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ВВЕДЕНИЕ 

 

Студенческие олимпиады по математике проводятся в Казанском уни-

верситете в течение многих лет. Они приурочены к 1 декабря (дню рождения 

Н.И.Лобачевского) и носят его имя. 

В первые годы в олимпиадах принимали участи только студенты универ-

ситета, в основном с факультетов мехмат, физфак и ВМК. Однако с 2009 года 

олимпиада стала междугородней. К нам приезжают команды из Барнаула, 

Волгограда, Екатеринбурга, Йошкар-Олы, Краснодара, Саратова, Сарова, 

Тюмени.  

В составлении заданий принимают участие преподаватели университета 

и других вузов г. Казани. Это Д.Х.Муштари, В.А.Сочнева, М.Д.Бронштейн, 

И.С.Григорьева, Э.Ю.Лернер, В.В.Шургыин-ст. и В.В.Шурыгин-мл., 

И.Ш.Калимуллин, М.А.Малахальцев, А.Е.Заяц. 

Бессменным организатором и вдохновителем олимпиады является доцент 

каф. общей математики мехмата Валентина Алексеевна Сочнева. 

В настоящем пособии приведены задачи олимпиад начиная с 1999 года, с 

решениями. Кроме решений к каждой задаче есть ответ или подсказка. Реко-

мендуем сначала попытаться решить задачу самостоятельно, если не получа-

ется – воспользоваться подсказкой и только потом сравнить свое исследова-

ние с предложенным решением. 

Решения, найденные читателями, могут не совпадать с теми, которые 

приведены в пособии. Если Вы нашли свое интересное решение или ошибку в 

нашем, можете сообщить об этом автору по адресу igrigori_@mail.ru. 

Задачи олимпиады предназначены для всех студентов, начиная с 1 курса. 

Требуемый для решения уровень знаний в основном соответствует программе 

1-2 курсов математических или физических специальностей. Конечно, неко-

торые из задач не доступны первокурсникам. Это компенсируется тем, что их 

в каждой олимпиаде достаточно много (до 10), так что участник имеет воз-

можность выбрать подходящие себе задания. 

mailto:igrigori_@mail.ru
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ЗАДАЧИ 

Задачи, 1999 г. 

1. Чему равна сумма  20
n

C  +  21
n

C  + … +  2n
nC ? 

2. Пусть x1 = 1, xn = axn – 1 при n > 1 (a > 0). Найти наибольшее значение a при 

котором существует 
n

lim xn. 

3. Найти все вещественные матрицы A размерности 2  2, такие, что An = E, 

если а) n = 2; б) n = 3. 

4. Эллипс 
2

2

a

x
+

2

2

b

y
 = 1 и парабола y = Ax2 + Bx + C имеют четыре точки пере-

сечения. Доказать, что через эти точки можно провести окружность. 

5. Найти функцию f (x), удовлетворяющую уравнению  

f (x) =  
1

0

)()1( dyyfxyx + x . 

6. На координатной плоскости построили график функции y = x3, после чего 

оси координат стерли. Как их восстановить с помощью циркуля и линейки?  

7. Два числа a и b случайным образом выбираются на отрезке [– M; M] число-

вой прямой. Какова вероятность того, что уравнение x2 + 2ax + b = 0 имеет 

вещественные корни? 

Задачи, 2001 г. 

1. Пусть матрица A имеет размерность 32, а матрица B – 23. Чему равен 

определитель матрицы AB?  

2. Вычислить 
n

n

n n

n



32 321
lim . 

3. График многочлена третьей степени пересекает ось Ox в трех точках. Из 

крайней провели касательную к противоположному «горбу» графика. Дока-

зать, что абсцисса точки касания делит отрезок между двумя другими кор-

нями пополам. 

4. Доказать, что из любых пяти векторов в евклидовом пространстве можно 

выбрать два таких, что длина их суммы не превосходит длины суммы трех 

оставшихся. 

5. На плоскости даны три точки A1, A2, A3; Si – симметрия относительно Ai. 

Доказать, что S3  S2  S1 – это симметрия относительно точки A с радиус-
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вектором Ar


 = 
1Ar


 + 
32AA . 

6. Функция f (x) непрерывна на [0; 1] и дифференцируема на (0; 1). Доказать, 

что если f (0) = f (1) = 0, то f (x) = f (x) в некоторой точке x(0; 1).  

7. У белой сферы 12% ее площади окрашено в красный цвет. Доказать, что в 

сферу можно вписать параллелепипед, у которого все вершины белые. 

Задачи, 2002 г. 

1. В двух урнах лежит 25 шаров белого и черного цветов. Из каждой урны 

вынимается по одному шару. Вероятность того, что они оба белые, равна 

0,54. Найти вероятность того, что они оба черные. 

2. На круговой цилиндр радиуса 2 туго намотали лист бумаги (толщиной 

ноль) и разрезали цилиндр плоскостью, образующей угол 45 с осью ци-

линдра. Затем лист бумаги развернули и положили на плоскость. Какой вид 

приобрела линия разреза? (записать ее уравнение) 

3. На множестве A задана бинарная операция # такая, что для любых x, y из A 

выполняются соотношения (x # y) # y = x и y # (y # x) = x. Доказать, что эта 

операция коммутативна, т.е. x # y = y # x для любых x, y из A.  

4. Многочлен P(x) не имеет действительных корней. Доказать, что многочлен 

P(x) + 
!2

)(xP 
 + 

!4

)()4( xP
 + … также не имеет действительных корней. 

5. Найти все дифференцируемые на  функции f , удовлетворяющие условиям 

f (0) = 0 и f (x + y)  f (x) + f (y). 

6. График многочлена четвертой степени имеет две точки перегиба. Прове-

денная через них прямая отрезает от графика три луночки. Доказать, что 

площадь средней из них равна сумме площадей крайних. 

7. Найти все непрерывные на [a, b] функции , удовлетворяющие соотношению 

(x) = 
b

a

dxx)(  + (x), где (x) – некоторая функция, непрерывная на [a, b]. 

8. Пусть R – множество точек плоскости, входящих в замкнутый выпуклый 

многоугольник, (x, y) – расстояние от точки M(x, y) до ближайшей точки 

из R. Выразить  








 dxdyyx ),(e  через периметр и площадь многоугольника.  

Задачи, 2003 г. 

1. Доказать, что если все корни многочлена xn + a2x
n–2 + … + an–1x

n + an веще-

ственны, то a2  0.  

2. Пусть квадратная матрица A – невырожденная, а матрица X удовлетворяет 
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уравнению AX + XA = 0. Доказать, что след матрицы X равен 0.  

Указание. След матрицы – сумма ее диагональных элементов: tr A = 


n

i

iia
1

. 

3. Пусть A – квадратная матрица порядка n. Доказать, что если A
2
 = E, то сум-

ма рангов матриц A + E и A – E равна n. 

4. Пусть xn = 
n

xxn nn 21)1(  
 при n  2, x0 = 0, x1 = 1. Найти предел этой по-

следовательности. 

5. Определим фигуру P как часть плоскости, ограниченную параболой y = x
2
 : 

P = {(x, y) | y  x
2
}. Определим фигуру H как часть плоскости, ограничен-

ную ветвью гиперболы x
2
 – y

2
 = 1 : {(x, y) | x

2
 – y

2
  1, x > 0}. Можно ли по-

крыть плоскость конечным числом фигур а) вида P; б) вида H? 

6. На плоскости с прямоугольной системой координат задана сеть линий 

y = 2(x + a), a  Z. Какую наименьшую площадь может иметь треугольник, 

вершины которого расположены в узлах сети? 

7. Ряд  na сходится. Может ли расходиться ряд  2003
na ? 

8. Для двух множеств A и B определим расстояние (A, B) = ),(infsup bar
BbAa 

, где 

r(a, b) обычное расстояние между точками.  

а) Доказать, что (A, B) + (B, C) ≥ (A, C). 

б) Может ли выполняться неравенство (A, B) + (B, C) ≤ (C, A)? 

Задачи, 2004 г. 

1. Решить систему 








0342

02

32

222

yxx

yxyx
 . 

2. Вычислить определитель  

199198200

20032

2001992

zzzz

zzzz

zzzz







  

а) при z = i; б) при z = 
2

1 i . 

3. Доказать, что при любом натуральном n верно неравенство  

 
2
11 ∙ 







 
22

11 ∙…∙ 






 
n2

11  < 2,5. 

4. На плоскости дана прямая l. Плоскость повернули произвольным образом. 

При этом прямая l перешла в прямую l. Для произвольной точки M  l 
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возьмем соответствующую ей точку M  l. Найти геометрическое место 

середин отрезков MM. 

5. Пусть функция f   C1([–1; 1]). Найти 


 

1

1
220

)(
lim

xh

dxxhf

h
. 

6. Пусть f (x) непрерывна на [a; b], показать, что  
2

)(














b

a

dxxf ≤ (b – a) 
b

a

dxxf )(2 . 

7. Из n вопросов, вынесенных на зачет, студент выучил m (m ≤ n – 3). Зачет 

ставится, если студент ответил не менее, чем на половину вопросов билета. 

Какой билет ему выгоднее брать, с двумя вопросами или с четырьмя? (Би-

леты составляются случайным образом). 

8. Найти предел последовательности xn = n∙sin(2e n!). 

9. Пусть A и B – квадратные матрицы порядка n, причем матрица A обратима. 

Возможно ли равенство AB – BA = A? 

Задачи, 2005 г. 

1. Доказать, что во всяком тетраэдре ABCD найдется ребро, которое образует 

острые углы со всеми смежными с ним ребрами.  

2. A и B – квадратные матрицы, A2 = A, B2 = B, AB = BA. Доказать, что опреде-

литель det(A – B) может принимать только значения 0, 1 или – 1. 

3. Доказать, что 
 


0

21

e
dt

t

at

 = 



0

sin
dt

at

t
 для любого a  0. 

4. Пусть f (x) непрерывна на [0; 1], f (0) = f (1). Доказать, что существует хорда 

графика y = f (x) длины 
5

1
, параллельная оси абсцисс. 

5. Найти все функции f , непрерывные на [0; + ), для которых  















x

dttf

0

)(sin  = 
1x

x
. 

6. Какую долю от объема n-мерного куба составляет объем вписанного в него 

n-мерного шара? Рассмотреть случаи n = 3, n = 4. 

7. Существует ли многочлен а) P(x) от одной переменной, б) P(x, y) от двух 

переменных, множеством значений которого является промежуток (0; + )? 

Задачи, 2006 г. 

1. Доказать, что все 6 слагаемых в разложении определителя 3-го порядка не 

могут быть одновременно положительными. 
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2. В пространстве заданы точки A(1, 1, 1); B(3, – 3, 3); C(6, – 1, 0); D(7, 1, – 2). 

Доказать, что четырехугольник ABCD – плоский, невырожденный и выпук-

лый. 

3. В каждой вершине треугольной пирамиды написано число. На каждом реб-

ре написана сумма чисел, стоящих на его концах. Известно, что сумма чи-

сел на ребрах равна 3 и сумма их квадратов равна 3. Доказать, что сумма их 

кубов также равна 3. 

4. Пусть  – множество квадратных матриц nn, элементами которых явля-

ются 0 и 1. Произведение D = (di j) матриц A = (ai j) и B = (bi j) из  находится 

по формуле di j = ),min(max kjik
k

ba .  

а) Пусть A = 
















1000

1100

0110

0011

. Найдите A2, A3, …  

б) Будет ли это умножение ассоциативным? 

5. Найти 




1

1
2 )1)(1(e x

dx
x

. 

6. Число людей с положительным резус-фактором равно примерно 15%. У 

женщины резус-фактор положителен. Какова вероятность того, что и у ее 

ребенка он будет положителен?  

Указание. Известно, что положительный резус-фактор рецессивен, т.е. прояв-

ляется, только если он получен и от матери, и от отца. Этот ген распределен 

одинаково у женщин и у мужчин. 

8. Пусть K1, K2, …, Kn – круги на плоскости. Через aij обозначим площадь пе-

ресечения Ki  Kj. Пусть A = (ai j) – матрица порядка n, составленная из этих 

чисел. Доказать, что det A  0. 

Задачи, 2007 г. 

1. Пусть A и B – точки на параболе такие, что касательные к параболе, прове-

денные в данных точках, перпендикулярны. Зависит ли произведение рас-

стояний от точек A и B до оси параболы от выбора этих точек? 

2. Пусть n1 < n2 < … < nk – натуральные числа, a0, a1, … ak – действительные 

числа, не равные 0 одновременно. Доказать, что уравнение  

a0 + a1x
n1 + a2x

n2 + … + akx
nk = 0 

имеет не более k различных положительных корней. 

