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Аннотация

В работе приводятся результаты исследования математической модели, описываю-
щей регуляторный контур генной сети Escherichia coli, состоящей из трех белков Rob,
MarR и MarA. Выбор контура связан с анализом механизмов прямой и обратной связей с
учетом запаздывающего аргумента (время задержки на регуляцию). Результаты расчета
модели демонстрируют, что система может иметь стационарное решение и незатухающие
автоколебания. Оба режима являются устойчивыми в отношении внутреннего шума и
периодического внешнего воздействия. Численный анализ модели показывает, что период
предельного цикла связан с запаздывающим аргументом линейно, а амплитуда – нелиней-
но. Выявлено также, что дупликация marR гена приводит к решениям сложной природы.
На данном этапе разработаны две версии модели: детерминистская и стохастическая. При
расчетах были использованы параллельные вычисления, позволившие уменьшить время
расчета модели без запаздывания в 12 раз и модели с запаздыванием в 640 раз.
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Введение

Одной из актуальных задач системной биологии является исследование ди-
намических свойств генных сетей в зависимости от структурно-функциональной
организации с использованием математического моделирования и высоко воспро-
изводительных вычислений [1, 2]. Концепция исследования генной сети E. coli
состоит в разработке математических моделей отдельных регуляторных конту-
ров, их анализа и последующего объединения подмоделей. К настоящему мо-
менту разработан ряд математических моделей, описывающих генетическую ре-
гуляцию некоторых процессов E. coli [3–11]. Структура моделей учитывает меха-
низмы генетической регуляции репарационного процесса [7], экспрессии основ-
ных компонентов генной сети, контролирующих дыхание в клетке E. coli [5, 9],
метаболизма нуклеотидов [6, 11], триптофанового и лактозного оперонов [3, 4].
Приведенные примеры – это лишь небольшая часть существующих генетических
процессов, однако перечисленные механизмы являются фундаментальными.

Выбор генной сети E. coli связан с тем, что элементы сети и процессы наи-
более хорошо исследованы и представлены как в научной литературе, так и в
базах данных, таких как RegulonDB и EcoCyc. Особенностью E. coli является
способность адаптироваться к быстро меняющимся условиям окружающей среды
посредством переключения метаболизма на новый режим функционирования.
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Данное переключение осуществляется за счет работы регуляторных белков,
элементов генной сети, которые либо непосредственно реагируют на внешний
сигнал, либо участвуют в системе распространения сигнала внутри клетки. Пе-
редача сигнала обеспечивается за счет положительных и отрицательных связей
между регуляторными белками. Ранее в работе [11] была представлена генная
сеть1 E. coli. Основываясь на данной сети, нами рассмотрена взаимная регуля-
ция трех регуляторных белков – Rob, MarR и MarA.

Rob является мономером, относится к AraC/XylS белковому семейству, ко-
торые регулируют гены, вовлеченные в ответ на действия антибиотиков, орга-
нических солей и тяжелых металлов [12, 13]. В частности, к таким генам отно-
сятся гены белков MarR и MarA, входящие в состав оперона marRAB (рис. 1,
а). Белок Rob положительно влияет на регуляцию оперона marRAB и повышает
экспрессию в 1.5-2 раза [14]. В свою очередь, регуляция экспрессии гена белка
Rob находится под негативным контролем со стороны мономерного белка
MarA и собственного белка Rob [13, 15]. Сайты связывания MarA и Rob пере-
крываются с сайтом посадки РНК полимеразы (рис. 1, б) и между собой, в ре-
зультате чего экспрессия оперона rob снижается в 2–4 раза благодаря MarA и
в 3 раза при действии Rob. [15]. Регуляторный белок MarA повышает экспрессию
оперона marRAB в 1.5-3 раза [14, 16]. Белок MarR является гомодимером [17] и
связывается с двумя сайтами связывания в регуляторной области оперона
marRAB, один из которых перекрывается c сайтом посадки РНК полимеразы
(рис. 1, а), что приводит к снижению экспрессии в 19 раз [18]. Помимо Rob,
MarR и MarA в регуляции оперона marRAB задействованы регуляторные белки –
SoxS, Fis, Crp и Cra [14, 19, 20], также SoxS негативно регулирует оперон rob [15].

