министерство образования и науки российской федерации Федеральное государственное автономное образовательное учреждение высшего профессионального образования «Казанский (Приволжский) федеральный университет»

ИНСТИТУТ МАТЕМАТИКИ И МЕХАНИКИ ИМ. Н.И. ЛОБАЧЕВСКОГО

Кафедра высшей математики и математического моделирования Направление: 050201.65 – математика и информатика

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА

Задача о прочных штабелях и производящие функции

Работа з	авершена:	
Студент (05-904 группы	
""	2014 г.	(М.Р. Галеева)
Работа д	опущена к защите:	
•	руководитель г физмат. наук, доцент	
""	2014 г.	(М.И. Киндер)
	ций кафедрой измат.наук, профессор	
" "	2014 г.	(Ю.Г. Игнатьев)

Оглавление

Введение	3
Глава 1. Производящие функции и действия над ними	4
1.1. Определение производящих функций	4
1.2. Упражнения по теме «Элементарные производящие функции»	6
1.3. Решение некоторых комбинаторных задач с помощью производящих функций	7
1.3.1. Задача о расстановке чёрных и белых шаров	7
1.3.2. Задача о некоммутативном разбиении	10
1.3.3. Задача о коммутативном разбиении	13
Глава 2. Прочные разбиения	15
2.1. Основная задача о прочных штабелях	15
2.2. Прочные разбиения	16
2.3. Прочные разбиения, состоящие из различных частей	22
2.4. Прочные разбиения на заданное количество частей	25
$2.5.\ \Pi$ рочные разбиения на k различных частей	26
2.6. Прочные разбиения с наибольшими частями, равными т	28
2.7. Решение задачи о прочных штабелях	29
2.8. Прочные штабеля с заданным числом коробок	31
Глава 3. Применение пакета MAPLE для решения задачи о прочных	
штабелях	33
Заключение	34
Список литературы	35

Введение

Работа посвящена обзору основных результатов теории производящих функций и приложению этой теории к решению задачи о прочных штабелях.

Цель дипломной работы: изучить свойства производящих функций и научиться применять их в задачах перечисления некоторых комбинаторных объектов, в частности, при подсчете количества прочных разбиений натуральных чисел.

Задачи:

- 1) Изучить свойства производящей функции. Привести примеры использования производящих функций в задачах генерации комбинаторных объектов.
- 2) Решить задачу о подсчете числа прочных разбиений с помощью производящих функций.

Глава 1. Производящие функции и действия над ними.

1.1. Определение производящих функций

Наиболее подходящим языком для решения перечислительных задач оказывается язык производящих рядов. Операции с комбинаторными объектами очень естественно выражаются в терминах производящих функций. Однако перечислительная комбинаторика не сводится к производящим функциям — привлечение методов из смежных областей математики (например, из анализа или теории групп) дает новый взгляд на перечислительные задачи и позволяет находить неожиданные подходы к их решению.

Определение 1. Пусть $a_0, a_1, a_2, ...$ — произвольная (бесконечная) последовательность чисел. *Производящей функцией* (производящим рядом) для этой последовательности будем называть выражение вида

$$a_0 + a_1 s + a_2 s^2 + \cdots$$
,

или, в сокращенной записи,

$$\sum_{n=0}^{\infty} a_n \, s^n \tag{1}.$$

Если все члены последовательности, начиная с некоторого, равны нулю, то производящая функция является *производящим многочленом*. Числа, входящие в последовательность, могут иметь различную природу. Мы будем рассматривать последовательности натуральных, целых, рациональных, вещественных и комплексных чисел. Производящую функцию вида (1), как и обычную функцию, мы будем часто обозначать одной буквой, указывая в скобках ее аргумент:

$$A(s) = a_0 + a_1 s + a_2 s^2 + \dots (2)$$

Две производящие функции равны в том и только в том случае, если у них совпадают коэффициенты при каждой степени переменной. Поэтому мы

часто будем проверять равенство производящих функций или решать уравнения на них, последовательно сравнивая коэффициенты при

$$s^0, s^1, s^2$$
 и т.д.

Замечание 1. Производящая функция не является функцией в обычном понимании. Например, мы не можем сказать, чему равно значение A(1) производящей функции A в точке 1. Для этого нам пришлось бы сосчитать сумму бесконечного ряда $a_0 + a_1 + a_2 + \cdots$. Изучение производящих функций не требует суммирования бесконечных числовых рядов. Переменная s является формальной, и сумма ряда $a_0 + a_1 s + a_2 s^2 + \cdots$ смысла не имеет. Однако верны утверждения $A(0) = a_0$, $A'(0) = a_1$, $A''(0) = 2a_2$ и т.д.

Производящая функция представляет последовательность чисел в виде ряда по степеням формальной переменной. Поэтому наряду с термином "производящая функция" мы будем также пользоваться термином "формальный степенной ряд".

Определение 2. Суммой двух производящих функций

$$A(s) = a_0 + a_1 s + a_2 s^2 + \dots$$

И

$$B(s) = b_0 + b_1 s + b_2 s^2 + \dots$$

называется производящая функция

$$A(s) + B(s) = (a_0 + b_0) + (a_1 + b_1)s + (a_2 + b_2)s^2 + \cdots$$
 (3)

Определение 3. *Произведением* производящих функций A и B называется производящая функция

$$A(s)B(s) = a_0b_0 + (a_0b_1 + a_1b_0)s + (a_0b_2 + a_1b_1 + a_2b_0)s^2 + \cdots$$
 (4)

Операции сложения и умножения производящих функций коммутативны (A + B = B + A; AB = BA) и ассоциативны ((A + B) + C = A + (B + C); (AB)C = =A(BC)); кроме того, выполняется дистрибутивный закон (A(B + C) = AB + +AC).

1.2. Упражнения по теме «Элементарные производящие функции»

- 1. Сколькими различными способами можно расположить в линию чёрные и белые шары, общее количество которых равно n?
 - 2. Докажите эти равенства и найдите произведение

$$(a_0 + a_1 x + a_2 x^2 + \cdots)(1 - x).$$

- 3. Верно ли тождество ln(exp x) = x?
- 4. Верно ли тождество

$$\sum_{n=0}^{\infty} \frac{(x+1)^n}{n!} = e \sum_{n=0}^{\infty} \frac{x^n}{n!}.$$

5. Вычислить сумму

$$\sum_{k=1}^{n} {n-k \choose m}.$$

6. Найти число решений в целых неотрицательных числах уравнения

$$x_1 + 2x_2 + 3x_3 + 5x_4 = n.$$

7. Как велико количество a_n способов представить неотрицательное целое число n в виде суммы чисел 1 и 2?

1.3. Решение некоторых комбинаторных задач с помощью производящих функций

1.3.1. Задача о расстановке чёрных и белых шаров

Сколькими различными способами можно расположить в линию чёрные и белые шары, общее количество которых равно n?

В этой задаче есть один параметр — это общее число шаров n. Решением такого рода комбинаторных задач считается формула (или какойлибо эффективный алгоритм), позволяющая получить ответ для любого заданного n (в данном случае $n \ge 0$). Этот ответ будем обозначать символом a_n .

