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Phenomenological problems of the Standard Model

Gauge fields (interactions) – γ, W±, Z , g
Three generations of matter: L =

(
νL
eL

)
, eR; Q =

(
uL
dL

)
, dR, uR

Describes
I all experiments dealing with electroweak and strong interactions

Does not describe
I Neutrino oscillations :

active neutrino masses
via mixing

I Dark matter (ΩDM ) :
sterile neutrino as DM

I Baryon asymmetry :
leptogenesis via sterile
neutrino decays or
oscillations

I Sterile neutrinos explain
the oscillations

I and the cosmological
problems

Dmitry Gorbunov (INR) Sterile Neutrino Dark Matter 08.12.2016, II Petrov School 2 / 76



ИI
ЯN
ИR

Phenomenological problems of the Standard Model

Gauge fields (interactions) – γ, W±, Z , g
Three generations of matter: L =

(
νL
eL

)
, eR; Q =

(
uL
dL

)
, dR, uR

Describes
I all experiments dealing with electroweak and strong interactions

Does not describe
I Neutrino oscillations :

active neutrino masses
via mixing

I Dark matter (ΩDM ) :
sterile neutrino as DM

I Baryon asymmetry :
leptogenesis via sterile
neutrino decays or
oscillations

I Sterile neutrinos explain
the oscillations

I and the cosmological
problems

Dmitry Gorbunov (INR) Sterile Neutrino Dark Matter 08.12.2016, II Petrov School 2 / 76



ИI
ЯN
ИR

Phenomenological problems of the Standard Model

Gauge fields (interactions) – γ, W±, Z , g
Three generations of matter: L =

(
νL
eL

)
, eR; Q =

(
uL
dL

)
, dR, uR

Describes
I all experiments dealing with electroweak and strong interactions

Does not describe
I Neutrino oscillations :

active neutrino masses
via mixing

I Dark matter (ΩDM ) :
sterile neutrino as DM

I Baryon asymmetry :
leptogenesis via sterile
neutrino decays or
oscillations

I Sterile neutrinos explain
the oscillations

I and the cosmological
problems

Dmitry Gorbunov (INR) Sterile Neutrino Dark Matter 08.12.2016, II Petrov School 2 / 76



ИI
ЯN
ИR

Sterile neutrinos: NEW ingredients

One of the optional physics beyond the SM:

sterile: new fermions uncharged under the SM gauge group
neutrino: explain observed oscillations by mixing with SM (active)

neutrinos

Attractive features:

possible to achieve within renormalizable theory
only N = 2 Majorana neutrinos needed
baryon asymmetry via leptogenesis
dark matter (with N ≥ 3 at least)
light(?) sterile neutrinos might be responsible for neutrino
anomalies. . . ?

Disappointing feature:

Major part of parameter space is UNTESTABLE
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Brief note on SM Neutrino properties
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Introducing neutrinos

W. Pauli (1930)

Conserves the energy (experimental positron
spectrum is continuous !)

Nucleus(A,Z )→ Nucleus(A,Z + 1) + e + ?

Conserves the angular momentum (fermions!
spins! Chemistry. . . Pauli principle)

n → p + e + ν̄e

Spins:
1
2
→ 1

2
1
2

1
2

Conserves leptonic numbers Le, Lµ , Lτ

Le (n) = 0 =⇒ Le (ν̄e) =−Le (e)

Le (νe) =−Le (ν̄e)
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Direct searches for mν : cut in e-spectrum

T→ 3He + e + ν̄e

(pnn)→ (ppn) + e + ν̄e

INR RAS, 1990-2000 years: mν̄e . 2 eV

Cosmology:
noticable contribution to Dark Matter at mν̄e ∼ 20 eV

present limits from cosmology:

∑
i

mνi . 0.4eV
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Neutrino oscillations
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Solar neutrinos: fusion p + p→ D + e+ + νe, . . .
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Neutrino oscillations
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Measurement of the solar neutrino flux

Sun: p + p→ 2H + e+ + νe Earth: 71Ga + νe→ 71Ge + e−
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Neutrino oscillations
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Solar neutrino deficit!!! confirmed (2 Nobel Prizes)

All neutrinos interact
similarly: can mix !

νe→ νµ

processes are forbidden in
SM with massless neutrinos
Something
must distinguish flavors
Neutrinos are massive!
SM in incomplete!
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Description of neutrino oscillations (I)

Two bases: gauge |να〉, α = e, µ, τ and mass |νi〉, i = 1,2,3

|νi〉= Uα i |να〉 with unitary PMNS 3×3 matrix Uα i

Neutrino mass matrix is then

Mαβ = 〈να |M|νβ 〉= (UM(m)U†)αβ , where M(m)
ij = miδij .

