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Введение.

Данная дипломная работа посвящена изучению таких свойств неотри-
цательных матриц, как частичная разложимость, вполне неразложимость,
минимальная вполне неразложимость и близость к частичной разложимо-
сти. Все эти свойства зависят от комбинаторной структуры, то есть от рас-
положения неотрицательных элементов матрицы, что позволяет рассмат-
ривать только (0, 1) – матрицы. С каждой матрицей порядка n естествен-
ным образом связан ориентированный граф с n вершинами. Некоторые
теоремы доказываются на языке матриц, а некоторые, используя теорию
графов. Работа состоит из оглавления,введения, 5-ти параграфов и списка
используемой литературы.

В §1 приводятся основные определения и критерии частично разложи-
мых матриц. Дается понятие перестановочной эквивалентности. В частно-
сти, доказано, что если матрица частично разложима, то и любая переста-
новочно эквивалентная ей матрица частично разложима. То есть частич-
ная разложимость есть свойство класса перестановочной эквивалентности.
Затем вводится определение вполне неразложимости.

Помимо общих критериев частичной разложимости и вполне нераз-
ложимости представляет интерес конкретные способы построения вполне
неразложимых матриц. Один из этих способов рассмотрен в §2.

В §3 показана связь между неразложимостью и вполне неразложимо-
стью. Доказано, что матрица A неразложима тогда и только тогда, когда
матрица E + A вполне неразложима.

В §4 даны определения матрицы близкой к частично разложимой и ми-
нимально вполне неразложимой матрицы. Оказывается, что минимально
вполне неразложимая матрица является близкой к частично разложимой.
Но обратное утверждение неверно.

Описанные выше результаты известны в литературе (см. [1], [3], [4],
[5]), но изложены в новом переработанном виде. В частности, используется
новый критерий вполне неразложимости матрицы, выраженный на языке
k-строчной подматрицы данной матрицы. Это облегчает изучение вполне
неразложимых матриц.

Основные результаты работы содержатся в §5. В нем выводятся канони-
ческие формы для минимально вполне неразложимых матриц относитель-
но перестановочной эквивалентности. Первая форма представляет интерес,
потому что она симметрична и просто построена. А вторая каноническая
форма не симметрична. Она выведена с помощью теоремы Синкхорна и
Кноппа. Эти результаты, по-видимому, являются новыми.
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§1.Критерии вполне неразложимости матриц.

Определение 1. Матрица А ≥ 0 порядка n называется частично раз-
ложимой, если существуют такие перестановочные матрицы U и V , что

UAV =

(
A1 0

A21 A2

)
,

где A1, A2– квадратные матрицы.
Данное определение, очевидно, эквивалентно следующему:
Определение 2. Матрица А ≥ 0 порядка n называется частично раз-

ложимой, если существуют такие перестановочные матрицы U и V , что

UAV =

(
A1 0

A21 A2

)
,

где 0–нулевая подматрица, сумма размеров которой равна n.
Будем говорить, что матрицы А и В перестановочно эквивалентные,

если существуют такие перестановочные матрицы U и V , что UAV = B.
Таким образом, матрицы перестановочно эквивалентны, если одна из них
преобразуется в другую подходящей перестановкой строк и некоторой пе-
рестановкой столбцов.

Утверждение 1. Бинарное отношение перестановочной эквивалетно-
сти, рассматриваемое на множестве матриц одного порядка, рефлексивно,
симметрично и транзитивно, то есть является отношением эквивалентно-
сти, в смысле употребляемом в теории бинарных отношений.

Доказательство. Пусть Мn– множество неотрицательных матриц по-
рядка n и задано бинарное отношение перестановочной эквивалентности
ρ ⊆ Мn ×Мn. То есть пара матриц А,В ∈ Мn принадлежит ρ , если А и
В перестановочно эквивалентны. Таким образом (A,B) ∈ ρ тогда и толь-
ко тогда, когда существуют U, V ∈ Mn такие, что UAV = B, где U, V –
перестановочные матрицы.