3. Построить график неявной функции xy = y x. 

4. Имеется 3 ящика и 5 призов. Каждый приз независимо от других помеща-
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ется в произвольный ящик. Какова вероятность того, что хотя бы один 

ящик окажется пустым? 

5. В игре используются карточки с числами 1, 2, 3, …, 9. Двое по очереди вы-

кладывают их в клетки таблицы 33. По окончании игры подсчитывается 

определитель. Если он больше 0, то выигрывает первый, если меньше – 

второй. На диагонали таблицы оказались числа 1, 2, 4. Кто выиграет? 

6. Пусть A – квадратная матрица размерности n. Будем считать, что ||A|| = 

=
ji

ija
,

. Доказать, что ||AB||  ||A||||B||. 

7. Чему равен предел x

n
n

 cos...coscoslim


?  

8. Найти геометрическое место точек, из которых эллипс виден под прямым 

углом. 

Задачи, 2008 г. 

1. Множество A   обладает следующими свойствами: 1) 1  A; 2) если 

x, y  A, то 2x + 3y  A. Доказать, что 2009  A и 20092009  A. 

2. Пусть функция f (x) непрерывна на [0; 1]. Доказать, что 




0

)(sin dxxxf = 




0

)(sin
2

dxxf . 

3. Найти все квадратные матрицы второго порядка, удовлетворяющие усло-

вию A2 = 








00

00
. 

4. Построить пример ограниченной нефундаментальной последовательности 

{an}, у которой расстояния между соседними членами стремится к нулю 

при n  +. 

5. В вершинах правильного тетраэдра сидят муравьи (по одному в каждой 

вершине). В некоторый момент времени они начинают ползти по ребрам в 

одну из соседних вершин. Какова вероятность того, что два муравья встре-

тятся на одном ребре? 

6. Доказать, что предел последовательности xn = n∙sin(2e n!) равен 2. 

7. В азартной игре «определитель» используются карточки с числами 1, 2, …, 

n2 (n > 1). Два игрока по очереди выкладывают их в клетки таблицы nn. По 

окончании подсчитывается определитель D получившейся матрицы. Если 

D > 0, то выигрывает первый, если D < 0 – второй, если D = 0 – провозгла-

шается ничья. Кто выиграет больше партий, если игроки решат разыграть 

все (n2)! возможных партий? 
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8. В треугольнике ABC точка D – середина отрезка AB, точка E лежит на AC, 

точка F  лежит на BC. Доказать, что SDEF ≤ SADE + SBDF. 

9. Встретились два математика, давно не видевших друг друга. Диалог при 

встрече: 

– Как давно мы не виделись! Я слышал, у тебя большая семья? 

– Да, трое детей. Младший – просто ангелочек! Кстати, произведение 

возрастов моих детей равно количеству лет, сколько мы не виделись. 

– Этих сведений мне недостаточно, чтобы однозначно определить воз-

раст твоих детей. 

– Мой старший – огненно-рыжий. 

– Теперь все ясно. 

Сколько лет детям и сколько лет не виделись математики? 

Задачи, 2009 г. 

1. Найти все функции f : \{0}   такие, что 3f(–x) + f (1/x) + f (x) = x для всех 

x ≠ 0. 

2. Дана сфера S единичного радиуса с центром O. Точки A, B и C на сфере та-

ковы, что векторы OA , OB ,OC  взаимно ортогональны. Плоскость  про-

ходит через центр сферы. Доказать, что сумма квадратов расстояний от то-

чек A, B и C до плоскости  равна 1.  

3. Вычислить интеграл 



0

sin1
dx

x

x
. 

4. Кончик головы змеи находится на метр к востоку от начала координат. От 

кончика головы тело змеи идет строго на север  метров, затем 2/2 на за-

пад, потом 3/3! на юг и т.д. по спирали. Длина n-ой части змеи равна n/n! 

метров, n = 1, 2, …, +. Где расположен кончик хвоста змеи? 

5. Вычислить    


1

0

1

0

1

0

dxdydz
zyx

yx
. 

6. Пусть A – вещественная несимметричная нормальная матрица размера 3  3 

(т.е. A∙AT = AT∙A ≠ 0). Тогда вектор e = (a23 – a32, a31 – a13, a12 – a21)
T является 

собственным вектором A. Доказать. 

7. Имеется n ящиков, в каждом из которых лежит один подарок. В комнату по 

очереди заходят m детей, каждый из которых равновероятно выбирает ящик 

и забирает оттуда подарок, если таковой остался. Сколько в среднем детей 

уйдут без подарка? 

8. Последовательность вещественных чисел (an) называется постоянной по 
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отношению, если 
2

1

a

a
 = 

kk

k

aa

aa

21

1

...

...







 для любого натурального k. Доказать, 

что для любого натурального m существует такой многочлен fm(x) порядка 

m с целочисленными коэффициентами, что последовательность (fm(n))n=1,2,… 

постоянна по отношению. Доказать, что fm(x) выбирается с точностью до 

умножения на константу. 

9. Задана биективная функция f  :    такая, что для всех x, y   имеет ме-

сто |x – y| = 1  |f (x) – f (y)| = 1. Установить, что для всех x, y    

а) из |x – y| = 2 следует |f (x) – f (y)| = 2; 

б) из |x – y| = 1/2 следует |f (x) – f (y)| = 1/2; 

в) из |x – y| ≤ 1 следует |f (x) – f (y)| ≤ 1. 

Задачи, 2010 г. 

1. Комплексные числа a, b, c таковы, что |a| = |b| = |c| = r. Найти модуль числа  

cba
cabcab


 . 

2. Две вершины треугольника зафиксированы в точках A (–1; 0) и B (1; 0), а 

третья (точка C) движется по параболе y = x2 – 6x + 15. Напишите уравнение 

кривой, которую описывает центр тяжести треугольника. 

3. Из точки на плоскости отложено 2n векторов единичной длины. Они по-

крашены поочередно в красный и зеленый цвет. Просуммируем все вектора 

каждого цвета. Докажите, что разность двух этих сумм имеет длину не 

больше 2. 

4. В множестве из 2010 элементов выбраны несколько подмножеств так, что 

каждые два из них имеют ровно один общий элемент и никакие три не 

имеют общих элементов. Каково наибольшее возможное число таких под-

множеств?  

5. Найти интеграл 



dx

x

x
x 1e

)1(
2

2

. 

6. Пусть  – отрезок, соединяющий точки a и bi комплексной плоскости (a, b – 

вещественные), а кривая  – его образ при отображении w = sin z. Найти 

сумму углов, которые эта кривая составляет с вещественной и мнимой ося-

ми. 

7. В игре «Что? Где? Когда?» в каждом раунде волчок останавливается в сек-

торе номер x, где x равновероятно принимает одно из значений 0, 1, …, 13. 

При этом играет первый из секторов по часовой стрелке, который ранее не 

играл. Найти вероятность того, что после шести раундов сыграют (в любом 

порядке) сектора 1, 2, …, 6. 
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8. Имеется k одинаковых стеклянных шариков. Их кидают с некоторых эта-

жей 1000 этажного дома. Требуется за наименьшее число бросаний X опре-

делить самый нижний этаж, при бросании с которого шарики разбиваются 

(или убедиться, что таких этажей в доме нет). Вычислить X а) для k = 2; б) 

для k = 3. 

9. Функция f (x) задана всей числовой прямой, причем в иррациональных точ-

ках она равна 0. Если же x представимо в виде несократимой дроби 
n
m , то 

f (x) = 
3n

m . Будет ли эта функция дифференцируема в иррациональных точ-

ках? В 0? 

10. Рассмотрим множество 2  всех подмножеств множества натуральных чи-

сел . Будем говорить, что два множества из 2  эквивалентны, X  Y, если 

их симметрическая разность – конечное множество (т.е. X отличается от Y 

лишь конечным числом элементов). Существует ли такое отображение 

f : 2  2 , которое удовлетворяет условиям 

1) f (X)  X; 

2) X  Y  f (X) = f (Y); 

3) f (X  Y) = f (X)  f (Y)? 
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ОТВЕТЫ И ПОДСКАЗКИ 

99-1. 0
nC 

n
nC  + 1

nC 
1n

nC  + … + n
nC 

0
nC  = n

nC2  

99-2. Максимальное значение a равно e1/e. 

99-3. а) Для n = 2 либо A = E, либо a + d = 0 и det A = – 1.  

б) Для n = 3 либо A = E, либо a + d = – 1 и det A = 1. 

99-4. Выразите x2 из второго уравнения. 

99-5. f (x) = 1,6x2 + 2,4x + x . 

99-6. Найдите точки пересечения графика с произвольной прямой. 

99-7. 1/2 + M/6 при M  1 и 1 –
M3

1
 при M  1. 

01-1. 0. 

01-2. 0. 

01-3. Запишите уравнение многочлена через его корни. 

01-4. Запишите квадрат суммы векторов через скалярное произведение. 

01-5. Запишите преобразование симметрии векторно. 

01-6. Вспомните теорему Ролля. 

01-7. Отразите симметрично красное пятно на сфере. 

02-1. 4%. 

02-2. Синусоида y = 2sin (t/2).  

02-3. Рассмотрите умножение справа (слева) как преобразование множества A. 

02-4. Сравните записанное выражение с формулой Тейлора. 

02-5. f (x) = Cx. 

02-6. Площадь равна интегралу от разности функций. Запишите уравнение 

этой разности. 

02-7. (x) = C + (x), где C(1 – b + a) = 
b

a

dxx)( . 

02-8. S + P +2. 

03-1. Используйте теорему Виета. 

03-2. Найдите сначала след матрицы AX. 

03-3. Приведите A к жордановой форме. 

03-4. x = 1 – 1/e.  

03-5. а) Нет. б) Да. 

03-6. 1/2. 

03-7. Может. 
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03-8. б) Может. 

04-1. x = 1, y = –1. 

04-2. а) 0, б) 0. 

04-3. Докажите более сильное неравенство an < 2,5 






 
n2

11 . 

04-4. Прямая. 

04-5. f  (0). 

04-6. Исследуйте интеграл   
b

a

b

a

dxdyyfxf 2))()(( . 

04-7. При m < 2n/3 – 1 – с двумя вопросами, при m > 2n/3 – 1 – с четырьмя. 

04-8. 2. 

05-1. Рассмотрите ребро наибольшей длины. 

05-2. Постройте уравнение, которому удовлетворяет матрица A – B. 

05-3. Продифференцируйте левый интеграл по параметру. 

05-4. Исследуйте поведение функции f (x + 
5
1 ) – f (x). 

05-5. f (x) =
12)1(

1

 xx
. 

05-6. Если n = 2k или n = 2k + 1, то шар занимает долю 
k

k

n 2!! 


 от объема опи-

санного вокруг него куба. 

05-7. а) нет; б) да. 

06-1. Рассмотрите произведение всех слагаемых. 

06-2. Разложите вектор AC  через AB  и AD . 

06-3. Выразите искомую сумму через заданные. 

06-4. б) да. 

06-5. I = /4. 

06-6. p = 15,0 . 

06-7. Используйте понятие определителя Грама. 

07-1. Нет. 

07-2. Используйте индукцию по k.  

07-3. Прологарифмируйте равенство. 

07-4. 31/81. 

07-5. Первый. 

07-6. Решается вычислением. 

07-7. Корень уравнения x = cos x. 
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07-8. Окружность с радиусом 22 ba  , где a, b – полуоси эллипса. 

08-1. Выпишите несколько первых элементов множества A и заметьте зако-

номерность. 

08-2. Сделайте замену t =  – x. 

08-3. Любая матрица, у которой и след, и определитель равны 0. 

08-4. Например, an = sin n . 

08-5. Если встречи в вершинах не учитываются, то 17/27. Если учитываются, 

то 25/27.  

08-6. Используйте разложение числа e в ряд Тейлора. 

08-7. Количество выигрышей будет одинаковым. 

08-8. Используйте векторное произведение для записи площади. 

08-9. 1, 2 и 8 лет. Математики не виделись 16 лет. 

09-1. f (x) = –
3
2 x – 

x3
1 . 

09-2. Выберите данные векторы в качестве координатных. 

09-3. 2. 

09-4. На метр западнее начала координат. 

09-5. 2/3. 

09-6. Исследуйте матрицу S = A – AT. 

09-7. m – n(1 – (1 – 1/n)m). 

09-8. Перейдите от последовательности к ряду. 

09-9. Используйте неравенство треугольника. 

10-1. r. 

10-2. y = 3x2 – 6x + 5. 

10-3. Используйте проекцию на некоторую прямую, проходящую через за-

данную точку. 

10-4. 63. 