Free neutrino evolution in time and space

|νj(t)〉= e−imj t |νj(0)〉 |νj(t ,L)〉= e−i(Ej t−pj L)|νj(0)〉 ,

in ultrarelativistic case

pj =
√

E2−m2
j = E −m2

j /2E |νj(L)〉= e−i
m2

j
2E L|νj(0)〉 .
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Description of neutrino oscillations (II)

Neutrino effective Hamiltonian

|νj (L)〉= e−i
m2

j
2E L|νj (0)〉 → Heff =

M2

2E

Transition amplitude of neutrino να to neutrino νβ is

A(α → β ) = ∑
j
〈νβ |νj (L)〉〈νj (0)|να 〉= ∑

j
〈νβ |νj 〉e−i

m2
j

2E L〈νj |να 〉= ∑
j

Uβ je
−i

m2
j

2E LU∗
α j

and the transition probability ∆m2
ji ≡m2

j −m2
i

P(να → νβ ) = |A(α → β )|2

= δαβ −4∑
j>i

Re[U∗
α jUβ jUα iU

∗
β i ]sin2

(
∆m2

ji

4E
L

)

+ 2∑
j>i

Im[U∗
α jUβ jUα iU

∗
β i ]sin

(
∆m2

ji

2E
L

)
,
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Description of neutrino oscillations (III)

Two-neutrino oscillations: transition probability

P(να → νβ 6=α ) = sin2 2θ ·sin2
(

∆m2

4E
L
)

,

Two-neutrino oscillations: survival probability

P(να → να ) = 1−sin2 2θ ·sin2
(

∆m2

4E
L
)

Oscillation length

Losc =
4πE
∆m2 = (2.5 km) · E

GeV
eV2

∆m2
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Neutrino oscillations: masses and mixing angles
Solar 2×2 “subsector” Atmospheric 2×2 “subsector”

)θ(22sin
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MINOS 90%

MINOS 68%

MINOS best oscillation fit

Super−K 90%

Super−K L/E 90%

K2K 90%

http://hitoshi.berkeley.edu/neutrino/ arXiv:0806.2237

m1 > 0.008 eV m2 > 0.05 eV

DAYA-BAY, RENO, T2K: sin2 2θ13 ≈ 0.08

Dmitry Gorbunov (INR) Sterile Neutrino Dark Matter 08.12.2016, II Petrov School 17 / 76
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Active neutrinos: normal and inverted hierarchy

Only mass squared are fixed, neutrino masses are

model-dependent to be determined by T2K&Noνae
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Physics behind the oscillations: sterile neutrinos?
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Active neutrino masses without new fields

Dimension-5 operator ∆L = 2

L (5) =
βL

4Λ
Fαβ L̄αH̃H†Lc

β
+ h.c.

Lα are SM leptonic doublets, α = 1,2,3, H̃a = εabH∗b , a,b = 1,2; in a unitary gauge

HT =
(

0,(v + h)/
√

2
)

and

L
(5)

νν =
βLv2

4Λ

Fαβ

2
ν̄αν

c
β

+ h.c.

hence

Λ∼ 3×1014 GeV×βL×
(

3×10−3 eV2

∆m2
atm

)1/2

The model has to be UV-completed at the neutrino scale Λν < Λ

What is beyond the neutrino scale Λν ?
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Physics behind the oscillations: sterile neutrinos?
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Sterile neutrino lagrangian

Most general renormalizable with 2(3. . . ) right-handed neutrinos NI

LN = N I i/∂NI− fαILαH̃NI−
MNI

2
N

c
I NI + h.c.

Parameters to be determined from experiments

9(7): active neutrino sector

2 ∆m2
ij : oscillation

experiments
3 θij : oscillation experiments
1 CP-phase: oscillation

experiments
2(1) Majorana phases: 0νee,

0νµµ

1(0) mν : 3H→3 He + e + ν̄e,
cosmology, . . .

11: N = 2 sterile neutrinos
( works if mν = 0 !!!)

2: Majorana masses MNI
9: New Yukawa couplings fαI

which form
2: Dirac masses MD = f 〈H〉
3+1: mixing angles
2+1: CP-violating phases

4 new parameters in total

check number! b

18: N = 3 sterile neutrinos:

3: Majorana masses MNI
15: New Yukawa couplings fαI

which form
3: Dirac masses MD = f 〈H〉
3+3: mixing angles
3+3: CP-violating phases

9 new parameters in total

check number! b

Profit: can suggest why neutrinos are so light, mν ∼ 0.1−0.01 eV
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Physics behind the oscillations: sterile neutrinos?
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Seesaw mechanism: MN � 1 eV
With mactive . 1 eV we work in the seesaw (type I) regime:

LN = N I i/∂NI − fαILα H̃NI −
MNI

2
N

c
I NI + h.c.

When Higgs gains 〈H〉= v/
√

2 we get in neutrino sector triplet Higgs φ (type II) L̄φL→mν νν

VN = v
fαI√

2
να NI +

MNI

2
N

c
I NI + h.c. =

(
ν1 , . . .N

c
1 . . .