Белый шар обозначим символом E, а чёрный — Y. Любое расположение шаров можно записать в виде последовательности этих символов E и Y. Нулевое количество шаров будем обозначать \emptyset . При решении комбинаторных задач с параметром, если ответ не очевиден, необходимо пытаться получить его для небольших значений этого параметра. Например, при E 1 таких способов два: E и E 1.

Что делать, когда n = 0? Единственный способ не располагать в линию ничего — это ничего не делать, причём ничего не делать можно одним способом. Если угодно, такое решение задачи с нулевым количеством шаров можно считать договором, который в будущем, когда мы получим общие представления о решении задачи, должен согласоваться с этими общими представлениями. Достаточно удобно считать, что отсутствие чего-то можно наблюдать одним способом.

Действительно, в математике существует много таких примеров, когда нужно выполнить действие с нулевым количеством объектов. Например, число перестановок n различных объектов равно n!, при этом 0! = 1 (ничего не переставлять можно одним способом). Число способов выбрать k объектов

из n различных есть число сочетаний $\left(\frac{n}{k}\right)$, причём $\left(\frac{n}{0}\right) = 1$ (ничего не выбрать можно одним способом).

Ответом к поставленной задаче являются степени числа 2: 1,2,4,8,16, Заметьте, что наш вывод о том, что a_0 =1. согласуется с полученной формулой. Действительно, 2^0 =1.

Производящая функция.

«Просуммируем» все возможные комбинации следующим образом:

$$A = \emptyset + \mathbb{B} + \mathbb{Y} + \mathbb{B}\mathbb{B} + \mathbb{Y}\mathbb{B} + \mathbb{B}\mathbb{Y} + \mathbb{Y}\mathbb{Y} + \mathbb{B}\mathbb{B}\mathbb{B} + \cdots$$

Здесь мы будем складывать и перемножать последовательности шаров. Сложение последовательностей в этой сумме вполне понятно — «суммируются» все допустимые способы, причем каждый по одному разу. Что означает умножение? Интуитивно понятно, что расположения шаров можно перемножать. Так, перемножив EY и YE, мы получим EYYE, но обратите внимание на то, что операция умножения здесь некоммутативна $(E \cdot Y \neq Y \cdot E)$, так как перемножение тех же разбиений в другом порядке может дать другое разбиение: $YE \cdot EY = YEE$. Отметим, что пустое разбиение \emptyset в операции умножения играет роль мультипликативной единицы, например, $YE \cdot \emptyset = \emptyset \cdot YE = YEE$.

Теперь проведём с «рядом» A последовательность арифметических манипуляций:

$$A = \emptyset + B + Y + BB + YB + BY + BBB + \dots =$$

$$= \emptyset + B \cdot (\emptyset + B + Y + \dots) + Y \cdot (\emptyset + B + Y + \dots) =$$

$$= \emptyset + B \cdot A + Y \cdot A.$$

Последняя часть равенства содержит каждое из разбиений ровно по одному разу, поэтому все проделанные манипуляции, по крайней мере, не являются абсурдными.

Разрешив уравнение относительно А, получим

$$(\emptyset - B - Y)A = \emptyset,$$

$$A = \frac{\emptyset}{\emptyset - B - Y}.$$

Вспомним формулу для суммы геометрической прогрессии:

$$\frac{1}{1-x} = 1 + x + x^2 + x^3 + \cdots$$

Заменив E + Y на x, а \emptyset на 1, получим

$$A = \frac{\emptyset}{\emptyset - B - Y} = \frac{1}{1 - x} = \emptyset + (B + Y) + (B + Y)^{2} + (B + Y)^{3} + \dots = \sum_{n=0}^{\infty} (B + Y)^{n}.$$

В этой сумме также учтены все возможные разбиения в точности по одному разу. Например, разбиение EFYE встречается в $(E + Y)^4$, а \emptyset есть ни что иное как $(E + Y)^0$. Далее воспользуемся формулой, известной как бином Ньютона:

$$(a+b)^{n} = \sum_{k=0}^{n} {n \choose k} a^{k} b^{n-k}.$$

$$A = \sum_{n=0}^{\infty} (B+Y)^{n} = \sum_{n=0}^{\infty} \sum_{k=0}^{n} B^{k} Y^{n-k}.$$

Коэффициент при $\mathbb{B}^k \mathbb{Y}^{n-k}$, равный числу сочетаний из n по k, показывает общее количество последовательностей из n шаров E и E0, содержащих E0 в количестве E1 и E3 в количестве E4 и E4 в количестве E6. Таким образом, общее число расположений E6 шаров (не важно, каких сколько) есть сумма по всем возможным значениям E6.

$$a_n = \sum_{k=0}^n \binom{n}{k} = 2^n$$
.

Связь с определением.

По определению производящая функция (2) имеет вид:

$$A(s) = \sum_{n=0}^{\infty} a_n s^n = a_0 + a_1 s + a_2 s^2 + \cdots$$

В нашей задаче не важно, какой шар, на каком месте стоит, важно, что их общее количество равно n. По этой причине можно законно заменить оба символа — Y и E — одной буквой s и записать равенство:

$$A = \sum_{n=0}^{\infty} \sum_{k=0}^{n} {n \choose k} B^{k} Y^{n-k} = \sum_{n=0}^{\infty} \sum_{k=0}^{n} {n \choose k} s^{n}.$$

Теперь очень хорошо видно, в чём связь последней суммы с исходным определением производящей функции. Коэффициент, стоящий при s^n , равен значению a_n (по исходному определению) и равен сумме всех биномиальных коэффициентов. Поэтому справедливо записать

$$a_n = \sum_{k=0}^n \binom{n}{k} = 2^n.$$

Откуда здесь взялось 2^n ? Во-первых, известно, что сумма биномиальных коэффициентов всей строки с номером n равна 2^n , а, вовторых, эту величину можно получить, если вспомнить запись нашей производящей функции в свёрнутом виде и снова сделать шары неразличимыми:

$$A = \frac{\emptyset}{\emptyset - B - Y} = \frac{\emptyset}{\emptyset - s - s} = \frac{1}{1 - 2s} = 1 + (2s) + (2s)^2 + (2s)^3 + \cdots,$$

откуда видно, что коэффициент, стоящий перед s^n , равен 2^n .

1.3.2. Задача о некоммутативном разбиении

Как велико количество a_n способов представить неотрицательное целое число n в виде суммы чисел 1 и 2? Причём способы, отличающиеся перестановкой слагаемых, считаются различными (то есть 3 = 1+2 и 3 = 2+1 — разные способы; именно поэтому разбиение называется некоммутативным). Как и в предыдущей задаче, здесь есть один параметр — это число n, поэтому сначала научимся решать задачу для небольших значений n.

Например, при n=3 можно получить 3 суммы: 3=1+1+1, 3=1+2 и 3=2+1. При n=2 имеются всего две суммы: 2=1+1 и 2=2. Когда n=1, есть всего один вариант разбиения на одно слагаемое, равное 1.