1) Докажем свойство рефлексивности ρ.
По определению ρ рефлексивно, если любое A ∈ Mn, то (A,A) ∈ ρ.

Действительно, любая матрица А перестановочно эквивалентна себе самой
(U, V− единичные матрицы). Следовательно, ρ рефлексивно.

2) Докажем симметричность ρ.
По определению ρ симметрично, если (A,B) ∈ ρ,

то (B,A) ∈ ρ
Возьмем любые перестановочно эквивалентные матрицы

А и В, то есть (A,B) ∈ ρ тогда и только тогда, когда существуют переста-
новочные матрицы U, V такие, что UAV = B. Домножим данное равенство
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на U−1 слева и на V −1 справа, получим U−1UAV V −1 = U−1BV −1, отсюда
следует, что
A = U−1BV −1.

По свойствам перестановочных матриц: матрица, обратная к переста-
новочной, является перестановочной. Следовательно, U−1, V −1 – переста-
новочные, то есть (B,A) ∈ ρ отсюда следует, что ρ симметрично.

3) Докажем транзитивность ρ.
По определению, ρ – транзитивно, если для любых матрицA,B,C ∈Mn

таких, что (A,B) ∈ ρ, (B,C) ∈ ρ, следует (A,C) ∈ ρ.
(A,B) ∈ ρ тогда и только тогда, когда существуют перестановочные

матрицы U, V такие, что UAV = B.
(B,C) ∈ ρ тогда и только тогда, когда существуют перестановочные

матрицы P,Q такие, что PBQ = C.
Домножим первое равенство на Р слева и Q справа:
PUAV Q = PBQ = C.
Обозначим R = PU , S = V Q. Так как P,U, V,Q – перестановочные

матрицы, то R, S – тоже перестановочные (по свойствам перестановочных
матриц).

Таким образом, существует перестановочные матрицы R, S такие, что
RAS = C, т.е. (A,C) ∈ ρ, следовательно ρ транзитивно.

То есть, бинарное отношение перестановочной эквивалентности являет-
ся отношением эквивалентности в смысле, употребляемом в теории бинар-
ных отношений.

Утверждение 2. Если матрица А частично разложима, то и любая
перестановочная эквивалентная ей матрица частично разложима.

Доказательство. Матрица А частично разложима, отсюда следует,
что существуют перестановочные матрицы U, V такие, что

UAV =

(
A1 0

A21 A2

)
,

где 0-нулевая подматрица, сумма размеров которой равна n. Матрицы А
и В перестановочно эквивалентны, если существуют перестановочные мат-
рицы P,Q такие, что выполняется равенство: A = PBQ.

Домножим последнее равенство на U слева и на V справа, получим

UAV = UPBQV =

(
A1 0

A21 A2

)
.

Обозначим S = UP , R = QV , тогда

SBR =

(
A1 0

A21 A2

)
,
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Так как U, P,Q, V - перестановочные матрицы, то S,R - тоже переста-
новочные. Следовательно B частично разложима.

Утверждение 2 доказывает, что частичная разложимость есть свойство
класса перестановочной эквивалентности: все матрицы из одного класса
либо частично разложимы, либо не являются частично разложимыми.

Лемма 1. Матрица А порядка n частично разложима тогда и только
тогда, когда выполняется любое из свойств:

1)А содержит нулевую подматрицу, сумма размеров которой равна n;
2) некоторые r строк матрицы А образуют подматрицу, содержащую не

более r ненулевых столбцов.
Доказательство. Если выполняется свойство 1), то перестановками

строк и столбцов можно "перегнать"нулевую r×s – подматрицу (r+s = n)
в правый верхний угол так, чтобы она занимала сплошное поле. В результа-
те этих перестановок первые r строк матрицы образуют подматрицу, содер-
жащую не более r ненулевых столбцов, причем левый верхний угол будет
занимать r × r подматрица. То есть, матрица А приобретет форму(

A1 0

A21 A2

)
.

