Регламент проведения занятий и оценки знаний аспирантов по дисциплине:

Б1.В.ДВ.1 Эволюция магнитного поля Земли, палеомагнетизм и магнетизм горных пород

Дисциплина изучается аспирантами направления <u>05.06.01-Науки о земле</u> В 4 семестре

Направленность (профиль) подготовки: <u>Геофизика, геофизические методы поисков</u> полезных ископаемых

Общая трудоемкость дисциплины составляет 3 зачетные единицы.

Лекционный курс составляет <u>18</u>часов

Лабораторная работа составляет 18 часов;

Самостоятельная работа студентов 72 часов.

Форма итогового контроля: зачет.

Фонд оценочных средств Учебной дисциплины «Эволюция магнитного поля Земли, палеомагнетизм и магнетизм горных пород»

Формируемые компетенции:

Индекс	Расшифровка	Показатель	Оценочное средство
компете	компетенции	формирования	
нции		компетенции для	
		данной дисциплины	
УК-1	способностью к	критический анализ и	Устный опрос
	критическому анализу и	оценка современных	
	оценке современных	научных достижений	
	научных достижений,		
	генерированию новых		
	идей при решении		
	исследовательских и		
	практических задач, в		
	том числе в		
	междисциплинарных		
	областях		
УК-2	способностью	Способен	Контрольные работы
	проектировать и	проектировать и	
	осуществлять	осуществлять	
	комплексные	комплексные	
	исследования, в том	исследования	
	числе		
	междисциплинарные, на		
	основе целостного		
	системного научного		
	мировоззрения с		
	использованием знаний		
	в области истории и		
	философии науки		70
ОПК-1	способностью	Способен	Контрольные работы
	самостоятельно	самостоятельно	
	осуществлять научно-	осуществлять научно-	

	изананаражан сти	**************************************	
	исследовательскую	исследовательскую	
	деятельность в	деятельность	
	соответствующей		
	профессиональной		
	области с		
	использованием		
	современных методов		
	исследования и		
	информационно-		
	коммуникационных		
	технологий		
	Способность	Владеть навыками	Контрольные работы
	формулировать	готовности применять на	
	проблемы, задачи и	практике базовые	
	методы научного	общепрофессиональные	
ПК-10	исследования; получать	знания при решении производственных задач в	
11K-10	новые достоверные	соответствии с профилем	
	факты на основе	программы аспирантуры	
	наблюдений, опытов,	программы испирантуры	
	научного анализа		
	эмпирических данных		
	Готовность	Готов осуществлять	Контрольные работы
	осуществлять	организацию и	
	организацию и	управление научно-	
	управление научно-	исследовательскими и	
	исследовательскими и	научно-	
	научно-	производственными	
ПК-12	производственными	геолого- геофизическими	
	геолого-	работами с	
	геофизическими	использованием	
	работами с	углубленных знаний в	
	использованием	области геофизики	
	углубленных знаний в		
	области геофизики		
	1 1	<u> </u>	

Задания к контролю: Устный опрос: Устный опрос проводится по изучаемым темам:

Тема 1. Физические основы магнетизма горных пород. Физические основы магнетизма горных пород. Диамагнетики, парамагнетики, ферро- и ферримагнетики. Зависимости магнитной восприимчивости диа-, пара- и ферромагнетиков от напряженности магнитного поля и температуры. Виды энергий (кристаллографическая, магнитостатическая, магнитная и др.). Доменная структура ферримагнетиков, критерии определения доменного состояния. Критический размер однодомен ности. Релаксационные процессы, суперпарамагнетизм. Виды остаточ ной намагни ченности (термонамагниченость, химическая и ориентационная). Основные ферри магнитные минералы горных пород: титаномагнетиты, гемоильмениты, пирротин. Температуры Кюри (Тс) твердых растворов, их зависимость от состава. Ферромагнитные минералы осадочных пород. Аппаратура магнитно-минералогического ана лиза: измерение магнитной восприимчивости, измерение естественной остаточной намагни чен ности, измерение зависимости индуктивной и остаточной намагниченности от

приложенного магнитного поля и температуры. Физические основы магнетизма горных пород