Сложность взаимной регуляции между генами и их продуктами является
основной особенностью природных генных сетей, которая помогает клетке
выживать в самых разнообразных условиях. Представленные белки Rob, MarR
и MarA взаимно регулируются пятью регуляторными связями (см. рис. 1, в).
Таким образом, на основе имеющихся данных целью настоящей работы было
продемонстрировать динамические свойства данного контура с помощью ма-
тематического моделирования и проанализировать механизмы прямой и обрат-
ной связей. Поскольку большинство динамических процессов со сложной ре-
гуляцией демонстрирует стохастическое поведение и процессы запаздывания в
регуляции, в настоящей статье сначала рассматриваются детерминистическая и
стохастическая модели без учета запаздывающего аргумента, а затем в обе мо-
дели вводится запаздывающий аргумент. Важно отметить, что ранее данный
контур не моделировался и не представлен в научной литературе.

1. Материалы и методы

Математическая модель (M) строилась как система обыкновенных диффе-
ренциальных уравнений, описывающая глобальные скорости изменения кон-
центраций белков. Глобальные скорости вычислялись на основании закона сум-
мирования локальных скоростей, описывающих процесс синтеза  или  деградации

                                                     
1 Генная сеть – ориентированный граф, вершины которого являются регуляторными белками, а связи –

тип регуляции.
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Рис. 1. (а) Регуляторная область оперона marRAB. (б) Регуляторная область оперона rob.
(в) Общая схема регуляторного контура, состоящего из трех белков. Обозначения для (а)
и (б): прямоугольником черного цвета обозначены регуляторные белки, выступающие
в роли ингибиторов, серого цвета – активаторы. marRp и robp – название промоторов
оперона marRAB и rob соответственно. Sigma 70 – сигма-фактор в составе РНК поли-
меразы. Обозначения для (в): овалами белого цвета обозначены белки. Черные стрелки –
ингибирование экспрессии гена соответствующего белка, Серые – активация. x1, x2 и x3 –
переменные математической модели (М). L1, L2, L3, L4, L5 – обозначения регуляторных
контуров. Поскольку гены белков MarR и MarA входят в состав одного оперона marRAB,
L2, L3 и L4 повторяются дважды

белка. Верификация модели (M) осуществлялась на основании работ [14–19,
21–26]. Численные расчеты и анализ модели (M) проводились средствами про-
граммы Mathematica 7.0. При разработке стохастической модели без запазды-
вания использовался алгоритм Гиллеспи [27], а стохастическая модель с запаз-
дыванием основана на обобщенном алгоритме Гиллеспи, для случая немарков-
ских систем [28]. Для реализации распараллеленного алгоритма была выбрана
платформа OpenCL. Алгоритм был реализован на языках Phython и OpenCL C,
и протестирован на процессоре Intel i7 (4 ядра, 8 потоков) и GPU Tesla C1060
(240 ядер, 30 процессоров). Математическая модель, код программы и резуль-
таты анализа данных доступны по адресу http://dl.dropbox.com/u/52461630/
programs_model.zip.

2. Результаты исследования

2.1. Детерминистическая модель.
2.1.1. Математическая модель регуляторного контура Rob, MarA и MarR.

Переменные математической модели (М) – Rob (x1), MarA (x2), MarR (x3). f1 и f2 –
функции, описывающие регуляцию экспрессии оперонов rob и marRAB, соот-
ветственно. Структура функций f1 и f2 записана с учетом структурно-функцио-

а)

б) в)
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нальной организации регуляторной области оперонов (рис. 1, а, б). Параметры
модели представлены в табл. 1.
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2.1.2. Верификация параметров математической модели (М). Подбор
параметров осуществлялся следующим образом.

1. Константа ингибирования (k0) экспрессии оперона rob белком Rob (x1)
вычисляется на основании функции f1, а также информации о том, что количе-
ство белка Rob приблизительно равно 7000 молекул/клетку [21, 23, 24] и
MarR = 0. Поскольку Rob снижает уровень экспрессии в 3 раза [15], то f1 = 0.33.
Константа ингибирования (k1) экспрессии оперона rob белком MarA (x2) вычис-
ляется на основании функции f1, а также информации о том, что количество
белка MarA ≈ 20000 молекул/клетку [19] и Rob = 0. Поскольку MarA снижает
уровень экспрессии в 2–4 раза [15], то f1 � [0.25, 0.5] при условии, что f1 = 1 при
MarA = 0. В модели (M) f1 = 0.25.

2. Используя функцию f2, мы оцениваем константы k2 и k3, характеризую-
щие активацию экспрессии оперонов marRAB белком Rob (x1) при f2 = 2 [14],
количество белка Rob ≈ 7000 молекул/клетку [21, 23, 24] и MarR = MarA = 0.

Аналогично вычисляются константы k4 и k5 при условии, что f2 = 3 [16], ко-
личество белка MarA ≈ 20000 молекул/клетку [19] и MarR = Rob = 0.