Возникает интуитивное подозрение, что $a_n = n$, но оно становится ошибочным уже при n = 0. Единственный способ представить число 0 в виде суммы слагаемых 1 и 2 — это не брать эти слагаемые совсем, причём сделать это можно одним способом.

Рассмотрим ещё одно значение n=4. В этом случае можно либо взять самое левое из слагаемых равным 1, либо считать его равным 2. Тогда в первом случае разбиение числа $4=1+\dots$ можно завершить a_3 способами, а во втором — разбиение числа $4=2+\dots$ можно завершить a_2 способами, поэтому $a_4=a_3+a_2=5$. Рассуждая аналогично, получим, что $a_n=a_{n-1}+a_{n-2}$ (для $n\geq 2$). Таким образом, мы случайно решили задачу (предложив рекуррентное соотношение для a_n), исходя из чисто комбинаторных рассуждений.

Ответом к поставленной задаче являются числа Фибоначчи: 1, 1, 2, 3, 5, 8, Традиционно числа Фибоначчи начинаются от 0: $f_0=0$, $f_1=1$ и $f_n=f_{n-1}+f_{n-2}$ (для $n\geq 2$), поэтому ответом к нашей задаче с заданным параметром n является (n+1)-е число Фибоначчи: $a_n=f_{n+1}$.

Производящая функция.

Представим наши слагаемые 1 и 2, на которые нужно разбить число n, с помощью символов ① и②. Любое разбиение можно записать в виде последовательности этих символов. Так, если n=1+2+2+1+1, можно записать ①②②①①①. Символ Ø будет играть роль нулевого количества слагаемых. Теперь запишем все возможные способы разбить числа $n \ge 2$ на сумму слагаемых ① и ②:

$$A = \emptyset + (1) + (1)(1) + (2) + (1)(1)(1) + (1)(2) + (2)(1) + \cdots$$

Обратим внимание на то, что операция умножения здесь снова некоммутативна $(1)\cdot 2\neq 2\cdot 1$, Пустое разбиение \emptyset в операции умножения играет роль единицы, например, $\emptyset\cdot 1 = 1 \cdot 2\cdot \emptyset = 1 \cdot 2$.

Снова попытаемся свести «ряд» к самому себе: $A = \emptyset + 1 + 1 1 + 2 + 1 1 1 + 1 2 + 2 1 + \cdots =$ $= \emptyset + 1 (\emptyset + 1 + 1 1 + 2 + \cdots) + 2 (\emptyset + 1 + 1 1 + 2 + \cdots) =$ $= \emptyset + 1 A + 2 A.$

Разрешив уравнение относительно А, получим

$$A = \frac{\emptyset}{\emptyset - (1) - (2)}.$$

Отметим, что (1)(1) = (2) (равенство понимается в том смысле, что 1+1=2). Поэтому, заменив (1) на z, а (0) на (1) на (2) на (3) н

$$A = \frac{\emptyset}{\emptyset - (1) - (2)} = \frac{1}{1 - z - z^2}.$$

Так мы получили второй вариант записи производящей функции. Забегая вперёд, отметим, что коэффициенты разложения этой функции в ряд по степеням z будут давать искомую последовательность $(a_0, a_1, a_2, ...)$:

$$\frac{1}{1-z-z^2} = 1 + z + 2z^2 + 3z^3 + 5z^4 + 8z^5 + \cdots$$

Более того, точная формула для чисел Фибоначчи f_n имеет вид:

$$f_n = \frac{1}{2^n \sqrt{5}} \left(\left(1 + \sqrt{5} \right)^n - \left(1 - \sqrt{5} \right)^n \right),$$

а искомое значение $a_n = f_{n+1}$.

Вспомним формулу для суммы геометрической прогрессии:

$$\frac{1}{1-x} = 1 + x + x^2 + x^3 + \cdots$$

Заменив (1)+(2) на x, а \emptyset на 1, получим

$$A = \frac{\emptyset}{\emptyset - (1) - (2)} = \frac{1}{1 - x} = \emptyset + ((1) + (2)) + ((1) + (2))^{2} + ((1) + (2))^{3} + \cdots$$

$$=\sum_{n=0}^{\infty} \left(\boxed{1} + \boxed{2} \right)^n.$$

В этой сумме также учтены все возможные разбиения в точности по одному разу. Например, разбиение 1121 встречается в $(1+2)^4$. Далее воспользуемся биномом Ньютона:

$$A = \sum_{n=0}^{\infty} (1 + 2)^n = \sum_{n=0}^{\infty} \sum_{k=0}^{n} {n \choose k} 1^k 2^{n-k}.$$

Таким образом, коэффициент при $(1)^k(2)^{n-k}$, равный числу сочетаний из n по k, показывает общее количество разбиений из n слагаемых (1) и (2), содержащих (1) в количестве k и (2) в количестве n-k. Таким образом, общее количество разбиений числа n есть

$$a_n = \sum_{k=0}^n \binom{n-k}{k}.$$

Эта же сумма равна числу Фибоначчи f_{n+1} , то есть числа Фибоначчи могут быть легко выражены и через биномиальные коэффициенты.

1.3.3. Задача о коммутативном разбиении

Рассмотрим предыдущую задачу с той разницей, что перестановка элементов разбиения не учитывается, то есть задачу со следующей формулировкой: как велико количество a_n способов представить неотрицательное целое число n в виде суммы чисел 1 и 2? Способы, отличающиеся перестановкой слагаемых, считаются одинаковыми (то есть 3 = 1 + 2 и 3 = 2 + 1 — одинаковые способы; именно поэтому разбиение называется коммутативным).

Как и прежде, рассмотрим ответы для некоторых небольших значений параметра n:

n	0	1	2	3	4
a_n	1	1	2	2	3

Вернёмся к нашим обозначениям: 1 = 1 и 2 = 2. Работая с производящими функциями, нужно завести какие-нибудь абстрактные символы, из которых можно сконструировать пересчитываемый объект, а затем попытаться все эти возможные объекты просуммировать. В данном случае суммировать удобно по частям. Пусть

$$T = \emptyset + (1) + (1)(1) + (1)(1)(1) + \dots = \emptyset + T \cdot (1) - (1)(1) + \dots = \emptyset$$

разбиения, состоящие только из единиц, тогда

$$A = T + T(2) + T(2)(2) + \dots = T + A \cdot (2) - T(2)(2) + \dots = T + A \cdot (2) - T(2)(2) + \dots = T + A \cdot (2) + \dots$$

все возможные разбиения. Заметим, что в предыдущих манипуляциях мы строго следим за порядком умножения. Из этих уравнений получаем:

$$T = \frac{\emptyset}{\emptyset - (1)},$$

$$A = \frac{T}{\emptyset - (2)}.$$

Подставляя T из первого уравнения во второе, получаем:

$$A = \frac{\emptyset}{\emptyset - (1)} \cdot \frac{\emptyset}{\emptyset - (2)},$$

Вспомним, что (1)(1)=(2), и, обозначив (1) через z, а \emptyset через 1, получим

$$A = \frac{1}{1-z} \cdot \frac{1}{1-z^2} = \frac{1}{(1-z)^2(1+z)}.$$

Сейчас запишем ответ:

$$\frac{1}{(1-z)^2(1+z)} = \frac{1}{4} \left(\frac{3-z}{(1-z)^2} + \frac{1}{1+z} \right) = \sum_{n=0}^{\infty} \left(\left\lfloor \frac{n}{2} \right\rfloor + 1 \right) z^n.$$

Откуда $a_n = \lfloor n/2 \rfloor + 1$.

