называют кэли-образом группы.

0.2 Группы Ли OJ(n) и UJ(n)

Пусть фиксирована n-матрица J . J-ортогональной матрицей называется
матрица, которая удовлетворяет соотношению

A>JA = J.

Из соотношения

(AB)>J(AB) = B>(A>JA)B = J

следует, что произведение двух J-ортогональных матриц является J-
ортогональной матрицей.

Если матрица J невырождена, то из определения J-ортогональной мат-
рицы получим

detA = ±1, (A−1)>JA−1 = (A−1)>(A>JA)A−1 = J.
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Следовательно, при невырожденной матрице J все J-ортогональные
матрицы порядка n образуют группу, обозначаемую OJ(n).

При J = E получается группа ортогональных матриц O(n). При n =
2m и

J =

(
0 E
−E 0

)
(5)

получается так называемая вещественная линейная симплектическая
группа Sp(m,R), элементы которой называются симплектическими мат-
рицами порядка n = 2m.

Симплектичность матрицы означает, что она сохраняет кососимметри-
ческую форму

(x1ym+1 − xm+1y1) + . . .+ (xmy2m − x2mym).

Докажем, что неисключительная матрица A тогда и только тогда J-
ортогональна, когда ее кэли-образ A# является J-кососимметрической
матрицей, т.е. удовлетворяет соотношению

(A#)>J = −JA#. (6)

� Пусть A — неисключительная J-ортогональная матрица. Тогда

(A#)>J = (E + A>)−1(E − A>)J = (E + JA−1J−1)−1(E − JA−1J−1)J =

J(A−1A+ A−1)−1(A−1A− A−1) = J(A+ E)−1(A− E) = −JA#.

Обратно, положим B = A#. Тогда

A>JA = (E +B>)−1(E −B>)J(E −B)(E +B)−1 =

(E +B>)−1J(E +B)(E +B)−1(E −B) = (E +B>)−1J(E −B) =

(E +B>)−1(E +B>)J = J.�
Условие J-кососимметричности матрицы (6) линейно и потому определяет
в пространстве всех матриц линейное подпространство.

Таким образом, группа OJ(n) допускает конструкцию Кэли и потому
является группой Ли.

Заметим, что линейное пространство матриц, удовлетворяющих усло-
вию (6) при матрице J из (5), имеет размерность m(2m+1). Следователь-
но, dimSp(m,R) = m(2m+ 1).
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Пересечение Sp(m,R)∩O(2m) называется ортогональной симплекти-
ческой группой.

Кэли-образы неисключительных матриц из этой группы имеют вид(
C D
−D C

)
, (7)

где D — симметрическая, а C — кососимметрическая матрицы.

Матрицы вида (7) составляют линейное пространство. Следовательно,
Sp(m,R) ∩O(2m) является группой Ли размерности m2.

Аналогично, можно показать, чтоGL(n,C), O(n,C) и Sp(n,C) являют-
ся группами Ли размерностей 2n2, n(n− 1) и 2m(2m+ 1) соответственно.

Комплексная n-матрица A называется J-унитарной матрицой, если
она удовлетворяет соотношению

Ā>JA = J (8)

J-унитарные матрицы в случае невырожденной матрицы J составляют
группу UJ(n). При J = E получается группа унитарных матриц U(n).

В случае, если J имеет вид (5) и n = 2m получаем группу Up(m).

Аналогично вещественному случаю доказывается, что неисключитель-
ная комплексная матрица A тогда и только тогда J-унитарна, когда
ее кэли-образ удовлетворяет соотношению

(Ā#)>J = −JA#. (9)

Это соотношение линейно над полем R, следовательно, UJ(n) является
группой Ли размерности n2. Размерность группы Ли Up(m) равна 4m2.

Группа U(n) естественно изоморфна ортогональной симплектиче-
ской группе Sp(n,R) ∩O(2n).

Изоморфизм осуществляется соответствием(
A B

C D

)
7→ A+ iB (10)

Кроме того, ортогональная симплектическая группа в силу равенства

Sp(m,R) ∩ U(2m) = Sp(m,R) ∩O(2m)
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изоморфна группе U(m).

Sp(m) = Sp(m,C) ∩ U(2m) называется унитарной симплектической
группой или симплектической группой.

Это группа Ли размерности m(2m+ 1), которая содержит ортогональ-
ную симплектическую подгруппу Sp(m) ∩O(2m).

Группу U(m) можно интерпретировать как подгруппу всех обратимых
линейных преобразований пространства Cn, сохраняющих эрмитову фор-
му

x1ȳ1 + . . .+ xnȳn.

Аналогично, можно рассмотреть группу UH(n) всех обратимых и линей-
ных по отношению к умножению слева преобразований кватернионного
пространства Hn, сохраняющих кватернионную эрмитову форму

(ξ, η) = ξ1η̄1 + . . .+ ξnη̄n, где ξ = (ξ1, . . . , ξn), η = (η1, . . . , ηn) ∈ Hn.

Hn можно отождествить с C2n, сопоставив любому кватерниону u + vj

пару комплексных чисел (u, v).

При этом группа UH(n) интерпретируется как группа комплексных
матриц. Пусть

ξ1 = x1 + xn+1j, . . . , ξn = xn + x2nj,

η1 = y1 + yn+1j, . . . , ηn = yn + y2nj.

В силу равенств u+ vj = ū− vj и vj = jv̄ получим

(ξ, η) = [x1ȳ1 + . . .+ xnȳn + xn+1ȳn+1 + . . .+ x2nȳ2n]+

[(xn+1y1 − x1yn+1) + . . .+ (x2nyn − xny2n)]j.

Следовательно, каждый элемент группы UH(n), интерпретированный как
комплексная матрица, сохраняет эрмитову форму

x1ȳ1 + . . .+ x2nȳ2n.

(является унитарной матрицей) и кососимметрическую форму

(xn+1y1 − x1yn+1) + . . .+ (x2nyn − xny2n)

(является симплектической матрицей), т.е. принадлежит унитарной сим-
плектической группе Sp(n).
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Обратно, если матрица A унитарна и симплектична, то, интерпретиро-
ванная как преобразование пространства Hn, она сохраняет форму (ξ, η).

Это преобразование переводит сумму в сумму и для любого ζ ∈ H

(A(ζξ)− ζAξ,Aη) = (A(ζξ), Aη)− ζ(Aξ,Aη) = (ζξ, η)− ζ(ξ, η) = 0.

Следовательно, A(ζξ) = ζAξ, поскольку в виде Aη может быть представ-
лен любой вектор из Hn.

Таким образом, это преобразование линейно и группа UH(n) изоморфна
унитарной симплектической группе Sp(n).

Докажем, что любая невырожденная матрица A может быть непре-
рывным путем соединена в GL(n) с ортогональной матрицей.

� Известно, что имеет место однозначное представление (полярное раз-
ложение) A = PU , где P — положительно определенная матрица и U —
ортогональная матрица.

В свою очередь, по теореме приведения к главным осям P = V DV −1,
где V — ортогональная матрица, а D — диагональная матрица с положи-
тельными диагональными элементами.

Следовательно,
A = V DV −1U = V DW,

где W = V −1U . Умножим справа и слева непрерывный путь

t 7→ (1− t)D + tE,

соединяющий в GL(n) матрицу D с единичной матрицей E, на ортого-
нальные матрицы V и W .

Получим непрерывный путь, соединяющий в GL(n) матрицу A с орто-
гональной матрицей B = VW . �

0.3 Линейная связность некоторых матричных групп
Ли

Обозначим черезGL+(n) (SO(n)) группу всех n-матриц с положительным
определителем (унимодулярных ортогональных n-матриц).
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Любая унимодулярная ортогональная n-матрица может быть непре-
рывным путем соединена в группе GL+(n) (даже в группе SO(n)) с еди-
ничной матрицей E.

Из доказательства предыдущего утверждения следует, что если detA =
det(V DW ) > 0, то detB = det(VW ) > 0.

Таким образом, доказав наше утверждение, мы также докажем, что
группа Ли GL+(n) линейно связна и группа GL(n) состоит из двух ком-
понент: подгруппы GL+(n) и ее смежного класса GL−(n), состоящего из
матриц с отрицательным определителем.

� Согласно основной теореме об ортогональных операторах, каждый
унимодулярный ортогональный оператор (вращение) является прямой
суммой тождественного оператора и "двумерных вращений"с матрицами
вида (

cos θ − sin θ
sin θ cos θ

)
(11)

Заменив в каждой из этих матриц угол θ на угол tθ, получим непрерывное
семейство (путь) ортогональных операторов, связывающее данный опера-
тор, получающийся при t = 1, с тождественным оператором, получаю-
щимся при t = 0.

Затем переходим от операторов к их матрицам. �

Обозначим через Ge компоненту единицы топологической группы G.

Если a ∈ Ge, то a ∈ La(Ge) и

Ge ∩ La(Ge) 6= ∅.

Следовательно, La(Ge) = Ge, поскольку компонента единицы связна и
максимальна.

Аналогично доказывается, что для a ∈ Ge Ra(Ge) = Ge, и что G−1
e =

Ge.

Следовательно, Ge — подгруппа G. Более того, любой эндоморфизм T
группы G переводит Ge в связную подгруппу T (Ge), пересекающуюся с
Ge.

Следовательно, по тем же соображениям, T (Ge) ⊂ Ge и компонента
единицы Ge является вполне характеристической подгруппой группы G
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(т.е. инвариантной относительно всех эндоморфизмов группы G) и, в
частности, является нормальным делителем.

Ясно, что для любой группы Ли компонента Ge является подгруппой
Ли.

Например, для GL(n) компонентой единицы является группа GL+(n).

В факторгруппу G/Ge вводят топологию отождествления, т.е. топо-
логию, в которой подмножество C ⊂ G/Ge открыто (замкнуто) тогда и
только тогда, когда открыт (замкнут) его полный прообраз в G.

Прообразом единицы группы G/Ge является компонента Ge.

Следовательно, единица факторгруппы G/Ge тогда и только тогда
изолирована (является открыто замкнутым множеством), т.е. фак-
торгруппа дискретна, когда компонента Ge открыта (она всегда за-
мкнута).

В частности, это так, если группа G локально связна (например, явля-
ется группой Ли).

Таким образом, любая локально связная группа G (в частности, лю-
бая группа Ли) является расширением связной группы (ее компоненты
единицы Ge) посредством дискретной группы G/Ge, а теория локально
связных групп сводится к теории связных групп и теории дискретных
(абстрактных) групп.

Например, компонентой единицы группы Ли O(n) является группа Ли
SO(n) = O+(n).

Вторая компонента группы O(n) есть смежный класс O−(n), элементы
которого есть несобственные (с определителем −1) ортогональные матри-
цы.

Группа U(n) связна.

� Любая унитарная матрица имеет вид UDU−1, где U — некоторая
унитарная матрица, а D — диагональная матрица с диагональными эле-
ментами вида eiθk .

Заменив все углы θk на tθk, получим непрерывное семейство (путь)
унитарных матриц, связывающее данную матрицу, получающуюся при
t = 1, с единичной матрицей, получающейся при t = 0. �
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Лемма. Топологическая группа G связна, если она содержит связную
подгруппу H со связным факторпространством G/H.

� Естественное отображение π : G→ G/H открыто.

Действительно, если U ⊂ G, то по определению фактортопологии мно-
жество π(U) ⊂ G/H тогда и только тогда открыто, когда открыто мно-
жество π−1(π(U)) ⊂ G. Но

π−1(π(U)) =
⋃
h∈H

Uh.

Тогда, если U , а значит, и любое Uh открыто, то множество π−1(π(U)), а
потому и множество π(U), открыто.

Пусть G = U ∪ V , где U и V — непустые открытые множества. Тогда

G/H = π(U) ∪ π(V ),

где множества π(U) и π(V ) также непустые и открытые.

Поэтому π(U) ∩ π(V ) 6= ∅, т.к. пространство G/H по условию связно.

Пусть π(a) ∈ π(U) ∩ π(V ). Тогда π(a) = aH пересекается с U ∩ V .

При этом aH = U1∩V1, где U1 = aH ∩U и V1 = aH ∩V открыты в aH
и по доказанному непустые.

Но aH (вместе с H) связно, поэтому U1 ∩ V1 6= ∅ и, значит, U ∩ V 6= ∅.
Следовательно, группа G связна. �

Примеры применения леммы.

1. Рассмотрим отображение U(n)→ Cn, сопоставляющее каждой мат-
рице ее последний столбец.

Образ группы U(n) при этом отображении состоит из всех единичных
векторов пространства Cn и может быть отождествлен единичной сферой
S2n−1 пространства R2n = Cn.

Прообраз каждого такого вектора в U(n) является смежным классом
по подгруппе U(n− 1), являющейся прообразом вектора (0, 0, . . . , 0, 1).

Следовательно, наше отображение индуцирует биекцию

U(n)/U(n− 1)→ S2n−1,
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являющуюся гомеоморфизмом, поскольку непрерывная биекция на ком-
пакт является гомеоморфизмом.

Сфера S2n−1 связна. В силу леммы группа U(n) связна, если связна
группа U(n− 1).

Группа U(1) естественным образом отождествляется со связной груп-
пой S1 и потому связна.

По индукции связность всех групп U(n) оказывается заново доказан-
ной.

2. Для любого n ≥ 1 симплектическая группа Sp(n) = UH(n) связна.

� Факторпространство Sp(n)/Sp(n − 1) естественным образом отож-
дествляется с единичной сферой S4n−1 пространства R4n = Hn и потому
также связно.

А группа Sp(1) = UH(1) отождествляется со связной группой S3 ква-
тернионов единичного модуля.�

3. Для любого n ≥ 1 группа унимодулярных унитарных матриц SU(n)
связна.

� Нетрудно понять, что

SU(n)/SU(n− 1) = U(n)/U(n− 1)

и SU(1), являясь единичной группой, связна. �

Напомним, что все касательные пространства TxM , x ∈M , составляют
гладкое 2n-мерное многообразие T (M), естественным образом проектиру-
ющееся на n-мерное гладкое многообразие M .

Проекция
π : T (M)→M

относит каждому вектору v ∈ TxM точку x ∈M , так что TxM = π−1(x).

Сечения этой проекции, т.е. гладкие отображения

X : M → T (M), x 7→ Xx, x ∈M,

для которых π ◦X = id, т.е. Xx ∈ TxM , называются векторными полями
на M .
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Дифференциалы dΦx : TxM → TΦ(x)N произвольного гладкого отоб-
ражения Φ : M → N составляют гладкое отображение T (Φ) : T (M) →
T (N), для которого

π ◦ T (Φ) = Φ ◦ π
и соответствияM → T (M), Φ→ T (Φ) являются функтором из категории
DIFF гладких многообразий в себя.

Если Φ — диффеоморфизм, то для любого векторного поля X ∈ X(M)
определено поле

Φ∗X = T (Φ) ◦X ◦ Φ−1 ∈ X(N),

а для любого векторного поля Y ∈ X(N) определено поле

Φ∗Y = T (Φ)−1 ◦X ◦ Φ ∈ X(M).

Ясно, что отображения Φ∗ и Φ∗ линейны, а так как

Φ∗ = (Φ∗)−1 = (Φ−1)∗, Φ∗ = (Φ∗)
−1 = (Φ−1)∗,

то они являются взаимно обратными изоморфизмами линейных про-
странств.

0.4 Алгебра. Экспоненциальная функция в алгебре

Линейное пространство A с заданным на нем умножением < x,y >7→ xy
называется алгеброй над полем K, если для каждого a ∈ A отображения

La : A→ A, Lax = ax; Ra : A→ A, Rax = xa

линейны.

Гомоморфизмом алгебр называется линейное отображение одной алгеб-
ры в другую, переводящее произведение в произведение.

Линейное подпространство B алгебры A называется подалгеброй алгеб-
ры A, если для любых x, y ∈ B xy ∈ B.