3. Константа ингибирования (k6) экспрессии оперона marRAB белком MarR
вычисляется на основании функции f2 = 1/19 и MarA = Rob = 0 при двух пред-
положениях. Во-первых, константа k7, характеризующая степень нелинейности
влияния MarR на регуляцию экспрессии оперона marRAB, равна 4, поскольку
MarR является гомодимером [17] и взаимодействует с двумя неперекрываю-
щимися сайтами связывания [18]. Во-вторых, количество белка MarR ≈ 6000
молекул/клетку, что соответствует теоретической оценке на основании количе-
ственных данных по мРНК marR [25].

4. Время полужизни белка лежит в интервале от десятков секунд до десят-
ков минут [22, 26]. Предполагая, что время полураспада белка равно 5 мин, вы-
числяем константы деградации для белов Rob (k8) и MarR (k9) из формулы

0( ) ktX t X e−= , где X – концентрация белка, k – константа деградации белка, t –
время полураспада белка при 0( ) 0.5 .X t X=  Следовательно, 8 9 (ln 2) / .k k t= =
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Табл. 1
Параметры математической модели (M)

Параметр Описание
k0 = 3448 [молекул] Константа ингибирования экспрессии оперона rob белком Rob
k1 = 6667 [молекул] Константа ингибирования экспрессии оперона rob белком MarA
k1 = 1000 [молекул]
k3 = 2333 [молекул]

Константы, характеризующие активацию экспрессии оперона
marRAB белком Rob

k4 = 1000 [молекул]
k5 = 3333 [молекул]

Константы, характеризующие активацию экспрессии оперона
marRAB белком MarA

k6 = 2913 [молекул] Константа ингибирования экспрессии оперона marRAB белком
MarR

k7 = 4 Константа, характеризующая степень нелинейности влияния
MarR на регуляцию экспрессии оперона marRAB

k8 = 0.0023 [с–1] Константа деградации белка Rob
k9 = 0.0023 [с–1] Константа деградации белка MarA
k10 = 97 [молекул/с] Обобщенная константа синтеза белка Rob
k11 = 312 [молекул/с] Обобщенная константа синтеза белка MarA
k12 = 312 [молекул/с] Обобщенная константа синтеза белка MarR
k13 = 0.0077 [с–1] Константа деградации белка MarR

5. Исходя из предположения, что система находится в квазиравновесном
состоянии, вычисляем обобщенные константы синтеза для белков Rob (k10) и
MarR (k11) из уравнения 1 2 0dx dt dx dt= = . Поскольку гены белков MarR и
MarA входят в состав одного оперона, то предполагаем, что k11 = k12. На осно-
вании этого равенства и уравнения 3 0dx dt =  вычисляем константу деградации
белка MarA (k13).

2.1.3. Результаты численного расчета математической модели (М). Ре-
зультаты модели (М) демонстрируют, что система имеет стационарное реше-
ние. Полученные стационарные значения концентраций регуляторных белков
соответствуют литературным данным для Rob [21, 23, 24] и MarA [19, 29]. Зна-
чение концентрации MarR соответствует теоретической оценке на основании
количественных данных по мРНК marR [25]. Решение является асимптотически
устойчивым, поскольку собственные числа матрицы Якоби являются отрица-
тельными при начальных данных трех переменных Rob (x1), MarA (x2), MarR
(x3), соответствующих значениям из литературы.

2.1.4. Параметрический анализ модели (М). На первом этапе проведен
параметрический анализ поведения модели (М). Численный анализ показал,
что варьирование по отдельности каждого параметра k0, k1, …, k13 обеспечивает
наличие разных наборов устойчивых стационарных значений трех переменных
Rob (x1), MarA (x2), MarR (x3). На рис. 2 представлен пример изменения значения
MarR (x3) в зависимости от варьирования каждого параметра на один порядок
в сторону как уменьшения, так и увеличения. Для данного интервала параметры
k0 – k5 и k8 – k11 изменяют стационарное значение MarR (x3) не более чем на 56%.
Оставшиеся два параметра k6 и k7 являются более чувствительными. Стоит от-
метить, что параметры k2 – k5, характеризующие активацию экспрессии  перона
marRAB белком Rob и белком  MarA,  представляют  наибольший  интерес  для
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Рис. 2. Изменение стационарного значения MarR в зависимости от изменения парамет-
ров k0 – k13. По оси абсцисс отложен логарифм отношения измененного параметра (обо-
значено изм.) к неизмененному параметру (обозначено норм.). По оси ординат отноше-
ние измененного значения MarR к неизмененному значению

