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Введение 

 

В современном мире решение прoблемы oбеспечения прoчности и 

устoйчивости инженерных конструкций, применяемых вo многих областях 

производства весьма очевидна. Одной из важных проблем, является точность 

расчёта. 

В современном мире, где развитие информационных систем идёт полным 

ходом, применение вычислительных комплексов для расчётов стало нормальным 

явлением. В следствие этого возникла необходимость в оптимальных и точных 

методах решения поставленных задач. Метод конечных элементов применяемый 

для большинства расчётов в механике, является весьма точным и оптимальным 

для поставленных задач. 

Данная работа посвящена изучению и использованью метода конечных 

элементов для решения поставленной задачи. Было произведено изучение метода 

конечных элементов, выбор оптимальной сетки разбиения геометрической 

фигуры и проверка расчётов.      

Цель и актуальность работы  

В данной работе была поставленная задача, выбора оптимального разбиения 

геометрической модели сеткой, построенной при помощи метода конечных 

элементов. Данное исследование позволило произвести оптимальный расчёт на 

прочность, устойчивость и усталость упругой стойки, определить напряжения и 

деформации, при воздействии на неё внешних факторов.  

Данная упругая стойка применяется при сборке динамометрического 

стенда, с помощью которого производится замер тяги авиационных двигателей. 

Данный стенд проектируется, в конкретный момент, для испытательной 

лаборатории ООО «Казанское моторостроительное производственное 

объединение». Подобный стенд относится к высокоточному оборудованию.  

В следствие того, что рассматриваемый стенд, проектируется в настоящие 

время и планируется для испытания выпускаемых двигателей, наша работа 

является актуальной. 
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1 Предварительные сведения 

 

В данной главе мы произвели детальный разбор теоретических сведений, 

принципов и результаты, на которые мы ссылаемся при произведении расчётов.   

Метод конечных элементов – это основной метод, используемый 

инженерами, работающими в сфере строительства и механики, заложенный в 

основу большинства существующих программных комплексов, позволяющих 

выполнять расчёты конструкций на вычислительных машинах. 

 

1.1. История метода 

 

В 1920 г. благодаря усилиям Мэйни в США и Остенфельда в Нидерландах 

были сформулированы основные идеи численного исследования рамных и 

фермовых конструкций, основанного на задании перемещений в качестве 

неизвестных параметров.  Эти идеи предшествовали современным матричным 

методам исследования конструкций. До тех пор, пока в 1932 г. Харди Кросс не 

предложил метод моментных распределений, важнейшим сдерживающим 

фактором при анализе являлась размерность задач, определяемая числом 

неизвестных параметров перемещений или нагрузок. Метод моментных 

распределений позволил численно исследовать поведение конструкций в задачах, 

на порядок более сложных, чем самые трудные из задач, которые решались с 

помощью ранее существовавших методов. Этот метод стал основной численного 

исследования поведения конструкций на следующие 25 лет.  

Две заслуживающие упоминания работы выполнены Аргирисом и Келси, а 

также Тернером и др. В этих исследованиях были объединены подходы, 

используемые при расчёте фермовых конструкций, с подходами, применяемыми 

при расчёте сплошных сред; при этом была использована матричная форма 

записи. Эти работы оказали решающие влияние на развитие метода конечных 

элементов в последующие годы.    

В настоящее время программы общего назначения неплохо распространены 
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в прикладных областях. Доступность таких программ при относительно средних 

затратах в процессе их использования объясняется широкими прикладными 

возможностями метода конечных элементов. Что касается развития метода, то 

многие исследователи и в настоящее время заняты построением новых конечно-

элементных моделей и дальнейшим улучшением схем и алгоритмов для описания 

конкретных явлений, а также составлением новых программ. Наиболее 

интересными вопросами являются конечно-элементное представление и 

численный анализ физических процессов при взаимодействии конструкции с 

внешними полями. Известным примером последнего могут служить расчёт 

термоупругих конструкций, где вычисление температурных напряжений тесно 

связано с определением меняющегося распределения температур, а также анализ 

взаимодействия жидкости и упругой конструкции в задачах гидроупругости. [1] 

 

1.2. Обозначения 

 

 Рассмотрим принцип возможной работы. Возьмем к рассмотрению 

произвольное трехмерное тело (рис. 1), нагруженное поверхностными sf , 

сосредоточенными bf  и объемными iF  силами. Все силы обладают тремя 

компонентами соответствующих трем осям (см. формулу 12.1.). 
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  
 
 
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i

x
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i

z

F

F F

F

 
 

  
 
 

.   

 Перемещение тела из начального состояния обозначаем через U  (см. 

формулу 1.2.2) 

[ ]TU UVW    

  

Соответствующие U , деформации (см. формулу 1.2.3): 

 

[  ]T

xx yy zz xy yz zxE E E E       

1.2.1 

1.2.2 

1.2.3 
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Рис. 1. Трехмерное тело 

 

Напряжения, соответствующие E  (см. формулу 1.2.4): 

 

[  ]T

xx yy zz xy yz zx           

 

Принцип возможных перемещений заключается в том, что в равновесном 

состоянии при случайно малых возможных перемещениях полная возможная 

работа внутренних сил равняется полной возможной работе внешних сил (см. 

формулу 1.2.5): 

T T b ST S iT i

iV V S

E dV U f dV U f dS U F         

 

 Работа внутренних сил равна работе действительных напряжений    на 

возможных деформациях E , соответствующих возможным перемещениям (см. 

формулу 1.2.6):  

[  ]
T

xx yy zz xy yz zxE E E E       

 

Работа внешних сил правой части (5), определяется через действительные 

1.2.4 

1.2.5 

1.2.6 
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внешние воздействия на возможных перемещениях U (см. формулу 1.2.7): 

 

[ ]
T

U UVW    

 

Принцип возможных перемещений можно взять за основу метода конечных 

элементов с неизвестными смещениями. Так же для этих целей возможно 

использование метода ортогонализации ошибок, к примеру метод, Галёркина. 

При вычислении коэффициента 
22k  жесткости стержня. Действительное 

поле перемещений, спровоцированное единичным смещением узла 2, 

определяемым выражением 1.2.8: 

( )
X

U X
L

    

 

Исходя из этого, действительное напряжение выглядит следующим образом 

(см. формулу 1.2.9): 

xx

E

L
     

           

Уравнение возможной работы (5) в нашем частном случае, имеет вид 1.2.10: 

 

2

0

|

L

xx xx X LA E dX U P     

  

где 2U – вероятное смещение узла 2, xxE  – соответствующие деформации. 