) 0 v f̂√
2

v f̂ †
√

2
M̂N

(ν1 , . . .N1 . . .)T

Then for MN � M̂D = v f̂√
2

we find the eigenvalues:

' M̂N and M̂ν =−(M̂D)† 1
M̂N

M̂D
∝ f 2 v2

MN
≪ MN

Mixings: flavor state να = Uα i νi + θαINI

active-active mixing: U†M̂ν U = diag (m1 ,m2 ,m3)

active-sterile mixing: θαI =
(MD)†

αI
MI

∝ f̂ † v
MN
� 1
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Physics behind the oscillations: sterile neutrinos?
ИI
ЯN
ИR

Producing the effective dim-5 operator at MN → ∞

i.e., integrating out the Heavy Sterile neutrinos
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l̄β lα

hh

h

l̄βh

lα

NI NI
y∗Iαy∗Iα y∗Iβ

y∗Iα

y∗Iβ

thus we obtain

∝
y2

MN
lhlh → (LH)(LH)

Λ
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Sterile neutrino scale
ИI
ЯN
ИR

Outline
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Sterile neutrino scale
ИI
ЯN
ИR

Seesaw mechanism: sterile neutrino scale
For MN � M̂D = v f̂√

2
we found the eigenvalues:

' M̂N and M̂ν =−(M̂D)† 1
M̂N

M̂D
∝ f 2 v2

MN
≪ MN

SEESAW says nothing about the sterile neutrino scale MI !

Unitarity: f . 1 =⇒ MN . 3×1014 GeV ×
(

3·10−3 eV2

∆m2
atm

)1/2
−→ Λ in (LH)2/Λ

At given MN without fine tuning the scale of Yukawas f̂ and strength of active-sterile mixing

θαI =
(MD)†

αI
MI

∝ f̂ v
MN
� 1 are fixed 1203.3825

With fine tuning in f̂ † f̂ can have
larger f :

and change the Higgs mass
window

dλ

d log µ
∝ λ

2 +λ tr(f̂ † f̂ )−tr(f̂ † f̂ f̂ † f̂ )

m2
h = 2λv2 10
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10

15
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Sterile neutrino scale
ИI
ЯN
ИR

Where is sterile neutrino scale?

eigenvalues: ' M̂N and M̂ν =−M̂D T 1
M̂N

M̂D
∝ f 2 v2

MN
≪ MN

SEESAW says nothing about the sterile neutrino scale MN !

Unitarity: f . 1 =⇒ MN . 3×1014 GeV ×
(

3·10−3 eV2

∆m2
atm

)1/2
−→ Λ in (LH)2/Λ

Integrating out sterile neutrinos get dim-5 operator −fαILα H̃NI −
MNI

2 N
c
I NI → f 2(LH)2/MN

SM Higgs without NP at EW-scale favors sterile neutrinos at EW-scale (or below) !

Majorana mass violates scale-invarinace =⇒ finite corrections δm2
h ∝ f 2M2

N

Scale invariance helps to abandon infinite corrections δm2
h ∝ f 2Λ2M2

N

In SM scale invariance is broken by the Higgs mass and running of coupling constants
T µ

µ ∝ β(α)× Ô +
(
m2

h + αΛ2)×h2 =⇒ quadratic divergences are irrelevant

W.Bardeen (1995)
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Sterile neutrino scale
ИI
ЯN
ИR

Sterile neutrino mass scale: M̂ν =−v2f̂ T M̂−1
N f̂

NB: With fine tuning in M̂N and f̂ we can get a hierarchy in sterile
neutrino masses, and 1 keV and even 1 eV sterile neutrinos

Le −Lµ −Lτ or discrete symmetries
Froggatt-Nielsen mechanism

Extended seesaw

10−13 10−7 0.1 105 1011 1017
10−17
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10−5
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16
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Majorana mass, GeV

Y
u

k
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a 
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u
p
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n

g

neutrino masses

are too large

neutrino masses are too small

strong coupling

Seesaw diagram
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Bonus: What else can we get depending on mass?
ИI
ЯN
ИR
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Bonus: What else can we get depending on mass?
ИI
ЯN
ИR

Bonus: depends on the sterile neutrino mass range

NB: With fine tuning in M̂N and f̂ † f̂ we can get a hierarchy in sterile
neutrino masses, and 1 keV and even 1 eV sterile neutrinos

Le −Lµ −Lτ or discrete symmetries

b Prove: Froggatt-Nielsen mechanism
If Tr[f †f ]v2 > Tr[M̂†

N M̂N ] Extended seesaw

Then Max m2
i > Tr[f †f ]v2
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Y
u
k
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a 
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u
p
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n
g

neutrino masses

are too large

neutrino masses are too small

strong coupling

There are different regions:

MN ∼ 1 eV-5 GeV

keV-scale dark matter

BAU via leptogenesis

Neutrino anomalies
(1 eV sterile neutrinos?)

direct searches!

MN ∼ 50 GeV-5 TeV

BAU via leptogenesis

f ∼ 10−6 ' Ye

but with fine tuning or new
global or gauge symmetries
(e.g. SU(2)L×SU(2)R )

direct searches at LHC

MN ∼ 1012-1014 GeV

BAU via leptogenesis

f ' 0.01−1

Untestable. . . ?
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Bonus: What else can we get depending on mass?
ИI
ЯN
ИR

Lepton asymmetry δ at 1-loop level yIα L̄αNIH̃

��
��
��
��

��
��
��
��

�
�
�
�

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

������������

lαlα lα

N1N1N1

hh h

y1α y∗1β
y∗1β

yIβ yIα

yIα

yIβ

NINI

h
h

l̄β l̄β

Γ(N1→ lh) =
M1

8π
·∑

α

∣∣∣∣∣y1α +
1

8π
∑
β ,I

f
(

M1

MI

)
·y∗1β

yIα yIβ

∣∣∣∣∣
2

, mν �MI

δ ≡ Γ(N1→ lh)−Γ(N1→ l̄h)

Γtot
=

1
8π

∑
I=2,3

f
(

M1

MI

)
·

Im
(
∑α y1α y∗Iα

)2
∑γ |y1γ |2

.