Следовательно, A частично разложима.
Кроме того, из сказанного видно, что из свойства 1) вытекает свойство

2). Из свойства 2) свойство 1) следует совсем легко.
Определение 3. Матрица, не являющаяся частично разложимой, на-

зывается вполне неразложимой.
Из Леммы 1 автоматически следуют условия вполне неразложимости:
Теорема 1. Матрица А вполне неразложима тогда и только тогда, ко-

гда выполняется любое из следующих свойств:
1) сумма размеров любой нулевой подматрицы А строго меньше n;
2) в подматрице A, образованной любыми r строками (1 ≤ r < n),

ненулевых столбцов больше, чем r.
Следствие 1. Если матрица А вполне неразложима, то и матрица AT

вполне неразложима.
Доказательство. Действительно, при транспонировании А всякая ну-

левая подматрица с r строками и s столбцами преобразуется в нулевую
подматрицу с s строками и r столбцами – сумма размеров не меняется.
Поэтому если A вполне неразложима, то и AT вполне неразложима.

Следствие 2. Матрица A вполне неразложима тогда и только тогда,
когда в подматрице A, образованной любыми r столбцами (1 ≤ r < n),
ненулевых строк больше, чем r.

Доказательство. Докажем, лишь то, что если условие следствия вы-
полнено, то А вполне неразложима. Обратное утверждение очевидно. Транс-
понируем матрицу А. Подматрица матрицы А, образованная любыми r
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столбцами, где ненулевых строк больше, чем r, перейдет в подматрицу мат-
рицы AT с r строками, в которой ненулевых столбцов больше r. То есть
матрица AT будет вполне неразложима по свойству 2) теоремы 1. Тогда из
следствия 1 следует, что вполне неразложима матрица А = (AT )T .

Следствие 3. Каждая строка вполне неразложимой матрицы содер-
жит не меньше двух положительных элементов. То же верно и для столб-
цов.

Доказательство. По свойству 2) теоремы 1: матрица А вполне нераз-
ложима тогда и только тогда, когда в подматрице А, образованной любыми
r строками (1 ≤ r < n), ненулевых столбцов больше, чем r. Так как r = 1
и ненулевых столбцов k должно быть больше r, значит k > 1. То есть в
каждой строке должно быть ненулевых элементов больше единицы.

Транспонируем матрицу А, тогда ее столбцы станут строками AT . По
следствию 1 из вполне неразложимости А следует вполне неразложимость
AT . По доказанному выше каждая строка AT содержит 2 и более положи-
тельных элемента. Значит, то же верно и для столбцов A.

Замечание 1. Условие следствия 3 является необходимым для вполне
неразложимости. Для матриц порядка 2 и 3 оно является и достаточным
– см.§4. Но в общем случае выполнение этого условия недостаточно для
вполне неразложимости.

Пример:

A =


1 1 0 0

1 1 0 0

0 0 1 1

0 0 1 1


Для этой матрицы условие следствия 3 выполнено. Но она частично

разложима, в силу свойства 1) леммы 1. Более того она разложима. Ана-
логичные примеры легко построить для порядка n ≥ 4

Также для вполне неразложимых матриц можно привести утвержде-
ние, аналогичное утверждению 2.

Замечание 2. Наше исследование относится к неотрицательным мат-
рицам. Свойства вполне неразложимости зависят от расположения нену-
левых элементов, а не от конкретных значений положительных элементов,
поэтому мы будем работать с (0,1) матрицами.

Утверждение 3. Если матрица A вполне неразложима, то и любая
перестановочно эквивалентная ей матрица тоже вполне неразложима.

Приведем еще один полезный критерий вполне неразложимости.
Обозначим |x|+ количество положительных элементов строки х ≥ 0.
Теорема 2. Матрица А вполне неразложима тогда и только тогда, ко-

гда
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|x|+ < |xА|+,

для любой строки x (0 < |x|+ < n)
Доказательство. Пусть xi1, ..., xin – положительные элементы строки

х . Тогда j-й элемент строки xA равен

(xA)j =
r∑

k=1

xikaikj.