Глава 2. Прочные разбиения

2.1. Основная задача о прочных штабелях

Рассмотрим следующую задачу.

Сколько способов составить прочный штабель весом N кг из K коробок?

Будем считать каждый штабель состоящим в точности из K коробок, которые расположены друг над другом. Каждая коробка весит целое число килограммов, общий вес штабеля должен составлять N килограммов. Чтобы стоящие внизу коробки не расплющились, потребуем, чтобы вес каждой коробки был не меньше суммарного веса всех находящихся над ней коробок. Штабель, удовлетворяющий этому условию, будем называть *прочным*.

Например, для N=7 существуют два прочных штабеля из K=3 коробок: 7=1+2+3+4 и 7=1+1+5. В каждом равенстве первое слагаемое – это вес верхней коробки, второе – вес второй коробки, и, наконец, третье слагаемое указывает вес нижней коробки.

Разбиение $n=p_1+p_2+\cdots+p_k$ с $1\leq p_1\leq p_2\leq\cdots\leq p_k$ называют n прочным, если $p_1+\cdots+p_j\leq p_{j+1}$ для $1\leq j\leq k-1$.

Нам дано n коробок, пронумерованных числами 1, 2..., n. Для i = 1..., n, коробка i весит i килограммов и может выдержать общую массу в i килограммов. Найти количество различных способов f(n) построить штабель, в котором ни одна из коробок не будет раздавлена коробками, стоящими над ней. Например, f(4) = 14, так как мы можем сформировать следующие штабели:

Другие два возможных штабеля:

Поскольку 2 + 3 > 4, коробка 4, разрушится в обоих случаях.

Если коробки в штабеле обозначены (от вершины) $p_1, p_2,..., p_j$, штабель не разрушится тогда и только тогда, когда разбиение прочное. Здесь коробки должны иметь разные нумерации и их суммы не могут превысить $\binom{n+1}{2}$. Поэтому f(n) равно общему количеству разбиения чисел от 0 до $\binom{n+1}{2}$, которые являются (i) прочными, (ii) имеют различные части, и (iii) не включают части, больше, чем n.

2.2. Прочные разбиения

Пусть a(n) — количество прочных разбиений числа n. Как показали Хиршхорн и Селлерс [5], a(n) равно количеству двоичных разбиений числа n, то есть, количеству разбиений числа n по степеням 2. Например, число 4 можно представить в виде суммы степеней 2 ровно четырьмя способами:

$$4 = 2 + 2 = 1 + 1 + 2 = 1 + 1 + 1 + 1$$
.

Количество прочных разбиений числа 4 тоже равно 4, так как

$$4 = 1 + 3 = 2 + 2 = 1 + 1 + 2$$
.

На самом деле Хиршхорн и Селлерс доказали более общий результат. Пусть $s \ge 2$ целое. Разбиение (5) является s—прочным, если

$$(s-1)(p_1+\cdots+p_j) \le p_{j+1}$$
 для $1 \le j \le k-1$. (7)

Если p_j — вес j-ой коробки в штабеле, то это неравенство означает, что j-ая коробка выдерживает (s-1)-кратный вес всех коробок, расположенных над ней. Определенное выше прочное разбиение, является в этом смысле 2-прочным.

Теорема 1 (Хиршхорн и Селлерс [5].) Количество a (n) s-прочных разбиений числа n равно количеству "s-ичных" разбиений числа n, то есть равно количеству разбиений числа n по степеням s.

Приведем доказательство этого результата, основанное на идее взаимно однозначного соответствия между двумя значениями.

Пусть $a'_s(n)$ — количество разбиений числа n по степеням s, для некоторого целого числа $s \ge 2$. Предположим, что

$$n = s^{e_1} + s^{e_2} + \cdots + s^{e_l}$$

— произвольное *s*-ичное разбиение числа $n \ge s$. Если хотя бы одна из частей равна 1, мы можем удалить ее и получить разбиение n-1 по степеням s; в противном случае все e_i больше, чем 0, и мы можем также разделить на s и получить разбиение $\frac{n}{s}$. Поэтому $a'_s(n)$ удовлетворяет рекуррентным соотношениям

$$a'_{s}(n) = a'_{s}(n-1)$$
 для $n \not\equiv 0 \pmod{s}$, $a'_{s}(n) = a'_{s}(n-1) + a'_{s}\left(\frac{n}{s}\right)$ для $n \equiv 0 \pmod{s}$, (8)

для $n \ge s$. Самое маленькое число n, для которого есть разбиение больше, чем с одной частью, является s, таким образом, мы имеем начальное условие

$$a'_{s}(0) = a'_{s}(1) = \dots = a'_{s}(s-1) = 1.$$
 (9)

С другой стороны, пусть

$$n = p_1 + p_2 + \dots + p_k$$
, где $1 \le p_1 \le p_2 \le \dots \le p_k$, (10) будет s -прочным разбиением, где $n \ge s$.

Если самая большая часть p_k строго больше, чем $\frac{(s-1)n}{s}$, тогда сумма других частей строго меньше, чем $\frac{n}{s}$, и мы можем вычесть 1 из самой большой части и получить s-прочное разбиение числа n-1.

Если самая большая часть равна $\frac{(s-1)n}{s}$, (допущение $n \equiv 0 \mod s$), то мы можем её также удалить, при этом получится s-прочное разбиение числа $\frac{n}{s}$. Поэтому $a_s(n)$ удовлетворяет рекуррентным соотношениям

$$a_s(n)=a_s(n-1),\$$
если $n\not\equiv 0\ (mod\ s),$ $a_s(n)=a_s(n-1)+a_s(n/s)$, если $n\equiv 0\ (mod\ s),$ (11) для $n\geq s.$

Самое маленькое число n, для которого есть разбиение больше, чем с одной частью, является s, и удовлетворяет начальным условиям

$$a_s(n) = a_s(1) = \dots = a_s(s-1) = 1.$$
 (12)

Сравнивая формулы (8), (9) с (11), (12), мы получаем, что $a'_s(n) = a_s(n)$ для всех $n \ge 0$ и всех $s \ge 2$ (см. [5]).

Вышеупомянутое доказательство связывает каждое разбиение с разбиением меньшего числа. Поэтому мы можем организовать разбиение в каждой части корневого дерева, с пустым разбиением 0 как узел корня. Рисунки 1 и 2 показывают начало двух деревьев для случая s=2. Каждый узел имеет два потомка и (кроме корня) один предок. Мы можем обозначить края из ведущие от разбиения $\frac{n}{s}$ к разбиению n с 0 (такие края отображаются в виде ломаных линий в рисунках 1 и 2) и края, ведущие от разбиения числа n-1 к разбиению n с 1 (отображаются сплошными линиями).