M2,3�M1 , f
(

M1

MI

)
=−3

2
M1

MI
, δ =−3M1

16π

1
∑γ |y1γ |2 ∑

αβ I
Im
[
y1α y1β

(
y∗Iα

1
MI

y∗Iβ

)]
.
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Bonus: What else can we get depending on mass?
ИI
ЯN
ИR

Heavy sterile neutrinos: MN ' 1 keV-5 GeV νMSM
T.Asaka, S.Blanchet, M.Shaposhnikov (2005)

Good fact: small finite quantum corrections δm2
H ∝ f 2M2

N �m2
H

True low-energy scale modification of the SM
Good fact: At T > 100 GeV active-sterile neutrino oscillations produce lepton asymmetry in
the early Universe, if ∆MN �MN E.Akhmedov, V.Rubakov, A.Smirnov (1998)

To make phenomenologically complete: Dark Matter?
I NOT a seesaw neutrino! mν �matm,sol general statement

τN→3ν ∼ 1/
(
G2

F M5
N θ 2

αN
)
∼ 1/

(
G2

F M4
Nmν

)
∼ 1011 yr (10keV/MN )4

either decay or equilibrate and then contribute to hot dark matter
I production in primordial plasma due to mixing with active neutrinos is ruled out from

searches at X-ray telescopes

s
in

2
(2

θ 1
)
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P
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e
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e
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y
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s
tr

a
in

ts

X-ray constraints

ΩN1
 > ΩDM

L
6=25
L
6=70

NRP

L6
max

=700
BBN limit: L6

BBN
 = 2500

ΓN→νγ ' 5.5×10−22
θ

2
1

(
M1

1 keV

)5
s−1 a narrow line (δEγ/Eγ ∼ v ∼ 10−3)

at Eγ = MN/2

I Possible for 1-50 keV (WDM-CDM range) either with further unbelievable fine-tuning
in MNI

(∆MN ∼ 10−7 eV) to get L� B and use the resonant production
or with ANOTHER source of production, e.g. inflaton decays..

M.Shaposhnikov, I.Tkachev (2006), F.Bezrukov, D.G. (2009)
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Bonus: What else can we get depending on mass?
ИI
ЯN
ИR

Light sterile neutrinos: MN . 1 eV

For MN ∼mν generally the active-sterile mixing is not small, θse ∼ 1−0.1 . . .
Is it dangerous? acceptable? preferable?

Some 5 years ago It was preferable!

They participate with active neutrinos in oscillations...
(Neutrino anomalies at:
LSND, gallium experiments, MiniBooNE, reactor experiments)
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Bonus: What else can we get depending on mass?
ИI
ЯN
ИR

LSND & MiniBooNE anomalies in ν̄µ → ν̄e
Ev
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νe for νµ mode at MiniBooNE: no LSND-like effects, NuFuct2011, 1201.1519

However Low energy excess of νe LSND-like oscillations are preferable
Explanation by νµ → N, N→ γν , S.Gninenko (2007,2010) only at 90%CL
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Bonus: What else can we get depending on mass?
ИI
ЯN
ИR

Gallium anomaly: SAGE and GALLEX, νe→ N ?
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Bonus: What else can we get depending on mass?
ИI
ЯN
ИR

Reactor anomaly: ν̄e→ N ?
G.Mention et al. (2011)
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anomaly. . .

see 1204.5379
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Bonus: What else can we get depending on mass?
ИI
ЯN
ИR

Light sterile neutrinos: MN . 1 eV

Essentially no bounds from kink searches,
and even from 0νββ
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Bonus: What else can we get depending on mass?
ИI
ЯN
ИR

Light sterile neutrinos: MN . 1 eV

For MN ∼mν generally the active-sterile mixing is not small, θse ∼ 1−0.1 . . .
Is it dangerous? acceptable? preferable?
Some 5 years ago It was preferable!
They participate with active neutrinos in oscillations...
(Neutrino anomalies at:
LSND, gallium experiments, MiniBooNE, reactor experiments)
No contribution to SM processes:

BrSM
W→µν̄

= BrW→µν̄ +BrW→µN̄ = BrSM
W→µν̄

×cos2
θ + BrSM

W→µν̄
×sin2

θ

BrSM
Z→νν̄

= BrZ→νν̄ +BrZ→Nν̄ +BrZ→νN̄ +BrZ→NN̄ = BrSM
Z→νν̄

×cos4
θ

+ BrSM
Z→νν̄

×cos2
θ ×sin2

θ + BrSM
Z→νν̄

×sin2
θ ×cos2

θ + BrSM
Z→νν̄

×sin4
θ

Impact on astrophysics (say, SN explosion) e.g., G.Raffelt (2010)

We certainly change cosmology... (BBN, CMB, structure formation, etc.)