Этот элемент больше нуля тогда и только тогда, когда столбец

 ai1j...
airj


подматрицы А, образованной строками i1, ..., ir, содержит положительный
элемент. Следовательно, число |xA|+ равно количеству ненулевых столбцов
в этой подматрице. Теперь ясно, что условие |x|+ < |xА|+ эквивалентно
свойству 1) теоремы 1.

Из теоремы 2 вытекает, что вполне неразложимые матрицы образуют
полугруппу относительно умножения.

Следствие 4. Если матрицы А и В вполне неразложимы, то матрица
АВ тоже вполне неразложима.

Доказательство. Нужно доказать, что |x|+ < |x(АВ)|+, для любой
строки x (0 < |x|+ < n). Умножим х на А, в силу вполне неразложимости
А получим: |x|+ < |xА|+. Затем строку хА умножим на В и также в силу
вполне неразложимости В получим: |xА|+ < |x(АВ)|+. Это выполняется
лишь в том случае, пока число положительных элементов не достигнет
размерности матрицы. Иначе |x|+ = |x(АB)|+. Но из двойного неравенства
|x|+ < |xА|+ = |x(АВ)|+, следует, что |x|+ < |x(АВ)|+.

Утверждение 4 Если A1, ..., An−1 – вполне неразложимые матрицы
порядка n , то их произведение является положительной матрицей:

A1 · · ·An−1 > 0.

В частности, любая вполне неразложимая матрица примитивна.
Доказательство. Аналогично доказательству следствия 4.

То есть |x|+ < |x(А1)|+, т.к А1 вполне неразложима,
|x(А1)|+ < |x(А1A2)|+, т.к A2 вполне неразложима,
|x(А1A2)|+ < |x(А1A2A3)|+, т.к A3 вполне неразложима и т.д.

Когда количество положительных элементов в матрице-строке |x(A1...Ai)|+
достигнет величины n, тогда строгие неравенства заменим на равенство
|x(A1...Ak)|+ = |x(A1...Ak+1)|+. Положим, что x = ei, где ei-строка, в кото-
рой i-й элемент равен 1, а остальные элементы равны 0. Тогда | eiA1...Ak |
равно количеству положительных элементов i-й строки матрцы A1 · ... ·Ak.
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Таким образом в итоге получим:
0 < |ei|+ < |ei(А1)|+ < |ei(А1A2)|+ < ... < |ei(А1 · · ·Ak)|+ =
=|ei(А1 · · ·Ak+1)|+ = ... = |ei(А1 · · ·An−1)|+.
Ясно, что k ≤ n− 1. Следовательно, |ei(А1 · · ·An−1)|+ = n.
Так как i-любой номер строки, то матрица A1 · · ·An−1 – положительная.
Замечание 3. В терминах статьи [2] свойство, доказанное в утвержде-

нии 4, называется множественной примитивностью класса вполне неразло-
жимых матриц.

§2. Способы построения вполне неразложимых матриц.

Помимо общих критериев частичной разложимости и вполне нераз-
ложимости представляет интерес конкретные способы построения вполне
неразложимых матриц. Рассмотрим один из этих способов.

Пусть в матрице порядка n (
А В
С D

)
(1)

блоки А и D – квадратные вполне неразложимые матрицы, блоки В и
С ненулевые. Докажем, что вся матрица вполне неразложима.

Необходимым условием вполне неразложимости всей матрицы является
то, что блоки В и С ненулевые. Пусть это не так, тогда сумма размеров
блока В (а также С ) равно n − l + l = n. Это противоречит свойству 1)
теоремы 1.

Введем обозначения размерности подматриц матрицы (1)

l

n−l

(
A B

C D

)
l n−l

(2)

и докажем,что матрица вполне неразложима. То есть нужно показать, что
подматрица, составленная из любых k строк
(1 ≤ k < n), имеет больше, чем k ненулевых столбцов.