Ассоциативная алгебра (в ней умножение ассоциативно) называется
унитальной алгеброй, если в ней существует единица e, т.е. такой эле-
мент, что для любого a ∈ A ae = ea = a.

Элемент a унитальной алгебры A называется обратимым, если суще-
ствует такой элемент a−1 ∈ A, что aa−1 = a−1a = e.
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Множество G(A) всех обратимых элементов алгебры A является, оче-
видно, группой по умножению.

Элемент a обратим тогда и только тогда, когда обратим линейный опре-
ратор La, т.е. в случае конечномерности алгебры A, когда его матрица La

невырождена.

При K = R отсюда следует, что для конечномерной алгебры A множе-
ство G(A) открыто в A и, следовательно, является гладким многооб-
разием размерности n = dimA.

Кроме того, умножение в G(A) билинейно и, следовательно, гладкое.
Таким образом, G(A) — группа Ли.

Норма, заданная в призвольной алгебре A над полем R, называется
мультипликативной, если для любых a, b ∈ A

||ab|| ≤ ||a||||b||.

Лемма. В любой конечномерной алгебре A над полем R существует
мультипликативная норма.

� Если в A задан базис e1, . . . , en и a = aiei, то формула

||a|| = max{|a1|, . . . , |an|}

определяет A некоторую норму. Покажем, что при некотором выборе ба-
зиса эта норма мультипликативна.

Разложения по базису произведений

eiej = Ck
ijek, i, j k = 1, . . . , n.

определяют так называемые структурные константы Ck
ij алгебры A в

базисе e1, . . . , en.

Тогда для любых a, b ∈ A

||ab|| = ||Ck
ija

ibjek|| = max
k
|Ck

ija
ibj| ≤

max
k
|Ck

ij|max
i
|ai|max

j
|bj| ≤ C||a||||b||,

где C = max
i,j,k
|Ck

ij|. Поэтому для нормы

||a|| = 1

λ
max{|a1|, . . . , |an|},
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где λ > C (это предыдущая норма, соответствующая базису 1
λe1, . . . ,

1
λen),

имеет место неравенство

||ab|| ≤ C

λ
||a||||b|| ≤ ||a||||b||. �

Для любого элемента a ∈ A рассмотрим ряд

e + ta +
t2a2

2
+ . . .+

tnan

n!
+ . . . (12)

По отношению к произвольной мультипликативной норме этот ряд абсо-
лютно сходится, т.е. сходится числовой ряд

||e||+ ||ta||+ ||t
2a2||
2

+ . . .+
||tnan||
n!

+ . . . , (13)

поскольку этот ряд мажорируется рядом для e||ta||.

Стандартное доказательство для числовых рядов того, что любой аб-
солютно сходящийся ряд сходится, дословно сохраняется для рядов с
векторными членами.

Причем сходимость по норме равносильна в конечномерном линеале
покоординатной сходимости. Следовательно, ряд (12) сходится.

Сумма этого ряда обозначается eta, а A-значная функция t 7→ eta на-
зывается экспоненциальной функцией в алгебре A.

В частности, в унитальной алгебре матриц A = R(n) получается мат-
ричная экспоненциальная функция t 7→ etA, A ∈ R(n).

A-значная функция является знакомой нам вектор-функцией. Для та-
ких функций обычным образом (с предосторожностями, вызванными воз-
можной некоммутативностью умножения в алгебре) можно доказать сле-
дующие формулы

(a(t)b(t))′ = a′(t)b(t) + a(t)b′(t), (a−1(t))′ = −a−1(t)a′(t)a−1(t).

Если значения A-значной функции t 7→ a(t) перестановочны, т.е.
a(t)a(s) = a(s)a(t) для любых t и s, то никаких оговорок делать не нужно.
В частности, для любого многочлена

f(X) = a0 + a1X + . . .+ amX
m
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и любой A-значной функции t 7→ a(t) с перестановочными значениями
имеет место формула

d

dt
f(a(t)) = f ′(a(t))a′(t), (14)

где
f ′(X) = a1 + 2a2X + . . .+mamX

m−1.

Эта формула сохраняется и когда f(X) является суммой бесконечного
степенного ряда вида

f(X) = a0 + a1X + . . .+ anX
n + . . . , (15)

поскольку необходимая перестановка двух предельных переходов в этом
случае, очевидно, законна, в предположении, что ||a(t)|| лежит в круге
сходимости ряда (15).

Согласно обычным правилам для почленного дифференцирования из
(12) получим

deta

dt
= a + ta2 + . . .+

tn−1an

(n− 1)!
+ . . . =

a(e + ta + . . .+
tnan−1

(n− 1)!
+ . . .) = aeta.

Таким образом, экспоненциальная функция обладает тем свойством,
что для любого t

deta

dt
= aeta. (16)

Следовательно, решение A-значного дифференциального уравнения

dx(t)

dt
= ax(t). (17)

при начальном условии x(0) = c выражается формулой x(t) = etac.
� Согласно (14)

x′(t) = aetac = ax(t)

и x(0) = c. С другой стороны, для вектора x(t) уравнение (17) сводится
к системе линейных дифференциальных уравнений с постоянными коэф-
фициентами.

Поэтому решение x(t) существует и единственно. �
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Кроме того, для любых s и t имеет место равенство

e(t+s)a = etaesa. (18)

� Для каждого фиксированного s функция t 7→ x(t) = e(t+s)a, удовлетво-
ряет уравнению (17) с начальным условием x(0) = esa.

Поэтому x(t) = etaesa. �

Из (18) следует, что функция t 7→ eta является функцией с переста-
новочными значениями.

Поэтому для любого степенного ряда (15) имеет место формула

d

dt
f(eta) = f ′(eta)aeta, (19)

если ряд f(eta) абсолютно сходится.

Векторное пространство g называется алгеброй Ли, если задано били-
нейное отображение (коммутатор или скобка Ли) [·, ·] : g × g → g, удо-
влетворяющее условию антикоммутативности

[u,v] = −[v,u]

для любых u, v ∈ g и тождеству Якоби

[[u,v],w] + [[v,w],u] + [[w,u],v] = 0

для любых u, v, w ∈ g.

Если для любых u, v ∈ g [u,v] = 0, то алгебра Ли называется комму-
тативной.

Две алгебры Ли над одним и тем же полем называются изоморфными,
если существует линейный изоморфизм одной алгебры на другую, сохра-
няющий коммутатор.

Если в конечномерной алгебре Ли g задан базис e1, . . . , en, то разложе-
ния по базису произведений

[ei, ej] = Ck
ijek, i, j k = 1, . . . , n.

называются структурными уравнениями алгебры Ли, а числа Ck
ij назы-

ваются структурными константами алгебры Ли.
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Если заданы структурные уравнения, то вычисление коммутатора век-
торов x, y ∈ g может быть произведено по формуле

[x,y] = Ck
ijx

iyjek.

В силу свойств коммутатора структурные константы являются компонен-
тами тензора и удовлетворяют следующим условиям

Ck
ij = −Ck

ji, Cs
ijC

k
sm + Cs

jmC
k
si + Cs

miC
k
sj = 0.

0.5 Алгебра Ли

Пусть ϕ : g→ ĝ изоморфизм конечномерных алгебр.

Выбрав в этих алгебрах базисы и положив

ϕ(ei) = êαϕαi ,

получим, что
ϕαsC

s
ij = Ĉα

βγϕ
β
sϕ

γ
s .

Обратно, если две алгебры Ли заданы своими структурными уравнения-
ми, то вопрос об их изоморфности сводится к разрешимости этой системы
алгебраических уравнений относительно ϕ.

При заданных векторных подпространствах h и k в алгебре Ли g обо-
значим через [h, k] линейную оболочку всех коммутаторов [x,y], где x
пробегает h и y пробегает k.

Векторное подпространство h ⊂ g называется подалгеброй Ли алгебры
Ли g, если [h, h] ⊂ h.

Подалгебра Ли, удовлетворяющая более сильному условию [h, g] ⊂ h,
называется идеалом.

Максимальный по включению идеал z, удовлетворяющий условию
[z, g] = 0, называется центром алгебры Ли.

Центр алгебры Ли коммутативен, поскольку [z, z] = 0.

Всякую комплексную алгебру Ли g размерности r можно рассматри-
вать как вещественную алгебру Ли gR размерности 2r с комплексной
структурой J : J2 = −E, удовлетворяющей условию

[Jx, Jy] = −[x,y].
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Алгебра Ли gR разлагается в прямую сумму

gR = g0 ⊕ Jg0.

Тогда g0 есть подалгебра в gR, называемая вещественной формой алгебры
g.

Для произвольных элементов x и y ассоциативной алгебры A опреде-
лим коммутатор

[x,y] = xy− yx,

для которого нетрудно установить свойство антикоммутативности и тож-
дество Якоби.

Полученную алгебру [A] называют коммутаторной алгеброй Ли.

Любой гомоморфизм ассоциативных алгебр является гомоморфизмом
соответствующих коммутаторных алгебр.

Следовательно, соответствие A→ [A] есть функтор из категории ассо-
циативных алгебр ALG−ASS в категорию алгебр Ли ALG−LIE = lie.

Примером коммутаторной алгебры Ли является коммутаторная алгеб-
ра Ли [EndV ] = gl(V ) ассоциативной алгебры EndV всех эндоморфиз-
мов (линейных операторов) линейного пространства V .

Если V является алгеброй (не обязательно ассоциативной), то в алгебре
[EndV ] выделяется линейное подпространство D(V ) всех дифференциро-
ваний алгебры V , т.е. таких линейных отображений D : V → V , что для
любых x, y ∈ V

D(xy) = Dx · y + x ·Dy.

Нетрудно подсчитать, что для любых D1, D2 ∈ D(V )

[D1, D2] = D1D2 −D2D1 ∈ D(V ).

Таким образом, линеал D(V ) является подалгеброй Ли алгебры Ли
[EndV ].

Перепишем тождество Якоби алгебры Ли g в двух эквивалентных фор-
мах

[a, [x,y]] = [[a,x],y] + [x, [a,y]], a, x, y ∈ g;

[[a,b],x] = [a, [b,x]]− [b, [a,x]], a, b, x ∈ g;
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Первое из этих тождеств равносильно утверждению, что для любого a ∈ g

отображение
ada : g→ g, (ada)x = [a, x],

является дифференцированием алгебры Ли g, а второе — утверждению,
что отображение ad : g→ D(g) — гомоморфизм.

Дифференцирования вида ad a называются внутренними дифференци-
рованиями алгебры Ли g.

Таким образом, совокупность ad g всех внутренних дифференцирова-
ний произвольной алгебры Ли g является алгеброй Ли, представляющей
собой гомоморфный образ алгебры g.

Рассмотрим примеры алгебр Ли.

1. R3 вместе с векторным произведением [·, ·] в качестве коммутатора
является алгеброй Ли.

Напомним, что

[x, [y, z]] = y(x, z)− z(x,y), x, y, z ∈ R3.

Выберем в R3 ортонормированный базис e1, e2, e3. Тогда получим следу-
ющие структурные уравнения

[e1, e2] = e3, [e2, e3] = e1, [e3, e1] = e2,

а также существенные структурные константы

C3
12 = C1

23 = C2
31 = 1.

Следовательно, коммутатор z = [x,y] имеет координаты

z1 = x2y3 − x3y2, z2 = x3y1 − x1y3, z3 = x1y2 − x2y1.

2. Линейное пространство n-матриц K(n) над полем K с коммутатором
[A,B] = AB−BA образует так называемую полную линейную (или мат-
ричную) алгебру Ли gl(n,K).

Введем в gl(n,K) базис, состоящий из матричных единиц Ej
i , у которых

на пересечении i-й строки и j-го столбца стоит единица, а все остальные
элементы равны нулю.
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Тогда для произвольной матрицы A получаем разложение по базису

A = Ai
jE

j
i .

Учитывая, что Ej
iE

k
l = δjlE

k
i , получим структурные уравнения

[Ej
i , E

k
l ] = δjlE

k
i − δkiE

j
l .

Следовательно, коммутатор любой пары матриц запишется в координатах
в виде

[A,B] = (Ai
sB

s
j −Bi

sA
s
j)E

j
i .

Отметим, что вещественной формой комплексной алгебры gl(n,C) явля-
ется алгебра gl(n,R).

3. Выберем в линейном пространстве V n над полем K некоторый базис.
Тогда gl(V n) можно отождествить с gl(n,K).

Пусть в V n задана билинейная форма J(x,y).

Подмножество g(J) ⊂ gl(V n) всех линейных операторов, удовлетво-
ряющих условию инвариантности

J(Ax, y) + J(x, Ay) = 0,

образует подалгебру Ли.

� Для любых A, B ∈ g(J)

J([A,B]x,y) = J(ABx,y)−J(BAx, y) = −J(Bx, Ay)+J(Ax, By) = −J(x, [A,B]y).

Следовательно, [A,B] ∈ g(J). �

Условие инвариантности можно записать в матричном виде. Полагая
J(x,y) = X>JY , получим

A>J + JA = 0,

т.е. матрица оператора A является J-кососимметрической матрицей.

Рассмотрим случай, когда V n вещественно, а форма J невырождена и
симметрична.

Тогда g(J) называется вещественной псевдоортогональной алгеброй Ли
o(p, q) соответствующего индекса (p, q).
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Выберем матрицу билинейной формы в каноническом виде

J =

(
Ep 0
0 −Eq

)
(20)

Разбивая матрицу A на блоки

A =

(
A1 A2

A3 A4

)
,

получим следующие условия ее J-кососимметричности

A>1 = −A1, A>2 = A3, A>4 = −A4.

Таким образом,

A =

(
A1 A2

A>2 A4

)
,

где матрицы A1 и A4 кососимметричны. Следовательно,

dim o(p, q) =
p(p− 1)

2
+
q(q − 1)

2
+ pq.

Если форма J положительно определенная (p = n, q = 0), то получаем
вещественную ортогональную алгебру Ли o(n,R) размерности n(n−1)

2 .

В ортонормированном базисе J = E и условие инвариантности примет
вид A> + A = 0.

Следовательно, алгебра o(n,R) состоит из кососимметрических мат-
риц.

4. Выберем в качестве базиса в алгебре o(3,R) матрицы

e1 =

 0 1 0
−1 0 0
0 0 0

 , e2 =

0 0 0
0 0 1
0 −1 0

 , e3 =

 0 0 1
0 0 0
−1 0 0

 .

Структурные уравнения имеют вид

[e1, e2] = e3, [e2, e3] = e1, [e3, e1] = e2.

Таким образом, алгебра Ли o(3,R) изоморфна трехмерной алгебре Ли R3

вместе с векторным произведением [·, ·].
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Изоморфизм устанавливается соответствием

(x, y, z) 7→

 0 x z
−x 0 y
−z −y 0

 .

5. Множество X(M) всех дифференцируемых векторных полей на гладком
многообразии M с коммутатором векторных полей является бесконечно-
мерной алгеброй Ли.

Пусть {ei(x)} — произвольное поле реперов на многообразии M и
[ei, ej] = Rs

ijes, где Rs
ij(x) — объект неголономности этого поля.

Полагая u = ui(x)ei, v = vj(x)ej, получим

[u,v]k = uiei(vk)− vjej(uk) +Rk
iju

ivj.

В частности, в натуральном поле реперов ei = ∂i имеем Rs
ij = 0.

0.6 Левоинвариантные векторные поля. Параллели-
зуемость группы Ли. Интегральные кривые лево-
инвариантных векторных полей и однопарамет-
рические подгруппы

Пусть G — группа Ли. Векторное поле x ∈ X(G) называется левоинвари-
антным, если для любого a ∈ G

L∗ax = x,

т.е. если для любых a, b ∈ G

xb = (dLa−1)ab(xab). (21)

Ясно, что все левоинвариантные векторные поля составляют линейное
подпространство пространства X(G) всех гладких векторных полей, ко-
торое обозначим через g.