10-5. Выделите целую часть дроби под интегралом. 

10-6. /2 при cos a ≠ 0; arctg 
a
b  + /2 при cos a = 0, |b| ≥ |a|; 3arctg 

b
a  при 

cos a = 0, |b| ≤ |a|. 

10-7. 1/448. 

10-8. а) X = 45; б) X = 19. 

10-9. В иррациональных точках нет, в 0 – да. 

10-10. Не существует. 
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РЕШЕНИЯ ЗАДАЧ  

Решения задач, 1999 г. 

99-1. С помощью соотношения k
nC = kn

nC   искомое выражение можно 

привести к виду  20
nC +  21

nC + … +  2n
nC = 0

nC 
n
nC  + 1

nC 
1n

nC  + … + n
nC 

0
nC . 

Это число является коэффициентом при xn в разложении  

( 0
nC  + 1

nC x + … + n
nC xn)  ( 0

nC  + 1
nC x + … + n

nC xn) = (1 + x)n(1 + x)n. 

Последнее произведение можно записать в виде (1 + x)2n =  kk
nxC2 , так 

что искомое выражение совпадает с n
nC2 . 

 
99-2. Пусть 

n
lim xn = x. Переходя к пределу в рекуррентном равенстве, 

получим, что x = ax или ln x = x lna. Значит, ln a – одно из значений функции 

x
xln . Исследование с помощью производной показывает, что max 

x
xln  = 

e
1 , 

так что максимальное значение параметра a можно найти из соотношения 

ln a = 1/e, т.е. a = e1/e.  

Покажем, что для этого значения параметра искомый предел существует. 

Для этого проверим, что последовательность xn возрастает и ограничена. До-

казательство проведем по индукции: 

Возрастание. Надо показать, что xn + 1 > xn. Для n = 1 неравенство прини-

мает вид a > 1, что верно. Кроме того, в силу соотношения a > 1, из xn > xn – 1 

следует, что xn + 1 = axn > axn – 1 = xn.  

Ограниченность. Покажем, что xn < e. Для n = 1 это очевидно. При усло-

вии, что xn – 1 < e имеем xn = axn – 1 < ae = e, что и завершает доказательство. 

 

99-3. Обозначим A = 








dc

ba
. Тогда A – 1 = 













ac

bd
: det A. 

а) Из условия A2 = E следует, в частности, что (det A)2 = 1, откуда det A = 1. 

Значит, A обратима и исходное соотношение можно переписать в виде A = A – 1. 

1) det A = 1. Равенство A = A – 1 принимает вид 








dc

ba
 = 













ac

bd
, откуда 

b = c = 0, a = d. В силу того, что det A = 1, получаем, что a = d = 1. 
 

2) det A = – 1, тогда 








dc

ba
= 













ac

bd
, что сводится к равенству a + d = 0.  

б) Если A3 = E, то (det A)3 = 1, и det A = 1. Имеем A2 = A – 1, что в силу 
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условия det A = 1 сводится к виду 












bcddac

dabbca
2

2

)(

)(
 = 













ac

bd
. В частно-

сти, b(a + d) = – b, c(a + d) = – c. Значит, либо b = c = 0, либо a + d = – 1.  

1) b = c = 0. «Диагональные» равенства принимают вид a2 = d; d2 = a, от-

куда либо a = d = 1, либо a = d = 0 (последнее не подходит, получается вы-

рожденная матрица).  

2) a + d = – 1. В силу того, что ad – bc = 1, получаем  

a2 + bc = a2 + ad – 1 = a(a + d) – 1 = – a – 1 = d. 

Аналогично d2 + bc = a, так что равенство A2 = A – 1 выполняется. 

 
99-4. Заметим, что второе уравнение будет уравнением параболы только 

при условии A ≠ 0. Выразим из него x2 = (y – Bx – C)/A и подставим в первое. 

Оно примет вид (y – Bx – C)/(Aa2)+ y2/b2 = 1. Из полученного уравнения можно 

выразить y2 в виде y2 = x + y + . Складывая это уравнение с выражением 

для x2, и получим уравнение вида x2 + y2 = px + qy + r, где p, q и r – некоторые 

числа, полученные комбинированием параметров A, B и C.  

Это и есть уравнение окружности, на которой лежат все точки пересече-

ния эллипса и параболы. 

 
99-5. Правую часть заданного уравнения можно представить как сумму 

x 
1

0
)( dyyf + x2


1

0
)( dyyyf + x . Коэффициенты при x и x2 – некоторые констан-

ты, так что f (x) = ax2 + bx + x . Имеем  

a = 
1

0
)( dyyyf  =  

1

0

2 )( dyybyayy = a/4 + b/3 + 2/5. 

Аналогично  

b = 
1

0
)( dyyf  =  

1

0

2 )( dyybyay = a/3 + b/2 + 2/3. 

Мы получили систему линейных уравнений для параметров a и b. Решая 

ее, находим, что a = 1,6; b = 2,4. 

 
99-6. Проведем какую-нибудь прямую, пересекающую график в трех 

точках A, B и C. Ее уравнение имеет вид y = kx + b. Значит, абсциссы точек 

пересечения удовлетворяют уравнению x3 – kx – b = 0. По теореме Виета сум-

ма корней этого уравнения равна 0 (как и их среднее арифметическое). Но 

среднее арифметическое координат есть координата центра тяжести M задан-

ных точек, так что этот последний имеет абсциссу 0, т.е. лежит на оси Oy.  
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Построим точку M с помощью векторов. Она удовлетворяет уравнению 

OM  = (OA  + OB  + OC )/3 для любой точки O. В частности, для O = A получа-

ем AM  = ( AB  + AC )/3. Построение: отложим вдоль выбранной прямой отре-

зок CD = AB и поделим AD на 3 части:  

 
D C M B A  

Как уже было сказано, полученная точка M будет лежать на 

оси Oy. Повторяя этот процесс для другой прямой, получим 

вторую точку, лежащую на оси ординат. Это позволяет по-

строить всю ось. В точке пересечения ее с графиком будет 

находиться начало координат, через которое проведем ось Ox 

перпендикулярно к Oy. 

 
99-7. Каждое уравнение заданного типа можно изобразить как точку 

(a; b) координатной плоскости. Искомую вероятность можно найти как отно-

шение S/(4M2). В знаменателе стоит площадь, пробегаемая всеми парами a, b. 

Число S есть площадь множества точек, для которых соответствующее квад-

ратное уравнение имеет решение. Эти точки определяются условием D = 4a2 – 

4b  0, т.е. b  a2.  

Возможны два случая. 

а) Парабола b = a2 пересекает боковую сторону 

квадрата. Это выполняется при M2  M, т.е. M  1. 

Площадь под параболой равна S = 2M2 + 2M3/3, а соот-

ветствующая вероятность 1/2 + M/6. 

б) Парабола пересекает верхнюю сторону квадрата, 

M  1. Проще подсчитать площадь над параболой, она 

равна 2M M – 2M M /3 = 4M M /3. Искомая вероят-

ность есть 1 – (4M M /3): 4M2 = 1 – 
M3

1
. 

Решения задач, 2001 г. 

01-1. Способ 1. Столбцы матрицы AB получаются как линейные комби-

нации столбцов матрицы A с коэффициентами, задаваемыми строками матри-

цы B. Значит, эти три столбца выражаются через два, поэтому они линейно 

зависимы и определитель матрицы равен 0.  

Способ 2. Добавим к матрице A справа нулевой столбец, а к матрице 

B снизу произвольную строку, получим квадратные матрицы A1 и B1. Имеем 

 

M2 

M1 

 

–M 

a 

b 

 M 

M 

 

–M M 

M
2
 

a 

b 
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AB = A1B1, и det(AB) = det(A1B1) = det(A1)·det(B1) = 0·det(B1) = 0. 

 
01-2. Оценим числитель:  

1 + 22 + 33 + … + nn  n1 + n2 + … + nn = 
1

)1(





n

nn n

 < 
1



n

nn n

. 

Значит, сама дробь находится между числами 1 и 
1n

n
 и по теореме о за-

жатой последовательности стремится к 1. 

Типичная ошибка: вычисление предела отдельно для слагаемых 
n

k

n

k
, чис-

ло которых меняется и стремится к бесконечности. 

 
01-3. Запишем многочлен в виде P(x) = a(x – )(x – )(x – ), где  <  <  

– его корни. Касательная в точке (x0; P(x0)) имеет уравнение y = k(x – x0) + 

P(x0), где k = P(x0). Имеем  

P(x) = a((x – )(x – ) + (x – )(x – ) + (x – )(x – )), 

y = a((x0 – )(x0 – ) + (x0 – )(x0 – ) + (x0 – )(x0 – ))(x – x0) + a(x0 – )(x0 – )(x0 – ) = 

 = a{((x0 – )(x0 – ) + (x0 – )(2 x0 –  – ))·(x – x0) + (x0 – )(x0 – )(x0 – )} = . 

= a{(x0 – )(x0 – )·(x – ) + (x0 – )(2 x0 –  – )·(x – x0)} . 

По условию эта прямая проходит через точку (; 0), значит, правая часть 

обращается в 0 при x = :  

(x0 – )(2x0 –  – )·( – x0) = 0. 

Из этого равенства в силу x0  , получаем, что x0 = ( + )/2. 

Примечание. В процессе вычислений мы нигде не использовали тот факт, 

что  – крайний из корней. Попробуйте интерпретировать результат в случае, 

если  – средний корень. 

 
01-4. Обозначим сумму всех векторов через r


, а сумму двух векторов с 

номерами i и j – через ijr


. Заметим, что упорядоченные пары (i, j) пробегают 

10 значений, причем каждый из 5 векторов входит в 4 суммы вида ijr


. 

Предположим, что для любых двух векторов длина их суммы больше, 

чем длина суммы оставшихся трех, т.е. | ijr


| >| r


 – ijr


|. Возводя это равенство в 

квадрат, получим ijr
 2 > r

 2 – 2( r


, ijr


) + ijr
 2, т.е. r

 2 < 2( r


, ijr


). Складывая все 10 

таких равенств, получим, что 10 r
 2 < 2( r


,  ijr


) = 2( r


·4 r


) = 8 r
 2, чего не может 

быть. 
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01-5. Задачу можно решить прямым вычислением. Действительно, пусть 

y – результат отражения точки x от центра A. Выберем произвольно начало 

отсчета O. Тогда yr


– Ar


 = Ar


 – xr


, т.е. yr


= 2 Ar


– xr


.  

Применяя эту формулу для симметрий относительно A1, A2, A3, получаем 

последовательно точки 2
1Ar


– xr


; 2
2Ar


– (2
1Ar


– xr


); 2
3Ar


– (2
2Ar


– (2
1Ar


– xr


)). По-

следнее выражение приводится к виду 2(
3Ar


– 
2Ar


+ 
1Ar


) – xr


, т.е. задает цен-

тральную симметрию относительно точки с радиус-вектором 
3Ar


– 
2Ar


+ 
1Ar


. 

Осталось заметить, что 
3Ar


– 
2Ar


= 
32AA , что и завершает доказательство. 

 
01-6. Пусть g(x) = f (x)e–x. Заметим, что g(x) = (f (x) – f (x))∙e–x. Для функ-

ции g выполняются все условия теоремы Ролля: она непрерывна на отрезке 

[0; 1] и дифференцируема в интервале (0; 1), причем g(0) = g(1) = 0. Значит, 

существует точка c (0; 1) такая, что g (с) = 0. Но тогда и f (c) – f (c) = 0, что 

и требовалось доказать. 

 
01-7. Выберем три попарно перпендикулярные плоскости, проходящие 

через центр сферы. Отразим окрашенную область последовательно от всех 

трех плоскостей. В результате красной окажется не более 12%∙2∙2∙2 = 96% 

площади сферы. Выберем точку на сфере, которая осталась белой. Отражая ее 

так же от выбранных плоскостей, получим 8 вершин параллелепипеда, окра-

шенных в белый цвет. 

Решения задач, 2002 г. 

02-1. Пусть ni – число шаров в урнах, ki – число белых шаров, i = 1, 2. 

Имеем 
2

2

1

1

n

k

n

k
  = 0,54 = 

50

27
, значит, k1·k2 = 27m, n1·n2 = 50m для некоторого 

натурального m. Но тогда одно из чисел ni делится на 5, то же верно и для 

второго (так как сумма их равна 25).  

а) n1 = 5, n2 = 20. Тогда k1·k2 = 54, причем k1  5, k2  20, так что k1 = 3, 

k2 = 18. Вероятность вынуть два черных шара равна 


















2

2

1

1 11
n

k

n

k
 = 

= 
20

2

5

2
  = 0,04.  