ρr =

[
1 +

7
8

(
4

11

)4/3
Neff

]
ργ , Ων =

∑mνi

93h2 eV
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θ

BrSM
Z→νν̄

= BrZ→νν̄ +BrZ→Nν̄ +BrZ→νN̄ +BrZ→NN̄ = BrSM
Z→νν̄

×cos4
θ

+ BrSM
Z→νν̄

×cos2
θ ×sin2

θ + BrSM
Z→νν̄

×sin2
θ ×cos2

θ + BrSM
Z→νν̄

×sin4
θ

Impact on astrophysics (say, SN explosion) e.g., G.Raffelt (2010)

We certainly change cosmology... (BBN, CMB, structure formation, etc.)

ρr =

[
1 +

7
8

(
4

11

)4/3
Neff

]
ργ , Ων =

∑mνi

93h2 eV
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Bonus: What else can we get depending on mass?
ИI
ЯN
ИR�������������3He/H p

4He
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0.01 0.02 0.030.005

C
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B
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Baryon density Ωbh2

D___
H
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2

5
7Li/H p

Yp

D/H p

Yp = 0.2581±0.025 ,

D/H
∣∣
p = (2.87±0.21)×10−5

1103.1261
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N
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li
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h
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ω
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+
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2
H+

4
He

ω
b
+Y

CMB
+
2
H+

4
He

similar results from other recent
studies including structure formation

1001.4440, 1001.5218, 1202.2889

Nν < 4.2 @ 95%CL

Nν < 4.3 with shorter neutron’s life...
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Bonus: What else can we get depending on mass?
ИI
ЯN
ИR

Light sterile neutrinos at recombination and later

With larger Nν and fixed ΩM we get later
RD/MD transition, hence:

DM perturbations start to grow
δρDM/ρDM ∝ a later

gravity potential evolution changes later

oscillations in baryon-photon plasma
change

CMB is sensitive to
(
Teq −Trec

)
!

LSS is sensitive to Teq
if initial δρDM/ρDM is fixed

Sterile neutrinos become nonrelativistic at
T ∼Mνs/3∼ 0.1−0.3 eV . . .

neutrinos start to contribute to ρM ∝ 1/a3

neutrino perturbations of large lengths
contribute to DM perturbations δρM

neutrino perturbations of small scales
disappear because of free streaming
(Landau damping)

oscillations in baryon-photon plasma
change

LSS is sensitive to both Nν and Mνs . . .
Not to forget about active neutrino masses!

1 eV neutrino contributes to dark matter but only a tiny amount!
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Bonus: What else can we get depending on mass?
ИI
ЯN
ИR

LSS: SZ-clusters, Weak lensing of CMB

∆Nν amplifies shear
power: cancel with
quintessence
contribution and
flattening of spectrum,
ns→ 1
MN reduces power

Neff = 3 → Mν < 0.46eV

Mν = 0 → Neff = 3.8±0.4

Mν < 0.62eV → Neff = 3.9±0.4
1212.3608

!DM h2

nn
u
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3
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6

!DMh2

N
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f

nsns

nn
u
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5

6
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Bonus: What else can we get depending on mass?
ИI
ЯN
ИR

Combined analysis for sterile and active neutrinos
WMAP7+LRG+HST

m
ν

N
ν

s
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m
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s
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ν
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m
ν

s
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0
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0.2
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0.4
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flat ΛCDM 1102.4774

CMB+SDSS+HST

Mνs = 0

mν = 0
flat ΛCDM 1006.5276

LSND+MiniBooNE

H

H

0.1 1 10

∆m
2

41

0.1

1

10

∆
m

2 5
1

0.1 1 10
0.1

1

10

90%, 95%, 99%, 99.73% CL (2 dof)

3+2

1+3+1

1103.4570

“3+1” :
∆m2

41 = 1.76eV2 , |Ue4|= 0.151
“3+2” :
∆m2

41 = 0.46eV2 , |Ue4|= 0.108
∆m2

51 = 0.89eV2 , |Ue5|= 0.124
BBN rules out “3+2”

For “3+1” to allow MN & 1 eV for CMB and

LSS we need a new ingredient

talk by A.Starobinsky
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Bonus: What else can we get depending on mass?
ИI
ЯN
ИR

Light sterile neutrinos: MN . 1 eV

For MN ∼mν generally the active-sterile mixing is not small, θse ∼ 1−0.1 . . .
Is it dangerous? acceptable? preferable?

Some 5 years ago It was preferable! Now it seems forbidden

They participate with active neutrinos in oscillations...
(Neutrino anomalies at:
LSND, gallium experiments, MiniBooNE, reactor experiments)

No contribution to SM processes:

BrSM
W→µν̄

= BrW→µν̄ +BrW→µN̄ = BrSM
W→µν̄

×cos2
θ + BrSM

W→µν̄
×sin2

θ

BrSM
Z→νν̄

= BrZ→νν̄ +BrZ→Nν̄ +BrZ→νN̄ +BrZ→NN̄ = BrSM
Z→νν̄

×cos4
θ

+ BrSM
Z→νν̄

×cos2
θ ×sin2

θ + BrSM
Z→νν̄

×sin2
θ ×cos2

θ + BrSM
Z→νν̄

×sin4
θ

Impact on astrophysics (say, SN explosion, if needed) e.g., G.Raffelt (2010)

We certainly change cosmology...
(BBN, CMB, structure formation, etc.)