Возможные перемещения нашего стержня из-за 2U  выражаются следующим 

образом (см. формулу 2.1.10): 

 

2( )
X

U X U
L

    

 

1.2.7 

1.2.8 

1.2.9 

1.2.10 

1.2.11 
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Соответствующие деформации (см. формулу 1.2.12): 

2

1
xxE U

L
     

Использовав принцип возможной работы, мы имеем (см. формулу 2.1.13): 

 

22 2

0

|

L

X L

E AE
P k A dX

L L
      

 

Подобный коэффициент жесткости мы определили ранее, из 

дифференциального уравнения. Данное равенство объяснимо тем, что во втором 

случае используется точное выражение для передвижений точек элемента. Если 

данное выражение приближенное, то коэффициенты жесткости и всё решение мы 

тоже получим приближённое. Например, необходимо составить матрицу 

жесткости стержня, у которого продольная жесткость меняется по всей длине по 

линейному закону (см. формулу 1.2.14): 

0 (1 )
X

AE AE
L

     

где L – длина стержня. Требуется найти (формула). Из решения дифура, мы 

получаем (см. формулу 1.2.15): 

0 0
22 1,44

ln 2

AE AE
k

L L
     

Иначе, для нахождения 
22k , воспользуемся принципом возможной работы. 

Задав точные значения перемещения при единичном смещении конца, выявим 

приведенные выше, точные значения жесткости. Но, с начала, найдем точное 

выражение для перемещений. Можно попытаться воспользоваться 

аппроксимацией перемещений, для стержня с постоянным сечением. Тогда 

получим (см. формулу 1.2.16): 

0
22 0

0

1 1
(1 ) 1,5

L
AEX

k AE dX
L L L L

       

Остается вопрос, как хорошо было выбрано приближение функции и 

насколько приближенная функция близка к точной.  

1.2.12 

1.2.13 

1.2.14 

1.2.15 

1.2.16 
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Метод конечных элементов изначально трактовался как обобщение метода 

перемещений для стержневых систем. Используя данный метод, мы представляем 

систему в виде ансамбля дискретных элементов, соединенных в узлах. Как было 

показано, такой расчет дает точные значения перемещений и напряжений, в том 

случае, если матрицы жесткости элементов вычислены точно. Однако, для 

произвольных элементов, следует использовать приближенное определение 

матриц, основываясь на принципе возможной работы, чтобы избежать решения 

дифференциальных уравнений, в таком случае мы получим приближенные 

значения перемещений, деформаций и напряжений.  

При осуществлении расчётов для оболочек, плит, пластин и т.д. методом 

конечных элементов конструкция представляется в виде ансамбля элементов. 

Заранее предполагается, что они связаны в конечном числе узловых точек. Далее 

считаем, что перемещение узлов определяет поле перемещений каждого 

конечного элемента. Это позволяет использовать принцип возможных 

перемещений для составления уравнений равновесия всего ансамбля, так же как и 

для стержневой системы. 

Дадим общую формулировку метода. 

Допустим, трехмерное тело нагружено объемными силами bf , 

поверхностными нагрузками sf , сосредоточенными силами iF  и начальными 

напряжениями I .  

Обозначив возможные величины чертой, получим на основе принципа 

возможных перемещений (см. формулу 2.1.17): 

 

T T b ST S iT i

iV V S

E dV U f dV U f dS U F       

где интегрирование распространяется на весь объем V  и поверхность S , а 

суммирование на все точки с приложенными сосредоточенными силами iF .  

Величины, входящие в уравнение возможных перемещений, определяются 

уравнениями (1.2.1-1.2.7).  

Уравнение возможной работы, определяет равновесие тела. В методе 

1.2.17 
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конечных элементов, тело представляется ансамблем дискретных элементов, где 

элементы объединяются в узлах по их границам.  

Допустим, что сосредоточенные силы приложены в узловых точках. 

Перемещения и деформации в локальной системе координат , ,x y z  определяется 

через смещения всех n узлов. Следовательно, для m-го элемента получим (см. 

формулы 1.2.18 и 1.2.19 ): 

 

( ) ( )( , , ) ( , , )m mU x y z H x y z U   

  

( ) ( )( , , ) ( , , )m mE x y z B x y z U    

 

где m – номер элемента, а U – вектор размерности 3n, содержащий три 

глобальные переменные , ,i i iU V W  для всех узлов ансамбля (см. формулу 1.2.20): 

 

1 1 1 2 2 2[  ... ]T

n n nU U VW U V W U V W   

  

Так как все узловые перемещения в составе U, то при рассмотрении 

отдельного элемента, учитывается перемещения узлов только этого элемента. 

1 1 1 1

2 2 2 2

3 3 3 3

4 4 4 4

1

1

1

1

x y x y

x y x y
A

x y x y

x y x y

 
 
 
 
 
 

 
1

1

1

0

0

A
A

A






 
  
 

 

 

0 1 0 0 0 0 0

0 0 0 0 0 0 1

0 0 1 0 1 0

y

E x

x y

 
 


 
  

 

0

0






 
  
 

  1 x y xy   

 

Рассмотрим матрицы для плоского напряженного состояния (см. формулы 

1.2.21 и 1.2.22): 

1.2.18 

1.2.19 

1.2.20 
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1B EA   

1H A   

Напряжения в конечном элементе определяется его деформациями и 

начальными в виде формулы 1.2.23: 

 

( ) ( ) ( ) ( )m m m I mC E     

   

где ( )mC  – матрица упругости m-го элемента, ( )I m  – его начальные 

напряжения. Характеристики материала в ( )mC  для каждого элемента 

произвольны. 

Используя представления перемещений в пределах каждого элемента, как 

это сделано в выражении (1.2.18), можно получить уравнение равновесия для 

соответствующих узлов ансамбля. Для этого преобразуем (1.2.5) в сумму 

интегралов по объему и поверхности каждого конечного элемента (см. формулу 

1.2.24) . 

 

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

m m m

m T m m m T b m m m T S m m iT i

m m m iV V S

E dV U f dV U f dS U F          

 

Заметим, что интегрирование в (1.2.24) выполняется по объему и 

поверхности каждого элемента и что каждый раз можно использовать 

подходящие системы координат. Подставив в (1.2.24), перемещение элемента 

(1.2.18), деформации (1.2.19) и напряжение (1.2.23), получаем 1.2.25. 