б) n1 = 10, n2 = 15. Тогда k1 · k2 = 81, причем k1  10, k2  15, т.е. k1 = 9, 

k2 = 9. Вероятность вынуть два черных шара также равна 
15

6

10

1
  = 0,04.  
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02-2. Выберем систему координат так, что уравнения цилиндра имеют 

вид x = 2cos , y = 2sin , z = z, а уравнение секущей плоскости есть z = y.  

При разворачивании бумаги расстояние, отмеряемое в горизонтальной 

плоскости, равно длине дуги окружности, т.е. t = 2. Вторая координата сов-

падает с z = y = 2sin (t/2), что и задает уравнение линии разреза.  

 
02-3. Рассмотрим преобразование f y(x) = x # y. Первое соотношение пока-

зывает, что функция f y обратна сама себе, а значит и обратима (взаимно одно-

значна на всем множестве A).  

Это означает, что для любых x и y существует единственное решение 

уравнения z # y = x, а именно, элемент z = x # y.  

Рассуждая аналогично, по второму свойству получаем, что умножение 

слева также обратно само себе, так что y = z # x, причем это значение един-

ственно при заданных x и z. 

Пусть x # y = t, тогда y = x # t, откуда x = y # t. Но тогда y # x = y # (y # t) = 

t, что и требовалось доказать. 

 
02-4. Многочлен совпадает со своим рядом Тейлора в любой точке, т.е. 

P(x + ) = P(x) + P(x) ·  + 
2

)(xP 
 · 2 + … В частности, при 

 = 1, P(x + 1) = P(x) + P(x) + 
2

)(xP 
 + … 

 = – 1, P(x – 1) = P(x) – P(x) + 
2

)(xP 
 – … 

Складывая, получим, что исследуемый многочлен равен 
2
1 (P(x + 1) + 

P(x – 1)), так что он сохраняет постоянный знак, как и P(x). 

 
02-5. Имеем f (x) = f (x + x) – f (x)  f (x). Поделим это неравенство на 

x. Если x > 0, то 
x

xf



 )(

 
 

x

xf



 )(
. Переходя к пределу, получаем, что 

f (x + 0)  f (+0). 

Аналогично, при x < 0 получаем неравенство f (x – 0)  f (–0). Но в силу 

дифференцируемости функции левые и правые производные совпадают, так 

что f (0)  f (x)  f (0). Итак, производная искомой функции постоянна, так 

что f (x) = Cx. Проверка показывает, что условие задачи выполняется для всех 

функций такого вида.  
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02-6. Сдвинем ось Oy на середину между точками перегиба, а масштаб на 

осях выберем так, что точки перегиба имеют координаты 1, – 1, а старший ко-

эффициент заданного многочлена P(x) равен 1. Пусть y = ax + b – прямая, 

проходящая через точки перегиба. Площадь между графиками этих функций 

можно подсчитать как интеграл от многочлена Q(x) = P(x) – (ax + b).  

Вторая производная от Q совпадает со второй производной от P, поэтому 

Q(1) = Q(–1) = 0. Старший коэффициент многочлена Q равен 12, так что 

Q(x) = 12(x2 – 1). Интегрируя это равенство два раза и используя то, что 

Q(1) = Q( –1) = 0 получаем, что Q(x) = x4 – 6x2 + 5. Значит, внешние граничные 

точки луночек есть 5 .  

В силу четности Q условие равенства площадей можно переписать в виде 


1

0

)( dxxQ = – 
5

1

)( dxxQ , что проверяется вычислением.  

 
02-7. Для фиксированной функции  интеграл в правой части является 

константой, так что (x) = C + (x). Подставляя это выражение в уравнение, 

получим, что C(1 – b + a) = 
b

a

dxx)( . Из этого равенства C легко находится, 

если b – a  1. В противном случае решение существует, только если 
b

a

dxx)(  

= 0, при этом константа C произвольна. 

 
02-8. Разобьем всю плоскость на части, для которых расстояние  нахо-

дится легко. 

а) Для точек многоугольника(x, y) = 0, подынтегральная функция равна 

1, так что интеграл по этой области равен ее площади S. 

б) Если (x, y) лежит в полуполосе, перпендикулярной 

стороне длиной a, то расстояние до многоугольника рав-

но расстоянию до этой стороны.  

Повернем систему координат так, чтобы одна ее ось 

(Oz) была направлена перпендикулярно стороне вовне от нее, а другая (Ot) – 

вдоль нее. Якобиан такой замены равен 1, так что интеграл по этой области 

принимает вид  



a

z dzdt
0 0

e  = a. Сумма таких интегралов по всем сторонам 

многоугольника равна его периметру.  

в) Для оставшихся частей плоскости, имеющих вид угла, расстояние до 

 в) 

б) 

а) 

t 

– 
a 

 

z 
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многоугольника равно расстоянию до вершины этого угла. Сдвинув все эти 

части так, чтобы их вершины совпали, получим полный круг, так что инте-

грал по всем таким частям равен  








 dxdyre . Он легко считается переходом 

к полярной системе координат и равен 2.  

Решения задач, 2003 г. 

03-1. Пусть x1, x2, …, xn – корни многочлена. По теореме Виета x1 + x2 + 

… + xn = – a1 = 0 и x1x2 + x1x3 + … + xn – 1xn = a2. Возводя первое из этих ра-

венств в квадрат, получаем x1
2 + x2

2 + … + xn
2 + 2a2 = 0, откуда и следует необ-

ходимое неравенство.  

 
03-2. 1 способ (для тех, кто знает свойства подобных матриц). Имеем 

X = – A
 – 1

XA, но след матрицы A
 – 1

XA, как известно, равен следу матрицы X, 

так что tr (X) = – tr (X), откуда и следует, что tr (X) = 0. 

2 способ. Имеем tr (AX) = 
i j

jiijxa =
i j

ijjiax = tr (XA), так что tr (AX + 

XA) = 2 tr(AX) = 0. Итак матрица вида AX имеет нулевой след для всякой мат-

рицы X, удовлетворяющей исходному уравнению.  

Положим X = AC, где C = A
 – 1

X. Имеем AAC + ACA = 0. Умножая слева на 

A
 – 1

, получаем, что AC + CA = 0, откуда tr(AC) = tr(X) = 0. 

 
03-3. Пусть B – матрица, приводящая A к жордановой форме, так что 

матрица B
 – 1

AB является треугольной, и на ее диагонали стоят ее собственные 

значения. При подобном преобразовании ранг матрицы не меняется, так что 

rank(A  E) = rank B
 –1

(A  E)B = rank (B
 –1

AB  E).  

В силу A
2
 = E все собственные значения матрицы A равны 1 или – 1, при-

чем ранг матрицы B
 –1

AB – E равен количеству единиц, а ранг B
 –1

AB + E – ко-

личеству (– 1), откуда и следует, что сумма этих рангов равна n. 

 
03-4. Имеем  

xn – xn–1 =
n
1 (xn-1 – xn-2) = 

)1(
1
nn

 (xn-2 – xn-3) = … = 
!

)1( 1

n

n
(x1 – x0) =

!

)1( 1

n

n
. 

Тогда  

xn = xn–1 + 
!

)1( 1

n

n
 = xn-2 + 

)!1(

)1( 2



 

n

n

 + 
!

)1( 1

n

n
 = … = x0 + 1 – 

!2
1  + … + 

!

)1( 1

n

n
. 



25 

 

Получаем, что x = lim xn = 1 – 
!2

1  + 
!3

1  – … + 
!

)1( 1

n

n
 + …  

С другой стороны, используя ряд Тейлора, получаем: 

e
 – 1

 = 1 – 1 + 
!2

1  – 
!3

1  + … + 
!

)1(

n

n
 + … = 1 – x, так что x = 1 – 

e

1
. 

 
03-5. а) Нет. На любой прямой, не параллельной оси параболы, она высе-

кает конечный отрезок. Выберем прямую, не параллельную оси ни одной из 

парабол, тогда на ней будет покрыто только конечное число отрезков конеч-

ной длины. 

б) Да, так как фигура H содержит в себе прямой угол, то есть для покры-

тия плоскости хватит 4 таких фигур.  

 
03-6. Легко вычислить, что все вершины сети имеют координаты 

(k +
2
m ; m), где k и m – целые числа. Без ограничения общности можно счи-

тать, что одна из вершин треугольника находится в начале координат, тогда 

его стороны задаются векторами a


= (k + 
2
m ; m) и b


= (p + 

2

q
; q), а площадь – 

половиной длины их векторного произведения.  

Имеем S = 

q
q

p

m
m

k

2

2
2

1




 = 

qp

mk

2

1
. Последний определитель есть целое 

число, так что площадь принимает значения не меньше 
2

1
. Легко привести 

пример того, что этот минимум достигается. 

 
03-7. Рассмотрим ряд  

 na  = b1 –
2

1
b1 –

2

1
b1 + b2 –

2

1
b2 –

2

1
b2 + … + bk –

2

1
bk –

2

1
bk + …, где bk = 

2003

1

k
.  

Он сходится, так как суммы S3k у него равны 0, а остальные отличаются 

от них на бесконечно малые величины. 

В то же время  


2003
na = 2003

1b –
20032

1 2003
1b –

20032

1 2003
1b + 2003

2b –
20032

1 2003
2b –

20032

1 2003
2b  + …  

 + 2003
kb –

20032

1 2003
kb –

20032

1 2003
kb + … 
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У этого ряда суммы с номером 3k равны (1 + 
2

1
 + 

3

1
 + … + 

k

1
)(1 – 

20022

1
), 

т.е. стремятся к бесконечности.  

03-8. а) Для обычного расстояния имеем r(A, B) + r(B, C) ≥ r(A, C). 

Наименьшее значение правой части не превосходит наименьшего значения 

левой. Но первое слагаемое не зависит от C, так что 

Cc
inf (r(A, B) + r(B, C)) = r(A, B) + 

Cc
inf r(B, C) ≥ 

Cc
inf r(A, C). 

В полученном неравенстве перейдем к инфимуму по b: 

Bb
inf r(A, B) + 

Bb
inf

Cc
inf r(B, C) ≥ 

Cc
inf r(A, C). 

Осталось применить супремум:  

Aa

sup
Bb

inf r(A, B) + 
Bb

inf
Cc

inf r(B, C) ≥ 
Aa

sup
Cc

inf r(A, C). 

Первое слагаемое и правая часть – расстояния между соответствующими 

множествами. Во втором слагаемом можно заменить внешний инфимум на 

супремум, от этого неравенство только усилится. 

б) Может. На рисунке для отрезков A, B и C имеем  

(A, B) =(B, C) = 1, в то время как (C, A) = 4. 

Решения задач, 2004 г. 

04-1. Из первого уравнения получаем y2 = 
21

2

x

x


. Функция в правой части 

принимает значения от –1 до 1, так что –1 ≤ y ≤ 1. Исследуем второе уравне-

ние как квадратное относительно x. Его дискриминант равен D = –8(1 + y3). 

Он будет неотрицательным при y ≤ –1. Итак, y = –1, при этом x = 1. 

 
04-2. Умножим первую строку на –z и сложим со второй. Тогда опреде-

литель примет вид

 
199198200

200

2001992

)1(000

zzzz

zz

zzzz








. В обоих заданиях z200 = 1, 

так что определитель равен 0. 

 
04-3. Обозначим левую часть неравенства через an. 

1 способ. Для n = 1 неравенство верное. Для n ≥ 2 докажем более сильное 

неравенство an < 2,5 




 

n2
11 . Доказательство проведем по индукции.  

A B 

C 1 1 1 

3 
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Для n = 2 неравенство верное. Пусть ak < 2,5 




 

k2
11 . Тогда  

ak+1 = ak 




 

12
11
k

 < 2,5 




 

k2
11 





 

12
11
k

 = 2,5 




 




 121 2
1

2
1

2
11

kkk
 =  

= 2,5 




 




 121 2
1

2
11

kk
 < 2,5 





 

12
11
k

. 

Таким образом, индукционный переход также доказан.  

2 способ. Имеем ln an = ln  
2
11  + ln 







 
22

11  + … + ln 






 
n2

11 . 

Воспользуемся неравенством ln(1 + x) ≤ x для всех слагаемых, кроме пер-

вого. Получим, что ln an ≤ ln
2
3  + 

22

1  + … + 
n2

1 < ln
2
3  + 

2
1 . Последнее выраже-

ние получается, если заменить геометрическую прогрессию рядом.  

Итак, an < 2/1e
2
3 . Осталось проверить неравенство 2/1e

2
3 < 2,5, которое 

арифметическими преобразованиями сводится к виду e < 25/9 = 2,777… Это 

неравенство верное. 