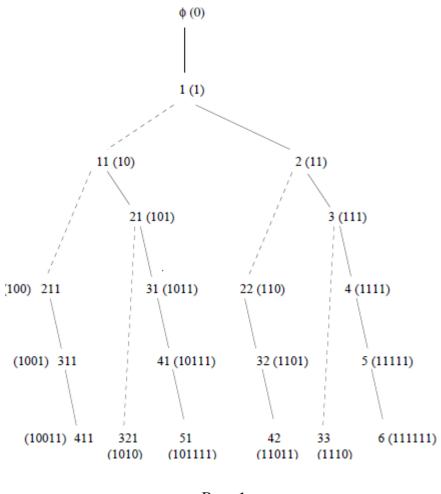
Это связывает уникальную двоичную строку каждого разбиения в любом дереве. Разбиение числа n в одном дереве получает ту же двоичную строку, как и соответствующее разбиение числа n в том же положении в другом дереве. Таким образом, мы получаем каноническую нумерацию для s прочного разбиения, канонической нумерации для разбиений по степеням s и биекции между ними.

Таблица 1: Биекция между s прочным разбиением P(u) и s-ичным разбиением Q(u); n-индекс (пишется как двоичное число), и n — это число, которое является разбиваемым.

u	P(u)	Q(u)	n
0	Ø	Ø	0
1	1	1	1
10	s - 1, 1	s	8
11	2	1,1	2
100	s(s-1), s-1, 1	s^2	s^2
101	s, 1	s, 1	s+1
110	2(s-1), 2	s, s	2s
111	3	1, 1, 1	3
1000	$s^{2}(s-1), s(s-1), s-1, 1$	s^3	s^3
1001		$s^{2}, 1$	$s^{2} + 1$
1010	$s^2 - 1, s, 1$	s^2, s	$s^2 + s$
1011	s + 1, 1	s, 1, 1	s+2
1100	2s(s-1), 2(s-1), 2	s^2, s^2	$2s^2$
1101	2s - 1, 2	s, s, 1	2s + 1
1	3(s-1), 3	s, s, s	3s
1111	4	1, 1, 1, 1	4
10000	$s^{3}(s-1), s^{2}(s-1), s(s-1), s-1, 1$	s^4	s^4
10001	$s^3 - s^2 + 1, s(s-1), s-1, 1$	$s^{3}, 1$	$s^{3} + 1$
10010	. // //	s^3, s	$s^{3} + s$
10011	$s^2 - s + 2, s - 1, 1$	$s^2, 1, 1$	$s^2 + 2$
10100	$s(s^2-1), s^2-1, s, 1$	s^3, s^2	$s^{3} + s^{2}$
10101	$s^2, s, 1$	$s^{2}, s, 1$	$s^2 + s + 1$

Таблица 1

В таблице 1 показано начало биекции. Первый столбец дает u двоичную строку, второй столбец дает соответствующее s-прочное разбиение P(u), третий столбец дает соответствующее s-ичное разбиение Q(u) и последний столбец дает число n=n(u), равное сумме P(u) и Q(u).



Puc. 1

Рисунок 1: Прочные разбиения чисел 0, ..., 6 расположены в древовидной структуре. Двойные значения указаны в круглых скобках. (Каждый узел имеет степень 2, но показаны только края между разбиениями 0..., 6.)

Отмечаем без доказательства следующие свойства биекции.

- (*i*) для ненулевого значения строки u, количество деталей P(u) равно 1 плюс число 0-ых в u, и количество частей в Q(u) равен числу 1 в u.
- (ii) рассматривая теперь u как целое число в двоичной строке, число n=n(u) (указано в последнем столбце таблицы) равно сумме P(u) и Q(u).

$$n(0) = 0; n(2u) = sn(u)$$
 для $u \ge 1, n(2u+1) = n(u) + 1$ для $u \ge 0$

(iii) P(u)=Q(u), тогда и только тогда, когда $u=\frac{(4^k-1)}{3}$ для некоторых $k\geq 1$ (то есть, если u является двоичной строкой 10101...~01).

Легко перейти от двойного вектора к разбиениям, и наоборот. Для получения s-прочного разбиения P(u), соответствующего двоичному вектору u, мы начинаем с пустого разбиения $P(u) = \emptyset$, затем просматриваем u слева направо (т.е. начиная с самого старшего разряда):

- если мы видим 1, то при $P(u) = \emptyset$ множество P(u) = 1, в противном случае добавляем 1 к самой большой части P(u);
- если мы видим 0, то при $P(u) = \emptyset$ множество P(u) = 0, в противном случае совпадают с P(u) частью, равной s-1-кратной сумме частей P(u).

Пример: для s=3. Пусть u=10110. Последовательно вычисляя, получаем для P(u):

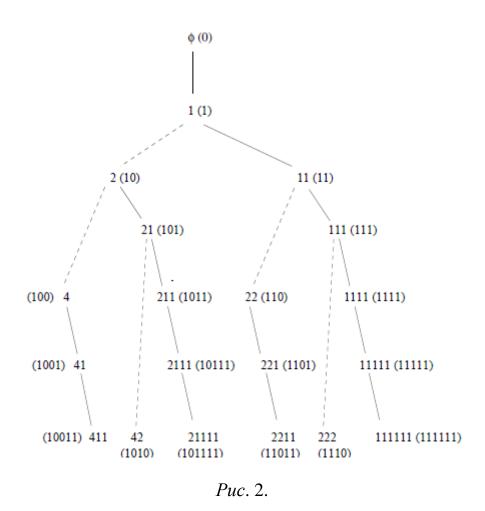


Рисунок 2: Двоичные разбиения чисел 0, ..., 6 показаны в виде дерева, их двоичные значения записаны в скобках. (Каждый узел имеет степень 2, но показаны только ребра для разбиений чисел 0..., 6.)

Аналогичным образом, чтобы получить разбиение Q(u) по степеням s, снова мы начинаем с пустого разбиения $Q(u) = \emptyset$, и двигаемся вдоль u слева направо:

- если мы видим 1, добавляем части размера 1 к Q(u)
- если мы видим значение 0, то с $Q(u) = \emptyset$ ничего не делать, иначе все части Q(u) умножить на s.

Пример для s=3. Снова берем u=10110. Последовательно вычисляя, получаем для O(u)

Таким образом, биекция связывает эти два разбиения: P(u) = 1041 и Q(u) = 933.