Either special symmetry or not a seesaw: 1 eV by hand
possible motivation: Mirror World?
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Bonus: What else can we get depending on mass?
ИI
ЯN
ИR

Experiment Daya Bay: ν̄e→ ν̄e

Dmitry Gorbunov (INR) Sterile Neutrino Dark Matter 08.12.2016, II Petrov School 44 / 76



Bonus: What else can we get depending on mass?
ИI
ЯN
ИR

Experiment MINOS: ν̄µ → ν̄µ , νµ → νµ ,
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Bonus: What else can we get depending on mass?
ИI
ЯN
ИR

Looks like the anomaly is closed . . . ? 1607.01177

24θ2sin

3−10 2−10 1−10 1

)2
 (

eV
412

m∆

4−10

3−10

2−10

1−10

1

10

210
MINOS 90% C.L. Exclusion

Feldman-Cousins Method

 MethodsCL

14θ22sin
3−10 2−10 1−10 1

)2
 (

eV
412

m∆

4−10

3−10

2−10

1−10

1

10

210

90% C.L.
Daya Bay
Bugey-3 original RS
Bugey-3 reproduced
Daya Bay/Bugey-3 (reproduced) 2|4µU|2|e4U = 4|eµθ22sin

6−10 5−10 4−10 3−10 2−10 1−10 1

)2
 (

eV
412

m∆

4−10

3−10

2−10

1−10

1

10

210
90% C.L. Allowed

LSND
MiniBooNE

 mode)νMiniBooNE (

90% C.L. Excluded
NOMAD
KARMEN2
MINOS and Daya Bay/Bugey-3
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Bonus: What else can we get depending on mass?
ИI
ЯN
ИR

CMB lensing is far from canonical

1304.6217
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Dark Matter
ИI
ЯN
ИR

Outline

1 Brief note on SM Neutrino properties

2 Neutrino oscillations

3 Physics behind the oscillations: sterile neutrinos?

4 Sterile neutrino scale

5 Bonus: What else can we get depending on mass?

6 Dark Matter

7 Dark Matter Sterile Neutrino

8 Conclusion
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Dark Matter
ИI
ЯN
ИR

Interplay: Standard Model and Cosmology

Gauge fields (interactions): γ, W±, Z , g
Three generations of matter: L =

(
νL
eL

)
, eR; Q =

(
uL
dL

)
, dR, uR

SM Describes
I all experiments dealing with electroweak and strong interactions

SM fails to describe (PHENO) (THEORY)
I Neutrino oscillations

I Dark matter (ΩDM )

I Baryon asymmetry (ΩB)

I Inflationary stage

I Dark energy (ΩΛ)

I Strong CP-problem

I Gauge hierarchy

I Quantum gravity

Cosmology asks for new physics and limits neutrino mass
severely constrains many BSM relaxation..?
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Dark Matter
ИI
ЯN
ИR

Astrophysical and cosmological data are in agreement

0.0 0.5 1.0

0.0

0.5

1.0

1.5

2.0

F
la
tBAO

CMB

SNe

No Big Bang (
ȧ
a

)2

= H2 (t) =
8π

3
G ρ

energy
density

ρ
energy
density = ρradiation +ρ

ordinary
matter +ρ

dark
matter +ρΛ

ρradiation ∝ 1/a4(t) , ρmatter ∝ 1/a3(t) , ρΛ = const

3H2
0

8πG
= ρ

energy
density(t0)≡ ρc ≈ 0.53×10−5 GeV

cm3

Radiation: Ωγ ≡
ργ

ρc
= 0.5×10−4

Baryons (H, He): ΩB ≡ ρB
ρc

= 0.05

Neutrino: Ων ≡
∑ρνi

ρc
< 0.01

Nν ' 3 , ∑mν . 0.2 eV

Dark matter: ΩDM ≡ ρDM
ρc

= 0.27
Dark energy: ΩΛ ≡ ρΛ

ρc
= 0.68
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Dark Matter
ИI
ЯN
ИR

Dark Matter Properties

– dust-like pressureless component, p = 0
– clumping substance, gets confined in structures

If particles (or compact macroscopic objects):
1 stable on cosmological time-scale
2 electrically neutral
3 decoupled from visible matter
4 nonrelativistic long before RD/MD-transition, vRD/MD . 10−3

free streaming prevents formation of small-scale structures
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Dark Matter
ИI
ЯN
ИR

Key observable: matter perturbations
CMB is isotropic, but “up to corrections, of course...”

1 Earth movement with respect to CMB
∆Tdipole

T ∼ 10−3

2 More complex anisotropy: ∆T
T ∼ 10−4

There were matter inhomogenities ∆ρ/ρ ∼∆T/T at
the stage of recombination (e + p→ γ + H∗) =⇒
Jeans instability in the system of gravitating particles at
rest =⇒ ∆ρ/ρ ↗ galaxies (CDM halos)

∆ρDM /ρDM ∝ a ∝ 1/T from T = 0.8 eV,
while ∆ρB/ρB ∝ a ∝ 1/T only after recombination

T = 0.25 eV
without DM total growth factor would be 1100

not enough to explain structures!
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Dark Matter
ИI
ЯN
ИR

On top of that: propagation in expanding Universe
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Dark Matter
ИI
ЯN
ИR

CDM Problems at small-scales . . . ?
NFW profile fits nicely DM in galaxy clusters ρ ∝ r−1(r + rc)−2

Dwarf galaxy density profiles: ρM (r) ∝ r−(0.5−1.5) cusp
most DM-dominated objects

Cores observed (?) 5 Clusters in the Fornax dSph
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Dark Matter
ИI
ЯN
ИR

CDM Problems . . . ?