 
04-4. Произвольной точке M прямой l соответствует радиус-вектор 

r


= 0r


+ t∙a


. При повороте плоскости меняется начальная точка 0r


 и направля-

ющий вектор a


. Если длина вектора a


 сохраняется, то параметр t не меняет-

ся. Значит, точке M соответствует радиус-вектор r 


= 0r 


+ t∙a


. Середина от-

резка MMимеет радиус-вектор 
2
1 ( r


+r 


) =
2
1 ( 0r


+ 0r 


)+ t∙
2
1 (a


+a


). Это уравне-

ние также задает прямую. 

 
04-5. Переходить к пределу под знаком интеграла в данном случае нель-

зя, т.к. подынтегральная функция не является непрерывной в точке (0; 0). В 

силу непрерывности функция f  и ее производная ограничены на [–1; 1]. Пусть 

|f (x)| ≤ M, |f (x)| ≤ M1. Заметим, что функция 
22 xh

h


при малых h близка к 0 во 

всех точках, кроме окрестности точки x = 0.  

Разобьем интеграл на три части I1, I2 и I3 по отрезкам [–1; –t], [–t, t] и [t; 1] 

соответственно так, чтобы два крайних интеграла были меньше наперед за-

данного . Для этого достаточно взять t = 


Mh . Действительно, в двух край-

них отрезках 
22

)(

xh

xhf


 ≤ 


 Mhh

hM
2

 < 


Mh
hM  = , так что I1 + I3 < (1 – (–1)) = 2. 
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На отрезке [–t, t] имеем f (x) = f (0) + f (c)x, где c – некоторая точка между 

0 и x. Значит, I2 = 




t

t
xh

dxhf
22

)0(
 + 




t

t
xh

xdxcfh
22

)(
= I21 + I22. Для второго интеграла 

выполняется оценка 




t

t
xh

xdxcfh
22

)(
< M1h 




t

t
xh

xdx
22

 = M1h∙ln(h2 + t2). С другой 

стороны, I21 = 




t

t
xh

dxhf
22

)0(
 = 2f (0)arctg

h
t  = 2f (0)arctg

h
M


. 

В частности, для  = h  получаем  






1

1
22

)(

xh

dxxhf
= 2f (0)arctg

hh

M  + , где || < 2 h  + M1h∙ln(h2 + M h ).  

Последнее выражение стремится к 0 при h +0. Значит, предел исходно-

го интеграла равен 
0

lim
h

2f (0)arctg
hh

M  = f (0). 

 
04-6. Рассмотрим интеграл от неотрицательной функции (f (x) – f (y))2 по 

прямоугольнику [a; b][a; b], он также неотрицателен. Раскрывая скобки, по-

лучаем:  

  
b

a

b

a

dxdyyfxf 2))()((  =  
b

a

b

a

dyxfdx )(2  – 2  
b

a

b

a

dyyfxfdx )()(  +  
b

a

b

a

dyyfdx )(2  =  

= 2(b – a) 
b

a

dxxf )(2  – 2

2

)(














b

a

dxxf ≥ 0. 

Из последнего неравенства и следует утверждение задачи. 

 
04-7. Вычислим вероятность Pk не сдать зачет, если в билете k вопросов. 

1. k = 2. Студент не сдаст зачет, только если не ответит на оба вопроса. 

Значит 

P2 = 
n

mn  ∙
1

1



n
mn . 

2. k = 4. Зачет не будет сдан в следующих случаях: студент не ответил ни 

на один вопрос; студент ответил ровно на один вопрос (любой из 4). Значит,  

P4 = 
n

mn  ∙
1

1



n
mn ∙

2
2




n
mn

3
3




n
mn  + 4∙

n
m ∙

1


n
mn ∙

2
1




n
mn

3
2




n
mn  = 
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= 
n

mn  ∙
1

1



n
mn (

2
2




n
mn

3
3




n
mn  + 4∙

2n
m

3
2




n
mn ) = 

= P2∙
2

2



n
mn (

3
3




n
mn  + 4∙

3n
m ) = P2∙

)3)(2(

)33)(2(





nn

mnmn
. 

Разность двух вероятностей равна  

P4 – P2 = P2∙(
)3)(2(

)33)(2(





nn

mnmn
 – 1) = P2∙

)3)(2(

)332(





nn

mnm
 

Если P4 > P2, то вероятность сдать зачет больше для k = 2. Это требование 

выполняется, когда 3m < 2n – 3. Если знак неравенства противоположный, то 

выгодней билет с 4 вопросами. В случае равенства 3m = 2n – 3 оба билеты 

одинаково выгодны. 

Итак, «маленький» билет выгоден, если студент выучил менее 2/3 вопро-

сов. Например, при n = 30 и m = 6 вероятность сдать зачет по билету из 2 во-

просов равна 1 – P2  36,5%. С другой стороны, для билета из 4 вопросов эта 

вероятность равна 1 – P4  16,9%. Изменение составляет примерно 20%. Для 

других m разница меньше. Для студентов, хорошо знающих предмет (более 

2/3 вопросов) выгоднее билет из 4 вопросов, но при n = 30 разница составляет 

менее 2%. 

 
04-8. По формуле Тейлора с остаточным членом в форме Лагранжа полу-

чаем, что e = exp(1) = 1 + 1 +
!2

1 + … +
!

1
n

+
)!1(

1
n

+
)!2(

e




n
, где 0 <  < 1.  

Умножим это равенство на n!. Все слагаемые, кроме двух последних, 

превратятся в целые числа. Значит,  

xn = n∙sin(2k + 2
1

1
n

+ 2
)2)(1(

e




nn
) = 

= n∙sin(2
1

1
n

+ 2
)2)(1(

e




nn
)  2

1n
n + 2

)2)(1(
e





nn
n . 

Предел этой последовательности равен 2.

 

Решения задач, 2005 г. 

05-1. Как известно, в треугольнике против большего угла лежит большая 

сторона. Рассмотрим самое длинное ребро тетраэдра. Прилегающие к нему 

углы не являются наибольшими в соответствующих треугольниках, поэтому 

они острые. 

 
05-2. Пусть C = A – B, имеем C3 = A3 – 3A2B + 3AB2 – B3 = A – B = C. Зна-
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чит, определитель det C удовлетворяет уравнению x3 = x, т.е. равен 0, 1 или – 

1. Можно показать, что все эти значения действительно достигаются. 

 

05-3. Пусть J(a) = 
 


0

21

e
dt

t

at

. Формально дифференцируя это равенство 

под знаком интеграла, получим соотношения  

J(a) = – 
 


0

21

e
dt

t

t at

, J(a) = 
 


0

2

2

1

e
dt

t

t at

. 

Все полученные интегралы сходятся равномерно на промежутке (; +). 

Этот факт можно доказать по признаку Вейерштрасса. Значит, дифференци-

рование выполнено правильно. Кроме того, это позволяет перейти к пределу 

при a  +, так что J(+) = 0.  

Преобразуем выражение для второй производной от J. 

J(a) = 
 


0

2

2

1

e
dt

t

t at

 = 




0

e dtat  – 
 


0

21

e
dt

t

at

 = 
a
1  – J(a). 

Итак, функция J удовлетворяет уравнению J(a) + J(a) = 
a
1 . Решим его 

методом вариации. Имеем J(a) = f (a) cos a + g(a) sin a, причем f  и g при a > 0 

удовлетворяют системе  









aaagaaf

aagaaf

/1cos)(sin)(

0sin)(cos)(
. 

Значит, f (a) = –
a

asin , g(a) =
a

acos . Имеем f (a) = –( 


a

dt
t

tsin
), так что 

f (a) = 


a

dt
t

tsin
 + C1. Мы воспользовались тем, что интеграл Дирихле сходит-

ся. Аналогично получаем, что g(a) = – 


a

dt
t

tcos
 + C2. Подставим эти значения 

в выражение для J. Получаем, что  

J(a) = 


a

dt
t

tsin
∙cos a – 



a

dt
t

tcos
∙sin a + C1 cos a + C2 sin a = 

= 


a

dt
t

tsin
∙cos a – 



a

dt
t

tcos
∙sin a + A sin (a + a0). 

Как ведет себя последняя сумма при a  +? Заметим, что 
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


a

dt
t

tcos
= 





dt
t

tcos
 – 



a

dt
t

tcos
 0 при a  + (в силу сходимости несоб-

ственного интеграла). Аналогично ведет себя и 


a

dt
t

tsin
. Переходя к пределу 

в равенстве, получаем, что J(+) = 0 = 0 – 0 +
a

lim A sin (a + a0). Последний 

предел существует, только если A = 0. 

Итак, J(a) = 


a

dt
t

tsin
∙cos a – 



a

dt
t

tcos
∙sin a = 




a

dt
t

at )sin(
= 




0

sin
dx

ax

x
. 

Последнее выражение получено с помощью замены t = x + a. 

Заметим, что доказательство проводилось для a > 0, однако равенство 

верно и при a = 0. Действительно, интеграл Дирихле 


0

sin
dt

t

t
= 

2
 . Равенство 

же J(0) =
2
  проверяется непосредственным вычислением. 

 

05-4. Пусть g(x) = f (x +
5

1
) – f (x). Требование задачи означает, что для не-

которого x  [0; 
5

4
], g(x) = 0.  

Имеем g(0) + g(
5

1
) + g(

5

2
) + g(

5

3
) + g(

5

4
) = f (1) – f (0) = 0. Если ни одно 

из слагаемых с этой сумме не равно 0, то существует пара соседних слагае-

мых разного знака. В силу того, что g – непрерывна, в некоторой промежу-

точной точке она обращается в 0.  

 

05-5. Функция F (x) = 
x

dttf
0

)(  является решением уравнения sin F  =
1x

x
. 

Правая часть попадает в промежуток [–1; 1] при x ≥ – 0,5 > – 1. При этом 

условии F  (x) = arcsin
1x

x
 + 2k или F (x) =  – arcsin

1x

x
 + 2k. В силу усло-

вия F (0) = 0 и непрерывности функции F  подходит только решение F (x) = 

arcsin
1x

x
. Тогда f (x) = F (x) = 

12)1(

1

 xx
. Здесь при извлечении корня мы 

учли, что x + 1 > 0. 
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05-6. Объем n-мерного шара Vn(r) = an·r
n. Можно считать, что n-мерный 

шар состоит из слоев, являющихся (n – 1)-мерными шарами. Если слой отсто-

ит от центра на расстояние x, его радиус равен 22 xr  . Значит, Vn(r) = 

 


 
r

r

n dxxrV 22

1 . Сделаем замену x = r·sin t, получим, что  

an·r
n = 








2/

2/

1
1 cos)cos( tdtrtra n

n  = 2an – 1 r
n · 

 2/

0

cos tdtn . 

Имеем V3(r) = 
3

4
r3, т.е. a3 = 

3

4
, тогда a4 = 2a3· 

 2/

0

4cos tdt  = 
2

2
. Итак, 

трехмерный шар занимает долю 
3

4 3r
 : 8r3 = 

6


 от трехмерного куба, а четы-

рехмерный – долю 
2

42r
: 16r4 = 

32

2
. 

В общем виде интеграл можно вычислить, например, через -функцию. 

Имеем 
 2/

0

cos tdtn  = 
2
1 (

2
1 , 

2
1n ) = 

2


)(

)(

2
2

2
1








n

n

. Значит,  

an = 2an–1·
2


)(

)(

2
2

2
1








n

n

 = an+1··
)(

)(

2
2

2
1








n

n

·
)(

)(

2
1

2



n

n

 = an–2·
n
2 . 

Имеем a0 = 1, поэтому если n = 2k то an = 
!!

2 1

n

kk 
. Аналогично в силу a1 = 

2 при n = 2k + 1, an = 
!!

2

n

kk
. В обоих случаях шар занимает долю 

k

k

n 2!! 


 от 

объема описанного вокруг него куба. 

 
05-7. а) Пусть P(x) > 0. При x   многочлен P(x) стремится к +, по-

этому вне некоторого отрезка [a, b] значения P(x) будут больше 1. На отрезке 

же [a, b] значения непрерывной положительной функции отделены от нуля, 

так что P(x)   > 0, т.е. значения этого многочлена не могут приблизиться к 

нулю сколь угодно близко. 

б) Рассмотрим многочлен P(x, y) = x2 + (xy + 1)2. Его значения неотрица-

тельны и не обращаются в 0. Но их можно сделать сколь угодно малыми. 

Действительно, P(  ,



1

) =  для всех  > 0. 
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Решения задач, 2006 г. 