Векторное поле x ∈ X(G) тогда и только тогда левоинварантно, ко-
гда для любого a ∈ G

xa = (dLa)e(xe). (22)
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� Соотношение (22) является частным случаем (при b = e) формулы (21)
и потому выполнено, если векторное поле x левоинвариантно.

Обратно, если (22) выполнено, то для любых a, b ∈ G

xab = (dLab)e(xe) = ((dLa)b ◦ (dLb)e)(xe) = (dLa)b(xb),

что равносильно (21). �

Линейное отображение x 7→ xe пространства g в касательное про-
странство TeG является изоморфизмом.

� Для любого a ∈ TeG отображение a 7→ (dLa)ea, a ∈ G, есть вектор-
ное поле на G (поскольку его гладкость следует из представления этого
отображения в локальных координатах), обладающее свойством (21) и по-
тому левоинвариантным. Кроме того, полученное отображение TeG → g,
очевидно, является обратным к отображению x 7→ xe. �

Таким образом, можно посредством отображения x 7→ xe отождествить
пространство g с пространством TeG и

dim g = dim TeG = n = dim G.

F(M)-модуль X(M) над алгеброй F(M) всех гладких функций на глад-
ком многообразии M называется свободным модулем ранга n, если на
M существует такое семейство x1, . . . ,xn векторных полей (базис F(M)-
модуля X(M)), что любое векторное поле x ∈ X(M) единственным обра-
зом представляется в виде

x = f ixi,

где f 1, . . . , fn ∈ F(M). При этом многообразие M называется параллели-
зуемым.

Теорема 1. Любая группа Ли G параллелизуема. Более того, каж-
дый базис x1, . . . , xn линейного пространства g является базисом F(G)-
модуля X(G).

� Для каждого a ∈ G векторы (x1)a, . . . , (xn)a составляют базис ли-
нейного пространства TaG.

Следовательно, для любого x ∈ X(G) вектор xa однозначно разлагается
по векторам (x1)a, . . . , (xn)a.
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Это означает, что для любого x ∈ X(G) существуют такие функции
f i : a 7→ f i(a), a ∈ G, что

x = f ixi.

Поэтому нужно лишь доказать, что f i ∈ F(G) для всех i = 1, . . . , n.

Пусть (U, xk) — произвольная карта многообразия G. Поля x1, . . . ,xn
гладкие, поэтому на U существуют такие гладкие функции xi1, . . . , xin, i =
1, . . . , n, что для любого j = 1, . . . , n

xj = xij
∂

∂xi
.

Ясно, что на U det(xij) 6= 0, следовательно, существуют такие гладкие
функции yki , что

xijy
k
i = δkj , i, j, k = 1, . . . , n.

Тогда

x = f jxj = f jxij
∂

∂xi
,

т.е. функции f jxij являются компонентами векторного поля x в локальных
координатах x1, . . . , xn и потому гладкие.

В правой части равенств

fk = f jδkj = (f jxij)y
k
i

стоят произведения гладких функций, поэтому функции f i также глад-
кие на U . Являясь гладкими на каждой координатной окрестности, эти
функции гладки на всем многообразии G. �

Многообразие G (группы Ли) хаусдорфово, поэтому для любого a ∈
G существует максимальная интегральная кривая ϕa поля x ∈ X(G),
проходящая при t = 0 через точку a, т.е. ϕa(0) = a.

Векторное поле x на группе Ли G тогда и только тогда левоинвари-
антно, когда для любых a, b ∈ G

ϕab = La ◦ ϕb, (23)

т.е. ϕab(t) = aϕb(t), t ∈ R.

� Для любого фиксированного a ∈ G формула ψb(t) = La ◦ ϕa−1b(t)
определяет для любой точки b ∈ G некоторую кривую t 7→ ψb(t), прохо-
дящую при t = 0 через точку b.
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Положив
yb =

dψb(t)

dt
|t=0 ,

мы получим на G некоторое векторное поле y : b 7→ yb.

При этом по правилам вычисления касательных векторов гладких кри-
вых для любого b ∈ G будет иметь равенство

yb =
dψb(t)

dt
|t=0 =

d(La ◦ ϕa−1b(t))
dt

|t=0 =

(dLa)a−1b

(
dϕa−1b(t)

dt
|t=0

)
= (dLa)a−1b(xa−1b).

Поэтому, если (23) выполнено и, следовательно, ψb = ϕb (и, значит, yb =
xb), то

xb = (dLa)a−1b(xa−1b),

и, в частности, xa = (dLa)e(xe). Следовательно, поле x левоинвариантно.

Обратно, если поле x левоинвариантно (и потому удовлетворяет соот-
ношению (21)), то yb = xb для любого b ∈ G, т.е. y = x.

Но ясно, что кривые t 7→ ψb(t) являются интегральными кривыми поля
y (автоматически максимальными), и потому в силу равенства y = x эти
кривые совпадают с интегральными кривыми t 7→ ϕb(t) поля x.

Таким образом, ϕb(t) = aϕa−1b(t), что равносильно (23). �

Гладкая кривая β : R→ G называется однопараметрической подгруп-
пой группы Ли G, если для любых t, s ∈ R

β(t+ s) = β(t)β(s).

Иными словами, однопараметрическая подгруппа есть гомоморфизм ад-
дитивной группы R вещественных чисел (рассматриваемой как группа
Ли) в группу Ли G.

Очевидно, что при t = 0 каждая однопараметрическая подгруппа β
проходит через единицу e группы G: β(0) = e.

Теорема 2. Каждая однопараметрическая подгруппа β является ин-
тегральной кривой некоторого левоинвариантного векторного поля x.

� Формула
ϕa(t) = aβ(t), a ∈ G, t ∈ R,
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определяет на G гладкую кривую t 7→ ϕa(t), проходящую при t = 0 через
точку a. Положим

xa =
dϕa(t)

dt
|t=0 .

Непосредственная проверка показывает, что отображение a 7→ xa гладкое,
т.е. является векторным полем на G, и что кривые ϕa являются интеграль-
ными кривыми этого поля.

В частности, интегральной кривой будет кривая ϕe = β.

Наконец, поле x левоинвариантно, поскольку

ϕab(t) = (ab)β(t) = a(bβ(t)) = aϕb(t). �

Теорема 3. Проходящая при t = 0 через точку e максимальная ин-
тегральная кривая β произвольного левоинвариантного векторного по-
ля x ∈ g является однопараметрической подгруппой группы Ли G (и, в
частности, определена на всей оси R).

� Интегральные кривые ϕa поля x удовлетворяют соотношению (23),
поскольку это поле левоинвариантно.

Поэтому, в частности, интервал Ia оси R, на котором определена инте-
гральная кривая ϕa, совпадает с интервалом I = Ie, на котором опреде-
лена интегральная кривая β = ϕe.

Кроме того, для любого фиксированного s ∈ R кривая t 7→ ϕe(t + s)
является интегральной кривой поля x, проходящей через b = ϕe(s), и
потому ϕe(t+ s) = ϕb(t).

Тогда для любых s, t ∈ I таких, что s+ t ∈ I

β(s+ t) = β(t+ s) = ϕe(t+ s) = ϕb(t) = bϕe(t) = ϕe(s)ϕe(t) = β(s)β(t).
(24)

Поэтому для доказательства теоремы 3 нужно лишь показать, что кривая
β определена на всей оси R, т.е, что I = R.

Пусть I 6= R. Для любого t ∈ R существует такое целое число n, что
t
n ∈ I.

Доопределим кривую β для любого t ∈ R, положив

β(t) = β

(
t

n

)n
,
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если t
n ∈ I. Это определение корректно. Действительно, если t

n ∈ I и
t
m ∈ I, то

t
nm ∈ I, и потому, согласно соотношению (24),

β

(
t

n

)n
=

[
β

(
t

nm

)m]n
=

[
β

(
t

nm

)n]m
= β

(
t

m

)m
.

Ясно, что построенная таким образом кривая гладкая и удовлетворяет
соотношению (24) для всех t, s ∈ R, т.е. является однопараметрической
подгруппой.

Мы придем к противоречию с предположением I 6= R, если покажем,
что кривая β на всей оси R является интегральной кривой поля x.

Пусть t0 ∈ R и a = β(t0). По определению касательный вектор dβ(t0)
dt

кривой β в точке a действует функцию f (из множества Oa(G) всех функ-
ций, определенных в некоторой окрестности точки a и гладких в этой
окрестности) по формуле

dβ(t0)

dt
f =

d(f ◦ β)(t)

dt
|t=t0.

Аналогично касательный вектор dβ(0)
dt в точке e действует на функцию

f ∈ Oe(G) по формуле

dβ(0)

dt
f =

d(f ◦ β)(t)

dt
|t=0.

Следовательно, для любой функции f ∈ Oa(G)[
(dLa)e

dβ(0)

dt

]
f =

dβ(0)

dt
(f ◦ La) =

d(f ◦ La ◦ β)(t)

dt
|t=0 =

df(aβ(t))

dt
|t=0 =

df(β(t+ t0))

dt
|t=0 =

df(β(t))

dt
|t=t0 =

dβ(t0)

dt
f,

т.е (dLa)e
dβ(0)
dt = dβ(t0)

dt .

Но при t ∈ I кривая β является интегральной кривой поля x. В част-
ности,

dβ(0)

dt
= xβ(0) = xe.
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Кроме того, (dLa)exe = xa = xϕ(t0), поскольку поле x левоинвариантно.
Следовательно,

xϕ(t0) =
dβ(t0)

dt
,

так что кривая β действительно является интегральной кривой векторно-
го поля x при t ∈ R. �

Следствие. Каждое левоинвариантное векторное поле x полно.

Согласно теоремам 2 и 3 левоинвариантные поля x ∈ g и однопарамет-
рические группы β находятся в естественном биективном соответствии.
Сопоставляя все полученные утверждения, мы видим, что справедлива

Теорема 4. Пространство g допускает следующие три равноправные
интерпретации.

(i) Элементами пространства g являются левоинвариантные век-
торные поля x на группе Ли G.

(ii) Элементами пространства g являются касательные векторы
группы G в единице e.

(iii) Элементами пространства g являются однопараметрические
подгруппы β группы Ли G.

Переход от первой интерпретации ко второй задается соответстви-
ем

x 7→ xe,

Переход от третьей интерпретации ко второй задается соответстви-
ем

β 7→ dβ(0)

dt
,

Переход от первой интерпретации к третьей задается соответ-
ствием

x 7→ ϕe,

где ϕe — интегральная кривая поля x, проходящая при t = 0 через точку
e.

Первая и вторая интерпретации дают нам линейные операции в g, от-
носительно которых g является n-мерным линейным пространством. Как
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получить эти линейные операции в третьей интерпретации, мы покажем
позже.

Алгебра g = lG называется алгеброй Ли группы Ли G.

0.7 Категория. Функтор. Функтор Ли

В аксиоматической теории множеств Геделя–Бернайса класс элементов от-
личается от множества тем, что класс не может быть элементом никакого
другого класса и, в частности, множества.

Всякое множество является классом. Интуитивно, класс это <коллек-
ция> всех множеств x, обладающих некоторым свойством A(x).

Класс, не являющийся множеством, часто называют собственным
классом.

Отображение f из собственного класса A в собственный класс B явля-
ется собственным классом пар (x, f(x)), x ∈ A.

Пусть C — класс, являющийся дизъюнктным объединением двух клас-
сов ObC и ArC.

Элементы ObC называются объектами, а элементы ArC — стрелками
или морфизмами.

1. Каждому морфизму f ∈ ArC сопоставляются два объекта A, B, что
записывается так: f : A→ B.

2. Все морфизмы вида f : A→ B с данными A иB образуют множество
морфизмов из A в B, которое обозначается C(A,B) (или HomC(A,B),
MorC(A,B)).

3. Для любых A, B, C ∈ ObC задано отображение

g ◦ f : C(A,B)×C(B,C)→ C(A,C),

сопоставляющее любым двум морфизмам f : A→ B, g : B → C морфизм
g ◦ f : A→ C, называемый композицией морфизмов f и g.

4. Операция ◦ должна обладать свойством ассоциативности.

5. Для любого A ∈ ObC в множестве C(A,A) (обозначаемым также
EndCA) указан некоторый элемент idA (1A) такой, что для любых B,
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C ∈ ObC и для любых f : A→ B, g : C → A

f ◦ idA = f, idA ◦ g = g.

Морфизм idA называется тождественным морфизмом объекта, а класс
C, обладающий описанной структурой, называется категорией.

Примеры категорий.

1. Категория LIN(K) конечномерных линейных пространств над K и
их линейных отображений.

2. Категория TOP топологических пространств и их непрерывных
отображений.

3. Категория DIFF гладких многообразий и их гладких отображений.

4. Категория GROUPS всех групп и всех их гомоморфизмов.

5. Категория LIE всех групп Ли и всех их гомоморфизмов.

6. Категория lie = lie(R) всех конечномерных алгебр Ли над R и всех
их гоморфизмов.

Пусть C и D — две категории. Отображение

F : ObC→ ObD (25)

называется естественной конструкцией, если существует отображение

F : ArC→ ArD, (26)

удовлетворяющее одному из следующих двух наборов условий: либо

a) если f : A→ B, то F (f) : F (A)→ F (B);

b) если f = idA, то F (f) = idF (A);

c) если f = h ◦ g, то F (f) = F (h) ◦ F (g);

либо

a′) если f : A→ B, то F (f) : F (B)→ F (A);

b′) если f = idA, то F (f) = idF (A);

c′) если f = h ◦ g, то F (f) = F (g) ◦ F (h).
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Об отображении (25), удовлетворяющем условиям a, b, c или a′, b′, c′,
говорят, что оно обладает свойством функториальности.

Об отображениях (25) и (26) вместе говорят, что они составляют функ-
тор (ковариантный функтор), когда выполнены условия a, b, c, или ко-
функтор (контравариантный функтор), когда выполнены условия a′, b′,
c′, из категории C в категорию D.

При этом отображение (25) называется объектной частью, а отобра-
жение (26) — стрелочной частью функтора (кофунктора).

Отметим, что стрелочная часть (ко)функтора однозначно определяет
его объектную часть.

Пусть f : G→ H — произвольный гомоморфизм групп Ли. Напомним,
что поля x ∈ X(G), y ∈ X(H) называются f -связанными, если для любой
точки a ∈ G

yf(a) = dfa xa,

иными словами для любой гладкой функции g, определенной на в неко-
тором открытом подмножестве многообразия H, имеет место равенство

x(g ◦ f) = yg ◦ f.

Предложение 1. Для любого левоинвариантного поля x ∈ lG суще-
ствует единственное левоинвариантное поле y ∈ lH, которое f -связано
с полем x.

� Если поле y существует, то для любого b ∈ H ye = dfe xe и yb =
(dLb)e ye, т.е.

yb = (dLb)e dfe xe, b ∈ H. (27)

Это доказывает единственность поля y.

Определим поле y формулой (27). Ясно, что это поле левоинвариантно
(принадлежит lH).

Кроме того, для любого a ∈ G Lf(a) ◦ f = f ◦ La, поскольку f(ax) =
f(a)f(x). Следовательно,

yf(a) = d(f ◦ La)e xe = dfa (dLa)e xe = dfa xa

и, значит, поле y f -связано с полем x. �
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Обозначив поле y через lx, мы, следовательно, получим линейное отоб-
ражение

l(f) : lG→ lH,

являющееся гомоморфизмом алгебр Ли, поскольку, если поля u, v ∈ X(G)
f -связаны с полями u′, v′ ∈ X(H), то поле [u,v] f -связано с полем [u′,v′].

� Пусть произвольная гладкая функция g, определена в некотором
открытом подмножестве многообразия H. Тогда

[u,v](g ◦ f) = u(v(g ◦ f))− v(u(g ◦ f)) = u(v′g ◦ f)− v(u′g ◦ f) =

u′(v′g) ◦ f − v′(u′g) ◦ f = [u′,v′]g ◦ f.�
Конструкция: группа Ли G =⇒ алгебра Ли lG естественна, поскольку
отображение f → l(f) обладает, как легко проверить, свойствами a, b, c.