Рис. 3. Изменение стационарного значения Rob (штриховая линия) и MarR (сплошная
линия) в зависимости от изменения параметра k7. По оси абсцисс отложен логарифм
отношения измененного параметра (обозначено изм.) к неизмененному параметру
(обозначено норм., k7 норм = 4). По оси ординат отношение измененного значения к не-
измененному значению. Кривая по MarA совпадает с кривой MarR

изучения, поскольку входят в функцию f2, как и параметры k6 и k7. Результаты
расчета для переменных Rob (x1) и MarA (x2) доступны по адресу http://
dl.dropbox.com/u/52461630/programs_model.zip. Более детально рассмотрим влия-
ние варьирования параметра k7 на динамику изменения стационарных значений
трех переменных. Напомним, параметр k7 характеризует степень нелинейности
влияния MarR на регуляцию экспрессии оперона marRAВ. Значение параметра
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равно 4, поскольку MarR является гомодимером [17] и взаимодействует с двумя
неперекрывающимися сайтами связывания [18]. При увеличении параметра k7

на два порядка значения трех переменных изменяются не более чем в 2 раза,
а при уменьшении до 1 количество Rob снижается в 1.8 раза, а MarA и MarR
увеличивается в 3 раза (рис. 3). Соответствующие расчеты показывают, что
параметр k7 является чувствительным для всех трех переменных и может быть
выбран в качестве дальнейшего изучения в экспериментах in silico.

2.1.5. Запаздывающий аргумент. На следующем этапе модель (M) рас-
сматривается с учетом запаздывающего аргумента T. В результате мы перепи-
шем функции f1 и f2 следующим образом:
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Система дифференциальных уравнений остается той же самой. Стоит отметить,
что для генетических процессов в клетки E. coli время задержки лежит в интер-
вале от десятков секунд до нескольких минут [30–33]. Численные расчеты де-
монстрируют, что в зависимости от численного значения запаздывающего аргу-
мента возможны два предельных случая поведения системы: стационарное ре-
шение (СР) и периодические автоколебания (ПА). На рис. 4 продемонстриро-
ваны примеры ПА. Интересно, что режим функционирования ПА реализуется
при значениях запаздывающего аргумента 67 с и более. Возможность сущест-
вования предельного цикла в виде незатухающих автоколебаний порождает
ряд интересных вопросов. Во-первых, какие регуляторные петли генерируют
автоколебания? Во-вторых, как варьирование величины параметра k7, характе-
ризующего степень нелинейности влияния MarR на регуляцию экспрессии
оперона marRAB, меняет динамику системы? И, в-третьих, являются ли коле-
бания внутренним шумом в зависимости от величины периода и амплитуды?

2.1.6. Влияние регуляторных петель на динамику модели (M1). На рис. 1
представлены пять регуляторных связей, которые обозначены через L1 – L5. Две
регуляторных петли L1 и L2 регулируют по механизму прямой связи. Остальные
три L3, L4 и L5 контролируют по механизму обратной связи. L1, L4 и L5 – отрица-
тельные связи, а L2 и L3 – положительные связи. Введем данные обозначения
в функции f1 и f2 модели (M1):
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Положим, что при Li = 1, i = 1, 2, 3, 4, 5, регуляторная связь отсутствует, а если
Li = 0, то петля присутствует. Таким образом, численный анализ 32 версий (32 –
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Рис. 4. Фазовый портрет двух переменных MarA (x2) и MarR (x3). Предельные циклы в виде
незатухающих автоколебаний представлены при разных значениях времени запаздывания

комбинаторика пяти связей) модели (M2) показал, что автоколебания возникают
в 16 версиях модели (M2), в которых учитывается влияние регуляторной петли
L1 и L4 (рис. 1). Если убрать из рассмотрения контур L1, то только белки MarR и
MarA изменяются периодически. Таким образом, можно заключить, что регу-
ляторная петля L4 по механизму обратной отрицательной связи генерирует ав-
токолебания, а через механизмы прямой отрицательной связи запускает авто-
колебания белка Rob. При этом регуляторная петля L5 по механизму обратной
отрицательной связи не генерирует автоколебания.

2.1.7. Влияние параметра k7 на динамику системы. Для любого T ≥ 67
уменьшение k7 приводит к стационарному решению, а увеличение – к предель-
ному циклу. Важно отметить, что параметр k7 характеризует нелинейный про-
цесс, осуществляемый через регуляторную петлю L4 по механизму обратной
отрицательной связи, наличие которой обеспечивает колебания в системе.