06-1. Имеем  = a11a22a33 + a12a23a31 + a13a21a32 – a13a22a31 – a11a23a32 – 

a12a21a31. Перемножим все слагаемые, получим величину –(aij)
2 ≤ 0 (в скоб-

ках стоит произведение всех элементов матрицы). Значит, все слагаемые не 

могут быть положительны. 

 

06-2. Разложим вектор AC  по векторам AB  и AD : AC= AB
2

1
+ AD

3

2
. Ко-

эффициенты этого разложения больше 0, так что точка C лежит внутри угла 

BAD. Сумма коэффициентов больше 1, так что C находится вне треугольника 

ABD, что и требовалось доказать. 

 
06-3. Пусть в вершинах пирамиды стоят числа a, b, c, d. Обозначим a + b 

+ c + d = m, a2 + b2 + c2 + d2 = n, ab + ac + … + cd = k.  

Пусть Si – сумма i-ых степеней чисел на ребрах. Тогда S1 = 3m, S2 = 3n + 

2k. По условию 3m = 3, 3n + 2k = 3. Кроме того, m2 = n + 2k, откуда m = n = 1. 

Имеем  

(a + b)3 + (c + d)3 = (a + b + c + d)((a + b)2 – (a + b)(c + d) + (c + d)2) = 

= m(n + 2ab + 2cd – ac – bc – ad – cd) = m(n + 3ab + 3cd – k). 

Складывая три таких равенства, получаем, что S3 = 3mn = 3.  

 
06-4. Заданное в задаче произведение называется булевым.  

а) Вычислением получаем, что A2 = 
















1000

1100

1110

0111

; A3 = 
















1000

1100

1110

1111

 = An, n ≥ 3.  

б) 1 способ. Пусть (ij) – матрица с неотрицательными членами. Присо-

единенной назовем матрицу A = (ai j) из , такую, что aij = sign(ij). Элемент 

обычного произведения матриц имеет вид  
k

kjik . В силу неотрицатель-

ности он равен 0, только если каждое слагаемое равно 0. Это значит, что в 

каждом произведении хотя бы один сомножитель равен 0.  

Итак, при обычном умножении неотрицательных матриц их присоеди-

ненные матрицы перемножаются булевым способом. Значит, ассоциатив-

ность булева умножения матриц сводится к ассоциативности обычного. 

2 способ. Булева матрица задает соотноше-

ние между двумя множествами. Это значит, что 

aij = 1, если ai связано с bj. Булево произведение 

aij bij 

a1 

a2 

a3 

a4 

b1 

b2 

b3 

b4 

c1 

c2 

c3 

c4 
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задает соотношение между множествами A и C, причем dij = 1 тогда и только 

тогда, когда существует путь по стрелкам от ai через bk к cj. 

Но тогда произведение трех матриц описывает пути от первого множе-

ства до четвертого и, следовательно, не зависит от порядка, в котором оно 

вычисляется. 

 
06-5. Обозначим искомый интеграл через I. Сделаем в нем замену y = – x. 

Получим, что I = 


 


1

1
2 )1)(1(e y

dy
y

= 




1

1
2 )1)(e1(

e

y

dy
y

y

. Переобозначая пере-

менную интегрирования снова через x и складывая два выражения для I, по-

лучаем, что 2I = 




1

1
2 1x

dx
 = 

2


. Значит, I = /4.  

 
06-6. 1 способ. Пусть x·100% людей имеют один экземпляр гена и y = 

15% – два. Вероятность того, что ребенок получит этот ген от одного из роди-

телей, равна x·0,5 + y·1. Соответственно, вероятность получить два гена будет 

равна (0,5 x + y)2, что должно совпадать с y. Итак, x = 2 y – 2y  47,5% 

Если у матери ген проявился, значит, он у нее представлен в обеих хро-

мосомах, т.е. она передаст его ребенку в 100% случаев. Значит, у ребенка он 

проявится, если он получит этот ген от отца, вероятность чего равна 0,5 x + y 

= y  0,387. 

2 способ. Пусть p – вероятность того, что один из родителей передаст 

ребенку ген данного признака. Тогда вероятность его проявления равна p·p = 

0,15. Значит, p = 15,0  0,387. В силу того, что мать в данном случае передает 

признак с вероятностью 1, искомая вероятность равна 1·p  38,7%. 

 
06-7. Введем для множества K характеристическую функцию , равную 1 

в каждой точке K и 0 во всех остальных точках плоскости. Тогда S(K) = 


2R

dxdy . Имеем ai j =  
2R

ji dxdy, что можно рассматривать как скалярное 

произведение функций i и j. Тогда det A есть определитель Грама системы 

функций (i), который всегда неотрицателен. 

Решения задач, 2007 г. 

07-1. Расположим параболу так, что ее ось совпадает с осью Oy. Тогда ее 

уравнение имеет вид y = ax2. Касательная в точке x имеет угловой коэффици-
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ент k = y = 2ax. Если касательные в точках x1 и x2 перпендикулярны, то k1k2 = 

– 1, откуда 4a2x1x2= – 1. Значит, произведение расстояний от A и B до оси рав-

но |x1x2| = 
24

1

a
, т.е. постоянно. 

 
07-2. Мы можем считать, что все коэффициенты ai не равны 0, так как это 

только усилит наше утверждение.  

Проведем доказательство по индукции. Для k = 0 уравнение приобретает 

вид a0 = 0, где a0 ≠ 0, поэтому у него нет корней. Предположим, что утвер-

ждение доказано для всех k  m – 1.  

Рассмотрим уравнение P(x) = a0 + a1x
n1 + a2x

n2 + … + amxnm = 0. Предполо-

жим, что у него не менее m + 1 положительных корней. Между двумя сосед-

ними корнями многочлена обязательно есть корень производной, так что она 

должна иметь не менее m положительных корней. Имеем P (x) = xn
1
 – 1Q(x), где 

Q(x) – многочлен такого же типа, что и P(x), у которого k < m. По предполо-

жению индукции он (а, следовательно, и P(x)) имеет не более k ≤ m – 1 поло-

жительных корней.  

Пришли к противоречию, что и завершает доказательство. 

 
07-3. Ясно, что x > 0 и y > 0. Прологарифмировав урав-

нение, получим 
x
xln =

y

yln
. График функции u = 

x
xln  (см. 

справа) строится обычным способом. Он имеет максимум в 

точке e.  

Надо для каждого x найти y с тем же значением u. Одно 

из решений – y = x. Кроме того, если u > 0 (x > 1), то для каж-

дого x есть еще одно решение. Причем, когда x  1 + 0, то 

y  +. Получаем такой график соотношения x 
y = y x:  

Ясно, что график соотношения будет симметричным от-

носительно прямой y = x. 

 
07-4. Приз может попасть в любой ящик с вероятностью 1/3. Обозначим 

через Aij событие, состоящее в том, что все призы попали в ящики i и j. Веро-

ятность каждого такого события равна (2/3)5. События Aij не являются несов-

местными. Например, A12A23 состоит в том, что все призы – в ящике 2. Веро-

ятность этого составляет (1/3)5. По формуле суммы вероятностей  

P(A12 + A13 + A23) = P(A12) + P(A13) + P(A23) – P(A1) – P(A2) – P(A3) =  

= 3(2/3)5 – 3(1/3)5 = 31/81. 

e 1 

u 

e 
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07-5. Полученный в игре определитель имеет вид 

4

2

1

22

12

11

cb

ca

ba

 = 8 + 

a1b2c1 + a2b1c2 – c1c2 – 2b1b2 – 4a1a2. Произведение второго и третьего слагае-

мых равно p = 356789 = 243457, так что по свойству средних a1b2c1 + 

a2b1c2 ≥ 2 p > 2212 = 424. С другой стороны, сумма c1c2 + 2b1b2 + 4a1a2 при-

нимает наибольшее значение, если на бóльшие коэффициенты умножаются 

бóльшие числа. Поэтому эта сумма не превосходит 35 + 267 + 489 = 387. 

Значит, определитель больше 0, выигрывает первый. 

 
07-6. Обозначим элемент произведения AB через cij. Имеем cij = 

k
kjikba , 

так что 
i

ijc   
ji k

kjikba
,

 =  
kji

kjik ba
,,

. С другой стороны,  

||A||||B|| = 
ji

ija
,


mk

kmb
,

=  
mkji

kmij ba
,,,

. 

В последней сумме есть все слагаемые из ||AB||, но также и некоторые 

другие неотрицательные слагаемые. 

 
07-7. Обозначим x0 = x, x

n

 cos...coscos  = xn, тогда xn = cos xn–1. Ясно, что, 

начиная с n = 2, все xn лежат в промежутке [0; 1], в котором косинус убывает. 

Значит, при xn > xn – 1 имеем xn+1 < xn и наоборот, т.е. значения последователь-

ности колеблются. При этом |xn+1 – xn| = |cos xn – cos xn–1| = |sin c||xn – xn–1| (по 

формуле Лагранжа).  

Заметим, что точка c лежит между xn– 1 и xn, так что |sin c|< sin 1 < 1 для 

n ≥ 1. Значит, |xn+1 – xn| < |xn – xn – 1|, где  = sin 1 < 1. Но тогда |xn+1 – xn| < 

n|x1 – x0|, т.е. расстояние меду соседними точками стремится к 0. При этом 

отрезки [xn, xn+1] стягиваются в некоторую точку x0 (принцип вложенных от-

резков). Переходя к пределу в равенстве xn = cos xn–1, получаем, что эта точка 

является корнем уравнения x = cos x, которое можно решить графически. 

 

07-8. Пусть эллипс задается уравнением 
2

2

a

x  + 
2

2

b

y
= 1. Через искомую 

точку (x, y) проведем прямую (x + t; y + t). Найдем точки пересечения этой 

прямой с эллипсом. Соответствующее значение параметра t является решени-



37 

 

ем уравнения 
2

2)(

a

tx 
 + 

2

2)(

b

ty 
= 1. Упрощая, получаем, уравнение  

(b22 + a22)t2 + 2(b2x + a2y)t + b2x2 + a2y2 – 1 = 0. 

Прямая будет касательной к эллипсу, если пересекает его ровно в одной 

точке. Это значит, что дискриминант выписанного квадратного уравнения ра-

вен 0. После упрощений условие приобретает вид (b2 – y2)2 + (a2 – x2)2 + 

2xy = 0. 

Проведем через ту же точку прямую, перпендикулярную первой, ее 

направляющий вектор имеет вид (– , ). Она будет касательной к эллипсу 

при условии, что (b2 – y2)2 + (a2 – x2)2 – 2xy = 0. Складывая эти два урав-

нения, получаем, что (2 + 2)(a2 + b2 – x2 – y2) = 0.  

Первый сомножитель в 0 не обращается, поэтому x2 + y2 = a2 + b2. Можно 

проверить, что для каждой точки этой окружности существует решение (, ). 

Решения задач, 2008 г. 

08-1. Ясно, что число 5 = 2∙1 + 3∙1 принадлежит A. Легко найти несколько 

следующих элементов A: это 13 = 1 + 12, 17 = 5 + 12, … Докажем по индук-

ции, что все числа вида 12k + 1 и 12k + 5 принадлежат A. 

Ясно, что при k = 0 утверждение выполняется. Пусть уже доказано, что 

числа 1, 5, 13, 17, …, 12k + 1, 12k + 5 принадлежат A. Надо доказать, что в это 

множество входят и числа 12k + 13, 12k + 17.  

Имеем 12k + 13 = 2(6k + 5) + 3∙1 = 2(6k –1) + 3∙5. Хотя бы в одном из этих 

двух представлений число в скобках принадлежит A. Действительно, оба чис-

ла 6k + 5 и 6k – 1 не превосходят 12k + 5. Если k четно, то 6k + 5 = 12l + 5. Ес-

ли же оно нечетно, k = 2l + 1, то 6k – 1 = 12l + 5. 

Аналогично 12k + 17 = 2(6k + 7) + 3∙1 = 2(6k + 1) + 3∙5, причем для чет-

ных k имеем 6k + 1 = 12l + 1, а если k = 2l + 1, то 6k + 7 = 12l + 13 = 12(l + 1) + 

1, т.е. хотя бы одно из чисел 6k + 1, 6k + 7 принадлежит A. 

 
08-2. Сделаем в интеграле слева замену x =  – t. Получим, что  

I = 


0

)(sin dxxxf = – 



0

))(sin()( dttft = 




0

))(sin()( dttft = 




0

))(sin( dttf – I. 

Из этого равенства находим значение I, которое совпадает с правой ча-

стью доказываемого равенства. 
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08-3. Пусть A = 








dc

ba
, тогда A2 = 












2

2

)(

)(

dbcdac

dabbca
 = 









00

00
. Пока-

жем, что a + d = tr A = 0. Действительно. В противном случае b = c = 0, так что 

«диагональные» равенства принимают вид a2 = d2 = 0. Но тогда и a + d = 0 – 

противоречие. 