При отождествлении алгебр Ли lG и lH с касательными пространства-
ми TeG и TeH гомоморфизм l(f) будет дифференциалом

dfe : TeG→ TeH

отображения f в точке e.

Построенный функтор G → lG, f → l(f) из категории LIE в катего-
рию lie называется (левым) функтором Ли.

Предложение 1’. При интерпретации элементов алгебр Ли lG и
lH как однопараметрических подгрупп гомоморфизм l(f) задается со-
ответствием

l(f)(β) = f ◦ β, β : R→ G. (28)

� По определению

dfe

(
dβ(t)

dt
|t=0

)
=
d(f ◦ β)(t)

dt
|t=0 .

Следовательно, при отождествлении однопараметрической подгруппы β с
вектором a = dβ(t)

dt |t=0 однопараметрическая подгруппа f ◦β отождествит-
ся с вектором

dfea = l(f)a.�

Ясно, что касательные пространства TeG и TeGe группы Ли и ее ком-
поненты единицы Ge совпадают.
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Это означает, что lG = lGe. Поэтому при изучении функтора Ли мож-
но ограничиться лишь связными группами Ли.

Рассмотрим группу Ли G(A) всех обратимых элементов вещественной
конечномерной унитальной алгебры A.

Вспомним, что для любого конечномерного линеала V , рассматривае-
мого как гладкое многообразие, и любого a ∈ V касательное пространство
TaV естественным образом отождествляется с V .

� Отождествляющий изоморфизм V → TaV сопоставляет каждому
вектору x ∈ V касательный вектор в точке t = 0 кривой t 7→ a + tx. �

Поэтому, в частности, TeA = A. С другой стороны

TeG(A) = TeA.

Следовательно, используя интерпретацию линеала lG как касательного
пространства TeG, получим

lG(A) = A. (29)

Проинтерпретируем это равенство в рамках первой интерпретации про-
странства lG.

Пусть A : V → V произвольный линейный оператор. Он является
гладким отображением.

Следовательно, определен его дифференциал

dAa : TaV → TAaV,

который по определению переводит касательный вектор к кривой t 7→
a + tx в касательный вектор к кривой t 7→ A(a + tx) = Aa + tAx.

В силу отождествлений TaV = V , TAaV = V это означает, что dAa = A,
т.е. дифференциалом линейного оператора является он сам.

В частности, для любого a ∈ A

(dLa)e = La.

С другой стороны, в силу тех же отождествлений любое векторное поле
x на G(A) является некоторым гладким отображением G(A)→ A.
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Условие левоинвариантности для так трактуемого векторного поля то-
гда имеет вид

xb = La−1xab, (30)

где a, b ∈ G(A). Откуда при b = e получим xa = Laxe, т.е. поле имеет
вид a 7→ ab, где b = xe ∈ A.

Но любое такое поле удовлетворяет, очевидно, (30).

Таким образом, все левоинвариантные векторные поля G(A) → A на
группе Ли G(A) имеют вид x 7→ xa, x ∈ G(A), где a — произвольный
элемент алгебры A.

Проинтерпретируем равенство (29) в рамках третьей интерпретации
пространства lG.

Однопараметрические подгруппы группыG(A) есть гладкиеA-значные
функции x 7→ x(t), удовлетворяющие соотношению

x(s+ t) = x(s)x(t), s, t ∈ R (31)

Продифференцировав это соотношение по s и положив затем s = 0, мы
получим известное нам дифференциальное уравнение (17) с a = x′(0).

Ввиду начального условия x(0) = e получаем, что x(t) = eta.

Согласно формуле (18), это решение удовлетворяет соотношению (31).

Таким образом, любая однопараметрическая подгруппа группы G(A)
имеет вид t 7→ eta.

Обозначив однопараметрическую подгруппу t 7→ eta символом βa, мы
получаем, биекцию a 7→ βa между элементами алгебры A и однопарамет-
рическими подгруппами группы Ли G(A).

Это и есть соответствие (29) в рамках третьей интерпретации простран-
ства lG.
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0.8 Матричные группы Ли, допускающие конструк-
цию Кэли. Обращение конструкции Кэли. Груп-
пы, обладающие ln-образами

Из предыдущих результатов ясно, что однопараметрическими подгруппа-
ми группы GL(n,R) являются матричные экспоненциальные функции
t 7→ etA и только эти функции.

Каждая однопараметрическая подгруппа матричной группы G являет-
ся однопараметрической подгруппой группы GL(n), и потому имеет вид
t 7→ etA.

Это определяет инъекцию lG → l(GL(n)) = R(n), являющуюся отоб-
ражением l(ι) для отображения вложения ι : G→ GL(n).

Таким образом, для любой матричной группы Ли линейное простран-
ство lG естественно отождествляется с некоторым подпростран-
ством линейного пространства R(n).

Примером матричной группы Ли может служить любая группа, допус-
кающая конструкцию Кэли.

По определению матричная однопараметрическая подгруппа t 7→ etA

тогда и только тогда является однопараметрической подгруппой группы
OJ(n), когда для любого t ∈ R выполнено соотношение

(etA)>JetA = J.

Дифференцируя это соотношение по t и полагая t = 0, получим соотно-
шение

A>J + JA = 0,

означающее, что матрица A является J-кососимметрической матрицей.

И обратно, для любой J-кососимметрической матрицы A отображе-
ние t 7→ etA является однопараметрической подгруппой группы OJ(n).

� Используем матричный аналог формулы

ea = lim
m→∞

(
1 +

a

m

)m
.

Покажем, что (с заменой 1 на e) эта формула справедлива в любой ко-
нечномерной ассоциативной алгебре A.
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� Действительно, так как

Ck
m

mk
=
m(m− 1) . . . (m− k + 1)

mkk!
≤ 1

k!
,

то для любой мультипликативной нормы

||ea −
(
e+

a

m

)m
|| = ||

∞∑
k=0

(
1

k!
− Ck

m

mk

)
ak|| ≤

∞∑
k=0

(
1

k!
− Ck

m

mk

)
||a||k = e||a|| −

(
1 +
||a||
m

)m
.

Тогда
lim
m→∞

||ea −
(
e+

a

m

)m
|| = 0,

поскольку (
1 +
||a||
m

)m
→ e||a||.�

Для любого t имеет место равенство

JetA = J lim
m→∞

(
E +

tA

m

)m
= lim

m→∞
J

(
E +

tA

m

)m
=

lim
m→∞

(
E − tA>

m

)m
J = e−tA

>
J,

поскольку для любого многочлена f(A) от матрицы A Jf(A) = f(−A>)J .
Следовательно,

(etA)>JetA = (etA)>e−tA
>
J = J.�

Таким образом, для группы OJ(n) подпространством l(OJ(n)) простран-
ства R(n) является линейное пространство всех кососимметрических
матриц.

Предложение 1. Если матричная группа G ⊂ GL(n) допускает
конструкцию Кэли (и потому является матричной группой Ли), то
lG = G#, т.е. алгебра Ли матричной группы Ли совпадает с кэли-
образом этой группы.

� Пусть A ∈ lG, т.е. отображение t 7→ etA есть однопараметрическая
подгруппа группы G.
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Множество G0 неисключительных матриц из G является окрестностью
единицы E группы G.

Тогда найдется такое ε > 0, что при |t| < ε матрица etA неисключи-
тельна и потому определен ее кэли-образ

(etA)# = (E − etA)(E + etA)−1 ∈ G#.

G# является линейным пространством, следовательно, матрица

d(etA)#

dt
|t=0 = lim

t→0

(etA)#

t

также принадлежит G#. Но, с другой стороны,

d(etA)#

dt
= −AetA(E + etA)−1 + (E − etA)

d(E + etA)−1

dt
,

и потому
d(etA)#

dt
|t=0 = −1

2
A.

Следовательно, A ∈ G# и lG ⊂ G#. Таким образом, lG = G#, поскольку
линейные пространства lG и G# имеют одну и ту же размерность равную
dim G. �

Из предложения 1 и ранее разобранных примеров следует, что про-
странство lG:

для ортогональной группы O(n) (или, что равносильно, для группы
SO(n)) состоит из кососимметрических матриц порядка n;

для вещественной симплектической группы Sp(m,R) — из матриц
вида (

A B
C −A>

)
,

где B и C — симметрические матрицы порядка m, а матрица A произ-
вольна;

для ортогональной симплектической группы Sp(m) ∩ O(2m) — из
матриц вида (

A −C
C A

)
,

где A — кососимметрическая, а C — симметрическая матрица;
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для унитарной группы U(n) — из косоэрмитовых матриц;

для группы Up(m) — из матриц вида(
A B

C −A>

)
,

где B и C — эрмитовы матрицы порядка m, а матрица A произвольна;

для симплектической группы Sp(m) — из матриц вида(
A B

−B A

)
,

где A — косоэрмитова, а B — симметрическая матрица порядка m.

Предложение 2. Подгруппа G ⊂ GL(n) является матричной груп-
пой Ли, если существует диффеоморфизм f : V →

◦
V некоторой окрест-

ности V единичной матрицы в группе Gl(n) на открытое множество
◦
V пространства R(n), обладающий тем свойством, что множество
f(G ∩ V ) является пересечением множества

◦
V с некоторым линейным

подпространством G# пространства R(n):

f(G ∩ V ) = G#∩
◦
V .

� Пусть m = dimG#, ϕ : G# → Rm — произвольный изоморфизм, U =

G ∩ V и
◦
U= ϕ(G#∩

◦
V ).

Тогда множество
◦
U открыто в Rm, а отображение h = ϕ ◦ f : U →

◦
U —

биекция.

Следовательно, (U, h) — карта на G.

Пусть теперь A ∈ G, UA = LA(U) и hA = h ◦ L−1
A . Тогда (UA, hA) —

карта на G.

Все множества вида UA покрывают G, поскольку A ∈ UA.

Кроме того, если UA∩UB 6= ∅, то на hA(UA∩UB) отображение hB ◦h−1
A

будет ограничением диффеоморфизма

h ◦ L−1
B ◦ LA ◦ h

−1 = ϕ ◦ f ◦ LB−1A ◦ f−1 ◦ ϕ−1
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и потому само будет диффеоморфизмом. Следовательно, карты (UA, hA)
составляют атлас.

Тем самым на G определяется гладкость, по отношению к которой G
будет матричной группой Ли. �

Случай группы, допускающей конструкцию Кэли, получается, когда
V = G0, а f : V →

◦
V является отображением Кэли (и, следовательно,

линейное пространство G# является кэли-образом группы G).

Предложение 1 также переносится на рассматриваемый общий случай,
если потребовать, чтобы диффеоморфизм f : V →

◦
V был аналитическим,

т.е. чтобы были выполнены следующие условия:

a) найдется такие число R и матричная норма || · ||, что для любой
матрицы A ∈ V ||A− V || < R;

b) существует такой ряд

f(z) = a0 + a1(z − 1) + . . .+ am(z − 1)m + . . . ,

сходящийся при |z − 1| < R, что для любой матрицы A ∈ V имеет место
равенство

f(A) = a0E + a1(A− E) + . . .+ am(A− E)m + . . .

(ввиду условия a) это равенство имеет смысл);

c) a1 = f ′(1) 6= 0.

Предложение 3. Если для подгруппы G ⊂ GL(n) существует удо-
влетворяющий условиям предложения 2 аналитический диффеоморфизм
f : V →

◦
V , то соответствующее этой группе линейное пространство

lG совпадает с линейным пространством G#, предусмотренным пред-
ложением 2.

� Пусть t 7→ etA — произвольная однопараметрическая подгруппа
группы G, ε > 0 — такое число, что при |t| < ε матрица etA принадлежит
V .

Тогда etA ∈ G ∩ V и, значит, f(etA) ∈ G#∩
◦
V . Поэтому

df(etA)

dt
∈ G# и, в частности,

df(etA)

dt
|t=0 ∈ G#.
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Но согласно формуле (19)

df(etA)

dt
|t=0 = f ′(etA)AetA|t=0 = a1A,

поскольку

f ′(z) = a1 + 2a2(z − 1) + . . .+mam(z − 1)m−1 + . . .

и, значит, f ′(E) = a1E. Следовательно, a1A ∈ G# и A ∈ G#, поскольку
по условию a1 6= 0.

Таким образом, lG ⊂ G#. Более того, lG = G#, поскольку размерности
этих линейных пространств совпадают. �

Для того, чтобы в явном виде построить диффеоморфизм f , рассмот-
рим матричный ряд

lnA = (A− E)− 1

2
(A− E)2 + . . .+

(−1)m+1

m
(A− E)m + . . . ,

который сходится при ||A− E|| < 1, где || · || — произвольная матричная
мультипликативная норма, например, норма A = nmax

i,j
aij.

Вычисление, аналогичное вычислению для числовых рядов, показыва-
ет, что

elnA = A при ||A− E|| < 1,

т.е. когда матрица lnA определена.

Но равенство ln eA = A может быть не выполнено даже тогда, когда
матрица ln eA определена (в том смысле, что для матрицы B = eA сходит-
ся ряд lnB).

� Для

A =

(
0 −θ
θ 0

)
eA =

(
cos θ − sin θ
sin θ cos θ

)
,

и потому при θ = 2π eA = E. Следовательно, ln eA = 0 6= A. �

Равенство ln eA = A имеет место при ||A|| < ln 2.

По аналогии с тем, что равенство ln ez = z имеет место в круге сходи-
мости |z| < ln 2 (z ∈ C) ряда ln ez.

48



Таким образом, отображение ln есть диффеоморфизм некоторой
окрестности V единичной матрицы в группе GL(n) на некоторую
окрестность

◦
V нулевой матрицы в линеале R(n) с обратным диффео-

морфизмом exp : A 7→ eA.

Говорят, что подгруппа G ⊂ GL(n) обладает ln-образом, если в R(n)
существует такое подпространство G[, что

ln(G ∩ V ) = G[∩
◦
V .

Согласно предложению 2 такая подгруппа является матричной группой
Ли, а согласно предложению 3 линеал G[ совпадает с линеалом lG.

В отличие от конструкции Кэли, эта конструкция позволяет немедлен-
но доказать, что группы SL(n) и SU(n) унимодулярных матриц явля-
ются матричными группами Ли.

� Известно, что
det eA = eTr A.

(Это равенство достаточно доказать для матриц, имеющих жорданову,
или хотя бы треугольную форму. Для такой матрицы A матрица eA так-
же треугольна, а ее диагональные элементы имеют вид ea1, . . . , ean, где
a1, . . . , an — диагональные элементы матрицы A. Поэтому

det eA = ea1 . . . ean = ea1+...+an = eTrA).

Поэтому условие унимодулярности матрицы eA равносильно линейному
условию Tr A = 0 на матрицу A. �

Основное преимущество ln-конструкции перед конструкцией Кэли со-
стоит в ее универсальности.

Предложение 4. Каждая матричная группа Ли G обладает ln-
образом.

� Согласно сказанному выше, единственным кандидатом на роль лине-
ала G[ является линеал lG. Покажем, что он обладает нужным свойством.

Пусть V и
◦
V — такие окрестности единичноой и нулевой матрицы со-

ответственно, что ln : V →
◦
V — диффеоморфизм с обратным диффеомор-

физмом exp :
◦
V→ V .
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Тогда для любой матрицы A ∈ lG∩
◦
V верно включение eA ∈ G ∩ V ,

поскольку для любого t etA ∈ G.

Но ln eA = A, поэтому lG∩
◦
V⊂ ln(G ∩ V ).

Обратно, пусть B ∈ G ∩ V . Тогда определена матрица A = lnB ∈
◦
V .

Рассмотрим в GL(n) соответствующее левоинвариантное векторное по-
ле y : P 7→ PA.

Ограничение x = y|G является, очевидно, гладким левоинвариантным
векторным полем на G (элементом линеала lG), которое ι-связано с полем
y, где ι : G→ GL(n) — отображение вложения.