 

( ) ( )

( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

{ } { }

{ } { }

m m

m m m

m m

T m T m m m T m T b m m

m mV V

T S T S m T m T I m T

m mS V

U B C B dV U U H f dV

U H f dS U B dV U F

 

  

  

  
   

 

где F – вектор внешних сил, приложенных в узлах ансамбля, при этом i-тая 

компонента вектора F является сосредоточенной силой, соответствующей i-ой 

1.2.23 

1.2.24 

1.2.25 

1.2.21 

1.2.22 
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компоненте вектора U. 

Для того, чтобы получить из (1.2.25) уравнения равновесия, необходимые 

для определения смещений узлов, применим принцип возможных перемещений, 

пологая каждую компоненту перемещений равной единице. В таком случае TU I  

(I – единичная матрица) и уравнение равновесия для ансамбля элементов 

принимают вид 1.2.26: 

KU R    

где 

B S I CR R R R R       

  

Матрица K  является матрицей жесткости ансамбля 1.2.28: 

 

( )

( ) ( ) ( ) ( )

m

m T m m m

m V

K B C B dV   

   

Вектор нагрузки R  включает в себя: 

Влияние объемных сил (см. формулу 1.2.29): 

 

( )

( )

( ) ( )m

m

m T S m

B

m V

R H f dV     

 

Поверхностные нагрузки (см. формулу 1.2.30): 

 

( ) ( )

( )

( )m m

m

S T S m

S

m S

R H f dS      

 

Эффект начальных напряжений (см. формулу 1.2.31): 

 

( )

( )

( ) ( )m

m

m T I m

I

m V

R B dV     

 

1.2.26 

1.2.27 

1.2.28 

1.2.29 

1.2.30 

1.2.31 
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И сосредоточенные силы (см. формулу 1.2.32): 

 

cR F    

 

Заметим, что суммирование интегралов в выражении (1.2.28) представляет 

собой прямое суммирование матриц жесткости элементов. Аналогично 

вычисляются объемные силы и другие нагрузки. Формирование уравнений 

равновесия рассматриваемым путем называется методом прямых жесткостей. 

Матрицы конечных элементов вычисляются в компактном виде, то есть порядок 

равен числу степеней свободы элемента. 

Система уравнений (1.2.26) построена для незакрепленного ансамбля. 

Следовательно, следующим шагом является учёт граничных условий. Записав 

(1.2.26) в форме 1.2.33: 

aa ab a a

ba bb b b

K K U R

K K U R

     
     

     
   

 

где 
aU - неизвестные смещения узлов, а 

bU - заданные смещения, получаем 

выражение 1.2.34: 

aa a aK U R    

причём  (см. формулу 1.2.35): 

 

a a ab bR R K U    

 

Неизвестные узловые перемещения вычисляются с помощью (1.2.34), при 

этом соответствующие перемещениям 
bU  значения узловых сил равны (см. 

формулу 1.2.36): 

b ba a bb bR K U K U     

 

Если граничные условия заданы в не глобальной системе координат, нужно 

1.2.32 

1.2.33 

1.2.34 

1.2.35 

1.2.36 
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преобразовать матрицы жесткости элементов, связанных с граничными узлами, до 

объединения в матрицу жесткости ансамбля (рис. 2) по формулам (1.2.33 -1.2.36). 

Возможно использование граничных конечных элементов для наложения 

заданных смещений. Если ненулевым перемещением является i-тая глобальная 

степень свободы, 
iU b , то получаем выражение 1.2.37: 

 

ikU kb    

Следует добавить к уравнениям (1.2.26), при этом 
ik k . В этом случае 

после решения системы уравнений получаем, что 
iU b .  

 

Рис. 2. Опирание на наклонную плоскость 

 

Так же можно учесть наклонное произвольное по отношению к глобальным 

степеням свободы смещение при соответствующем выборе направления пружины 

(рис. 3). В таком случае, в матрице жесткости появляются большие 

внедиагональные элементы и требуется достаточна точность решения системы 

уравнений равновесия. 

 

Рис. 3. Опирание на наклонную плоскость с помощью пружины 

1.2.37 
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 Решение (1.2.26) дает перемещения всех узлов. Напряжения в элементах 

находятся с использованием выражений (1.2.19) и (1.2.23). В методе конечных 

элементов обычно не удовлетворяются условия равновесия для каждого элемента, 

а выполняется для всего ансамбля сразу. 

 Уравнение (1.2.26) определяют статическое положение равновесия 

ансамбля элементов. Но приложенные силы могут зависеть от времени, в этом 

случае зависят от времени и уравнения (1.2.26), представляющие условия 

равновесия в произвольный момент времени. Основываясь на принципе 

д`Аламбера инерционные силы рассматриваются как составная часть объемных 

сил. Если ускорения аппроксимируются аналогично смещениям элементов, то 

вклад объемных сил в вектор R имеет вид 1.2.38. 

 

( )( ) ( ) ( ) ( )

( )

mm T B m m m

b

m V m

R H f H U dV  
       

 

где 
( )mBf  не включают инерционные силы, U  - столбец ускорений узловых точек, а 

( )m - плотность m-го элемента. В этом случае уравнения равновесия примут вид 

1.2.39. 

MU KU R     

 

где R  и U  зависят от времени. Матрица масс конструкции определяется как 

1.2.40. 

( ) ( ) ( ) ( )

( )

m m T m m

m V m

M H H dV     

  

При динамическом поведении конструкции имеет место диссипация 

энергии, которая учитывается обычно введением сил диссипации, зависящих от 

скорости. 

Вводя силы диссипации как добавку к объемным силам, получим в 

соответствии с выражением (1.2.38) выражение 1.2.41: 

 

1.2.38 

1.2.39 

1.2.40 
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( )( ) ( ) ( ) ( ) ( ) ( )

( )

mm T B m m m m m

b

m V m

R H f H U k H U dV   
       

 

При этом случае 
( )mBf также не содержит динамических добавок, U  - вектор 

скоростей узловых точек, а ( )mk - коэффициент демпфирования m-го элемента. При 

этом уравнения равновесия примут вид 1.2.42. 

 

MU CU KU R       

 

Где  С – матрица демпфирования конструкции, т.е. (см. формулу 2.1.43): 

 

( ) ( ) ( ) ( )

( )

m m T m m

m V m

C k H H dV     

На практике трудно для произвольного ансамбля определить параметры, в 

частности потому, что они зависят от частоты. Поэтому матрицу C для элементов 

строят с использованием матриц масс и жесткости ансамбля, привлекая к тому же 

результаты экспериментальных исследований.  