Итак, a + d = 0, при этом «диагональные» равенства принимают одинако-

вый вид a2 + bc = 0.  

Заметим, что последнее равенство в данном случае равносильно тому, 

что det A = ad – bc = 0. Впрочем, это ясно и из равенства det (A2) = (det A)2 = 0. 

 
08-4. Чтобы последовательность была ограниченной, будем искать ее в 

виде an = sin(bn). Если bn имеет конечный предел, то же верно и для последо-

вательности an, что противоречит ее нефундаментальности.  

Имеем an+1 – an = sin(bn+1) – sin(bn) = 2 sin(
2

1 nn bb  )cos(
2

1 nn bb  ). Второй 

сомножитель ограничен, так что достаточно потребовать, чтобы первый 

стремился к 0. При этом последовательность bn, как и an, нефундаментальна и 

удовлетворяет условию bn+1 – bn  0. Однако ограниченности от нее уже не 

требуется. Например, можно считать, что bn   при n  +. 

Всем поставленным условиям удовлетворяет последовательность bn = n : 

она стремится к бесконечности, но 1n – n  =
nn 1

1  0. 

Последовательность an = sin( n ) содержит в себе подпоследовательность 

sin m, m   которая, как известно, не имеет предела. Значит, an также не 

имеет предела и, следовательно, нефундаментальна. 

 
08-5. Подсчитаем вероятность того, что муравьи не встретятся на ребрах. 

Муравей из вершины A может ползти в любую из 3 вершин (вероятность это-

го события равна 1). Назовем вершину, в которую он пополз, B. Муравей из 

этой вершины может ползти в любую из двух вершин, кроме A (вероятность 

события 2/3). Назовем выбранную им вершину C. Тогда C-муравей имеет вы-

бор из двух вариантов. 

1) С вероятностью 1/3 он ползет в вершину A. Тогда четвертый муравей 

из вершины D может ползти в любую из трех вершин. 

2) С той же вероятностью 1/3 муравей ползет в вершину D. Тогда для D-

муравья остается 2 пути (в A или в B). 

Итак, вероятность «невстречи» равна 1∙
3
2 ∙(

3
1 ∙1+

3
1

3
2 ) =

27
10 . Тогда вероят-
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ность встречи составляет 1 – 
27
10  = 

27
17 . 

Условие задачи можно понять и несколько по-другому, если учитывать, 

что муравьи из вершин A и B могут встретиться не только на ребре AB, но и в 

третьей вершине (С или D). Тогда случай 1) исключается (D-муравью некуда 

ползти). В случае 2) у него остается только один путь – в A. Значит, вероят-

ность «невстречи» в этом понимании равна 1∙
3
2 ∙

3
1 ∙

3
1 , а вероятность встречи, 

соответственно, 
27
25 . 

 
08-6. См. задачу 04-8. 

 
08-7. Поменяем местами первые два столбца матрицы. Тогда ее опреде-

литель поменяет знак, хотя матрица станет другой (повторяющихся элемен-

тов в матрице нет). Получается, что каждой матрице с положительным опре-

делителем соответствует матрица с отрицательным и наоборот. Значит, их 

поровну. 

 

08-8. Обозначим DA  = a


, DC  = c


. Тогда DB  = –a


, DE  = a


 + x(c


 – a


), 

DF  = – a


 + y(c


 – a


). Здесь x, y – некоторые числа из промежутка [0; 1]. Надо 

доказать неравенство S ≤ S1 + S2 (обозначения см. на чертеже). 

Площадь треугольника можно выразить через модуль векторного произ-

ведения.  

Имеем 2S1 = |[ DA , DE ]| = x|[a


, c


]|, 2S2 = |[ DB , DF ]| = y|[a


, c


]| и 2S = 

|[ DE , DF ]| = ((1 – x) y + (1 – y)x) |[a


, c


]|. Числовые коэффициенты вынесены 

без знака модуля, т.к. они неотрицательны.  

Доказываемое неравенство приводится к виду (1 – x) y + (1 – y)x = x + y – 

2xy ≥ x + y, что, конечно, верно (с учетом значений, пробегаемых x и y). 

 
08-9. Пусть математики не виделись n лет (оба они знают это число). 

Возрасты k, l, m детей являются решением уравнения n = k∙l∙m. Из разговора 

мы узнаем, что эти числа удовлетворяют некото-

рым соотношениям. Назовем тройку (k, l, m) М-

решением, если k ≥ l > m (среди детей есть млад-

ший) и СМ-решением, если k > l > m (среди детей 

есть и младший и старший).  

По условию, уравнение n = k∙l∙m имеет более 

 

A 

C 

B 

E F 

D 

S S1 

 

S2 
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одного М-решения и ровно одно СМ-решение.  

Предположим, что существует CМ-решение с m ≠ 1. Тогда, кроме (k, l, m) 

решением является и тройка (km, l, 1), также удовлетворяющая соотношению 

km > l > 1. Значит, дополнительная информация в этом случае не позволит 

второму математику найти решение. Итак, для СМ-решения m = 1. Пусть n = 

kl, k > l > 1. Предположим, что число l не простое, l = pq, p ≥ q >1. Но тогда n 

= k(pq) = (kp)q имеет не менее двух подходящих разложений. 

Итак, l = p – простое число, являющееся делителем n. В силу единствен-

ности СМ-решения такой делитель также один. Действительно, если n делит-

ся еще и на простое число q ≠ p, то тройка (n/q, q, 1) не совпадает с (n/p, p, 1) и 

не должно быть СМ-решением (в силу его единственности). Значит, n/q = q, 

n = q2, что не делится на p. Противоречие. 

Мы получили, что n = pr. Оно имеет М-разложения (pr–1, p, 1) и (pr–2, p2, 1). 

СМ-решением среди них будет первое, а второе может быть только М-

решением. Итак, r – 2 = 2 и r = 4. 

Окончательно получаем, что n = p4 для некоторого простого p, а возрасты 

детей составляют p3, p и 1 год. 

Вообще говоря, числу p мы можем придать значения 3, 5, … Однако уже 

при p = 3 оказывается, что математики не виделись 81 год, что довольно мно-

го по меркам человеческой жизни. Так что, скорее всего, p = 2 и математики 

не виделись 16 лет. 

Решения задач, 2009 г. 

09-1. Подставим в данное равенство вместо x значения –x, 1/x, –1/x. По-

лучим 4 уравнения  


















xxfxfxf

xxfxfxf

xxfxfxf

xxfxfxf

/1)/1()()/1(3

/1)/1()()/1(3

)()/1()(3

)()/1()(3

 

Они образую линейную систему относительно неизвестных f (x), f (–x), 

f (1/x), f (–1/x). Решим ее по правилу Крамера.  

 = 

1310

3101

1013

0131

 = 45, 1 = 

131/1

310/1

101

013

x

x

x

x




 = – 30x – 15/x. 

Получаем, что f (x) = 


1 = –
3
2x  – 

x3
1 . 
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09-2. Пусть OA  = i, OB  = j, OC  = k – орты прямоугольной системы коор-

динат с началом в точке O. Плоскость  определяется в этой системе своей 

нормалью n = (k, l, m). Можно считать, что эта нормаль единичная. 

Расстояние от вектора i до плоскости  равно проекции этого вектора на 

нормаль. В силу того, что вектор n единичный, эта проекция равна скалярно-

му произведению (i, n) = k. Аналогично, два остальных расстояния равны l и 

m. Сумма их квадратов равна квадрату длины вектора n, т.е. 1. 

 
09-3. Аналогичные интегралы исследованы в задаче 08-2. В нашем случае 

f (x) = 
xsin1

1


 – непрерывна на [0, ]. Имеем 




0

sin1
dx

x

x
= 

2





0

sin1

1
dx

x
. По-

следний интеграл можно подсчитать, например, с помощью универсальной 

подстановки t = tg 
2
t , он равен 2. Значит, исходный интеграл равен . 

 
09-4. Будем считать, что змея лежит на комплексной плоскости. Тогда 

первый отрезок ее тела равен 1, второй расположен в направлении i и равен 

i, … Продолжая этот процесс, что положение кончика хвоста определяется 

суммой ряда 1 + i – 
2

2 – 
!3

3 i + … Легко заметить, что это ряд Тейлора для 

функции ex в точке i. Его сумма равна ei = –1. 

 
09-5. Заметим, что подынтегральная функция ограничена и имеет един-

ственный разрыв в точке (0; 0; 0). Значит, она интегрируема. 

Сделаем циклическую перестановку переменных. В силу симметрии 

функции и области интегрирования получаем, что I =    


1

0

1

0

1

0

dxdydz
zyx

yx
 = 

   


1

0

1

0

1

0

dxdydz
zyx

zy
=    


1

0

1

0

1

0

dxdydz
zyx

xz
. Складывая три значения, получаем, 

что 3I =   
1

0

1

0

1

0

2dxdydz = 2. Значит, I = 2/3. 

 
09-6. Заметим, что компоненты вектора e получаются при вычитании из 

матрицы A транспонированной к ней матрицы AT. Имеем  
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S = A – AT = 






















0

0

0

12

13

23

ee

ee

ee

. 

Произведение Se = 0. Но SA = (A – AT)A = A2 – AT∙A = A2 – A∙AT = A S. Зна-

чит, SAe = ASe = 0, т.е. Ae также является решением уравнения Sx = 0. Легко 

показать, что любое решение этого уравнения пропорционально e. Итак, Ae = 

e, что и требовалось доказать.

 
09-7. Найдем среднее число взятых подарков. Рассмотрим сначала проти-

воположное событие, что конкретный подарок не будет взят. Это произойдет 

только в том случае, если никто из детей не откроет этот ящик. Вероятность 

этого равна (1 – 1/n)m.  

Соответственно, вероятность быть взятым для отдельного подарка равна 

1 – (1 – 1/n)m, а среднее число взятых подарков – n(1 – (1 – 1/n)m). Столько же 

детей в среднем получат подарки. Тогда средне число «неполучивших» равно 

m – n(1 – (1 – 1/n)m). 

 
09-8. Заметим, что в числителе правой дроби стоит частичная сумма Sk 

ряда a1 + a2 + … + an + … Ее знаменатель можно выразить в виде S2k – Sk. 

Условие задачи можно переписать в виде 
kk

k

SS

S

2

= 
2

1

a

a
,  

Если a1 = 0, то и все частичные суммы равны нулю, как и все ak. В про-

тивном случае S2k = qSk, где q = 
1

12

a

aa 
 = const. Будем искать ak в виде много-

члена m-ой степени от k. Как известно, суммируя одинаковые степени 1m + 2m 

+ … + km, мы получим некоторый многочлен степени m + 1. Соответственно и 

Sk будет многочленом степени m + 1: Sk = b1k
m+1 + b2k

m + … + bm+2. Как мы по-

казали, отношение 
k

k

S

S2  для искомого многочлена должно быть константой. 

Имеем q = 
k

k

S

S2 = 
22

1
1

22
1

1

...

...)2()2(











m
mm

m
mm

bkbkb

bkbkb
  2m+1 при k  . 

Многочлен S2k – qSk = S2k – 2m+1Sk должен быть тождественно равен 0. Он 

имеет вид – b2(2k)m – 3b3(2k)m–1 – … – (2m+1 – 1)bm+2. В силу произвольности k 

все коэффициенты, начиная с b2, должны быть равны 0. Итак, Sk = b1k
m+1. Но 

тогда ak = Sk – Sk–1 = b1(k
m+1 – (k – 1)m+1). Коэффициенты этого многочлена бу-

дут целочисленными при целом b1. Все такие многочлены отличаются только 

мультипликативным множителем. 
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09-9. Пусть точка O отображается в точку f (O), 

тогда единичная окружность O с центром в O пе-

реходит взаимно однозначно в единичную же 

окружность f(O) с центром f (O). Пусть A  O. 

Окружности A и O пересекаются в точках B и C, 

их образами являются точки пересечения окружно-

стей f(A) и f(O). Рассматривая окружности с цен-

трами в точках B и C и т.д. мы последовательно по-

строим правильную треугольную сеть как в исходной плоскости, так и в 

плоскости значений отображения. На такой сети точек отображение f  являет-

ся изометрией (движением). 

Заметим, что такую же сеть мы можем построить, начиная с любых двух 

точек O, A.  

а) Пусть точки x, y находятся на расстоянии 2, тогда они принадлежат се-

ти, построенной на точках O = (x + y)/2 и A = x. Соответственно, точки f (x) и 

f (y) лежат на аналогичной сети, построенной на точках f (O) и f (A), так что 

расстояние между ними также равно 2. 