- Тема 2. Аппаратура магнитно-минералогического анализа, измерение естественной остаточной намагниченности и магнитной восприимчивости. Основные ферри магнитные минералы горных пород: титаномагнетиты, гемоильмениты, пирротин. Температуры Кюри (Тс) твердых растворов, их зависимость от состава. Ферромагнитные минералы осадочных пород. Аппаратура магнитно-минералогического анализа: измерение магнитной восприимчивости, измерение естественной остаточной намагниченности, измерение зависимости индуктивной и остаточной намагниченности от приложенного магнитного поля и температуры. Физические основы магнетизма горных пород Диагностика ферримагнитных минералов горных пород магнитно-минералогическими методами. Использование методов магнетизма горных пород для решения стратиграфических, тектонических и петрологических задач. Аппаратура магнитно-минералогического анализа и диагностика ферромагнитной фракции горных пород
- **Тема 3.** Использование методов магнетизма горных пород для решения стратиграфических, тектонических и петрологических задач. Основные ферри магнитные минералы горных пород коллоквиум, примерные вопросы: Диагностика ферримагнитных минералов горных пород магнитно-минералогическими методами. Использование методов магнетизма горных пород для решения стратиграфических, тектонических и петрологических задач.
- **Тема 4. Основные гипотезы генерации магнитного поля Земли.** Основные гипотезы генерации магнитного поля Земли различные модели гидромагнитного динамо. Происхождение вековых вариаций геомагнитного поля. Инверсия и тонкая структура геомагнитного поля. Основные постулаты палеомагнетизма.
- **Тема 5. Естественная остаточная намагниченность (ЕОН) горных пород.** Естественная остаточная намагниченность (ЕОН) горных пород, ее виды. Стабильность ЕОН. Компоненты ЕОН (древняя, метахронная, вязкая и т.п.). Выделение компонент ЕОН, различные виды магнитных чисток.
- **Тема 6**. **Методика отбора образцов для палеомагнитного анализа.** Методика отбора образцов для палеомагнитного анализа. Аппаратура для проведения палеомаг нитного анализа.
- **Тема 7.** Использование методов палеомагнетизма для решения стратиграфических и **тектонических задач**. Генерация геомагнитного поля и палеомагнетизм

Вопросы на контрольные работы:

Контрольная работа №1

- 1. Закон Кюри для парамагнетиков.
- 2. Ферромагнетики: определения; температурная зависимость спонтанной намагниченности.
- 3. Ферримагнетики: определение, типы температурных зависимостей спонтанных намагниченностей для ферримагнетиков.
- 4. Природа кристаллографической анизотропии, плотность энергии кристаллографической анизотропии для ферромагнитных кристаллов с кубической и гексагональной сингоний.
- 5. Магнитостатическая энергия ферромагнетиков.
- 6. Зависимость намагниченности от формы тела.
- 7. Однодоменное состояние ферримагнитных зерен, критический размер однодоменности при 0°К.
- 8. Псевдо- и многодоменное состояние ферромагнитных зерен.

- 9. Релаксация спонтанной намагниченности, время релаксации, факторы определяющие время релаксации однодоменной частицы.
- 10. Блокирующая температура, явление суперпарамагнетизма.
- 11. Процесс намагничения однодоменной частицы.
- 12. Процесс намагничения многодоменной частицы.
- 13. Кривая технического намагничения ферромагнетика, основные параметры технического намагничения.
- 14. Термоостаточная остаточная намагниченность горных пород, процесс ее образования.
- 15. Химическая остаточная намагниченность горных пород, процесс ее образования.
- 16. Ориентационная остаточная намагниченность горных пород, процесс ее образования.
- 17. Титаномагнетиты: зависимости намагниченности насыщения, коэрцитивных свойств и точки Кюри от состава титаномагнетитов.
- 18. Гемоильмениты: зависимости намагниченности насыщения, коэрцитивных свойств и точки Кюри от состава гемоильменитов.
- 19. Ряд ферромагнитных минералов магнетит маггемит.
- 20. Пирротин: состав, структура и магнитные свойства

Контрольная работа №2

- 1. Индуктивный способ измерения магнитной восприимчивости образцов горных пород.
- 2. Способы измерения остаточной намагниченности образцов горных пород.
- 3. Измерение коэрцитивных свойств остаточной и индуктивной намагниченностей образцов горных пород.
- 4. Измерение температурной зависимости индуктивной намагниченности образцов горных пород.
- 5. Измерение температурной зависимости остаточной намагниченности образцов горных пород.
- 6. Принципы диагностики ферромагнитных минералов в образцах горных пород.
- 7. Диагностика доменного состояния ферромагнитных зерен образцов горных пород.
- 8. Определение состава ферромагнитной фракции образцов горных пород.
- 9. Различие диагностических признаков (по магнитным свойствам) магнетита и гематита.