Согласно (28) это означает, что l(ι)x = y. Следовательно, в силу наших
общих отождествлений поле x отождествляется с матрицей A.

Следовательно, A ∈ lG и ln(G ∩ V ) ⊂ lG∩
◦
V .

Таким образом, ln(G ∩ V ) = lG∩
◦
V . �

Итак, матричная группа тогда и только тогда является группой Ли,
когда она обладает ln-образом.

Но линейное пространство lG, совпадающее для матричных групп с
ln-образом, определено для любых групп Ли.

Оказывается функтор Ли l : G → lG играет в теории произвольных
групп Ли роль, сходную с ролью функтора ln в теории матричных групп
Ли.

Этот факт является фундаментом всей теории групп Ли.
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0.9 Алгебра Ли группы обратимых элементов ассо-
циативной алгебры. Локально изоморфные груп-
пы Ли. Групускулы Ли. Функтор Ли на катего-
рии групускул Ли. Экспонента линейного диффе-
ренциального оператора. Формула для значений
гладкой функции в нормальной окрестности еди-
ницы группы Ли

В силу того, что lGe = lG вопрос об обратимости функтора Ли l : LIE →
lie целесообразно ставить только для связных групп Ли.

Полную подкатегорию категории LIE, порожденную связными груп-
пами Ли, обозначим через LIE0.

Ограничение функтора Ли на этой подкатегории также называется
функтором Ли.

В общем случае группы Ли с изоморфными алгебрами Ли не являются
изоморфными, т.е. в общем случае функтор Ли необратим.

� Алгебры Ли коммутативных групп Ли (R,+) и (S1, ·) одномерны и
коммутативны. Следовательно, они изоморфны. Но группы Ли S1 и R не
являются изоморфными, поскольку первая компактна, а вторая не явля-
ется компактной.�

Гладкое многообразие G называется групускулой Ли или локальной
группой Ли, если:

1) в ней выделен некоторый элемент e, называемый единицей;

2) выделены окрестность U ⊂ G × G элемента (e, e) и окрестность
U0 ⊂ G элемента e;

3) задано гладкое отображение · : U → G, называемое умножением
и гладкое отображение (·)−1 : U0 → G называемое операцией взятия
обратного элемента;

4) имеет место равенство e−1 = e;

5) если (x, e) ∈ U , то xe = x; если (e, x) ∈ U , то ex = x;
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6) если (x, y) ∈ U , (y, z) ∈ U , (xy, z) ∈ U и (x, yz) ∈ U , то

(xy)z = x(yz);

7) если (x, y) ∈ U , y ∈ U0 и (xy, y−1) ∈ U , то

(xy)y−1 = x,

и аналогично, если (x, y) ∈ U , x ∈ U0 и (x−1, xy) ∈ U , то

x−1(xy) = y.

Менее строго, G есть групускула Ли, если для элементов x, y, достаточ-
но близких к единице e, определено произведение xy и обратный элемент
x−1, гладко зависящие от x, y, причем выполнены все аксиомы группы
каждый раз, когда участвующие в этих аксиомах объекты определены.

Примером групускулы Ли является произвольное открытое множество
H, содержащее единицу в произвольной группе Ли G. При этом H назы-
вается частью групускулы G.

Две групускулы ЛиG называются эквивалентными, если некоторые их
части совпадают, а класс эквивалентных групускул Ли называется рост-
ком групускул Ли.

Гомоморфизмом групускулы ЛиG в групускулу ЛиH называется такое
гладкое отображение F некоторой окрестности V единицы групускулы G

в групускулу H, что
F (xy) = Fx · Fy

каждый раз, когда элементы F (xy) и Fx · Fy определены.

Если G1 и H1 — части групускул G и H и F (V ∩ G1) ⊂ H1, то F
определяет некоторый гомоморфизм групускулы G1 в групускулу H1, на-
зываемый частью гомоморфизма F .

Два гомоморфизма называются эквивалентными, если у них имеется
общая часть.

Класс эквивалентных гомоморфизмов называется ростком гомомор-
физмов или гомоморфизмом ростков.

Категория всех групускул Ли и их гомоморфизмов (точнее, ростков
групускул Ли и их гомоморфизмов) обозначается символом GR− LOC.
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Функтором локализации называется функтор LIE → GR−LOC (или
LIE0 → GR − LOC), определенный операцией перехода к произвольной
окрестности единицы.

Образ группы Ли G при функторе локализации обозначается Gloc.

Группы Ли локально изоморфны, если их локализации изоморфны (как
объекты категории GR− LOC).

Совокупность lG всех левоинвариантных векторных полей (касатель-
ных векторов в единице, однопараметрических подгрупп (точнее под-
групускул)) на групускуле Ли G является алгеброй Ли, называемой ал-
геброй Ли групускулы G.

Возникающий функтор l : GR − LOC → lie также называется функ-
тором Ли.

Функтор LIE → lie распадается в композицию трех функторов: функ-
тора LIE → LIE0, функтора локализации LIE0 → GR − LOC и функ-
тора Ли GR− LOC → lie для групускул Ли.

Локальная часть задачи в исследовании функтора Ли сосредоточена в
последнем функторе, а глобальная в первых двух функторах.

Как было доказано, любая группа Ли G является расширением своей
компоненты единицы H = Ge посредством некоторой дискретной группы.

Обратно, каждое расширение G связной группы Ли H посредством
дискретной группы является группой Ли с Ge = H.

В первом приближении это достаточно удовлетворительно описывает
функтор LIE → LIE0.

Наша ближайшая цель состоит в исследовании функтора l : GR −
LOC → lie.

Пусть x гладкое векторное поле на аналитическом многообразии M .

Рассмотрим линейный оператор

ex = E + x + . . .+
xn

n!
+ . . . =

∞∑
n=0

xn

n!
, (32)

где E — тождественный оператор, а xn — n-кратная итерация оператора
x.
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Определим результат exf применения этого оператора к функции f ∈
O(M) (O(M) — множество всех функций, определенных в некотором, за-
висящем от функции, открытом множестве в M) формулой

exf = f + xf + . . .+
xnf
n!

+ . . . =
∞∑
n=0

xnf
n!

(33)

и будем считать, что этот оператор применяется только к таким функци-
ям, для которых данный функциональный ряд имеет непустую область
сходимости, которая принимается за область определения функции exf .

Покажем, что оператор ex индуцируется некоторым диффеоморфиз-
мом F : M → M , т.е. имеет вид f 7→ f ◦ F (и не является дифференци-
альным оператором).

Пусть интегральные кривые t 7→ ϕa(t) поля x определены при |t| ≤ 1
и существует такая точка a в области определения W (f) функции f , что
ϕa(t) ∈ W (f) при |t| ≤ 1.

Тогда функция exf будет определена для всех таких точек a и будет
выражаться формулой

(exf)(a) = f(ϕa(1)). (34)

� По условию функция g(t) = f(ϕa(t)) определена и аналитична при
|t| ≤ 1.

Поэтому она разлагается в ряд Тейлора

g(t) =
∞∑
n=0

g(n)(0)

n!
tn,

сходящийся при |t| ≤ 1. С другой стороны, кривая t 7→ ϕa(t) является
интегральной кривой поля x, следовательно,

g′(t) =
df(ϕa(t))

dt
=
dϕa(t)

dt
f = xϕa(t)f = (xf)(ϕa(t)).

Это означает, что функцией g(t) для функции xf служит функция g′(t),
откуда посредством индукции выводится, что функцией g(t) для функции
x(n)f служит функция g(n)(t), т.е. что

g(n)(t) = (xnf)(ϕa(t)).
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Поэтому
g(n)(0) = (xnf)(ϕa(0)) = (xnf)(a),

и, значит,

g(t) =
∞∑
n=0

(xnf)(a)

n!
tn =

∞∑
n=0

(tx)nf)

n!
(a) = (etxf)(a).

Осталось положить t = 1. �

Мы будем применять общую формулу (34) к левоинвариантным век-
торным полям x на аналитической группе (или групускуле) Ли G и к
функциям f , определенным и аналитическим в некоторой окрестности
единицы e группы G.

За точку a примем единицу e. Обозначив точку ϕe(1) символом exp x,
перепишем для этого случая формулу (34) в следующем виде

f(exp x) = (exf)(e). (35)

Для левоинвариантного векторного поля x интегральной кривой t 7→ ϕe(t)
является соответствующая однопараметрическая подгруппа t 7→ β(t).

Поэтому exp x = β(1) и формула (35) имеет место для любых функций
f , область определения которых содержит отрезок t 7→ β(t), |t| ≤ 1, этой
подгруппы.

По определению exp представляет собой такое отображение линейного
пространства lG в группу G, что exp 0 = e.

Оно, очевидно, обладает свойством естественности, т.е. для любого
гомоморфизма F : G→ H групп Ли имеет место равенство

F ◦ exp = exp ◦l(F ).

Из теоремы о гладкой зависимости решений дифференциальных уравне-
ний от начальных данных следует, что отображение

exp : lG→ G

гладкое.

Утверждение A. Отображение exp : lG → G является в точке 0
диффеоморфизмом.
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Докажем это утверждение позже.

Окрестность
◦
U нулевого вектора 0 ∈ lG называется нормальной, если

a) она обладает свойством звездности, т.е. вместе с некоторым векто-
ром b содержит и все векторы вида tb при |t| ≤ 1;

b) отображение exp диффеоморфно отображает окрестность
◦
U на нек-

торую окрестность U единицы e группы G.

Окрестность U также называется нормальной.

Согласно утверждению A существуют сколь угодно малые (содержа-
щиеся в любой наперед заданной окрестности) нормальные окрестности
как вектора 0 ∈ lG, так и единицы e ∈ G.

Ясно, что для поля ax, где a ∈ R, интегральной кривой будет кривая
t 7→ β(at), также являющаяся однопараметрической подгруппой.

Следовательно, при t = a

exp(tx) = β(t).

Эта формула означает, β : t 7→ exp(tx), т.е. что однопараметрические под-
группы β группы G являются образами прямых t→ tx при отображении
exp.

В силу условия a) отсюда следует, что условие на область определе-
ния функции f , необходимое (и достаточное) для справедливости форму-
лы (35), выполнено, если этой областью является некоторая нормальная
окрестность U точки e.

При этом формула (35) задает функцию f на всей окрестности U ,
поскольку любая точка из U имеет вид exp x, где x ∈

◦
U .
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0.10 Формула для значений гладких функций на
призведении двух элементов. Ряд Кэмпбелла–
Хаусдорфа и многочлены Дынкина. Сходи-
мость ряда Кэмпбелла–Хаусдорфа. Восстанов-
ление групускулы по ее алгебре Ли. Операции в
алгебре Ли группы Ли и однопараметрические
подгруппы

Применим формулу (35) к вычислению значения f(ab), где ab ∈ U , a =
exp x и b = exp y.

Пусть a ∈ U . Определим в некоторой содержащейся в U нормальной
окрестности точки e гладкую функцию fa формулой fa(b) = f(ab).

При этом, согласно формуле (35), если b = exp y, то fa(b) = (eyfa)(e).
Но fa = f ◦ La.

Поэтому в силу левоинвариантности поля y имеет место формула

yfa = yf ◦ La = (yf)a.

Тогда для каждого n ≥ 0 ynfa = (ynf)a, и потому

eyfa = (eyf)a.

Следовательно, если a = exp x, то

f(exp x exp y) = fa(b) = (eyfa)e = (eyf)(a) = (exeyf)(e).

Таким образом, для любых x и y из соответствующей нормальной окрест-
ности алгебры lG

f(exp x exp y) = (exeyf)(e). (36)

По определению (без рассмотрения вопроса о сходмости)

exey =
∞∑
p=0

xp

p!

( ∞∑
q=0

yq

q!

)
=

∞∑
p,q=0

xpyq

p!q!
.

Подставив этот ряд в логарифмический ряд

ln z =
∞∑
k=1

(−1)k−1(z− E)k

k
,
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мы получим (учитывая, что операторы x и y, вообще говоря, не комму-
тируют) формальный ряд

ln (exey) =
∞∑
k=1

(−1)k−1

k

( ∞∑
p,q=0, p+q>0

xpyq

p!q!

)k

=

∞∑
k=1

(−1)k−1

k

∑ xp1yq1 . . .xpkyqk

p1!q1! . . . pk!qk!
,

где во внутренней сумме суммирование распространено на всевозможные
наборы (p1, . . . , pk, q1, . . . , qk) целых неотрицательных чисел, подчиненных
условиям

p1 + q1 > 0, . . . , pk + qk > 0. (37)

Положив

zn(x, y) =
n∑
k=1

(−1)k−1

k

∑ xp1yq1 . . . xpkyqk

p1!q1! . . . pk!qk!
, . (38)

где во внутренней сумме показатели p1, . . . , pk, q1, . . . , qk, кроме условия
(37), удовлетворяют также условию

p1 + . . .+ pk + q1 + . . .+ qk = n, (39)

перепишем ряд ln (exey) в следующем виде

ln (exey) =
∞∑
n=1

zn(x,y). (40)

Этот формальный ряд называется рядом рядом Кэмпбелла–Хаусдорфа.

Обозначим через K < x, y > унитальную алгебру всех некоммутатив-
ных многочленов от символов x и y над полем K.

В коммутаторной алгебре [K < x, y >] лиевы многочлены от x и y
получаются из x и y действиями сложения, умножения на элементы поля
K и операцией Ли [a, b] = ab− ba.

Все лиевы многочлены образуют подалгебру l < x, y > в алгебре Ли
[K < x, y >], порожденную элементами x и y.

Определим инъективное линейное отображение

ι : l < x, y >→ K < x, y >, u 7→ ιu,
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где многочлен ιu получается из многочлена u раскрытием всех скобок Ли
по правилу [a, b] = ab− ba.

Очевидно, что это отображение обладает свойством: для любых a, b ∈
l < x, y >

ι[a, b] = ιaιb− ιbιa.
Если поле K имеет характеристику 0, то формула (38) определяет в K <
x, y > некоторый элемент zn(x, y).

Утверждение B. Существует такой лиев многочлен ζn(x, y), что

ιζn(x, y) = zn(x, y).

Примеры.

1. При n = 1 z1(x, y) = x+ y. Следовательно, ζ1(x, y) = x+ y.

2. Пусть n = 2. При k = 1 внутренняя сумма в формуле (38) содержит
три слагаемых x2/2, xy и y2/2, а при k = 2 четыре слагаемых x2, xy, yx
и y2. Следовательно,

z2(x, y) =
1

2
xy − 1

2
yx,

и потому ζ2(x, y) = 1
2 [x, y].

3. Аналогично проверяется, что

z3(x, y) =
1

12
(x2y + yx2 + xy2 + y2x− 2xyx− 2yxy),

ζ3(x, y) =
1

12
([x, [x, y]] + [y, [y, x]]).

Многочлен ζn(x, y) называется многочленом E.Б. Дынкина, который на-
шел для него явную формулу.

Отметим, что многочлен Дынкина однороден степени n по x и y, т.е.
для любого t

ζn(tx, ty) = tnζn(x, y).

Из утверждения B следует, что для любых операторов x, y ∈ lG каждый
оператор ζn(x, y) принадлежит алгебре lG.

Поэтому алгебре lG принадлежит и оператор ln (exey), если этот опре-
ратор имеет смысл, т.е. если ряд (40) сходится. Приведем следующую тео-
рему без доказательства.
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Теорема 1. Единица e аналитической группы (или групускулы) Ли
имеет окрестность U , обладающую следующими свойствами:

a) существует такое δ > 0, что каждая точка окрестности U един-
ственным образом представляется в виде exp x, где x ∈ lG и ||x|| < δ;

b) для любых двух точек exp x и exp y окрестности U в алгебре lG
существует такой элемент z, что

exp x exp y = exp z; (41)

c) этот элемент z является суммой ζ(x, y) ряда ζ1(x, y)+ . . .+ζn(x, y)+
. . ., членами которого являются многочлены Дынкина.