б) Пусть расстояние между точками x и y равно 1/2. 

Построим равнобедренный треугольник с вершиной A и 

основанием [x; y] так, что |A – x| = |A – y| = 1. Продолжим 

его стороны до точек B и C так, что расстояния AB и AC равны 2. Тогда отре-

зок [x; y] будет средней линией треугольника BAC, так что длина BC равна 1.  

По доказанному ранее треугольник с вершинами f (A), f (B), f (C) будет 

равен по размерам исходному, а точки f (x) и f (y) будут серединами соответ-

ствующих сторон. Значит, расстояние между ними равно 1/2. 

в) Пусть расстояние между точками x и y меньше 1. Тогда можно постро-

ить точку A, находящуюся на расстоянии 1/2 от каждой из них. По доказан-

ному в пункте б) имеем |f (A) – f (x)| = |f (A) – f (y)| = 1/2. Но тогда по неравен-

ству треугольника |f (x) – f (y)| ≤ |f (x) – f (A)| + |f (A) – f (y)| = 1/2 + 1/2 = 1. 

Решения задач, 2010 г. 

10-1. Пусть a = rei, b = rei, c = rei. Имеем  

cba
cabcab


  = abc

cba
bac


 /1/1/1  = reiii








iii

iii

eee

eee . 

Величины в числителе и знаменателе дроби взаимно сопряженные. По-

этому их модули совпадают. Итак, модуль всего выражения равен r. 

 

O 
A 

B 

C 

1 

C 
A 

B 

1 

x 

y 

1 
1 

½  



44 

 

A1 

A2 

10-2. Центр тяжести треугольника – точка пересечения его медиан. В 

частности, медиана, проведенная из точки C, проходит через середину отрез-

ка AB, т.е. через точку O(0; 0). Искомая точка M(t, z) делит отрезок OC в от-

ношении 2 : 1, считая от точки C. Это значит, что OM  = 
3
1 OC . Поэтому ко-

ординаты t, z можно найти как t = x/3, z = y/3. Из этих соотношений следует, 

что z = y(x)/3 = y(3t)/3 = 3t2 – 6t + 5.  

 
10-3. Концы Ai данных векторов лежат на окружности радиуса 1 с цен-

тром в точке O (нумерация идет по часовой стрелке). Нечетный номер соот-

ветствует красному цвету, а четный – зеленому. Имеем  

x


 = ( 2OA + 4OA + … + nOA2 ) – ( 1OA + 3OA + … + 12 nOA ) = 2OA  – 1OA + 

+ 4OA  – 3OA + … + nOA2  – 12 nOA  = 21AA  + 43AA  + … + nn AA 212  . 

Проведем через центр O прямую, параллельную 

x


, и спроецируем на нее все слагаемые. Проекция 

вектора x


 на эту прямую будет совпадать с ним са-

мим по абсолютной величине.  

Все векторы kk AA 212   разобьются на две груп-

пы: те, которые сонаправлены x


, и которые проти-

вонаправлены. Мы можем считать, что нумерация 

точек идет от прямой по часовой стрелке. Тогда векторы одной группы – это 

21AA , 43AA  и так далее до некоторого номера k. Вторая группа состоит из 

остальных векторов. Заметим, что в каждой группе проекции точек Ai распо-

ложены на прямой в том же порядке, как и сами точки Ai на окружности. Это 

значит, что сумма проекций равна проекции суммы. 

В каждой группе эта сумма не больше диаметра окружности, т.е. лежит в 

пределах от 0 до 2. Это значит, что разность двух сумм не больше 2 – 0 = 2 и 

не меньше 0 – 2 = –2. 

 
10-1. Обозначим искомые подмножества через 

Ai, i = 1, …, k. Построим таблицу, в клетках которой 

записаны общие элементы каждой пары множеств. 

Ясно, что таблица будет симметричной относитель-

но главной диагонали.  

Все номера, стоящие выше диагонали, различ-

ны. Действительно, повторяющийся номер соответ-

ствовал бы двум парам множеств, т.е. принадлежал бы не менее, чем трем из 

 A1 A2 A3 A4 A5 … 

A1  1 2 4 7 … 

A2 1  3 5 8 … 

A3 2 3  6 9 … 

A4 4 5 6  10 … 

A5 7 8 9 10  … 

… … … … … …  
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них. Но тогда в таблице содержится 1 + 2 + … + (k – 1) = (k – 1)k/2 элементов. 

Итак, (k – 1)k/2  2010, откуда k  63.  

Эта же таблица дает и пример, так как можно считать, что i-ое множество 

состоит из всех элементов соответствующей строки. 

 
10-5. Имеем 






1e

)1(
2

2

xx

x
 = 



 dx
x

xx
x 1e

12
2

2
 =  











 dx
x

x
x

x

1e

e21
2

 = x – ln(x2 + ex +1) + C. 

 
10-6. Рассмотрим сначала отрезок  = [a; bi]. Он составляет с веществен-

ной и мнимой осями углы  и  соответственно, причем  +  = /2. Заметим, 

что при отображении sin вещественная ось переходит в вещественную. Зна-

чит, угол между  и вещественной осью есть образ угла  при этом отобра-

жении. Аналогично угол  с мнимой осью есть образ угла  (т.к. мнимая ось 

при отображении sin также переходит в себя). 

Функция sin является аналитической, ее производная равна cos z. В точках, 

для которых cos z ≠ 0, соответствующее отображение является конформным и 

не меняет углов между линиями. Значит, искомая сумма также равна /2. 

Случай cos z = 0 возможен только на вещественной оси, при a = /2 + k. 

Для этих точек имеем по формуле Тейлора: sin z =  – (z – a)2 + o((z – a)3) в 

окрестности точки z = a (здесь  = sin a = 1). Кривая  направлена вдоль век-

тора sin z –  = –(z – a)2. Это преобразование удваивает углы (и, возможно, 

направляет их в противоположную сторону). Значит,  составляет с веще-

ственной осью угол 2. 

Впрочем, в качестве угла между линиями естественно рассматривать ост-

рый угол (без учета знака). Поэтому угол в точке a равен 2 или  – 2 (если 

именно этот угол острый). Значит, искомая сумма равна 2 +  =  + /2 (при 

0 <  ≤ /4) или  – 2 +  = 3/2 – 3 = 3 (если /4 <  ≤ /2). 

 

10-7. Искомое число есть 
)14(n

m , где n(14) – общее число вариантов оста-

новки волчка в 14 секторах при 6 бросаниях, а m – число вариантов, при кото-

рых выпадут секторы 1, 2, … , 6. Очевидно, что n(14) = 146. Заметим, что чис-

ло m не зависит от общего числа секторов на волчке. Действительно, исследу-

емое событие означает, что волчок останавливался только на секторах 1-6, но 

никогда – на пустом промежутке перед сектором номер 7. Тогда не важно, 

сколько именно секторов есть между 7-ым и 1-ым. 
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Рассмотрим аналогичную задачу в случае 7 секторов. Тогда вероятность 

выпадения 6 конкретных секторов равна вероятности того, что не выпадет 

оставшийся седьмой сектор. Для каждого невыпавшего сектора она одинако-

ва и, следовательно, равна 
7
1  = 

)7(n
m  = 

67

m . Значит, m = 7
5
, а искомая вероят-

ность равна 
6

5

14

7  = 
72

1
6 

. 

 
10-8. Нам требуется по числу этажей в доме найти необходимое число 

бросков. Попробуем решить обратную задачу: по числу бросков найти этаж-

ность, для которой гарантированно можно определить самый нижний этаж 

разбития шаров. 

Обозначим через p(k, n) максимальную этажность дома, для которого это 

можно сделать k шарами за n бросаний. Можно считать, что p(k, 0) = 0.  

Рассмотрим сначала случай k = 1. Если мы бросим шарик хотя бы со вто-

рого этажа и он разобьется, то мы не узнаем, можно ли его было бросить с 

первого. Итак, один шарик надо бросать с 1-го, 2-го и так далее этажей, пока 

он не разобьется. Значит, p(1, n) = n.  

Пусть теперь шариков больше, чем 1. Бросим первый шарик с этажа sn. Если 

он разбился, то у нас остается k – 1 шарик, n – 1 бросок и sn – 1 непроверенных 

этажей. Значит, sn – 1  p(k –1, n – 1) и максимальное sn = p(k –1, n – 1) + 1. В 

частности, s1 = p(k –1, 0) + 1 = 1. Более высокие, чем sn, этажи проверять не 

надо, так что p(k, n)  sn.  

Если же при первом бросании шар остался цел, то мы имеем в распоря-

жении еще (n – 1) попытку и снова k целых шара. За n – 1 попытку мы можем 

проверить p(k, n – 1) этажей, начиная с номера sn + 1 (все более низкие прове-

рять уже не надо). Поэтому мы можем определить нужный этаж во всем ин-

тервале от 1 до sn + p(k, n – 1). 

Итак, p(k, n) = sn + p(k, n – 1) = sn + sn–1 + p(k, n – 2) = … = sn + sn–1 + … + s1 +  

+ p(k, 0) = 


n

i
is

1

. Как мы показали выше, sn = p(k –1, n – 1) + 1. 

а) Пусть у нас есть два шарика. Имеем sn = p(1, n – 1) + 1 = n. Тогда p(2, n) = 

= 


n

i

i
1

 = 
2

)1( nn
. Итак, за 44 броска можно проверить не более 

2
4544   = 990 

этажей, а за 45 – уже 
2
4645   = 1035. Значит, 45 бросков хватит. 
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б) Для трех шариков имеем p(3, n) = 


n

i
is

1

, где si = p(2, i – 1) + 1 = 
2

)1( ii 
 + 1. 

Последнее выражение можно переписать в виде 
6
1 (i3 – (i – 1)3 + 5). Суммируя 

по i от 1 до n, получим p(3, n) = 
6
1 (n3 + 5n). (Замечание. Можно использо-

вать и стандартные формулы для сумм степеней).  

Поскольку 
6
1 (183 + 5∙18) < 1000 < 

6
1 (193 + 5∙19), то X = 19. 

 
10-9. Выберем какое-нибудь иррациональное число x0. Приращение f  = 

= f (x) – f (x0) = f (x). Для рационального x = 
n
m  оно равно 

2n

x . Известно, что 

для любого иррационального x0 существует последовательность наилучших 

приближений, т.е. чисел вида x = 
n
m  таких, что |x| = 

n
mx 0   

2
1

n
. В этих 

точках 
x

f




 = 

xn

x

2
  |x|  

2
0x

. Последнее неравенство верно в достаточно 

малой окрестности x0. Итак, сколь угодно близко к числу x0 существуют точ-

ки, в которых 
x

f




 равно 0 (любые иррациональные), и точки, в которых 

x

f




 

отделено от 0. Значит, это отношение не имеет предела при x  0, а функ-

ция не имеет производной. 

Исследуем теперь производную в точке 0. Имеем x = x – 0 = x, так что 

x

f




 равно 0 для иррациональных x и 

x
nx 2/  = 

2
1

n
 для рациональных x = 

n
m . 

Если x находится достаточно близко к 0, |x| < 
k
1 , то n > k и 

2
1

n
 < 

2
1

k
.  

Значит, lim 
x

f




 = f (0) = 0.  

 
10-10. Предположим, что искомое f  существует. В силу свойств 1), 2) 

имеем f (f (X)) = f (X) для всех X  2 . Множество f ()  , т.е. конечно. Для 

любого конечного (т.е. эквивалентного ) множества K имеем f (K) = f (). 

Если пересечение множеств A и B конечно, то пересечение их образов есть 

f (A)  f (B) = f (A  B) = f (). 

Выберем произвольную бесконечную последовательность X1, X2, …, Xn, … 
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бесконечных попарно не пересекающихся подмножеств . В силу свойства 1) 

последовательность f (X1), f (X2), …, f (Xn), … будет состоять из бесконечных 

множеств. Как показано выше, образы f (Xn) пересекаются между собой толь-

ко по множеству f ().  

Значит, множества вида f (Xn) \ f () попарно не пересекаются. Выберем в 

каждом из них по одному элементу an (все они различны). Множество всех an 

обозначим через A.  

Какое значение может принимать отображение f  на множестве A? Пере-

сечение A  f (Xn) = {an} конечно, следовательно, f (A)  f (f (Xn)) = f (A)  f (Xn) 

= f () для каждого n. В частности, пересечение f (A) и f (Xn) не содержит эле-

мент an. Заметим, что в множество f (Xn) элемент an входит. Значит, он не вхо-

дит в f (A).  

Это верно при всех n, так что f (A) отличается от A бесконечным числом 

элементов, что противоречит соотношению A  f (A). 

 
 