2.1.8. Взаимосвязь периода и амплитуды с запаздывающим аргументом.
Исходя из того, что для генетических процессов в клетки E. coli время задержки
лежит в интервале от десятков секунд до нескольких минут [30–33] нами выбран
интервал запаздывающего аргумента от 67 с – величина, с которой реализуются
колебания до 5 мин. Численные расчеты модели (M1) продемонстрировали, что
для данного интервала значение периода колебаний концентраций белков Rob,
MarA и MarR растет линейно в интервале от 229 с (≈ 4 мин) до 985 с (≈ 16 мин)
(рис. 5, а). При этом амплитуда изменяется нелинейно (рис. 5, б). Численные
значения амплитуды для переменной Rob составляют несколько десятков моле-
кул, а для MarA и MarR – тысячи молекул. Таким образом, колебания, как внут-
реннее свойство системы, не является внутренним шумом.

2.2. Стохастическая модель. Стохастические процессы в экспрессии ге-
нов играют важную роль в жизнедеятельности клетки, поскольку позволяют ей
справиться с изменениями в окружающей среде через фенотипическое разно-
образие в популяции [34, 35]. Ранее в нескольких работах экспериментально
продемонстрирована стохастичность транскрипции и трансляции на индивиду-
альных про- и эукариотических клетках [36, 40].
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Рис. 5. Зависимость периода (а) и амплитуды (б) от запаздывающего аргумента для трех
переменных Rob, MarA и MarR. Для (б) величина оси ординат вычисляется как значение
амплитуды в каждой точке, поделенное на значение амплитуды при запаздывающем
аргументе 300 с

2.2.1. Стохастическая модель без запаздывания. Нами разработана сто-
хастическая модель, основанная на алгоритме Гиллеспи [27], для того чтобы ис-
следовать роль флуктуаций в генетически измененной системе, где количество
белков невелико. Например, изменим величину константы деградации (k8) белка
Rob с 0.0023 [с–1] на 0.69 [с–1]. В этом случае соответствующая система монотон-
ным образом перейдет на новый стационарный уровень белка Rob (рис. 6, а).

2.2.2. Стохастическая модель с запаздыванием. Впервые в работе Д.А. Бра-
цуна [28] для генетических процессов транскрипции/трансляции генов были
рассмотрены вопросы взаимодействия запаздывания и стохастических флук-
туаций. В частности, был предложен обобщенный алгоритм Гиллеспи на случай
немарковских систем. Полное описание идеи и численных расчетов модифика-
ции алгоритма представлено в работе [41]. Используя данный алгоритм, нами
разработана стохастическая версия модели (M1) с запаздывающим аргументом
для генетически измененной системы (k6 = 29.13 [молекул], k8 = k9 = k13 = 0.23 [с–1],
k10 = k11 = k12 = 17 [молекул/с]; остальные параметры в табл. 1). На рис. 6, б приве-
дены результаты расчета. Хорошо видно, что стохастическая модель качест-
венно описывает результаты детерминистической модели, а именно присутст-
вуют флуктуации и колебания. Для увеличения  производительности  программы

а)

б)
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а)          б)

Рис. 6. Временная эволюция количества белка Rob (x1) при внезапном увеличении де-
градации белка Rob, полученная при численном расчете стохастической модели без
запаздывания, (а) и белка MarA (x2), полученная при численном расчете стохастиче-
ской модели с запаздыванием, T = 70 с (б). Численные расчеты стохастической модели
получены для одной клетки. Сплошной линией показано численное решение детерми-
нистической модели

Табл. 2
Время расчета стохастической модели на процессорах Intel i7 core 8 и Tesla С1060 core 30
(приведено в секундах)

Intel i7 core 8 Tesla С1060 core 30Количество
клеток С1 С2 С3 С4 С3 С4

100 88 9037.36 9.94 14.05 7.01 242.11
300* – – 10.89 26.71 7.84 296.43
600** – – 11.28 49.88 8.33 312.92

Расчет осуществлен без учета вывода в файл. Тесты проводились на операционной системе Ubuntu
12.04 x64. Обозначения: стохастическая модель без запаздывания (С1) и с запаздыванием (С2), однопоточная
реализация; стохастическая модель без запаздывания (C3) и с запаздыванием (С4), многопоточная реализа-
ция. Для всех версий модели было положено 105 итераций. Для С1 и С3 параметры представлены в табл. 1,
а для С2 и С4 – в разд. 2.2.2.

* Количество клеток в экспоненциальную фазу роста.
** Количество клеток в стационарную фазу роста. Количество клеток рассчитано на × 10–10 л мини-

мальной среды.
Оценка для * и ** приведена в http://dl.dropbox.com/u/52461630/programs_model.zip. Для «–» расчеты

не проводились.

мы распараллелили существующие алгоритмы для однопоточной реализации,
что привело к уменьшению времени расчета более чем в 12 раз (табл. 2).