Отметим, что последовательность $a_s(n)$ имеет производящую функцию

$$\sum_{n=0}^{\infty} a_s(n) x^n = \prod_{i=0}^{\infty} \frac{1}{1 - x^{s^i}} \,. \tag{13}$$

2.3. Прочные разбиения, состоящие из различных частей

В этом параграфе мы рассматриваем только случай s=2, то есть, прочные разбиения, при этом рассматриваются только *различные* части. Обозначим количество прочных разбиений числа n на различные части через b(n). Первые несколько значений b(n) для n=0,1,2... равны

$$1, 1, 1, 2, 2, 3, 4, 5, 6, 7, 9, 10, 13, 14, 18, 19, 24, 25, 31, 32, 40, 41, 50, ...$$
 (14)

Теорема 2. Количество b(n) удовлетворяет рекуррентному соотношению

$$b(0) = b(1) = 1$$
, $b(2m) = b(2m-1) + b(m) - 1$ для $m \ge 1$, $b(2m+1) = b(2m) + 1$ для $m \ge 1$. (15)

Производящая функция $B(x) = \sum_{n=0}^{\infty} b(n) x^n$ удовлетворяет равенству

$$B(x) = \frac{1}{1-x}B(x^2) - \frac{x^2}{1-x^2},\tag{16}$$

и может быть выражена явно в виде

$$B(x) = 1 + \frac{x}{1-x} + \sum_{i=1}^{\infty} \frac{x^{3 \cdot 2^{i-1}}}{\prod_{j=0}^{i} (1-x^{2^{j}})}.$$
 (17)

Доказательство. Прочное разбиение с различными частями для нечетного числа 2m+1 получается присоединением части размера 2m+1-j к разбиению j, для некоторых j=0, 1..., m (так как 2m+1-j>j, они действительно прочные). Аналогично получается прочное разбиение числа 2m путем присоединения слагаемого 2m-j к разбиению j, для некоторого j=0, 1..., m, за исключением того, что при j=m мы не можем присоединить слагаемое m к разбиению, состоящему из одного числа m. Таким образом, мы имеем равенства

$$b(0) = b(1) = 1$$
, $b(2m+1) = b(0) + b(1) + \cdots + b(m)$ для $m \ge 1$, $b(2m) = b(0) + b(1) + \cdots + b(m) - 1$ для $m \ge 1$, (18)

из них очевидным образом получаются равенства (15). Для производящей функции B(x) с помощью равенств (15) и несложных алгебраических преобразований получаем

$$B(x) = xB(x) + B(x^2) - \frac{x^2}{1+x},$$
(19)

отсюда после перестановки слагаемых приходим к (16). Заменяя x на x^2 , запишем (16) в следующем виде:

$$B(x^2) = \frac{1}{1-x^2}B(x^4) - \frac{x^4}{1-x^4}$$

и так далее. Следовательно,

$$B(x) = \prod_{i=0}^{\infty} \frac{1}{1 - x^{2^{i}}} - \sum_{i=1}^{\infty} \frac{x^{2^{i}}}{\prod_{j=0}^{i-1} (1 - x^{2^{j}}) \cdot (1 + x^{2^{i-1}})} =$$

$$= \prod_{i=0}^{\infty} \frac{1}{1 - x^{2^{i}}} - \sum_{i=1}^{\infty} \frac{x^{2^{i}}}{\prod_{j=0}^{i-2} (1 - x^{2^{j}}) \cdot (1 - x^{2^{i}})}.$$
(20)

Для упрощения используем тождество, где $m_1 < m_2 < \dots < m_k$ положительные целые, затем

$$1 + \sum_{i=1}^{k} \frac{x^{m_j}}{(1 - x^{m_1})(1 - x^{m_2}) \cdots (1 - x^{m_j})} = \prod_{i=1}^{k} \frac{1}{1 - x^{m_j}}.$$
 (21)

Применяя это к сумме в (20) и упрощая, мы окончательно приходим к (17).

Следствие 1. Последовательность $\{b(n)\}$ обладает свойством, что и последовательность частичных сумм

1, 2, 3, 5, 7, 10, 14, 19, 25, 32, 41, 51, 64, 78, 96, 115, 139, 164,... (22) совпадает с подпоследовательностью b(1), b(3), b(5), ... с нечётными номерами. Подпоследовательность b(2), b(4), b(6) ... с четными номерами получается добавлением 1 к числам из (22).

Доказательство. Утверждение эквивалентно алгебраическому соотношению

$$\frac{B(x)}{1-x} = \frac{B\sqrt{x} - B(-\sqrt{x})}{2\sqrt{x}},\tag{23}$$

которое легко проверить, используя (19) и (20).

Следствие 2. Количество прочных разбиений b(n) числа n на различные части равно количеству разбиений числа n по степеням 2 таким образом, что если все части равны 1 или, если самая большая часть равна $2^i > 1$, тогда имеется по крайней мере одна часть размером 2^{i-1} .Это утверждение следует из (15), оно также является непосредственным следствием (20).

Соответствия, удовлетворяющие $a_s(n)$ были изучены многими авторами (см. [5]). Здесь мы делаем запись только для одного такого результата b(n).

Следствие 3: Для значений b(n) справедливы следующие утверждения (все сравнения по $mod\ 2$):

$$b(0) \equiv 1,\tag{24}$$

если
$$n$$
 - нечетное, $b(n) \equiv b(n-1) + 1$, (25)

$$b(8m+2) \equiv 1, b(8m+6) \equiv 0, \tag{26}$$

$$b(16m+4) \equiv 0, b(16m+12) \equiv 1, \tag{27}$$

для
$$m > 0$$
, $b(16m) \equiv b(8m)$, $b(32m + 8) \equiv 0$, $b(32m + 24) \equiv 1$. (28)

Доказательство. Равенство (25) следует из (15). Чтобы доказать первое утверждение в (26), мы неоднократно обращаемся к (15):

$$b(8m + 2) \equiv b(8m + 1) + b(4m + 1) + 1 \equiv b(8m) + b(4m) + 1 \equiv b(8m - 1)$$
$$\equiv b(8m - 2) + 1 \equiv \dots \equiv b(8i - 6) \equiv \dots \equiv b(2) = 1.$$

Другие соотношения в (26) – (28) устанавливаются аналогично.

Таблица 2: Пусть a(n, k) количество прочных разбиений числа n ровно на k частей.

			k		
n	0	1	2	3	4
0	1	0	0	0	0
1	0	1	0	0	0
2 3	0	1	1	0	0
3	0	1	1	0	0
4	0	1	2	1	0
5	0	1	2	1	0
6	0	1	3	2	0
7	0	1	3	2	0
8	0	1	4	4	1
9	0	1	4	4	1
10	0	1	5	6	2
11	0	1	5	6	2
12	0	1	6	9	4
13	0	1	6	9	4

Таблица 2

2.4. Прочные разбиения на заданное количество частей.

Пусть a(n, k) — количество прочных разбиений числа n ровно на k частей. В таблице 2 даны начальные значения этой функции.

Теорема 5. Количество a(n,k) удовлетворяет рекуррентным соотношениям

$$a(2m, k) = a(2m - 1, k) + a(m, k - 1)$$
 для $m \ge 1, k \ge 1$,
$$a(2m + 1, k) = a(2m, k)$$
 для $m \ge 1, k \ge 1$, (29)

с начальными условиями

a(0,0)=1, a(n,0)=0 для $n\geq 1, a(n,k)=0$ для k>n, a(n,1)=1 для $n\geq 1$.