Эта теорема означает, что группа (групускула) Ли G обладает частью,
умножение в которой однозначно восстанавливается (в соответствии с
формулой (41)) по алгебре Ли lG.

Следовательно, две (аналитические) групускулы Ли с изоморфными
алгебрами Ли изоморфны (точнее изоморфны их ростки).

Таким образом, с точностью до изоморфизма функтор Ли l : GR −
LOC → lie обратим.

Если в линеале lG произвольно выбран базис e1, . . . , en, то для любой
нормальной окрестности U единицы группы G композиция h диффеомор-
физма

exp−1 : U →
◦
U

с ограничением на
◦
U соответствующего координатного изоморфизма

lG→ Rn будет диффеоморфизмом окрестности U на некоторое открытое
множество пространства Rn, т.е. пара (U, h) — карта на группе Ли G.

Соответствующие локальные координаты называются нормальными
координатами.

Таким образом, если a = exp x и x = xiei, то числа x1, . . . , xn являются
нормальными координатами точки a ∈ U .

Обозначим через βx однопараметрическую подгруппу t 7→ exp (tx), со-
ответствующую элементу x ∈ lG.

Предложение 1. Для любого x ∈ lG и любого k ∈ R элемент kx ∈ lG
(интерпретированный как элемент пространства TeG) является век-
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тором, касающимся при t = 0 кривой

t 7→ βx(kt). (42)

Для любых x, y ∈ lG элемент x + y ∈ lG является вектором, касаю-
щимся при t = 0 кривой

t 7→ βx(t)βy(t), (43)

а элемент [x, y] ∈ lG — вектором, касающимся при t = 0 кривой

t 7→ βx(
√
t)βy(

√
t)βx(

√
t)−1βy(

√
t)−1. (44)

� Первое утверждение очевидно, поскольку кривая (42), т.е. кривая t 7→
exp (ktx) является однопараметрической подгруппой βkx.

Заметим, что
ζ(tx, ty) = t(x + y) + o(t),

поскольку ζn(tx, ty) = tnζn(x,y) и ζ1(x,y) = x + y.

Поэтому кривая (43) имеет вид

t 7→ exp (t(x + y) + o(t))

и, значит, в нормальных координатах (определенных произвольным бази-
сом алгебры Ли lG) задается функциями

xi(t) = t(X i + Y i) + o(t).

Следовательно, ее касательный вектор при t = 0 имеет координаты

dxi(t)

dt
|t=0 = X i + Y i

и потому совпадает с вектором x + y.

Аналогично.

(exp x)(exp y)(exp x)−1(exp y)−1 = (exp x)(exp y)(exp (−x))(exp (−y)) =

exp (ζ(x,y)) exp (ζ(−x,−y)) = exp ζ(ζ(x,y), ζ(−x,−y)),

ζ(ζ(x,y), ζ(−x,−y)) = ζ(x,y) + ζ(−x,−y)+

1

2
[ζ(x,y), ζ(−x,−y)] + . . . = {(x + y) +

1

2
[x,y] + . . .}+
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{(−x− y) +
1

2
[−x,−y] + . . .}+

1

2
[x + y + . . . ,−x− y + . . .] + . . . =

1

2
[x,y] +

1

2
[x,y] +

1

2
[x,−y] +

1

2
[y,−x] + . . . =

[x,y] + . . . .

Поэтому кривая (44) имеет вид

t 7→ exp ([
√
tx,
√
ty] + o(

√
t)) = exp (t[x,y] + o(

√
t))

и, значит, в нормальных координатах задается функциями

xi(t) = t[x,y]i + o(
√
t).

Следовательно, ее касательный вектор при t = 0 имеет координаты

dxi(t)

dt
|t=0 = [x,y]i

и потому совпадает с вектором [x,y]. �

0.11 Дифференциалы внутреннего автоморфизма и
экспоненциального отображения. Канонические
координаты. Единственность структуры группы
Ли. Группы Ли без малых подгрупп и пятая про-
блема Гильберта

Для каждого элемента a группы Ли G дифференциал (dFa)e = l(Fa) со-
ответствующего внутреннего автоморфизма Fa = La ◦ Ra−1 : x 7→ axa−1,
x ∈ G, обозначается символом

Ad(a) = (dLa)a−1 ◦ (dRa−1)e : lG→ lG

и является линейным обратимым отображением.

Отображение Ad : a 7→ Ad(a) является гомоморфизмом группы Ли G
в группу Ли Aut lG всех невырожденных линейных операторов линеала
lG и называется присоединенным представлением группы Ли G в алгебре
Ли lG.
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Подгруппа Ли Ad(G) ⊂ Aut lG называется присоединенной группой
Ли.

(dAd)e = l (Ad) : lG→ End lG = l(Aut lG)

— есть линейное отображение. Нам известно также отображение

ad : lG→ End lG, adx : y 7→ [x,y].

Предложение 1. Имеет место равенство

l(Ad) = ad.

� Из равенств

ζ(ζ(x,y),−x) = ζ(x + y +
1

2
[x,y] + . . . ,−x) =

y +
1

2
[x,y] +

1

2
[y,−x] + . . . = y + [x,y] + . . . ,

где многоточие обозначает члены не менее чем третьей степени по x и y,
следует

(exp x)(exp y)(exp x)−1 = exp ζ(ζ(x,y),−x) =

exp (y + [x,y] + . . .).

Поэтому

Fβx(s)(βy(t)) = (exp (sx))(exp (ty))(exp (sx))−1 =

exp (ty + st[x,y] + . . .),

где многоточие обозначает члены не менее чем третьей степени по s и t.
Следовательно, нормальные координаты вектора

(dFβx(s))ey = (dFβx(s))

(
d βy(t)

dt
|t=0

)
=

(
d

dt
Fβx(s)(βy(t))

)
|t=0

равны (
d

dt
(tY i + st[x,y]i + . . .

)
|t=0 = Y i + s[x,y]i + . . . ,

где последнее многоточие обозначает члены не менее чем второй степени
по s. Тогда

(dFβx(s))ey = y + s[x,y] + . . . .
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Но
(dAd)ex = (dAd)e

(
dβx(s)

ds
|s=0

)
=

(
d

ds
Ad(βx(s)

)
|s=0 =

lim
s→0

Ad(βx(s))− Ad(e)

s
= lim

s→0

(dFβx(s))e − E
s

,

следовательно,

((dAd)ex)y = lim
s→0

(dFβx(s))ey− y
s

= lim
s→0

([x,y] + . . .) = [x,y] = (adx)y.�

Следствие 1. Для любого элемента x ∈ lG имеет место равенство

Ad(exp x) = eadx.

� Формулы
t 7→ Ad(exp tx), t→ etadx

задают однопараметрические подгруппы группы Ли Aut lG, имеющие при
t = 0 один и тот же касательный вектор

(dAd)ex = adx,

и потому совпадающие при всех t. �

Рассмотрим в алгебре Ли lG произвольную гладкую кривую t→ x(t).
Пусть

a(s) =
d

dt
exp(sx(t))|t=0

— касательный вектор этой кривой в точке a(s) = exp(sx), где x = x(0).

Перенеся посредством дифференциала (dRa(s)−1)|a(s) этот вектор в точ-
ку e, мы получим в lG = TeG вектор

b(s) = (dRa(s)−1)|a(s)a(s).

Оказывается, что
b′(s) = Ad(a(s))y, (45)

где y = x′(0).

� По определению действия дифференциала гладкого отображения на
касательные векторы кривых

b(s) =
d

dt
(Ra(s)−1(exp(sx(t))))|t=0 =

d

dt
(exp(sx(t))) exp(−sx)|t=0
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и, следовательно,

b(s+∆s)−b(s) =
d

dt
((exp(sx(t)) exp(−sx))−1(exp((s+∆s)x(t)) exp(−(s+∆s)x))|t=0 =

d

dt
(exp(sx) exp(−sx(t))(exp((s+ ∆s)x(t)) exp(−(s+ ∆s)x))|t=0 =

d

dt
(a(s) exp(∆sx(t))a(s+∆s)−1) = (dLa(s)◦dRa(s+∆s)−1)

d

dt
(exp(∆sx(t)))|t=0.

Поэтому

b′(s) = lim
∆s→0

b(s+ ∆s)− b(s)

∆s
= (dLa(s)◦dRa(s)−1) lim

∆s→0

d
dt(exp(∆sx(t)))|t=0

∆s
=

Ad(a(s)) lim
∆s→0

d
dt(exp(∆sx(t)))|t=0

∆s
.

В нормальных координатах, соответствующих произвольному базису
e1, . . . , en линеала lG, точка exp(∆sx(t)) имеет координаты ∆sX i(t), где
X i(t) — координаты вектора x(t) в базисе e1, . . . , en. Тогда вектор

lim
∆s→0

d
dt(exp(∆sx(t)))|t=0

∆s

имеет координаты dXi(0)
dt , т.е. те же координаты, что и вектор x′(0) = y. �

Линейный оператор из формулы (45) можно переписать в следующем
виде

Ad(a(s)) = Ad(exp(sx)) = es adx = E + s adx + . . .+ sn
(adx)n

n!
+ . . .

Интегрируя это операторное тождество, получим тождество
1∫

0

Ad(a(s))ds =
eadx − E
adx

,

где под правой частью понимается сумма операторного ряда

E +
adx
2!

+ . . .+
(adx)n

(n+ 1)!
+ . . . ,

получающегося из степенного ряда для функции ez−1
z подстановкой вместо

z оператора adx.
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Для вектора b(1) отсюда в силу формулы (45) следует, что

b(1) =

1∫
0

b′(s)ds =
eadx − E
adx

y.

Но по определению

b(1) = (dRa(s)−1)a(1)
d

dt
exp(x(t))|t=0 = (dRexp(−x))exp(x)

d

dt
exp(x(t))|t=0 =

d

dt
(exp(x(t)) exp(−x))|t=0.

Этим доказано, что

d

dt
(exp(x(t)) exp(−x))|t=0 =

eadx − E
adx

y.

Переходя к нормальным координатам, получим, что для вектора z(t) ∈
lG, удовлетворяющего соотношению exp(x(t)) exp(−x) = exp z(t), спра-
ведливо равенство

z′(0) =
eadx − E
adx

y.

Следовательно,

z(t) = t
eadx − E
adx

y + o(t).

Возвращаясь к exp z(t) и полагая x(t) = x + ty, мы видим, что нами
доказано

Предложение 2. Для любых x, y ∈ lG имеет место равенство

exp(x + ty) exp(−x) = exp

(
t
eadx − E
adx

y + o(t)

)
.

Для каждого x ∈ lG дифференциал (d exp)x в точке x гладкого отображе-
ния exp : lG→ G есть линейное отображение lG→ TaG, где a = exp x.

Поэтому его композиция с отображением (dRa)
−1
e : TaG → TeG = lG

будет отображением из lG в lG.

Следствие 2. Имеет место формула

(dRa)
−1
e ◦ (d exp)x =

eadx − E
adx

, a = exp x
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� Пусть y ∈ lG. Тогда

((dRa)
−1
e ◦ (d exp)x)y =

d

dt
(exp(x + ty) exp(−x))|t=0 =

d

dt

(
t
eadx − E
adx

y + o(t)

)
|t=0 =

eadx − E
adx

y.�

Следствие 3. Отображение exp : lG→ G тогда и только тогда явля-
ется диффеоморфизмом в точке x ∈ lG когда ни один корень оператора
ad x не имеет вида 2mπi.

� Отображение exp тогда и только тогда является диффеоморфизмом
в точке x, когда его дифференциал (d exp)x в этой точке является изомор-
физмом, а оператор adx тогда и только тогда имеет характеристические
корни вида 2mπi, когда оператор eadx − E, а значит, и оператор eadx−E

adx
вырожден. �

Предложение 3. Пусть lG = A ⊕ B — разложение линеала lG в
прямую сумму подпростанств A и B. Тогда отображение

F : lG→ G, F (x) = exp a exp b, (46)

где a ∈ A и b ∈ B — компоненты вектора x ∈ lG в разложении линеала
lG, является диффеоморфизмом в точке 0 ∈ lG.

� Очевидно, отображение F гладкое и переводит 0 ∈ lG в e ∈ G.

Пусть l : lG→ T0G — естественный изоморфизм, переводящий вектор
x ∈ lG в вектор, касающийся в точке 0 кривой t 7→ tx.

Oтображение F переводит эту кривую в кривую

t 7→ exp ta exp tb = exp ζ(ta, tb). (47)

Следовательно, его дифференциал dF0 : T0(lG) → TeG переводит вектор
l(x) в вектор, касающийся в точке e кривой (47).

Следовательно, для любой функции f ∈ Oe(G) имеет место формула

[(dF0 ◦ l)(x)]f =
df(exp ζ(ta, tb))

dt
|t=0 =

d(eζ(ta,tb)f)(e)

dt
|t=0 .

Но
eζ(ta,tb)f = (E + ζ(ta, tb) + o(t))f = f + t(a + b)f + o(t).
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Поэтому

d(eζ(ta,tb)f)(e)

dt
|t=0 = ((a + b)f)(e) = (xf)(e) = xef.

Следовательно,
(dF0 ◦ l)(x) = xe, dF0 ◦ l = i,

где i : lG→ TeG, x 7→ xe, — изоморфизм.

Таким образом, dF0 — изоморфизм, поскольку i и l являются изомор-
физмами. Осталось использовать стандартную теорему о локальных диф-
феоморфизмах. �

При lG = A (и B = 0) из предложения 3 следует утверждение А.

Согласно предложению 3 точка 0 ∈ lG обладает сколь угодно ма-
лой звездной окрестностью

◦
U , на которой отображение F является диф-

феоморфизмом, отображающим ее на некоторую окрестность U единицы
e ∈ G.

Обладающие этим свойством окрестности
◦
U и U называются канони-

ческими окрестностями (точек 0 ∈ lG и e ∈ G соответственно), отвеча-
ющими прямому разложению lG = A⊕ B.

Выбрав в подпостранствах A и B произвольные базисы, мы получим
некоторый базис пространства lG.

Композиция h диффеоморфизма F−1 : U →
◦
U с ограничением на

◦
U

соответствующего координатного изоморфизма lG → Rn будет диффео-
морфизмом окрестности U на некоторое открытое множество в Rn, т.е.
пара (U, h) будет некоторой картой на G.

Карты такого вида называются каноническими картами, отвечающи-
ми разложению lG = A ⊕ B, соответствующие локальные координаты
x1, . . . , xn — каноническими координатами.

Все эти определения вместе с предложением 3 переносятся на случай,
когда задано разложение

lG = A1 ⊕ . . .⊕ Am (48)

линеала lG в прямую сумму любого числа подпространств.
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При m = 1 канонические окрестности совпадают с нормальными
окрестностями, а канонические координаты с нормальными координата-
ми.

При m = n все подпространства в разложении одномерны и само раз-
ложение определяется выбором в lG некоторого базиса .

Соответствующие канонические координаты в этом случае называются
каноническими координатами второго рода (тогда как каноническими
координатами первого рода называются нормальные координаты).

Заметим, что канонические координаты первого и второго рода зада-
ются произвольным базисом линеала lG.

С помощью канонических координат можно доказать следующее важ-
ное

Предложение 4. Любой непрерывный гомоморфизм Φ : H → G групп
Ли является гладким отображением, т.е. гомоморфизмом групп Ли.

Следствие 4. Если две группы Ли изоморфны как топологические
группы, то они изоморфны и как группы Ли.

В частности, отсюда следует, что если на топологической группе мож-
но ввести согласованную с топологией гладкость так, чтобы она стала
группой Ли, то это можно сделать только одним способом.

Это означает, что функтор игнорирования LIE → GR− TOP перево-
дит различные группы Ли в различные топологические группы.

Поэтому можно считать, что этот функтор осуществляет вложение ка-
тегории LIE в категорию GR − TOP и категорию всех групп Ли можно
считать в силу предложения 4 полной подкатегорией категории всех то-
пологических групп.