Условия сходимости метода. Точность решения расчётной схемы 

конструкции, зависит от числа элементов и вида заданных в пределах элемента 

функций перемещений. Существенно то, что точность расчёта можно повысить 

при большем числе элементов, которые удовлетворяют условиям сходимости. 

Заметим, что сходимость и может иметь место при исследовании расчётной 

схемы, поведение реальной конструкции может быть оценено лишь на основе 

предпосылок, положенных в основу идеализации конструкции. 

Сходимость требует того, чтобы элемент был совместимым, а выбранные 

функции перемещений должны отвечать условиям полноты. Если оба эти условия 

выполняются, то сходимость решения монотонна, т.е. точность решения 

повышается с ростом числа элементов. Сам элемент такого типа называется 

конформным. Однако для элементов, отвечающих условиям полноты, но 

несовместным, результаты могут стремиться к точным значениям, но сходимость 

при этом не монотонна. 

1.2.42 

1.2.43 

1.2.41 
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Требования полноты предполагают, что функции перемещений должны 

быть в состоянии представить смещение тела как жесткого целого и обеспечить 

состояние, когда деформации постоянны. Перемещениями тела как жесткого 

целого являются такие смещения, при которых в теле не возникают напряжения. 

К примеру, элемент для плоского напряженного состояния должен быть способен 

к поступательному движению в двух направлениях и вращению без 

возникновения напряжений. 

Необходимость состояния постоянной деформации можно представить, как 

ансамбль образующийся из большего числа элементов. Тогда в пределе каждый 

элемент становится на столько малым, что деформации в пределах каждого 

элемента оказываются постоянными и возможна аппроксимация любого вида 

деформации в конструкции. 

Концепция совместимости предполагает, что перемещения в пределах 

элементов и вдоль их границ непрерывны. В физическом смысле совместимость 

гарантирует, что при нагружении конструкции между элементами не появляется 

зазоров. Если в узлах элемента заданы только линейные смещения, то 

обеспечивается совместность перемещений w , u  и  . Но если в узлах задаются 

угловые степени свободы, как в случае изгиба плит (рис. 4), то требуется 

обеспечить совместимость элементов по первым производным от перемещений.  

Это следствие кинематической гипотезы о распределении перемещений по 

толщине. Непрерывность w  и производных 
w

x




 и 

w

y




 вдоль соответствующих 

сторон элемента означает непрерывность перемещений по толщине 

примыкающих элементов (рис. 5). 

Совместимость сразу гарантирована между элементами стержневых систем, 

так как, они соединены только в узлах, в то же время относительно просто 

сохраняется в плоской задаче теории упругости, также при расчёте 

осесимметричных конструкций и в трехмерных задачах, если в качестве узловых 

переменных приняты перемещения w , u  и  . Выполнение требований 

совместимости затруднено при расчёте плит и особенно оболочек. Но ряд 
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неконформных элементов для решения задач изгиба плит и расчёта тонких 

оболочек дал хорошие результаты. 

 
Рис. 4. Некоторые примеры конечных элементов.  

а - стержневой элемент; б - балочный элемент; в - осесимметричный или плоский элемент; г - изгибный элемент; д - 
элемент тонкой оболочки; е - трехмерный элемент 

 
Рис. 5. Кинематические гипотезы расчёта плит. 

 а - представление плиты как трёхмерного тела; б - гипотеза Кирхгофа: , 0, 0i j k k kw w w v u      

,
j i i jx y

k k

v v u u

t t
 

 
  ;  для оболочек ,

2 2

i j i j

k k

u u v v
u v

 
    
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Рассматривая решения практически важных задач, для которых 

использованы различные типы элементов, заметим, что совместность между 

элементами не всегда удовлетворяется. Однако результаты расчётов достаточно 

точны, так как погрешность представления конструкции в виде ансамбля 

элементов не всегда оправдывает применение более точных моделей для решения 

задач. 

Заметим, элементы совместны и отвечают условиям полноты, то это не 

означает непрерывности напряжений вдоль кромок элемента. Напряжения по 

кромкам элементов вычисляются по выражениям (2.1.19) и (2.1.23), при этом 

разница напряжений в соседних элементах убывает со сгущением сетки. 

Практически приемлемые результаты получаются, при применении средних 

значений напряжений элементов. В большинстве случаев напряжения 

определяются в центре элемента. 

Является ли данный элемент совместным и отвечает ли он условиям полноты, 

зависит от его вида, из-за этого каждый элемент нужно исследовать 

индивидуально.  

 Матрицы изопараметрических конечных элементов. 

 Одним из этапов в решении задач методом конечного элемента является 

построение матриц для конечных элементов. Для моделей конечных элементов в 

обобщенных координатах использовалась локальная система координат , ,x y z  и 

перемещения ( , , ), ( , , )u x y z v x y z  и ( , , )w x y z представлялись в виде полиномов. 

Физический смысл обобщенных координат, представляют собой линейные 

комбинации узловых смещений элемента. Основная идея построения 

изопараметрических конечных элементов состоит в получении соотношений 

между перемещениями произвольной точки элемента и узловыми смещениями 

непосредственно через интерполяционные функции. 

 Изопараметрический элемент в локальной системе координат. Основным 

алгоритмом построения матриц для изопараметрического элемента является 

представление координат и перемещений элемента в форме интерполяционных 
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многочленов с использованием естественной системы координат. Эта система 

является одномерной, двухмерной и трехмерной в зависимости от мерности 

элемента. Рассмотрим трехмерный элемент. Матрицы для одномерного и 

двумерного элементов строятся аналогично с использованием интерполяционных 

функций. 

Рассмотрим трехмерный элемент, координаты которого представляются 

следующим образом (cм. формулу 1.2.44): 

 

1

1

1

q

i i

i

q

i i

i

q

i i

i

x h x

y h y

z h z








 




 



 








   

 

где , ,x y z  - координаты произвольной точки элемента (локальные), а , ,i i ix y z   

1,...,i q  - координаты q  узлов элемента. Интерполяционные функции 
ih  

определены в естественной системе координат элемента с переменными r , s  и t , 

каждая из которых изменяется от +1 до -1. Заметим, что функции 
ih  являются 

неизвестными величинами.  Основным свойством этих функций является 

равенство их значений единице в узле i  при нулевых значениях во всех других 

узлах. Используя это свойство, можно легко определить функцию 
ih  при данной 

сетке узлов путем решения соответствующих систем уравнений.  