В частности, каждая строка с нечетным номером (за исключением ряда 1) в таблице 2 является копией предыдущего ряда. Если повторяющиеся записи опущены, у k-й колонки есть производящая функция

$$\sum_{k=0}^{\infty} a(2m, k) x^m = \frac{x^{2^{k-2}}}{(1-x) \cdot \prod_{j=0}^{k-2} (1-x^{2^j})},$$
 (30)

в то время как, если они включены, мы получаем более простое выражение

$$\sum_{k=0}^{\infty} a(m,k)x^m = \frac{x^{2^{k-2}}}{\prod_{j=0}^{k-2} (1-x^{2^j})}.$$
 (31)

Равенство (31) означает, что количество прочных разбиений числа n на k частей равно (i) количеству разбиений числа $n-2^{k-1}$ по степеням 2 на части, не превышающие 2^{k-1} , а также равно (ii) количеству двоичных разбиений числа n с самой большой частью 2^{k-1} .

Доказательство. Равенство (29) получается с помощью рассуждений, аналогичных тем, которые были использованы для получения равенства (11).

Например, для k=3 колонки выпишем последовательность чисел с четными номерами ($2m=0,\,2,\,4,\,6,\,\dots$) :

$$0,\,0,\,1,\,2,\,4,\,6,\,9,\,12,\,16,\,20,\,25,\,30,\,36,\,42,\,49,\,56,\,64,\,72,\,81...\;.$$

Эту последовательность можно определить также формулой

$$a(2m, 3) = \left| \frac{m}{2} \right| \left[\frac{m}{2} \right]$$

с производящей функции

$$\sum_{k=0}^{\infty} a(m,k)x^m = \frac{x^2}{(1-x)^2(1-x^2)}$$

2.5. Прочные разбиения на k различных частей

Пусть b(n, k) — количество прочных разбиений числа n ровно на k различных частей. В таблице 3 представлены начальные значения этой функции.

Таблица 3: Количество b(n, k) прочных разбиений числа n ровно на k различных частей.

			k		
n	0	1	2	3	4
0	1	0	0	0	0
1	0	1	0	0	0
2	0	1	0	0	0
3	0	1	1	0	0
4	0	1	1	0	0
5	0	1	2	0	0
6 7	0	1	2	1	0
7	0	1	3	1	0
8	0	1	3	2	0
9	0	1	4	2	0
10	0	1	4	4	0
11	0	1	5	4	0
12	0	1	5	6	1
13	0	1	6	6	1
14	0	1	6	9	2
15	0	1	7	9	2
16	0	1	7	12	4
17	0	1	8	12	4

Таблица 3

Сравнивая эту таблицу с таблицей 2, предполагаем, что таблица 3 получена, перемещением k-ого столбца таблицы 2 (для $k \ge 2$) вниз на 2^{k-2} позиций. Это действительно так.

Теорема 6. Количество b(n, k) удовлетворяют соотношению

$$b(n,0)=a(n,0)$$
 для $n\geq 0$,
$$b(n,1)=a(n,1)$$
 для $n\geq 0$,
$$b(n,k)=a(n-2^{k-2},k)$$
для $n\geq 0, k\geq 2$. (32)

Также

$$\sum_{k=0}^{\infty} b(n,k) x^n = \frac{x^{3 \cdot 2^{i-1}}}{\prod_{j=0}^{i} (1-x^{2^j})}$$
для $k \ge 2.$ (33)

Из равенства (32) следует, что количество прочных разбиений числа n на k различных частей равно количеству разложений числа $n-3\cdot 2^{k-2}$ по степени 2 с частями, не превышающими 2^{k-1} . (Доказательство см. [6])

2.6. Прочные разбиения с наибольшими частями, равными т

Пусть c(n, k) — количество прочных разбиений числа n на различные части, самая большая из которых равна числу m. таблица 4 показывает начальные значения.

Таблица 4: пусть c(n, k) количество прочных разбиений числа n на различные части, наибольшая из которых равна m (пустые записи равны 0).

							γ	\overline{n}					
n	0	1	2	3	4	5	6	7	8	9	10	11	12
0	1												
1	0	1											
2	0	0	1										
3	0	0	1	1									
4	0	0	0	1	1								
5	0	0	0	1	1	1							
6	0	0	0	1	1	1	1						
7	0	0	0	0	2	1	1	1					
8	0	0	0	0	1	2	1	1	1				
9	0	0	0	0	0	2	2	1	1	1			
10	0	0	0	0	0	2	2	2	1	1	1		
11	0	0	0	0	0	0	3	2	2	1	1	1	
12	0	0	0	0	0	0	3	3	2	2	1	1	1

Таблица 4

Теорема 7 (*i*) Ненулевые значения c(n, m) лежат в пределах определенного интервала:

$$c(n, m) = 0$$
, если $m < \frac{n}{2}$ или если $n < m$.

(ii) Для $m \le n \le 2m$,

$$c(n,m) = \sum_{i=0}^{m-1} c(n-m,i).$$
 (39)

(iii) Для $m \le n \le 2m$,

$$c(n, m) = b(n - m), ecлu n < 2m;$$

 $c(n, m) = b(n - m) - 1, ecлu n = 2m.$ (40)

Доказательство. (*i*) Прочное разбиение с различными частями, имеющее самый медленный рост, определяется равенством (35), поэтому у разбиения не может быть n > 2m. Второе утверждение следует из определения c(n, m).

- (*ii*) Это является следствием того факта, что удаление самой большой части оставляет разбиение с самой большой частью $\leq m-1$.
- (*iii*) Когда самая большая часть удалена, мы получаем прочное разбиение числа n-m с различными частями. С другой стороны, учитывая прочные разбиения числа n-m с различными частями, мы получаем разбиение числа n с самой большой частью, равной m, присоединением к части размера числа m, за исключением того, что мы не можем присоединить слагаемое m к разбиению, состоящему из единственного слагаемого m.

2.7. Решение задачи о прочных штабелях

В этом параграфе приведем еще одно решение задачи о прочных штабелях.

Теорема 8. Существует взаимно однозначное соответствие между прочным разбиением, в котором самая тяжелая коробка имеет вес n, и прочным разбиением числа 2n с различными частями, т.е.

$$f(n) - f(n-1) = b(2n). (41)$$

Доказательство. Пусть

$$1 \le p_1 < p_2 < \dots < p_k = n$$

быть прочное разбиение, в котором самая тяжелая коробка имеет вес n. Пусть $r=p_1+\dots+p_{k-1}(r=0)$ если k=1). Тогда $r\leq p_k=n$. Если мы увеличим большую часть на число n-r, мы получаем прочное разбиение числа 2n. С другой стороны предположим, что $1\leq p_1< p_2<\dots< p_k$ не является прочным разбиением числа 2n на различные части. Пусть $r=p_1+\dots+p_{k-1}$. Тогда $r+p_k=2n, r< p_k$, отсюда следует, что $r< n< p_k$. Итак, мы можем

уменьшить большую часть до n, получая прочный штабель с самой большой частью весом n.