Топологическая группа G называется группой без малых подгрупп, ес-
ли ее единица e обладает окрестностью, не содержащей никаких подгрупп
H 6= {e}.

Предложение 5. Каждая группа Ли является группой без малых
подгрупп.

� Введем на линеале TeG = lG произвольную евклидову метрику.
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Тогда для достаточно малого δ > 0 шар радиуса δ с центром в точке 0
будет нормальной окрестностью этой точки, и, следовательно, его образ
при отображении exp будет нормальной окрестностью единицы в G.

Пусть U — нормальная окрестность, аналогичным образом строящаяся
по числу δ/2.

Ясно, что для любого ненулевого вектора a ∈ lG, длина которого мень-
ше δ/2, найдется такое целое числоm, что длина вектораma будет больше
δ/2 и меньше δ.

Это означает, что для любого отличного от единицы элемента a = exp a
окрестности U существует такое m, что am = exp ma не принадлежит U .

Поэтому окрестность U не может содержать никакой подгруппы H 6=
{e}. �

Теорема. (Глисон и Ямабе) Топологическая хаусдорфова группа тогда
и только тогда является группой Ли, когда она локально компактна и
не имеет малых подгрупп.

Одно необходимое условие лиевости топологической группы состоит в
ее хаусдорфовости и локальной компактности, другое — в ее локальной
евклидовости, т.е. в том, чтобы она была топологическим многообразием.

Вопрос о том, является ли последнее необходимое условие достаточ-
ным, составляет содержание так называемой пятой проблемы Гильберта.

Было доказано, что никакая локально евклидова группа малых под-
групп имееть не может.

В комбинации с теоремой Глисона–Ямабе это немедленно дает положи-
тельное решение проблемы Гильберта: любая локально евклидова группа
является группой Ли.
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0.12 Вычисление структурных констант алгебры Ли
с помощью групповых функций. Левоинвари-
антные дифференциальные формы. Структур-
ные уравнения Маурера–Картана

Пусть групповые функции в окрестности единицы U ⊂ G группы Ли в
локальных координатах имеют вид

ci = f i(a1, . . . , an, b1, . . . , bn), a, b ∈ U.

Рассмотрим вектор ve ∈ TeG и такое левоинвариантное векторное поле
v ∈ lG = g, что для любого a ∈ G

va = (dLa)e(ve).

Матрица линейного оператора (dLa)e имеет вид

((dLa)e) = (Lji (a)) =

(
∂f j(a, b)

∂bi
|b=e
)
.

Следовательно, относительно натурального поля репера

va = Lji (a)vie∂j.

Выберем базис в алгебре Ли g

ei(a) = Lji (a)∂j

и запишем структурные уравнения алгебры Ли

[ei(a), ej(a)] = Ck
ijek(a).

Следовательно, объект неголономности левоинвариантного поля репера
совпадает со структурным тензором.

Произвольное левоинвариантное векторное поле v ∈ g есть линейная
комбинация векторов левоинвариантного поля репера с постоянными ко-
эффициетами v(a) = viei(a).

Запишем структурные уравнения относительно натурального поля ре-
перов

Lsi∂sL
k
j − Lsj∂sLki = Cs

ijL
k
s .

71



Полагая здесь a = e и учитывая, что Lji (e) = δji , получим формулу, выра-
жающую структурные константы алгебры Ли через групповые функции

Ck
ij = (∂iL

k
j − ∂jLki )|a=e.

Внешняя дифференциальная q-форма θ на группе Ли G называется лево-
инвариантной, если для любого a ∈ G L∗aθ = θ, т.е. для любых a, b ∈ G и
для всех u1, . . . ,uq ∈ TbG

(L∗aθ)(b)(u1, . . . ,uq) := θ(ab)((dLa)bu1, . . . , (dLa)buq) = θ(b)(u1, . . . ,uq).

Таким образом, левоинвариантная q-форма однозначно определяется сво-
ими значениями при b = e.

Левоинвариантная 1-форма называется также формой Маурера–
Картана.

Пусть g∗ — множество всех левоинвариантных 1-форм.

Значение левоинвариантной формы θ ∈ g∗ на левоинваринтном век-
торном поле v ∈ g есть постоянная функция.

� Для любого a ∈ G

θ(e)(ve) = (L∗aθ)(e)(ve) = θ(a)((dLa)eve) = θ(a)(va) = const. �

Пусть θ1, . . . , θn — левоинвариантные 1-формы, в каждой точке a ∈ G

образующие кобазис по отношению к базису левоинвариантных векторных
полей, т.е θj(a)(ei(a)) = δji .

Они образуют базис n-мерном линеале g∗. Найдем внешние дифферен-
циалы от этих 1-форм.

dθk(ei, ej) =
1

2
(ei(θk(ej))− ej(θk(ei))− θk([ei, ej])) = −1

2
Ck
ij.

Но эти внешние дифференциалы должны разлагаться по базису {θl ∧ θm}
(l < m) пространства левоинвариантных 2-форм

dθk = Ak
ijθ

i ∧ θj.

Отсюда получим, так называемые структурные уравнения Маурера–
Картана

dθk = −1

2
Ck
ijθ

i ∧ θj.
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Относительно натурального поля кореперов базисные левоинвариантные
1-формы имеют вид

θk(a) = V k
s (a)das,

где матрица (V k
s (a)) обратна матрице (Lji (a)).

Компоненты этой матрицы, называемые вспомогательными функция-
ми, можно и непосредственно подсчитать через групповые функции

V j
i (a) =

(
∂f j(b, a)

∂ai
|b=a−1

)
.

Тогда структурные уравнения Маурера–Картана принимают вид

∂jV
k
i − ∂iV k

j = Ck
slV

s
i V

l
j .

Полагая здесь a = e и учитывая, что V j
i (e) = δji , получим еще один способ

вычисления структурных констант алгебры Ли

Ck
ij = (∂jV

k
i − ∂iV k

j )|a=e.

Примеры.

1. Рассмотрим двумерную аффинную группу GA(2) с групповыми
функциями

f 1(a, b) = a1 + a2b1, f 2(a, b) = a2b2.

Найдем матрицы (Lji (a)), (V k
s (a)).

(Lji (a)) =

(
∂f j(a, b)

∂bi
|b=e
)

=

(
a2 0
0 a2

)
, (V j

i (a)) =

(
1
a2 0
0 1

a2

)
.

Следовательно,

e1(a) = a2∂1, e2(a) = a2∂2, [e1, e2] = −e1.

А базисные левоинвариантные 1-формы

dθ1 =
1

a2
da1, dθ2 =

1

a2
da2

удовлетворяют следующим уравнениям Маурера–Картана

dθ1 = θ1 ∧ θ2, dθ2 = 0.
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2. Рассмотрим полную линейную группуGL(n,K). Левый сдвиг и его диф-
ференциал имеют вид

LAX = AX, (dLA)EU = AU,

где A, X ∈ GL(n,K), U ∈ gl(n,K). Всякое левоинвариантное векторное
поле имеет вид U(A) = AU .

Полагая U = Ej
i , получим базис левоинвариантных векторных полей

Ej
i (A) = AEj

i , состоящий из n-матриц вида 0 . . . A1
i . . . 0

. . . . . . . . . . . . . . .
0 . . . An

i . . . 0

 ,

где ненулевые элементы образуют j-й столбец.

Поэтому относительно натурального поля реперов

Ej
i (A) = As

i

∂

∂As
j

.

Учитывая, что
∂Aj

i

∂Al
k

= δjl δ
k
i ,

получим знакомое нам выражение для коммутатора левоинвариантных
полей U(A) = AU , V (A) = AV

[U(A), V (A)] = A(UV − V U).

Напомним структурные уравнения алгебры Ли gl(n,K)

[Ej
i , E

k
l ] = δjlE

k
i − δkiE

j
l .

Найдем левоинвариантные 1-формы. Базис этих форм вычисляем по фор-
муле

θji = V js
il dA

l
s, где V js

il =

(
∂(Bj

mA
m
i )

∂Al
s

|B=A−1

)
= (A−1)jl δ

s
i .

Следовательно, θji = (A−1)jl dA
l
i.

Для нахождения уравнений Маурера–Картана получим следующие
формулы

dθji = d(A−1)jl ∧ dA
l
i, dAl

i = Al
sθ
s
i , d(A−1)jl = −(A−1)ml θ

j
m.

Тогда dθji = θsi ∧ θjs.
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0.13 Восстановление локальной группы Ли по ее ал-
гебре Ли

Пусть va = (dLa)e(ve) — левоинвариантное векторное поле на группе Ли
G.

Его траектории есть решение системы обыкновенных дифференциаль-
ных уравнений

da

dt
= va или в координатах

daj

dt
= Lji (a)vi.

При начальном условии a(0) = a единственная траектория имеет вид:
a(t) = Exp(tv)a.

Экспоненциальное отображение exp : g → G, exp(v) = a(1), явля-
ется диффеоморфизмом в некоторой (нормальной) окрестности нуля на
(нормальную) окрестность единицы U ⊂ G — локальную группу Ли или
групповое ядро.

В ней могут быть введены канонические координаты первого рода: за
координаты элемента a = exp(v) принимаются координаты вектора v ∈ g

относительно некоторого базиса.

Пусть v = viei — разложение вектора v ∈ g по некоторому базису
алгебры Ли.

Отображение
F (v) = exp(v1e1) . . . exp(vnen)

является диффеоморфизмом некоторой окрестности нуля в g на некото-
рую окрестность единицы вG и (v1, . . . , vn) есть канонические координаты
второго рода элемента a = F (v) в локальной группе Ли.

Восстановление локальной группы Ли по алгебре Ли производится сле-
дующим образом.

Пусть [ei, ej] = Ck
ijek — структурные уравнения алгебры Ли.

1. Сначала интегрируются уравнения Маурера–Картана для вспомога-
тельных функций V j

i (a).

Рассмотренные в канонических координатах первого рода ai = vi, они
вдоль однопараметрических подгрупп сводятся к системе обыкновенных
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дифференциальных уравнений для функций W i
j (t, a)

dW i
j

dt
= δij + C i

pqW
p
j a

q

с начальным условием W i
j (0, a) = 0.

Полагая затем V i
j (a) = W i

j (1, a), получим вспомогательные функции.

2. Для нахождения групповых функций f i(a, b) рассматриваются урав-
нения Ли

V i
k (f)

∂fk

∂bj
= V i

j (b)

при начальном условии f i(a, e) = ai.

Эти уравнения можно переписать в виде системы Пфаффа

V i
k (f)dfk = V i

k (b)dbk,

что выражает собой факт левоинвариантности 1-форм θi.

Пусть h ⊂ g — подалгебра Ли, заданная базисом {u1, . . . ,uk} левоин-
вариантных векторных полей.

Тогда [ul,um] = Ĉs
lmus. Это означает полную интегрируемость k-

мерного распределения, натянутого на {u1, . . . ,uk}.

Тогда, максимальное связное интегральное многообразие этого распре-
деления, проходящее через единицу группы, есть подгруппа Ли H ⊂ G,
алгебра Ли которой есть h.

Используя канонические координаты второго рода на G, можно найти
соответствующую h локальную подгруппу Ли следующим образом

a(t1, . . . , tk) = exp(t1u1) . . . exp(tkuk).

Если же h задана как аннулятор системы линейно независимых левоин-
вариантных 1-форм {ω1, . . . , ωn−k}, то дело сводится к интегрированию
системы пфаффовых уравнений ωŝ = 0.

Ее полная интегрируемость обеспечена структурными уравнениями
Маурера–Картана для h.

Примеры.
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3. В алгебре Ли gl(n,K) уравнением ω = θii = 0 задана подалгебра
sl(n,K).

Из структурных уравнений Маурера–Картана следует, что

dω = θij ∧ θ
j
i = 0.

Поэтому это уравнение Пфаффа вполне интегрируемо.

Найдем соответствующую подгруппу Ли. Имеем

ω = (A−1)ijdA
j
i = 0.

Заметим, что
ddet(A) = det(A)(A−1)ijdA

j
i = 0.

Поэтому интегральные многообразия имеют уравнения det(A) = const.

Начальное условие det(E) = 1 выделяет подгруппу SL(n,K).

4. Пусть T0(3,R) — группа Ли унипотентных матриц

A =

1 a1 a3

0 1 a2

0 0 1

 .

Ее алгебра Ли t0(3,R) состоит из строго верхних треугольных матриц.

Найдем однопараметрические подгруппы и экспоненциальное отобра-
жение.

Всякое левоинвариантное векторное поле имеет вид U(A) = AU , по-
скольку группа матричная.

Следовательно, оно образовано матрицами

U(A) =

0 u1 a1u2 + u3

0 0 u2

0 0 0


и дифференциальные уравнения однопараметрических подгрупп таковы

da1

dt
= u1,

da2

dt
= u2,

da3

dt
= a1u2 + u3,
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где ui фиксированы. Интегрируя их при начальном условии ai(0) = 0,
получим

a1 = u1t, a2 = u2t, a3 =
1

2
u1u2(t)2 + u3t.

Следовательно,

exp(U) =

1 u1 1
2u

1u2 + u3

0 1 u2

0 0 1

 .

Здесь (u1, u2, u3) являются каноническими координатами на группе
T0(3,R).

5. Пусть алгебра Ли задана структурными уравнениями

[e1, e2] = 0, [e1, e3] = 0, [e2, e3] = e1

с ненулевыми структурными константами C1
23 = −C1

32 = 1.

Найдем соответствующую ей локальную группу Ли.

dW 1
1

dt
= 1−W 3

1 u
2 +W 2

1 u
3,

dW 1
2

dt
= −W 3

2 u
2 +W 2

2 u
3,

dW 1
3

dt
= −W 3

3 u
2 +W 2

3 u
3,

dW 2
1

dt
= 0,

dW 2
2

dt
= 1,

dW 2
3

dt
= 0,

dW 3
1

dt
= 0,

dW 3
2

dt
= 0,

dW 3
3

dt
= 1,

где ui фиксированы. При начальном условииW i
j (0, a) = 0 получим следу-

ющее решение

(W i
j ) =

t 1
2a

3(t)2 −1
2a

2(t)2

0 t 0
0 0 t

 .

Следовательно,

(V i
j ) =

1 1
2a

3 −1
2a

2

0 1 0
0 0 1

 .

Таким образом, левоинвариантные 1-формы группы Ли имеют вид

θ1 = da1 +
1

2
(a3da2 − a2da3), θ2 = da2, θ3 = da3.
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Интегрируя теперь уравнения Ли

df 1 +
1

2
(f 3df 2−f 2df 3) = db1 +

1

2
(b3db2−b2db3), df 2 = db2, df 3 = db3,

получим

f 1 = a1 + b1 +
1

2
(a2b3 − a3b2), f 2 = a2 + b2, f 3 = a3 + b3.

Мы нашли закон умножения в искомой группе, записанный в канониче-
ских координатах второго рода, в котором ai входят в качестве констант
интегрирования.

0.14 Примеры гомоморфизмов групп и алгебр Ли.
Факторгруппы. Прямое произведение групп Ли

Ядро гомоморфизма f : G→ Ĝ групп Ли

Ker f = {a ∈ G : f(a) = ê},

очевидно, является нормальным делителем в G, а f(G) есть подгруппа
Ли в Ĝ.

В частности, для инъективности гомоморфизма достаточно, чтобы
Ker f = e. Если, кроме того, f(G) = Ĝ, то группы изоморфны.

Если v ∈ g, то f∗v ∈ ĝ, где f∗ — дифференциал гомоморфизма и ĝ —
алгебра Ли группы Ли Ĝ.

Для любых u, v ∈ g f∗[u,v] = [f∗u, f∗v], т.е. f∗ : g→ ĝ — гомоморфизм
алгебр Ли.

При этом Ker f∗ есть идеал в g, являющийся алгеброй Ли ядра Ker f ,
а алгебра Ли подгруппы Ли f(G) есть f∗(g).

В случае связной группы Ли G группа всех автоморфизмов Aut(G)
группы G изоморфна группе всех автоморфизмов Aut(g) алгебры Ли g.