2.3. In silico эксперимент.
2.3.1. Влияние внешнего шума. Под внешним воздействием будем счи-

тать влияние регуляторных белков на экспрессию генов белка Rob, MarA и
MarR. На наш взгляд, одним из интересных кандидатов выступает мульти-
функциональный фактор DnaA. Он задействован в процессе инициации репли-
кации ДНК [42], и его количество циклически изменяется. Экспериментально
показано, что минимум приходится на момент клеточного деления [42]. Однако
в литературе не представлены сайты связывания белка DnaA в регуляторной
области оперона rob и marRAB. Для выяснения этого вопроса мы использовали
12 известных сайтов связывания для белка DnaA из базы данных RegulonDB
(см. в http://dl.dropbox.com/u/52461630/programs_model.zip), которые выровняли
с регуляторной областью оперона rob и marRAB с шагом в один нуклеотид,
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начиная с –100-позиции по +38-позицию с учетом одноименных цепей. Резуль-
таты представлены на рис. 7. Найдены сайты связывания, совпадающие на
77.8% и 88.9% с известными сайтами (7 и 8 из 9 нуклеотидов совпали). Часть
сайтов перекрывается с уже известными сайтами (рис. 1, а, б) и сайтом посадки
РНК полимеразы. На основании этого можно предположить, что DnaA высту-
пает в роли ингибитора. Однако для того чтобы выяснить, действительно ли
существует связывание и ингибирующий эффект, необходимо проводить экс-
перименты, и это является отдельной задачей. На данном этапе полученную
информацию мы использовали для расширения модели (M1). Важно отметить,
что активная форма фактора DnaA связана с ATP, при этом DnaA также спо-
собна связываться с молекулой ADP. Поскольку значения констант диссоциа-
ции равны 0.03 и 0.1 мкМ соответственно и константы значительно ниже внут-
риклеточной концентрации 3 мM ATP и 0.25 мM ADP [43], то все образовав-
шиеся молекулы DnaA свяжутся с ATP и ADP, при этом равновесная концен-
трация DnaA равна 0.0017 мM [23]. Запишем формулу активной формы белка
следующим образом:

DnaA (DnaA, ATP, ADP), где 0.56 0.44Cos .
390а

tf g f π⎛ ⎞= ⋅ = + +⎜ ⎟
⎝ ⎠

При этом величина функции g численно равна концентрации DnaA. Отметим,
что при fmin = 0.12 концентрация активных форм белка будет составлять ~10%
от общего количества, а при fmiax = 1 концентрация активных форм равна ~100%.
80% достаточно, чтобы активировать инициацию репликации.

Обновим функцию f1 и f2 в модели (М1):

7

1
1 2

0 1 DnaA

1 2

2 4
2

1 2
3

3 5 DnaA
6

1 ,DnaA[ ] [ ]1

[ ] [ ]1
1 .DnaA[ ] [ ] [ ]1 1

a

a

a

k
a

f
x t T x t T

k k k

x t T x t T
k kf

x t T x t T x t T
k k k k

=
− −+ + +

− −+ +
=

− − ⎛ ⎞−+ + + + ⎜ ⎟
⎝ ⎠

(M3)

Здесь DnaAa
k – константа ингибирования экспрессии оперонов rob и marRAB ак-

тивной формой DnaA. Для простоты положим DnaAa
k  одинаковой для сайта свя-

зывания в регуляторной области оперона rob и marRAB. Пренебрегая нелиней-
ными эффектами, примем коэффициент Хилла равным единице. Исследуем,
как будет меняться динамика при значениях параметра DnaA 20

a
k =  нM и 2 мкМ.

На рис. 8 представлены результаты численного расчета модели (M3) для де-
терминистической и стохастической версий. Если запаздывание отсутствует и

DnaA 20
a

k =  нM, то возникают автоколебания, которые не являются внутренним
свойством системы, а генерируются за счет периодического внешнего шума
(рис. 8, а). При DnaA 2

a
k =  мкМ также возникают автоколебания, однако ампли-

туда составляет менее 3% от стационарного значения. Данные колебания  можно
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Рис. 7. Диаграмма, показывающая количество совпавших нуклеотидов известного сайта
связывания (на других регуляторных областях) белка DnaA с регуляторной областью
оперона rob (а) и marRAB (б). Каждый цвет показывает один из 12 известных сайтов
(диаграмма построена с учетом перекрытия). Длина известных сайтов – 9 нуклеотидов.
Выравнивание каждого сайта проводилось для одноименных цепей, начиная с –100-пози-
ции от старта транскрипции с шагом в один нуклеотид и заканчивая +38-позицей. Каждый
столбик показывает правую границу 9-нуклеотидного сайта и количество совпавших
нуклеотидов

рассматривать как шум, что позволяет утверждать, что система устойчива к
внешнему периодическому шуму. Введение запаздывающего аргумента приво-
дит к периодическим режимам функционирования системы. При определенном
наборе параметров можно получить периодическое решение сложной природы,
например с параметрами DnaA 20

a
k =  нM (рис. 8, б) и 2 мкМ (рис. 8, в).