 Матрицы элемента в глобальной системе координат. До этого мы 

определяли матрицы конечных элементов, соответствующих локальным свободы 

этих элементов. При вычислении использовались локальные координаты ,x y  и z , 

связанные с ними локальные переменные ,i iu   и 
iw . Но матрицы для двумерного 

элемента легко найти в глобальной системе координат X, Y с использованием 

глобальных перемещений 
iU  и 

iV . Действительно, локальные координаты x, y и 

компоненты локальных перемещений u  и   могут быть легко заменены на 

глобальные координаты X, Y и перемещения U и V. Матрицы элемента будут в 

1.2.44 
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этом случае соответствовать непосредственно компонентам глобальных 

смещений. 

 В общем случае построение матриц для элемента может быть проведено в 

глобальной системе координат с использованием компонент глобальных 

перемещений, если число переменных в естественной и глобальной системах 

координат равно. Типичными примерами такого рода были двумерные элементы, 

определенные в глобальной плоскости, и трехмерный элемент. В таких случаях 

матрица Якоби из 1.2.45 

1

x r

 
 

 
   

 

квадратная матрица, которая имеет обратную, как это требуется в 1.2.46: 

 

1

x r

 
 

 
   

 

а матрицы элементов непосредственно соответствуют компонентам глобальных 

перемещений узлов. 

 В случаях, когда порядок глобальной системы координат выше, чем 

порядок естественной системы, обычно вычисляют сначала матрицы для элемента 

в локальной системе координат с соответствующими локальными 

перемещениями. Затем эти матрицы преобразуются известным образом к системе 

глобальных перемещений. Примерами могут служить стержень или плоский 

элемент, если они произвольно ориентированы в трехмерном пространстве. С 

другой стороны, преобразование к глобальным компонентам перемещений можно 

непосредственно включить в вывод матриц. Это достигается введением 

преобразования, которое выражает интерполяционные функции локальных 

перемещений, зависящих от узловых смещений, через их глобальные 

компоненты. 

 Условия сходимости. 

 Для обеспечения монотонной сходимости метода конечных элементов 

1.2.45 

1.2.46 
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необходимо выполнение условий совместности элементов и полноты функций 

формы. 

 Выясним, удовлетворяет ли изопараметрическая трактовка метода 

критериям сходимости. 

 Для исследования совместности ансамбля элементов следует рассмотреть 

каждую грань или поверхность между примыкающими элементами. Для 

совместности требуется, чтобы координаты и перемещения элементов по общей 

границе были одинаковы. Это имеет место в том случае, когда узлы элементов на 

общей границе совпадают, а координаты и перемещения определяются одними и 

теми же интерполяционными функциями в каждом элементе. На (рис. 6) примеры 

элементов, где есть или отсутствуют условия совместимости. 

 
Рис. 6. Совместимые (а) и несовместимые (б) двухмерные элементы. 

  

Условия полноты требуют, чтобы были возможны перемещения ансамбля 

элементов как жесткого целого и выполнялось условие постоянной деформации. 

При рассмотрении трехмерного элемента это означает, что должны быть приняты 

следующие выражения для перемещений изопараметрического элемента (1.2.47): 

 

1 1 1 1

2 2 2 2

3 3 3 3

u a b x c y d z

a b x c y d z

w a b x c y d z



    


    
    

   

 

1.2.47 
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где , ,j j ja b c  и 
jd  - постоянные. Для одномерных и двумерных элементов должны 

быть взяты только соответствующие члены из (46). Если использовано поле 

перемещений в форме (46), то узловые смещения определяются в виде 1.2.48: 

1 1 1 1

2 2 2 2

3 3 3 3

i i i i

i i i i

i i i i

u a b x c y d z

a b x c y d z

w a b x c y d z



    


    
    

   

  

где 1,...,i q  и q  - число узлов. Чтобы показать, какие перемещения в (1.2.47) 

допустимы, если рассматривается изопараметрический элемент, примем, что 

смещения узлов элемента даны зависимостями (1.2.48). В этом случае нам следует 

определить, какие именно смещения узлов из (1.2.48) действительно определяют 

перемещения изопараметрического элемента в (1.2.47). Имеем 1.2.49: 

 

1

;
q

i i

i

u hu


  
1

;
q

i i

i

hu


  
1

;
q

i i

i

w hu


    

  

Подставляя (1.2.46), мы получаем выражение 1.2.50: 

 

1 1 1 1

1 1 1 1

2 2 2 2

1 1 1 1

3 3 3 3

1 1 1 1

q q q q

i i i i i i i

i i i i

q q q q

i i i i i i i

i i i i

q q q q

i i i i i i i

i i i i

u a h b h x c h y d h z

a h b h x c h y d h z

w a h b h x c h y d h z



   

   

   


    




    



    


   

   

   

  

 

Так как в изопараметрическом элементе координаты интерполируются 

аналогично перемещениями, на основе зависимости (1.2.44) получаем выражение 

1.2.51  из (1.2.50): 

 

1 1 1 1

1

2 2 2 2

1

3 3 3 3

1

q

i

i

q

i

i

q

i

i

u a h b x c y d z

a h b x c y d z

w a h b x c y d z









   

   

   






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1.2.49 
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Перемещения в (1.2.51) однако, те же, что и в (1.2.47), если для любой точки 

элемента 1.2.52: 

1

1
q

i

i

h


    

  

Таким образом, соотношение (1.2.52) и есть условие, накладываемое на 

интерполяционные функции, чтобы выполнить требование их полноты.  

Заметим, что условие (1.2.52) удовлетворяется во всех узлах элемента 

поскольку интерполяционные функции 
ih  построены так, что они равны единице 

в узле i, а другие функции 
jh , j i обращаются в нуль в этом узле.  

 Вариационные принципы задач строительной механики. 

 Физическая интерпретация метода конечных элементов для статических и 

динамических задач основывается на принципе возможных работ (см. 1.2.53): 

 

T T ST iT
b S i

iV V S

e dV U f dV U f dS U F         

 

где  - истинные напряжения; bf , Sf , iF  - объемные поверхностные и 

сосредоточенные нагрузки, действующие на тело; U  - произвольное поле 

возможных перемещений, удовлетворяющее граничным условиям задачи, а e  - 

соответствующие возможные деформации. Если (1.2.53) удовлетворяется при 

всех допустимых возможных полях перемещений, следовательно, напряжения 

являются точными решениями задачи. Иначе говоря, напряжения равны тем, что 

получаются из точного решения определяющих задачу дифференциальных 

уравнений. 