Missing satellites: dNobj
d lnM ∝

1
M no-scale 100 instead of 1000

“Too big to fail” problem

Solved (?) by Warm Dark Matter (sterile neutrino, gravitino) free-streaming

(
dNobj
d lnM

)
WDM

/
(

dNobj
d lnM

)
CDM

log10 M/M�
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Dark Matter
ИI
ЯN
ИR

Dark Matter properties from cosmology: p = 0

(If) particles:
1 stable on cosmological time-scale

requires new (almost) conserved quantum number
2 produced in the early Universe

some time before RD/MD-transition (T = 0.8 eV)
3 nonrelativistic particles long before RD/MD-transition (T = 0.8 eV)

(either Cold or Warm, vRD/MD . 10−3)
Otherwise no small-size structures, like dwarf galaxies:

smoothed out by free streaming
If were in thermal equilibrium: MX & 1 keV

4 (almost) collisionless p = 0, vsound = 0
5 (almost) electrically neutral CMB distortion
6 all matter inhomogeneities (perturbations) are adiabatic:

δ

(
nB

nDM

)
= δ

(
nB

nγ

)
= δ

(
nν

nγ

)
= 0
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Dark Matter
ИI
ЯN
ИR

Dark Matter properties from astrophysics

1 stable on cosmological time-scale
2 (almost) collisionless to form ellipsoidal halos
3 (almost) electrically neutral to be Dark
4 stability of globular stellar clusters MX . 103M� ≈ 1061 GeV

otherwise too strong tidal forces
5 confinement in a galaxy: quantum physics!

de Broglie wavelength: λ = 2π/(MXvX) < lgalaxy, for bosons
in a galaxy vX ∼ 0.5 ·10−3 −→ MX & 3 ·10−22 eV

for fermions
Pauli blocking: MX & 750 eV

f (p,x) =
ρX(x)

MX

· 1(√
2πMXvX

)3 ·e
− p2

2M2
Xv2

X

∣∣∣∣∣
p=0

≤ gX

(2π)3
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Dark Matter
ИI
ЯN
ИR

TODAY2.7 K 14 by
accelerated expansion

4.4 K matter domination 7.7 by

0.26 eV recombination 370 ty e + p→ H + γ

matter domination
0.8 eV 50 ty

radiation domination

50 keV 5 min 3H + 4He→ 7Li + γ

primordial nucleosynthesis 2H + 2H→ n + 3He

1 MeV 1 s p + p→ 2H + γ

neutrino decoupling2.5 MeV 0.1 s

QCD transition confinement↔free quarks200 MeV 10 µs

Electroweak phase transition100 GeV 0.1 ns

hot Universe

reheating

inflation

dark matter production

baryogenesis
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Dark Matter
ИI
ЯN
ИR

Microscopic processes in the expanding Universe

A competition between scattering, decays, etc and expansion

for general processes one should solve kinetic equations
dnXi

dt
+ 3HnXi = ∑(production−destruction)

Boltzmann equation in a comoving volume: d
dt

(
na3)= a3 ∫ . . .

production:
σ(A + B→ X + C)nAnB, Γ(D→ E + X )nD ·MD/ED, etc

desrtuction:
σ(A + X → C + B)nAnX , Γ(X → F + G)nX ·MX/EX , etc

Fast direct and inverse processes, Γ & H, are in equilibrium,
∑( ) = 0 and thermalize particles
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Dark Matter
ИI
ЯN
ИR

Decoupling of relativistic Dark Matter

Assumptions
1 DM particles are in equlibrium in plasma
2 DM decouple from plasma at temperature Td & MX ,

so they are relativistic (e.g. neutrino)

nX (Td ) = gX ·
(

1
3
4

)
· ζ (3)

π2 T 3
d

Later on useful
nX a3 = const , sa3 = const =⇒ nX

s
= const = #

gX
g∗(Td )

DM particle mass MX fixes ΩX :

ΩX =
MX ·nX ,0

ρc
=

MX ·s0
ρc

n
s
≈ 0.2× MX

100 eV

(gX
2

)
·
(

100
g∗(Td )

)
– NO heavy stable feebly coupled to SM particles !
– NO realistic DM models:

Pauli blocking prevents fermionic DM
pX
MX

∝
ad
a ∼

3T
MX

(
g∗(T )
g∗(Td )

)1/3
too energetic for the proper structure formation
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Dark Matter
ИI
ЯN
ИR

Decoupling of relativistic Dark Matter

Can we save the relativistic Dark Matter ??

one can try, say, nonstandard cosmological evolution

with entropy production

1 hot stage (radiation domination) ρ ∝ 1/a4

2 add new nonrelativistic particles decoupled from plasma ρ ∝ 1/a3

3 later they start to dominate
intermediate stage of matter domination terminates before BBN !!