В окрестностях единиц f и f∗ связаны формулой

f ◦ exp = exp ◦f∗.

Вспомним, что множество всех внутренних автоморфизмов

x̂ = axa−1, a ∈ G
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является подгруппой в Aut(G). Элементы x̂ = axa−1 и x называются со-
пряженными.

Дифференциалы Ad(a) внутренних автоморфизмов образуют подгруп-
пу Ли Ad(G) ⊂ Aut(g) — группу Ли внутренних автоморфизмов алгебры
Ли, называемую также присоединенной группой.

Центральные элементы порождают тождественные преобразования
этой группы.

Отметим, что подалгебра h ⊂ g является идеалом тогда и только то-
гда, когда она инвариантна относительно преобразований присоединенной
группы, т.е. для любого a ∈ G Ad(a)h ⊂ h.

Алгебра Ли присоединенной группы ad(g) называется присоединенной
алгеброй.

Примеры.

1. Рассмотрим отображение det : GL(n,K)→ K∗.

Это гомоморфизм групп Ли, поскольку аналитическое отображение и
det (AB) = detA detB.

Ker det = {A ∈ GL(n,K) : detA = 1} = SL(n,K).

Дифференцируя определитель и вычисляя результат в единице группы,
получим det∗U = trU .

det∗ — гомоморфизм алгебры Ли gl(n,K) на алгебру K.

Его ядро образовано матрицами с нулевым следом trU = 0. Это идеал
sl(n,K).

2. Отображение
f : R→ S1, f(x) = e2πix

аналитично и сохраняет групповую операцию

f(x+ y) = e2πi(x+y) = e2πixe2πiy = f(x)f(y).

Его ядро определено условием e2πix = 1 и, следовательно, есть дискретный
нормальный делитель Z.

Окрестность нуля U = (−1/2, 1/2) биективно отображается на
S1\{(0,−1)}.
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Следовательно, f — локальный изоморфизм, не являющийся изомор-
физмом.

3. Автоморфизмы аддитивной группы Ли R удовлетворяют условию

f(x+ y) = f(x) + f(y).

Дифференцируя это условие по x, получим f ′(x+ y) = f ′(x).

Следовательно, f ′(x) = c = const 6= 0. С учетом начального условия
f(0) = 0, получим f(x) = cx.

4. Пусть алгебра Ли задана структурными уравнениями

[e1, e2] = 3e1, [e1, e3] = e2, [e2, e3] = 3e3.

Найдем присоединенную алгебру ad(g). Для любого u ∈ g

ad(u) =

3u2 −3u1 0
u3 0 −u1

0 3u3 −3u2

 .

Положим u = e1 и найдем соответствующую однопараметрическую под-
группу.

Для этого интегрируем уравнения

dv
dt

= ad(e1)v

при начальном условии v(0) = v, т.е. систему

dv1

dt
= −3v2,

dv2

dt
= −v3,

dv3

dt
= 0.

Получим однопараметрическую группу линейных преобразований

v1(t) = v1 − 3v2t+
3

2
(t)2v3, v2(t) = v2 − v3t, v3(t) = v3,

с матрицей

A1(t) =

1 −3t 3
2(t)2

0 1 −t
0 0 1

 .
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Аналогично, операторы ad(e2) и ad(e3) порождают в g однопараметриче-
ские группы внутренних автоморфизмов с матрицами

A2(t) =

e3t 0 0
0 1 0
0 0 e−3t

 , A3(t) =

 1 0 0
t 1 0

3
2(t)2 3t 0

 .

Произвольный внутренний автоморфизм локальной группы Ad(G) нахо-
дится теперь в виде произведения

A(t1, t2, t3) = A1(t
1)A2(t

2)A3(t
3),

где t1, t2, t3 — канонические координаты второго рода на группе Ad(G).
При вычислении матрицы A удобно перейти к другим координатам, по-
ложив

t1 = 2a, t2 =
1

3
ln b, t3 = 2c.

Тогда

A =

 p2b −6pa 6a2

b

2pbc 1− 12ac −2a
b

6bc2 6c 1
b

 ,

где p = 1− 6ac, b > 0.

Пусть H ⊂ G — замкнутая подгруппа Ли. Подмногообразия LaH = aH

называются левыми смежными классами по этой подгруппе.

Они являются классами эквивалентности по отношению : a ∼ b тогда
и только тогда, когда a−1b ∈ H.

Множество G/H всех левых смежных классов наделяется структу-
рой аналитического многообразия, если потребовать, чтобы каноническое
отображение

π : G→ G/H, π(a) = aH

было аналитическим. Если H — нормальный делитель, то формула
π(ab) = aH · bH определяет в G/H групповую операцию, превращающую
G/H в группу Ли, называемую факторгруппой группы G по H.

Проекция π является в этом случае гомоморфизмом G на G/H с ядром
H.

Обратно, пусть π : G → Ĝ — аналитический гомоморфизм G на Ĝ и
H = Ker π — его ядро. Тогда Ĝ изоморфно факторгруппе G/H.
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Если h — идеал алгебры Ли g, то определен коммутатор смежных клас-
сов

[u + h,v + h] = [u,v] + h,

который превращает факторпространство g/h в алгебру Ли, называемую
факторалгеброй алгебры Ли g по h.

Если g — алгебра Ли группы Ли G, а h — подалгебра Ли, соответству-
ющая подгруппе Ли H, то алгебра Ли группы G/H изоморфна факторал-
гебре g/h.

При этом π∗ : g→ g/h — канонический гомоморфизм.

На прямом произведении групп Ли G = G1 × G2 возникает структура
аналитического многообразия, для которой проекции pi : G1 × G2 → Gi

(i = 1, 2) аналитичны.

Формула (a1, a2)(b1, b2) = (a1a2, b1b2) превращает это произведение в
группу Ли, называемую прямым произведением групп Ли.

При этом подгруппы Ĝ1 = G1 × {e2}, Ĝ2 = {e1} × G2 есть комму-
тирующие нормальные делители изоморфные соответственно G1 и G2, и
имеющие общим элементом лишь единицу (e1, e2).

Такие подгруппы называются взаимно простыми. С другой стороны,
G = Ĝ1Ĝ2 и это представление G в виде произведения однозначно.

Алгебра Ли прямого произведения однозначно представляется в виде
прямой суммы g = g1 ⊕ g2 с коммутатором

[(u1,u2), (v1,v2)] = ([u1,v1], [u2,v2]).

Слагаемые этой суммы с помощью проекций (pi)∗ отождествляются с иде-
алами алгебры g.

Примеры.

5. Рассматривая в примере 1 гомоморфизм det : GL(n,K) → K∗, мы
видели, что его ядром является нормальный делитель SL(n,K). Поэтому
факторгруппа GL(n,K)/SL(n,K) изоморфна мультипликативной группе
K∗, а факторалгебра gl(n,K)/sl(n,K) изоморфна коммутативной алгебре
K.

6. Пусть Z — подмножество всех целых чисел в аддитивной группе Ли
R. Это дискретный и, следовательно, замкнутый нормальный делитель.
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Факторгруппа T 1 = R/Z есть одномерный тор, в котором групповая
операция определена равенством c := a+ b (modZ).

Это группа Ли, изоморфная группе S1 комплексных чисел единичного
модуля f(a) = e2πia.

n-мерным тором называется факторгруппа Ли T n = Rn/Zn, в которой
групповая операция определена равенством ci := ai + bi (modZ).

Это n-мерная коммутативная группа Ли, локально изоморфная Rn.

7. SL(n,R) и группа R∗+ скалярных матриц λE, λ > 0 являются комму-
тирующими между собой нормальными делителями группы ЛиGL+(n,R)
n-матриц с положительным определителем.

Из det(λE) = λn = 1 следует λ = 1. Таким образом, эти подгруппы
взаимно просты.

С другой стороны, каждая матрица A ∈ GL+(n,R) может быть од-
нозначно представлена в виде произведения A = (detA)1/nE · A1, где
A1 ∈ SL(n,R).

ПоэтомуGL+(n,R) = R∗+×SL(n,R). Переходя к алгебрам Ли, получим
прямую сумму gl(n,R) = R⊕sl(n,R), где R представлена как алгебра Ли
всех скалярных вещественных матриц.

0.15 Линейные представления

Линейным представлением или действием группы G на векторном про-
странстве V называется гомоморфизм f : G→ GL(V ).

Если Ker f = {e}, то представление называют точным или эффектив-
ным.

Мы будем рассматривать лишь конечномерные представления размер-
ности n = dim V . Выбор базиса в V позволяет заменить GL(V ) на
GL(n,K).

Линейные представления f1 : G → GL(V1) и f2 : G → GL(V2) назы-
ваются эквивалентными, если существует такой линейный изоморфизм
L : V1 → V2, что для любого a ∈ G L ◦ f1(a) = f2(a) ◦ L.

Векторное подпространство V1 ⊂ V называется инвариантным отно-
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сительно представления или G-инвариантным, если для любого a ∈ G
f(a)V1 ⊂ V1.

Выбрав базис в V таким образом, чтобы e1, . . . , ek ∈ V1, получим мат-
рицы операторов представления в виде

f(a) =

(
f1(a) f3(a)

0 f2(a)

)
.

Здесь f1(a) дает представление группы G в подпространстве V1 — под-
представление, а f2(a) — представление G в факторпространстве V/V1 —
факторпредставление.

Представление называется неприводимым, если оно не имеет нетриви-
альных инвариантных подпространств и вполне приводимым, если V раз-
лагается в прямую сумму V = V1 ⊕ . . .⊕ Vs инвариантных неприводимых
подпространств.

Выбрав базис в V адаптированный к этому разложению, мы приведем
матрицы всех операторов представления к блочно-диагональному виду

f(a) =

f1(a) . . . 0
. . . . . . . . .

0 . . . fs(a)

 ,

где каждое fi реализует неприводимое подпредставление.

В этом случае говорят, что f разложено в сумму неприводимых пред-
ставлений f = f1 ⊕ . . . ⊕ fs. Некоторые из них могут оказаться эквива-
лентными.

Учитывая «подобные члены», пишут f = k1f1 ⊕ . . .⊕ ktft.

Обратно, если заданы представления f1 : G → GL(V1) и f2 : G →
GL(V2), то их сумма в пространстве V1 ⊕ V2 определяется формулой

(f1 ⊕ f2)(a)(x1 + x2) = f1(a)x1 + f2(a)x2.

Если при этом f1, f2 неприводимы, то f1 ⊕ f2 будет вполне приводимым.

Тeнзорное произведение представлений f1⊗f2 определяется на тензор-
ном произведении векторных пространств V = V1 ⊗ V2 формулой

(f1 ⊗ f2)(a) = f1(a)⊗ f2(a).
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В базисе ei ⊗ ej тензорное произведение представлений реализуется кро-
некеровским произведением соответствующих матриц

f1 ⊗ f2 = (f(1)ki f(2)lj).

Всякое линейное представление f в V порождает сопряженное или контр-
агредиентное представление в V ∗, порожденное сопряженными операто-
рами f̂(a) = f(a−1)∗ (или f(a) = f(a−1)> в вещественном случае).

Комбинации сопряжений и тензорных степеней приводят к понятию
тензорного представления ⊗sf ⊗r f̂ .

Важнейшим инструментом при изучении представления является его
характер χf(a) = tr f(a).

В силу свойств следа матрицы он не зависит от выбора базиса. Ха-
рактеры эквивалентных представлений совпадают и обратно, если два
неприводимых представления имеют одинаковые характеры, то они эк-
вивалентны.

Если f — представление группы Ли, то возникает линейное представ-
ление ее алгебры Ли f∗ : g→ gl(V ).

По свойству гомоморфизмов оно сохраняет коммутатор f∗[u,v] =
f∗(u)f∗(v)− f∗(v)f∗(u).

Обратно, если группа G связна, то всякое ее линейное представление
однозначно определяется представлением ее алгебры Ли.

Часто представление группы G рассматривается не произвольными ли-
нейными операторами, а лишь в классе операторов некоторой подгруппы
H ⊂ GL(V ).

Если, например, H = U(n), то представление называется унитарным.
Это значит, что операторы должны сохранять скалярное произведение

(f ∗(a)x, f(a)y) = (x,y).

В соответствующем базисе f ∗(a)f(a) = E. Унитарное представление все-
гда вполне приводимо. Действительно, если L ⊂ V инвариантное подпро-
странство, то его ортогональное дополнение L⊥ будет также инвариантно.

Это позволяет, в свою очередь, доказать полную приводимость всякого
комплексного представления компактной (в частности, конечной) группы.

86



Примеры.

1. Рассмотрим простейшие представления аддитивной группы Ли R.

A. Гомоморфизм

f : R→ SO(2), f(t) =

(
cos t − sin t
sin t cos t

)
является представлением R в R2 с ядром Ker f изоморфным Z.

Это представление неприводимо, так как вращения в R2 не имеют ин-
вариантных подпространств.

B) Гомоморфизм

f(t) =

(
1 t
0 1

)
является представлением R в R2. Оно точное и реализуется группой сдви-
гов x1′ = x1 + tx2, x2′ = x2.

Его инвариантные векторные подпространства находятся из условия
f(t)x = λ(t)x.

Отсюда получаем систему уравнений

x1 + tx2 = λ(t)x1, x2 = λ(t)x2,

из которой следует, что единственное нетривиальное инвариантное под-
пространство задается вектором e = (1, 0).

Следовательно, представление приводимо, но не вполне приводимо.

C) Гомоморфизм

f(t) =

(
ch t sh t
sh t ch t

)
является представлением R в R2 группой псевдоевклидовых вращений
SOe(1, 1).

Для нахождения инвариантных подпространств получим систему

x1(ch t− λ(t)) + x2 sh t = 0, x1 sh t+ x2(ch t− λ(t)) = 0.

Характеристическое уравнение имеет вид

λ2 − 2λ ch t+ 1 = 0
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и имеет два вещественных корня λ1,2 = ch t± sh t.

Это дает две инвариантные прямые с направляющими векторами e1 =
(1, 1) и e2 = (1,−1) — изотропные прямые псевдоевклидовой метрики.

2. Все одномерные комплексные представления группы R задаются ана-
литической функцией f(t) на R, удовлетворяющей условиям

f(t+ s) = f(t)f(s), f(0) = 1.

Решение имеет вид f(t) = ect, где c — некоторая комплексная константа.

Найдем среди этих представлений унитарные. Эрмитова метрика на C
имеет вид F (x, x) = xx.

Условие унитарности дает ectect = 1, откуда c+ c = 0.

Следовательно, c = iα, α ∈ R. Таким образом, функции f(t) = eiαt

дают полный набор унитарных представлений группы R.

3. Пусть H — тело кватернионов, R3 — содержащееся в нем трехмерное
пространство чисто мнимых кватернионов

x = x1i+ x2j + x3k, (x = −x),

S3 — группа Ли кватернионов единичного модуля, связная, односвязная
и компактная.

Отметим, что в R3 есть евклидова метрика |x|2 = xx. Каждому a ∈ S3

сопоставим преобразование f(a)x = axa−1.

Это линейный оператор в R3, поскольку из x = −x следует, что

x′ = axa−1 = a−1xa = −axa−1 = −x′.

Это ортогональный оператор, поскольку

|x′| = |a||x||a−1| = |x|.

Имеем гомоморфизм f : S3 → SO(3), поскольку группа S3 связная. Най-
дем его ядро.

Из условия axa−1 = x следует ax = xa. Полагая здесь x = i, а затем
x = j, получим, что этому равенству удовлетворяет при произвольном x
лишь a = ±1.
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Итак, Ker f = Z2. Значит, образ f($3) ⊂ SO(3) трехмерен, а поскольку
S3 связно, то он также связен.

В силу теоремы Шрейера отсюда заключаем, что f($3) = SO(3).

Таким образом, построено линейное представление группы S3 в виде
группы собственных вращений трехмерного евклидова пространства. Яс-
но, что это представление неприводимо.
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