 Метод конечных элементов, основанный на перемещениях, поля возможных 

перемещений определяются смещениями элементов  (1.2.54): 

 

( ) ( ) ( ): ( , , ) ( , , )m m mU U x y z H x y z U    

 

 

где 1,2,...m   количество элементов, где матрицы перемещений элементов ( )mH и 

1.2.52 

1.2.53 

1.2.54 



25 
 

вектор узловых смещений U . 

Действительные перемещения тела также принимаются в форме (1.2.54), 

что даёт возможность составить n перемещений узлов сетки конечных элементов. 

Распределение перемещений, следовательно, и распределение напряжений, в 

общем случае оказывается приближенным, так как используется конечное число 

возможных полей перемещений, а сами они ограничены видом выражения 

(1.2.54). 

Рассмотрим равновесие линейной упругой среды и предположим, что 

возможные перемещения и возможные деформации являются соответственно 

вариациями действительных полных перемещений и деформаций. Тогда получим 

(см. 1.2.55-1.2.57): 

;Сe    

  

;U U   

  

;e e  

   

  

Подстановка выражений (1.2.55 – 1.2.57) в (1.2.53) дает уравнение 

равновесия 1.2.58: 

 

T T b ST S iT i

iV V S

e CedV U f dV U f dS U F         

   

которое с учётом симметрии С можно представить в виде 1.2.59: 

 

 
1

2

T T b ST S iT i

iV V S

e CedV U f dV U f dS U F 


   
 

      

  

Теперь в левой части уравнения (58) мы видим вариацию энергии 

деформации U, а справа от знака равенства находится вариация потенциальной 

энергии внешних нагрузок W. Следовательно, принцип возможных работ привел 

к принципу равенства нулю вариации полной потенциальной энергии  (1.2.60): 

 

1.2.55 

1.2.56 

1.2.57 

1.2.58 

1.2.59 
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0     

где 

 

U W     

 

 Что означает, что полная потенциальная энергия  системы в положении 

равновесия постоянна. Можно доказать, что стационарное положение 

соответствует минимуму полной потенциальной энергии. Кроме того, 

рассматривая выражения для энергии деформации U  и потенциальной энергии 

нагрузок W , находим, что 2W U ; следовательно, U   и положение 

равновесия соответствует максимуму энергии деформации системы. 

Решение методом Ритца 

 Метод Ритца представляет собой мощное средство для решения различных 

задач при известном функционале. В обычной форме метода первый шаг состоит 

в представлении каждой переменной ,u   в виде 1.2.62: 

1

1

;

;

uq
u

i i

i

q

i i

i

u u






  






 










   

 

где u

i  и 
i

  - известные функции; 
i , 

iu  - коэффициенты Ритца, которые следует 

определить. Следовательно, имеем ...uq q  неизвестных коэффициентов. 

Решение заключается в подстановке ряда выражений для неизвестных 

переменных в функционал и рассмотрении вариаций по коэффициентам Ритца. 

Эти вариации дают ...uq q  уравнений для определения неизвестных 

коэффициентов, решение которых с последующим представлением в форме 

(1.2.62) дает приближенное решение задачи. 

 Общий закон Гука. 

 Напряжения и деформации описываем с помощью тензоров второго 

порядка в 3-х мерном пространстве, каждый имеет девять компонент. Тензор 

упругой постоянной есть тензор четвертого ранга ijklС , содержащий восемьдесят 

1.2.60 

1.2.61 

1.2.62 
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один коэффициент. Из-за симметричности тензора ijklС , тензора напряжения и 

тензора деформации 21 постоянная является неизвестной.  

 Закон Гука: 

ij ijkl kl

kl

С   

 где ij  - тензор напряжения, 
kl - тензор деформации. Тензор ijklС  содержащий два 

независящих коэффициента для изотропного материала. Из-за симметричности тензоров напряжений и 

деформаций, закон Гука представим в матричном виде. 

 Для линейного упруго-изотропного тела: 

x
x y z

y

y x z

z
z x y

xy

xy

yz

yz

xz
xz

E E E

E E E

E E E
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  
  

  
  

  
  







  

  

  







 

 где   - коэффициент Пуассона E  - модуль Юнга и 
2(1 )

E
G





 - модуль 

сдвига 

 

 

 

 

 

 

 

 

 

 

1.2.63 
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2. Расчёт конструкции 

 

В данной главе мы произвели непосредственный расчёт конструкции на 

прочность и устойчивость. 

Наша конструкция (рис. 7) — это динамометрический стол, имеющий 

четыре опоры (упругие стойки) и столешницу, на которую устанавливается 

двигатель для замера тяги.  

 

Рис. 7. Динамометрический стол. 
 

Алгоритм построения решения.   

В начале, мы создали геометрическую модель динамометрического стола.  

При помощи программного комплекса «Компас-3D». После чего поместили 

данную модель в программный комплекс, предназначенный для расчётов, «Ansys 

Workbench». Где были заданы начальные условия. 

Начальные условия имеют вид: 

Конструкция упругой стойки: 

 Материал – Сталь 50ХФА 

 Усилие для перемещение верхней части стойки, в пределах 
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перемещений 3 мм, не должно превышать: 

По оси Х, кгс/мм – 5 По оси Y, кгс/мм – 5,5 

 Запас прочности по отношению к пределу текучести материала должен 

быть более 2:1 

На конструкцию воздействуют следующие внешние условия: 

 Статический вес конструкции сжимающий вдоль оси Y, кгс – 3000 

 Нормальная динамическая нагрузка, сжимающая/растягивающая стойку 

вдоль оси Y, кгс - от -2000 до 2000 

 Аварийная динамическая нагрузка (при заклинивании двигателя) 

сжимающая/растягивающая стойку вдоль оси Y, кгс – от -2300 до 2300. 

 Максимальное перемещение верхней части стойки в направлении осей X 

и Z не более, 5 мм. 

 Виброперегрузки в диапазоне частот от 50 до 500 Гц. 

 Температура окружающей среды: от 233 до 323 К. 

После этого, для обеспечения решения, мы создаем разбиение 

геометрической модели конечно-элементной сеткой (рис. 8). Сетка создается на 

основе нашей геометрической модели, на основе которой строится и 

осуществляется решение систем уравнений в матричной форме. 

С помощью последовательных замеров, было принято решение выбрать 

максимально возможно малое разбиение, для обеспечения наибольшей точности 

расчётов. 