Рассмотрим 2 случая:
1) все k строк находятся в подматрице, составленной из блоков А и В.

l

n−l

(
А В
С D

)
Рассмотрим в ней подматрицу из k строк. Если k < l, то вполне нераз-

ложимость матрицы (2) обеспечивается матрицей А, т.к. там уже имеется
k + 1 ненулевых столбцов. Если же k = l, то вполне неразложимость бу-
дет благодаря блоку В, этот блок ненулевой, следовательно там есть хотя
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бы один ненулевой столбец. Благодаря этому, подматрица, составленная
из l строк будет содержать не меньше l + 1 ненулевых столбцов. Если все
k строк находятся в подматрице, составленной из блоков C и D, вполне
неразложимость матрицы (2) обеспечивается таким же образом.

2) k = k1 + k2, где k1 строк находятся в подматрице, составленной из
блоков А и В, а k2 в подматрице, составленной из блоков С и D. Можно
считать, что k1 ≥ 1, k2 ≥ 1 так как случаи k = k1 ⇒ k2 = 0 и k = k2 ⇒
k1 = 0 разобраны в п.1)

Пусть k1 < l, тогда ненулевых столбцов в k-строчной подматрице не
меньше, чем k1+ k2+1 = k+1. Поскольку вполне неразложимая матрица
содержит не меньше чем k1 + 1 ненулевых столбцов. Аналогично, когда
k2 < n− l.

Значит, матрица (1) вполне неразложима.
Эта задача – частный случай теоремы [1, теорема 4.2, стр 84]. В книге

приводится доказательство "от противного". Мы приведем прямое доказа-
тельство, основанное на иных соображениях.

Теорема 3. Пусть в матрице

K =


A1 B1 0 · · · 0
0 A2 B2 · · · 0
· · · · · · · · · · · · · · ·
Bm 0 0 · · · Am

 (3)

блоки A1, ..., Am – квадратные вполне неразложимые матрицы, а блоки
B1, ..., Bm – ненулевые. Тогда матрица вполне неразложима.

Доказательство. Докажем вполне неразложимость матрицы K , ис-
пользуя условие 2) теоремы 1. Пусть n1, ..., nm – порядки блоков A1, ..., Am.
Рассмотрим произвольно взятую подматрицу Н , составленную из k (k < n)
строк. Обозначим через ki1, ki2, ..., kis, (ki1 + ki2 + ...+ kis = k)
ненулевые количества строк этой подматрицы, пересекающих блоки
Ai1, Ai2, ..., Ais (i1 < i2 < ... < is < m).

Рассмотрим 2 случая.
1. ki1 = ni1, ..., kis = nis.

В этом случае матрица H содержит ki1 + ...+ kis ненулевых столбцов плюс
еще хотя бы один столбец, который обеспечивается ненулевой матрицей Bis

(или Bm, если i1 > 1).
2. Cуществует номер i, такой , что ki < ni. Поскольку Ai вполне нераз-

ложима, то матрица H содержит не меньше, чем ki + 1 ненулевых столб-
цов, пересекающих матрицу Ai. всего же в матрице H не меньше, чем
k1 + ...+ ks = k + 1 ненулевых столбцов. Теорема доказана.
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Замечание 4. Анализ доказательства теоремы 3 показывает, что про-
веденные рассуждения остаются верными для любой блочной матрицы,
которая содержит в каждой блочной строке и каждом блочном столбце:

1) одну квадратную вполне неразложимую подматрицу,
2) одну ненулевую подматрицу.
Всего же в каждом блочном ряду две ненулевые подматрицы. Таким

образом, мы имеем обобщение теоремы 3.
Например, матрица может иметь форму A1 B1 0

B2 0 A2

0 A3 B3

 или

 B1 0 A1

0 A2 B2

A3 B3 0

 .

§3. Связь между неразложимостью и вполне неразложимостью
матрицы.

Известное определение разложимой матрицы гласит: матрица А разло-
жима, если существует такая перестановочная матрица U , что

UAUT =

(
A1 0

A21 A2

)
, где A1, A2– квадратные матрицы.