4 both relativistic DM density and entropy density drop
5 new nonrelativistic particles decay reheating the Universe T > 3 MeV

entropy production
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Dark Matter Sterile Neutrino
ИI
ЯN
ИR

Outline

1 Brief note on SM Neutrino properties

2 Neutrino oscillations

3 Physics behind the oscillations: sterile neutrinos?

4 Sterile neutrino scale

5 Bonus: What else can we get depending on mass?

6 Dark Matter

7 Dark Matter Sterile Neutrino

8 Conclusion

Dmitry Gorbunov (INR) Sterile Neutrino Dark Matter 08.12.2016, II Petrov School 61 / 76



Dark Matter Sterile Neutrino
ИI
ЯN
ИR

Dark Matter: non-thermal production

1 in the primordial plasma of SM particles
(via scatterings, oscillations): gravitino

sterile neutrino of 1-50 keV
2 at phase transitions:

axion of 10−4−10−7 eV
Q-balls

strangelets (?)
3 during reheating (after inflation?): black holes

any guy coupled (only) to inflaton
I perturbatively: inflaton decays

production by external (inflaton) field
I non-perturbatively: Bose-enhancement of

coherent production by external field
4 while the Universe expands:

gravity produces any particles at H ∼MX
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Dark Matter Sterile Neutrino
ИI
ЯN
ИR

Sterile neutrino: well-motivated Dark Matter

LN = N I i/∂NI − fαILα H̃NI −
MNI

2
N

c
I NI + h.c.

massive fermions giving mass to active neutrino through mixing

ma ∼
f 2v2

M2
N

MN ∼ θ
2MN

unstable, but exceeding the age of the Universe at condition

θ
2 < 1.5×10−7

(
50keV

MN

)5

can be searched for because of two-body radiative decay
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Dark Matter Sterile Neutrino
ИI
ЯN
ИR

Dark Matter decay observed in X-ray?
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Production in oscillations

∂

∂ t
fs−Hp

∂

∂p
fs = Γα P (να → νs) fα (t ,p) .

where Γα ∼G2
F T 4E is the weak interaction rate in plasma

P (να → νs) = sin2 2θ
mat
α ·sin2

(
t

2tmat
α

)
,

tmat
α =

tvac
α√

sin2 2θα + (cos2θα−Vαα · tvac
α )2

,

sin2θ
mat
α =

tmat
α

tvac
α

·sin2θα , tvac
α =

2E
M2

N

and effective plasma potential for active neutrinos

Vαα ∼−#G2
F T 4E+#GF T 2

µLα

resonant production in the lepton asymmetric plasma BAU-DM connection?
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Sterile neutrino Dark Matter

sin2 2θ , nνe and MN
to saturate ΩDM

larger asymmetry
106 nνe/s > 2500
is forbidden by BBN

above the solid line
“0.0” ΩN > ΩDM

selected upper limits
from X -ray telescopes

recall m > 0.75 keV for
fermionic DM
It can be refined
with estimates of
neutrino velocities 10
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Sterile neutrino Dark Matter

A.Schneider (2016)

Dmitry Gorbunov (INR) Sterile Neutrino Dark Matter 08.12.2016, II Petrov School 67 / 76



Dark Matter Sterile Neutrino
ИI
ЯN
ИR

Sterile neutrino Dark Matter: ... gone? A.Schneider (2016)
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Non-res. production

brown: MW satellite counts
green and yellow: Lyman-α production by inflaton
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νMSM parameter space with resonant DM
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L.Canetti, M.Drewes, M.Shaposhnikov 1204.3902
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νMSM is severely constrained 1609.00667
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Lightest sterile neutrino N1 as Dark Matter

Non-resonant production
(active-sterile mixing) is ruled out

Resonant production (lepton
asymmetry) requires
∆M2,3 . 10−16 GeV
arXiv:0804.4542, 0901.0011, 1006.4008
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Dark Matter production Not seesaw neutrino!

from inflaton decays in plasma at T ∼mχ M.Shaposhnikov, I.Tkachev (2006)

MNI N̄
c
I NI ↔ fIXN̄INI

Can be “naturally” Warm (250MeV < mχ < 1.8GeV) F.Bezrukov, D.G. (2009)

M1 . 15×
(

mχ

300 MeV

)
keV
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Summary on sterile neutrinos

Most economic explanation of neutrino oscillations within renormalizable
approach:
N = 2 Majorana neutrinos

Capable of explaining baryon asymmetry of the Universe
easily even with θ13 = δCP = 0

One more neutrino can serve as (naturally Warm) dark matter
this specia does not explain oscillations!
there are allowed mechanisms of DM sterile neutrino productions

1 eV- sterile neutrino is forbidden in cosmology, anomalies (LSND, . . . ) are
gone...? dark radiation
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Backup slides
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Indirect searches: ∆L = 2 processes

0νββ

D+→ µ+µ+K−, . . .
t → bµ+µ+W−

f1
f ′
1

f2
f ′
2

W−

W−

ℓ−i

ℓ−j

for light sterile neutrinos

〈m〉2`i `j
=

∣∣∣∣∣∑I
U`i IU`j IMNI

∣∣∣∣∣
2

for heavy sterile neutrinos∣∣∣∣∣∑I

V`i IV`j I

MNI

∣∣∣∣∣
2

,
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