Далее, мы зафиксировали наш стенд, и приложили к нему действующие внешние 

силы: 

 Гравитация земли 

 Статический вес конструкции 

 Нормальную динамическую нагрузку 

 Виброперегрузки(колебания) 

 Температура окружающей среды 
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Рис. 8. Разбиение геометрической модели конечно-элементной сеткой 

   

Статико-динамический расчёт мы осуществляем с помощью полного метода 

Ньютона-Рафсона. 

Метод Ньютона-Рафсона является продолжением обычного метода Ньютона 

применяемого для матричных систем уравнений. Если сравнивать с методом 

простых итераций, то сходимость намного быстрее, из-за того, что решение 

ищется с помощью производных функций. 

Основой метода служит ограниченный ряд Тейлора – усеченный после 

первого члена. Матрица – столбец -  P , являющийся функцией вектора  x , наш 

ряд Тейлора обретает вид (для  x  близкого к  
m

x ) (см. формулу 2.1.) 

  ([ ] [ ] )mm

P
P x x

x

 
   

  

где 
P

x




 - матрица Якоби для матрицы-столбца в точке   

m
x . 

 Если матрица-столбец и вектор обладают двумя компонентами, то (см. 

формулу 2.2.) 

2.1 
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1 1

1 2

2 2

1 2

P P

x xP

P Px

x x

  
           
   

   

 

 Если  
m

x  близка к решению, то можем определить  
1m

x


 с помощью 

уравнения (2.1) приравнённого к нулю. Это является более хорошим 

приближением, нежели  
m

x .  Главная суть метода Ньютона-Рафсона заключается 

в поиске решения матричной системы 2.3: 

 

   
1m m

m

P
x P

x 

 
    

   

 

  
1m

x


  - неизвестный вектор, [ ]mx  - определим с помощью формулы 2.4 

 1 1
[ ] [ ]m m m
x x x 

      

  

Если мы используем скалярный потенциал, вектор-столбец получается путем 

умножения матрицы  SS  на    ([ ]x  заменяем на   ). Элементы вектора 

получаем путем сложения членов i

k

F

V




 (см. формулу 2.1.5): 
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k l k l
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q q rr V

V D
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
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Коэффициенты матрицы Якоби 
P

x

 
  

равновелики с соответствующими 

производными выражения (2.5) по узловым потенциалам. 
iF  отлично от нуля 

исключительно в i -м элементе. Вычислим производную выражения (2.5) (см. 

формулу 2.6) 
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Отметим зависимость   от 2H , которое зависит в свою очередь от 
nV . 

Требуется вычислить 
2

n

H

V




 (2.7): 

2 3

2
1

2
( )k l k l l

ln

H
q q r r V

V D 

  
    

    

 Приняв ( , ) ( )( )
2

n k n kS n k q q r r
D


   получаем (2.8). 

 

2 3

2
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2 2
( , ) l
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H D
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 Воспользуемся такими же обозначениями для последнего члена в (2.6) 

имеем: 

3 3

2 2
3 3

4
( , ) ( , ) ( , )i

l l

l ln k

F
S n k S k l V S n l V

V V D H



  

      
              

     

  

Значение   и 
2H




 для данного выражения выбираются из характеристик 

( )B H материала. Из (2.9) заметно, чтобы получилась полная матрица Якоби, 

требуются члены (3,3)S , которые вычисляются с помощью значений 
lV  i -го 

треугольника. Глобальная матрица Якоби получается из объединения членов (2.9) 

и обозначается  SJ . В матричной форме система, требующая решения имеет вид 

(2.10): 

    SJ V R     

Вектор-столбец в правой части  R  - это остаточный вектор, вследствие 

того, что он есть матричное произведение   SS V , которое, в свою очередь 

должно быть равным нулю. Но это не так, т.к. магнитные проницаемости, 

применяемые при формировании SS , только приближения. Чем более длинный 

итерационный процесс, тем проницаемость ближе к решениям, а    ; 0V R  . 

2.7 

2.8 

2.9 

2.10 
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Сам метод Ньютона-Рафсона обеспечивается по следующему принципу: 

1. Изначальные приближения вектор-столбца V выбирается наиболее 

близкое к решению. 

2. Из известных значений составляющих V  можно рассчитать H , из 

кривой ( )B H ,   и 
2H




 

3. С помощью значений  , рассчитываем локальные матрицы элементов 

(3,3)S  

4. У нас есть: (3,3)S , 
2H




и потенциалы V , можем рассчитать 

коэффициенты матрицы Якоби и остаточный вектор. 

5. Вводим граничные условия Дирихле и считаем систему уравнений 

(2.10) 

6. Решение которое мы получили для значений  V  предоставляет нам 

новые значения V  

7. Повторяем шаги с (2) по (6) пока критерий сходимости не будет 

удовлетворен. 

Данный метод весьма эффективен, при выборе первого приближения 

близкого к решению.  

Коэффициенты матрицы Якоби для несимметричных задач, дополненных 

скалярными потенциалами, подобные тем, что используем для прямоугольных 

координат. Обозначим: 

0( , ) ( )n k n k

r
S k n q q r r

D

 
     

Получаем (2.12): 

 

2 3 3

2 2
3 30

2
( , ) ( , ) ( , )i

l l

l ln k

F
S n k S k l V S n l V

V V D r H



   

      
              

     

 

В задачах, обладающих векторными потенциалами, выражение i

k

F

A




  

2.11 

2.12 
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находящееся в прямоугольных координатах, выглядит (см. 2.13): 

3

3

( , ) ( )i
l

lk

F
S k l A Q k

A 


 


    

где 

( , ) ( )
2

k l k l

v
S k l q q r r

D
     

( )Q k - это источник,  расчёт которого производится отдельно, для разного 

типа задачи. 

Источники тока (см. 2.15): 

( )
6

J
Q k D    

  

Постоянные магниты (см.2.16): 

( )
( )

2

ry k rx kv B q B q
Q k


    

 В этих случаях источник не зависит от A . Поэтому коэффициенты матрицы 

Якоби имеют вид 2.17: 

 

2 3 3

2 2
1 1

4
( , ) ( , ) ( , )i

l l

l ln k

F v
S k n S k l A S n l A

A A Dv B  

      
              

     

  

Для осесимметричных задач выражение 2.18: 

 

2 3 3

2 2
1 10

2
( , ) ( , ) ( , )i

l l

l ln k

F v
S n k S k l A S n l A

A A D r v B  

      
              

     

  

где 

0( , ) ( )k n k n

vr
S n k f f q q

D


     

 

 Остаточный член определим с помощью формулы 2.20: 

 

2.13 

2.14 

2.15 

2.16 

2.17 

2.18 

2.19 
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      R SS A Q     

  

Как видно, остаточный член включает в себя  Q . 