Контрольная работа №3

- 1. Диагностика типа естественной остаточной намагниченности горных пород (термоостаточная, химическая и ориентационная). Фактор Кенисбергера.
- 2. Сравнительный анализ стабильности различных типов естественной остаточной намагниченности.
- 3. Основные ферримагнитные минералы осадочных пород.
- 4. Диаграммы Гаррелса, использование диаграмм Гаррелса для оценки условий образования ферримагнитных минералов осадочных пород.
- 5. Основные ферримагнитные минералы изверженных пород.
- 6. Сравнительный анализ магнитных свойств горных пород содержащих одно- и многодоменных зерен магнетита.
- 7. Геобаротермометр Бадингтона-Линдсли, оценка условий образования изверженных пород.
- 8. Компоненты естественной остаточной намагниченности.
- 9. Исследования стабильности составляющих естественной остаточной намагниченности.
- 10. Физические основы временной чистки палеомагнитных образцов.
- 11. Физические основы термочистки палеомагнитных образцов.
- 12. Физические основы чистки убывающим переменным магнитным полем палеомагнитных образцов.
- 13. Нулевое и абсолютно-нулевое магнитное состояние ферримагнитной фракции горных пород.

14. Метод складок и метод галек, применение этих методов.

Контрольная работа №4

- 1. Основные гипотезы генерации геомагнитного поля.
- 2. Гипотеза геодинамо.
- 3. Тонкая структура геомагнитного поля
- 4. Основы построения палеомагнитной шкалы и ее применение при стратиграфическом расчленении разреза
- 5. Инверсии геомагнитного поля, доказательства существования инверсий геомагнитного поля.
- 6. Использование палеомагнитных данных в глобальной тектонике (траектория движения плит).
- 7. Методика петромагнитных исследований.
- 8. Расчленение разреза трапповых образований по петромагнитным данным.

Вопросы к зачету

- 1. Диамагнетизм, магнитные свойства диамагнетиков.
- 2. Парамагнетики, уравнение Ланжевена, магнитные свойства парамагнетиков.
- 3. Ферро- и ферримагнетики, молекулярная теория Вейсса, зависимость спонтанной намагниченности от температуры для ферримагнетитков.
- 4. Виды энергий в ферримагнетиках (кристаллографическая, магнитостатическая, магнитная и др.).
- 5. Доменная структура ферримагнетиков, одно-, псевдоодно- и многодоменное состояния. Критический размер однодоменности.
- 6. Критерии определения доменного состояния ферримагнетиков.
- 7. Релаксационные процессы: время релаксации, факторы определяющие время релаксации однодоменной частицы.
- 8. Коэрцитивный спектр однодоменной частицы, ее коэрцитивная сила.
- 9. Термомагнитные зависимости намагниченности насыщения и остаточной намагниченности насыщения магнетита.
- 10. Термонамагниченость, химическая и ориентационная намагниченности.
- 11. Магнетит, его свойства и диагностические признаки.
- 12. Гематит, его свойства и диагностические признаки.
- 13. Титаномагнетиты, их свойства.
- 14. Гемоильмениты, их свойства.
- 15. Основные ферримагнитные минералы осадочных пород.
- 16. Основные ферримагнитные минералы изверженных пород.
- 17. Принципы построения аппаратуры для магнитно-минералогических исследований.
- 18. Термо-рок-генератор.
- 19. Аппаратура для измерения магнитной восприимчивости горных пород.
- 20. Аппаратура для измерения коэрцитивных свойств образца.
- 21. Корреляция терригенных отложений по магнитной восприимчивости пород.
- 22. Изучение процессов изменения горных пород по магнитным характеристикам состава ферримагнитных минералов.
- 23. Оценка температуры кристаллизации ферримагнитных минералов пород.
- 24. Основные гипотезы генерации магнитного поля Земли.
- 25. Понятие о вековых вариациях геомагнитного поля.
- 26. Естественная остаточная намагниченность (ЕОН) горных пород.

- 27. Компоненты ЕОН (древняя, метахронная, вязкая и т.п.).
- 28. Выделение компонент ЕОН, различные виды магнитных чисток.
- 29. Методика отбора образцов для палеомагнитного анализа.
- 30. Аппаратура для проведения палеомагнитного анализа.
- 31. Использование методов палеомагнетизма для решения стратиграфических задач. Использование методов палеомагнетизма для решения тектонических задач.

Критерии оценки

Зачтено: освоен превосходный, продвинутый или пороговый уровень всех составляющих компетенций, если аспирант демонстрирует хорошие знания в ходе занятий, проявляет активность на семинарских занятиях, посещены все лекционные занятия, аспирант проявляет активность и инициативность в изучении материала. Аспирант владеет навыками готовности применять на практике базовые общепрофессиональные знания при решении производственных задач в соответствии с профилем программы аспирантуры

Не зачтено: не освоен пороговый уровень всех составляющих компетенций, если аспирант не демонстрирует средние знания в ходе занятий, не проявляет активности на семинарских занятиях, есть пропуски лекционных занятий. Оценка « не зачтено» отмечает такие недостатки в подготовке аспиранта (соискателя), которые являются серьезным препятствием к успешной профессиональной и научной деятельности.