а)

б)
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Рис. 8. Фазовый портрет двух переменных MarA (x2) и MarR (x3). (а) Эволюция фазовой
траектории при расчетах стохастической модели. Численные расчеты стохастической
модели получены для одной клетки. Сплошная линия показывает численное решение
задачи Коши для модели (М4). Время запаздывания T = 0 с; константа DnaA 20

a
k =  нM.

(б) Время запаздывания T = 200 с; константа DnaA 20
a

k =  нM. (в) Фрагмент аттрактора.

Время запаздывания T = 68 с; константа DnaA 2
a

k =  мкМ. Отметим, что для (а) и (б) это
не эволюция выхода на предельный цикл

а)

б)

в)
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2.3.2. Дупликация гена marR. Как было показано выше, регуляторная
петля L4 по механизму обратной отрицательной связи генерирует автоколеба-
ния. Напомним, что под этим подразумевается ингибирование экспрессии опе-
рона marRAB белком MarR. Проведем in silico эксперимент, а именно учтем в
нашей модели наличие плазмидной конструкции, состоящей из гена marR и
регуляторной области, включающей в себя только сайты посадки белка MarR
(рис. 1, а). Предположим, что скорость синтеза белка MarR и эффективность
ингибирования в конструкции и в геноме одинаковы. При этом времена запазды-
вания будем считать различными. Запишем формально данные дополнения в M1:

3
12 2 14 3 13 3[ ],dx k f k f k x t

dt
= + − (M4)
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Правые части переменных x1 и x2, а также функция f1 останутся без изменения.
Как и в разд. 3.1, исследуем динамические свойства системы.

Численный анализ модели M4 показал, что существуют три режима функ-
ционирования системы при варьировании запаздывающего аргумента T1– ста-
ционарное решение, периодическое решение и решение сложной природы.
Важно отметить, что время запаздывания лежит как в секундном, так и минут-
ном диапазоне для первых двух режимов, что хорошо согласуется с экспери-
ментальными данными. Для решений со сложным динамическим поведением
время запаздывания может составлять несколько десятков минут.

3. Обсуждение результатов

Используя ранее опубликованную генную сеть, мы выделили небольшую
подсеть из трех белков Rob, MarA и MarR, которые составляют ~1.5% от общего
количества регуляторных белков, и разработали математическую модель. На ос-
нове экспериментальных данных модель демонстрирует, что система может
иметь два режима функционирования: стационарное решение и незатухающие
периодические автоколебания.

Существует ли автоколебания для данного контура in vivo? Вопрос, на кото-
рый можно ответить, только поставив эксперимент. Численные же расчеты ма-
тематической модели регуляторного контура генной сети E. coli демонстрируют,
что возможно существование двух режимов функционирования, которое обеспе-
чивается наличием отрицательных связей, нелинейными эффектами, запаздыва-
нием и определенным набором параметров. Важно, что данные автоколебания
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являются внутренним свойством системы. Теоретический анализ ранее опуб-
ликованных моделей, которые учитывают негативные обратные связи, демон-
стрируют осциллирующие режимы функционирования [44–46]. Динамические
характеристики режима зависят от разного набора параметров, в том числе от
количества негативных петель [47].

Нелинейность является необходимым, но недостаточным условием форми-
рования колебаний в рассматриваемой системе. Достаточность определяется
количеством субъединиц белка MarR и сайтов связывания, с которыми взаимо-
действует MarR, поскольку MarR ингибирует экспрессию собственного гена.

Запаздывание в несколько минут является неотъемлемой частью генетиче-
ских процессов и формируется от начала инициации транскрипции до поиска
сайта связывания активной формой регуляторного белка. Таким образом, ис-
пользуя запаздывающий аргумент в математической модели, мы отказываемся
от детального описания процессов синтеза мРНК, диффузии и других процес-
сов. Возникает вопрос, а правомерно ли использовать запаздывающий аргу-
мент наравне с детальным описанием генетических процессов. Ответ является
утвердительным, поскольку ранее в работах [48–50] были доказаны теоремы и
проведены численные расчеты, показывающие, что возможен переход от сис-
тем большой размерности к системам более низких размерностей, используя
уравнения с запаздывающим аргументом. При этом изменение величины за-
паздывающего аргумента приводит к изменению поведения динамики системы.
Переключение происходит при T ≥ 67 с. Интересно отметить, что взаимосвязь
между периодом и временем задержки является линейной, а между запаздываю-
щим аргументом и амплитудой – нелинейной в интервале от 67 с до 5 мин. Воз-
можно, это свидетельствует в пользу того, что нелинейные эффекты отдельных
процессов не проявляются на уровне регуляции всего метаболизма клетки.