После проведения расчётов мы получили следующие результаты (см. 

табл.2.1). 

Таблица 2.1 

Деформации и напряжения конструкции при воздействии нагрузок. 

Гравитация 

земли 

Статический 

вес 

Динамическая 

нагрузка 

Температура 

окружающей 

среды 

Деформации Напряжения 

-9806,6 mm/s² 0,02941 МПа 0,01961 МПа 233 К 1.7171 мм 436.63 МПа 

-9806,6 mm/s² 0,02941 МПа 0,01961 МПа 273.15 К 0.7743 мм 153.25 МПа 

-9806,6 mm/s² 0,02941 МПа 0,01961 МПа 323 К 0.4125 мм 130.53 МПа 

-9806,6 mm/s² 0,02941 МПа -0,01961 МПа 233 К 1.6648 мм 438.33 МПа 

-9806,6 mm/s² 0,02941 МПа -0,01961 МПа 273.15 К 0.6110 мм 154.87 МПа 

-9806,6 mm/s² 0,02941 МПа -0,01961 МПа 323 К 0.4491 мм 128.65 МПа 

-9806,6 mm/s² 0,02941 МПа 0.02255 МПа 233 К 1.7293 мм 436.5 МПа 

-9806,6 mm/s² 0,02941 МПа 0.02255 МПа 273.15 К 0.7866 мм 153.14 МПа 

-9806,6 mm/s² 0,02941 МПа 0.02255 МПа 323 К 0.4136 мм 130.68 МПа 

-9806,6 mm/s² 0,02941 МПа -0.02255 МПа 233 К 1.6613 мм 438.46 МПа 

-9806,6 mm/s² 0,02941 МПа -0.02255 МПа 273.15 К 0.6058 мм 155 МПа 

-9806,6 mm/s² 0,02941 МПа -0.02255 МПа 323 К 0.4524 мм 128.51 МПа 

2.20 

Рис. 9. Деформации 
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В итоге мы получили, что самые большие деформации и напряжения 

происходят при температуре 233К и они больше 1,5 мм и 400 МПа 

соответственно. Предел текучести нашего материала, стали 50ХФА, равен 685 

МПа. Следовательно, наша конструкция является устойчивой и имеет 

достаточный запас прочности. 

Анализ механических колебаний происходит в разделе modal analysis и 

помогает определить собственные частоты и формы колебаний рассматриваемого 

стенда. Расчёт колебаний, не зависит от динамических нагрузок. Вследствие чего, 

из статико-динамического анализа переходит только геометрическая модель и 

конечно-элементная сетка. 

Дифференциальное уравнение колебаний – есть частный случай общего 

уравнения движения (см. 2.21). 

 

      0M x K x     2.21 

Рис. 10. Напряжения 
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Ответ конструкции – гармонический, т.к. при анализе свободных колебаний 

у рассматриваемой конструкции упругое поведение (см. формулу 2.22). 

 

   cos( )i ix t    

    

где 
i  является основой для формы колеб0аний i  -ой моды (собственный вектор) 

и 
i  – собственная часть для данной моды. 

Подставив в уравнение (2.сколько): 

 

     2 cos( ) cos( ) 0i i i i iM t K t         

  

Собственные частоты формула находим 

 

     2( ) 0i iK M     

 

При свободных колебаниях, собственные частоты 
i  и формы колебаний 

i  

рассчитаем с помощью уравнения (2.24) 

Погрешности при расчётах свободных колебаний. 

  K и M  являются постоянными, что выражается: 

 Берёт на себя упругие линейные поведения материалов. 

 Используем теорию малых деформаций, не учитывая нелинейные 

эффекты. 

 Из-за отсутствия матрицы демпфирования  С , её эффект не 

учитываем. 

 Вектор сил  F не существует, следовательно возбуждения 

конструкции внешней силой не рассчитывается. 

 Закрепление конструкции не обязательно 

2.22 

2.23 

2.24 
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 Формы собственных колебаний можно вычислить в относительных 

единицах и не дает определить абсолютное смещение. 

После проведения расчётов мы получили следующие результаты (табл. 2.2).  

Таблица 2.2 

Таблица зависимости деформации от частоты колебаний. 

 

Выделим из них некоторые, с самыми малыми и большими деформации. 

При 0,507 Гц - 0,638 мм, 0,626 Гц – 0,653 мм, 1,374 Гц – 1,070, 76,753 Гц – 

0,855 мм, 126,39 Гц – 5,748 мм, 126,48 Гц – 5,862 мм, 127,02 Гц – 5,783 мм, 128,43 

Гц – 5,879 мм, 514,24 Гц – 4,197 мм, 517,25 Гц – 4,551 мм. 

 

Гц мм Гц мм 

0,507 0,638 161,88 1,037 

0,626 0,653 231,44 2,733 

1,374 1,07 239,77 4,9 

76,753 0,855 240,65 4,417 

85,19 3,533 241,68 4,4 

85,271 3,7 257,7 2,889 

86,254 2,465 258,64 3,215 

87,368 2,853 259,12 3,383 

102,92 3,28 261,24 3,625 

103,18 3,91 265,72 2,64 

104,17 2,725 299,91 1,358 

104,44 3,636 463,14 4,462 

126,39 5,748 466,95 4,99 

126,48 5,862 474,42 4,876 

127,02 5,783 476,75 4,903 

128,43 5,879 488,18 3,012 

140,84 1,243 514,24 4,197 
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В итоге получаем что самые малые деформации 0,638 мм при самых малых 

колебаниях, а самые большие деформации 5,879 мм при колебаниях ниже 

среднего из диапазона 128,43 Гц. Деформации происходящие при колебаниях от 

126,36 Гц до 128,43 Гц превышают максимальный порог деформации, но в 

следствие особенности конструкции, данные деформации не критичны. 

  

 

Рис. 11. Деформации при колебании 
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Заключение 

 

В данной работе мы построили методику расчёта для нашей трёхмерной 

конструкции. Расчёт проводился на прочность и устойчивость конструкции. Была 

создана геометрическая модель. Был применен метод конечных элементов для 

создания конечно элементной сетки. Был использован программный комплекс 

ANSYS Workbench 15 для проведения всех расчётов. Были получены результаты 

на напряжение и деформации. Итогом работы можно считать то, что конструкция 

удовлетворяет заданным начальным условиям и ограничениям и является 

безопасной для использования.  
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