Равенство (41) могло также быть получено из того, что

$$f(n) = \sum_{i=0}^{\binom{n+1}{2}} \sum_{j=0}^{n} c(i,j) = \sum_{i=0}^{2n} \sum_{j=0}^{n} c(i,j) .$$

Следствие 4. Числа f(n)есть производящая функция

$$F(x) = \sum_{n=0}^{\infty} f(n)x^n = \frac{B(x) - x}{(1 - x)^2} , \qquad (42)$$

где B(x) дается в теореме 2. Кроме того, F(x) удовлетворяет

$$F(x) = \frac{(1+x)^2}{1-x}F(x^2) - \frac{x(1-2x^2)}{(1-x)^2(1-x^2)}.$$
 (43)

Доказательство. Из теоремы 8 мы знаем, что

$$f(n) = b(0) + b(2) + \cdots + b(2n),$$

таким образом

$$F(x) = \frac{1}{1-x} \frac{B(\sqrt{x}) + B(-\sqrt{x})}{2}.$$

Таким образом, (42) будет следовать, если можно показать, что

$$\frac{2(B(x)-x)}{1-x} = B(\sqrt{x}) + B(-\sqrt{x}) .$$

Тем не менее, из (23) мы знаем, что

$$\frac{2\sqrt{x}B(x)}{1-x} = B(\sqrt{x}) - B(-\sqrt{x}).$$

Таким образом, мы должны показать, что

$$B(\sqrt{x}) = \frac{B(x) - x}{1 - x} + \frac{\sqrt{x}B(x)}{1 - x},$$

что сразу следует из (16). Равенство (43), тогда получается с помощью (19). Первые несколько значений F(n) для n = 0, 1, 2, ... являются

$$1, 2, 4, 8, 14, 23, 36, 54, 78, 109, 149, 199, 262, 339, 434, 548, 686, \dots (44)$$

2.8. Прочные штабеля с заданным числом коробок

Пусть f(n, k) — количество прочных штабелей ровно из k коробок, каждая из которых имеет вес не более n килограммов. В таблице 5 представлены начальные значения этой функции.

Таблица 5: количество штабелей f(n, k), в которых имеется ровно k коробок и самая большая коробка имеет вес $\leq n$.

	k								
n	0	1	2	3	4	5			
0	1	0	0	0	0	0			
1	1	1	0	0	0	0			
2	1	2	1	0	0	0			
3	1	3	3	1	0	0			
4	1	4	6	3	0	0			
5	1	5	10	7	0	0			
6	1	6	15	13	1	0			
7	1	7	21	22	3	0			
8	1	8	28	34	7	0			
9	1	9	36	50	13	0			
10	1	10	45	70	23	0			
11	1	11	55	95	37	0			
12	1	12	66	125	57	1			

Таблица 5

Теорема 10. Справедливы следующие соотношения:

$$f(n,0) = 1 \text{ для всех } n, \text{ и для } n \ge 1, k \ge 1,$$

$$f(n,k) = \sum_{p=0}^{\min\{k-1,n-\gamma(k)\}} \sum_{m=p}^{n-\gamma(k)} (n-\gamma(k)+1-m)a(m,p). \tag{45}$$

Доказательство. Мы сначала определяем f(n, k) - f(n-1, k), где $1 \le p_1 < p_2 < \dots < p_k = 0$, причем самая большая часть разбиения не превосходит n. Пусть $q_i = p_i - \gamma(i)$ для $i = 1, \dots, k$ (из (35)), так, чтобы

$$0 \leq q_1 \leq q_2 \leq \cdots \leq q_k = n - \gamma(k).$$

Некоторые из q_i могут быть нулевыми. Элементы q_1, \dots, q_{k-1} , отличные от нуля (если таковые имеются), образуют прочное разбиение на p частей некоторого числа m, расположенного между 0 и q_k , где $0 \le p \le k-1$.

Следовательно

$$f(n,k) - f(n-1,k) = \sum_{m \le n - \gamma(k)} \sum_{p \le k - 1} a(m,p), \tag{46}$$

и так

$$f(n,k) = \sum_{p=0}^{k-1} \sum_{\tau-k}^{n} \sum_{m=p}^{\tau-\gamma(k)} a(m,p).$$
 (47)

Из этих равенств следует (45).

Глава 3. Применение пакета MAPLE для решения задачи о прочных штабелях

1. Прочные разбиения на различные части. $p_1 + \cdots + p_j \le p_{j+1}$ для всех $1 \le j < k$ если части расположены в порядке возрастания и сумма частей не превышает данного числа. Например: разбиения сп = 1 по 6: 1; 2; 3 = 1 +2; 4 = 1 +3; 5 = 1 +4 = 2 +3; 6 = 1 +5 = 2 +4 = 1 +2 +3.

f := proc(n) option remember; local t1, i; if $n \le 2$ then RETURN(1); fi; t1 := add(f(i), i=0..floor(n/2)); if n mod 2 = 0 then RETURN(t1-1); fi; t1; end; t1 := 1 + x/(1-x); t2 := add($x^{(3*2^{(k-1))}/ mul((1-x^{(2^{j})}), j=0..k), k=1..10)$; series(t1+t2, x, 256); # increase 10 to get more terms

2. Числа, расположенные в строках следующего треугольника, совпадают с количеством прочных разбиений числа n на k частей.

$$\begin{split} T:=&proc(n) \text{ option remember;} \\ If & (n=0,\ 1,\ zip((x,\ y)->x+y,\ [T(n-1)],\ [0,\ T(floor(n/2))],\ 0)[]) \\ end: \\ & seq(T(n),\ n=0..25); \end{split}$$

Здесь $T(n, \kappa) \ (n \ge 0, \ 0 \le k \le 1 + log_2 n.$

Заключение

Разобрана задача о прочных разбиениях натурального числа, рассмотрены ее вариации с различными ограничениями на количество частей, а также на размеры этих частей. Приведены программные реализации алгоритмов вычисления количества прочных разбиений в пакете МАРLE. Приведенные в квалификационной работе примеры можно использовать в кружковой работе, на факультативных занятиях со школьниками. Рассмотренные задачи можно также использовать в качестве тем или проектов исследовательских работ школьников или студентов.

Список литературы

- 1. Гульден Я., Джексон Д. *Перечислительная комбинаторика*. М.: Наука, 1990. 504 с.
- 2. Иванов О. Элементарная математика для школьников, студентов, преподавателей. М.: МЦМНО, 2009. 384c.
- 3. Ландо С.К. *Введение в дискретную математику.* М.:МЦНПО, 2012, 194с.
- 4. Ландо С.К. *Лекции о производящих функциях.* М.: МЦНМО, 2007. 144 с.
- 5. Hirschhorn M.D. and Sellers J.A. *A different view of m-ary partitions*//Australasian J. Combinatorics, 30 (2004), pp. 193-196.
- 6. Sloane N., Sellers J. *On non-squashing partitions* // Discrete Math., 294 (2005), P. 259-274. (§ 4).
- 7. Rodseth O., Sellers J. *On m-ary partition function congruences* // J. of Number Theory 87, no. 2(2001), pp. 270-281.