Важной особенностью биологических систем является способность приоб-
ретать мутации. Анализ мутаций в математических моделях осуществляется
через варьирование параметров, которые характеризуют те или иные свойства
регуляторных белков – деградацию, ассоциацию с сайтом связывания, прояв-
ление нелинейных эффектов и др. Таким образом, параметрический анализ мо-
дели (М) показал возможность предсказывать последствия мутаций через из-
менения значения параметров и подбирать оптимальные параметры. Данный
анализ является важным с практической точки зрения, поскольку выявление
ключевых параметров модели, при которых концентрация всех белков мини-
мальна, является состоянием клетки, когда она не устойчива к антибиотикам.
Напомним, что данные белки вовлечены в ответ на действия антибиотиков, ор-
ганических солей и тяжелых металлов [12, 13]. Отметим также, что именно
MarA и Rob являются вирулентными факторами при пиелонефрите. Делеция по
генам rob и marA способствуют уменьшению проявления пиелонефрита [51].
Для исследования генетически измененной системы, когда концентрация бел-
ков невелика, было использовано стохастическое моделирование. Результаты
продемонстрировали качественное соответствие с детерминистической моде-
лью как без запаздывания, так и с запаздыванием. Развитие моделей такого ти-
па имеют огромное значение для системной биологии, генной инженерии и ме-
дицины, так как позволяют детально изучать динамические свойства регуля-
торных контуров, конкретных генных сетей и поддерживать эксперимент.
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Численные расчеты моделей, описывающих динамические системы со
сложными регуляторными петлями, как правило, позволяют получить набор
решений, характеризующихся различными типами функционирования – ста-
ционарные решения и периодические колебания. Возможны также колебания
сложной природы, обусловленные через связь с другими регуляторными пет-
лями или запаздывающим аргументом. Возможность существования сложного
поведения теоретически была показана на генетической системе циркадных
ритмов в дрозофиле [52], на системе гемопоэза человека [53]. Теоретические
исследования хаотического поведения в генных сетях представлены в ряде ра-
бот [54, 55]. Важно отметить, что данная динамика может и не проявляться in
vivo либо быть скрыта за другими физиологическими процессами.

Кроме всего прочего, численные расчеты были сделаны с использованием
высоко воспроизводительных вычислений, что позволяет в дальнейшем делать
численные расчеты на системах большой размерности. Напомним, что концеп-
ция исследования генной сети E. coli состоит в разработке математических мо-
делей отдельных регуляторных контуров, их анализа и последующего объеди-
нения подмоделей. Поэтому в последующих работах предполагается дополне-
ние представленной модели подмоделями, описывающими транспорт и окис-
лительный стресс, а также проведение экспериментов in silico с обновленной
моделью для выяснения действия лекарственных средств на динамику системы
при лечении пиелонефрита и подагры.

Авторы выражают признательность Ри Наталье Александровне за обсуж-
дение научных результатов.
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MATHEMATICAL MODEL OF Rob, MarR, MarA
REGULATORY CIRCUIT

OF Escherichia coli GENE NETWORK

M.T. Ri, S.S. Khairulin, O.V. Saik

Abstract

This paper presents the results of the analysis of a mathematical model describing the regulatory
circuit of the Escherichia coli gene network, which consists of three proteins Rob, MarR, and MarA.
The choice of the circuit is due to the analysis of the mechanisms of forward and backward links taking
into account the delay argument (regulation delay). The results of the model calculation demonstrate
that the system may have a steady-state solution and undamped oscillations. Both modes are stable with
respect to intrinsic noise and periodic extrinsic force. The numerical analysis of the model shows that
the period of the limit cycle depends linearly on the delay argument, while the amplitude – nonlinearly.
It is also revealed that the duplication of the marR gene leads to the solutions of a complex nature.
At this stage two versions of the model are developed: deterministic and stochastic. Parallel computations
allowed a 12-fold reduction of the calculation time for the model without a delay and a 640-fold reduction
for the model with a delay.

Keywords: gene network, mathematical modeling, stochastic systems, oscillations, delay argument,
Escherichia coli, OpenCL, parallel computations.
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