Если такой матрицы U не существует, то матрица А называется нераз-
ложимой.

Ясно, что разложимая матрица частично разложима. Но легко приве-
сти пример неразложимой матрицы, которая частично разложима. Матри-
ца

A =

 0 1 0

0 0 1

1 1 1

–частично разложима, по следствию 3.

Определение 4. Граф матрицы– это ориентированный граф, такой
что дуга ведет из вершины i в вершину j, тогда и только тогда, когда aij
элемент матрицы не равен нулю.

Известно, что матрица A = (aij) порядка n неразложима, если ее граф
является сильно связным.

А в нашем примере граф матрицы A сильно связный, что означает
неразложимость A.

Связь между неразложимостью и вполне неразложимостью видна из
следующей теоремы.
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Теорема 4. Для того, чтобы матрица A ≥ 0 была неразложима необ-
ходимо и достаточно, чтобы матрица Е + А была вполне неразложима.

Доказательство. Достаточность докажем от противного. Пусть мат-
рица А разложима, значит существует перестановочная матрица:

UAUT =

(
A1 0

A21 A2

)
, где A1, A2– квадратные матрицы.

Вычислим

U(E + A)UT = UEUT + UAUT =

(
E1 + A1 0

A21 E2 + A2

)
.

Здесь E1, E2–диагональные единичные матрицы того же размера, что и
A1, A2. E– это единичная матрица и умножение слева на перестановочную
U и справа на перестановочную UT оставит ее без изменения.

В итоге получили, что (E+A)– разложима, а следовательно, и частич-
но разложима, что противоречит условию. Значит, наше предположение о
разложимости матрицы А ошибочно, отсюда следует, что А – неразложима.

Необходимость докажем от противного. Предположим, что матрица
E + A частично разложима, тогда для некоторой строки x (0 < |x|+ < n)

|x|+ = |х + xА|+.

Из равенства следует: xj = 0⇒ (xA)j =
n∑

i=1

xiaij = 0. Последнее равен-

ство выполняется, если xi > 0 влечет aij = 0. Получили, что

если xj = 0, xi > 0, то aij = 0.

Это значит, что собственное подмножество {i|xi > 0} вершин графа
матрицы А замкнуто, значит, граф A не сильно связный. Но это противо-
речит неразложимости А.

§4.Минимально вполне неразложимые матрицы малого порядка
(n ≤ 4).

Определение 5. Вполне неразложимая матрица называется близкой
к частично разложимой ("nearly decomposable"), если замена любого по-
ложительного элемента нулем приводит к частично разложимой матрице.

Это определение взято из книги [1, опр 5.1, стр 87], а перевод на русский
язык – из книги [3, стр.305]
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Из следствия 3 вытекает, что любая вполне неразложимая матрица со-
держит не меньше, чем 2n положительных элемента.

Определение 6. Вполне неразложимая матрица порядка n называется
минимально вполне неразложимой, если она содержит ровно 2n положи-
тельных элемента.

Таким образом, минимально вполне неразложимая матрица является
близкой к частично разложимой. Однако, как мы увидим дальше, обратное
неверно.

Из предыдущего изложения не видно существуют ли минимально вполне
неразложимые матрицы. Приступим к их изучению.

Найдем минимально вполне неразложимые матрицы малых порядков.
Существует, только одна вполне неразложимая матрица порядка 2:(

1 1
1 1

)
.

Очевидно, что эта матрица вполне неразложима. Все другие матрицы
порядка 2 содержат хотя бы один нуль. Следовательно, в них есть строка,
в которой меньше двух положительных элементов. По следствию 3 они
частично разложимы.

Теорема 5. Неотрицательная матрица порядка 3 минимально вполне
неразложима тогда и только тогда, когда в каждой её строке и столбце
имеется ровно один нуль.

Доказательство. Достаточность. Неотрицательная матрица в каждой
строке и столбце имеет ровно один нуль. Покажем, что она вполне неразло-
жима по свойству 1) теоремы 1. Любая нулевая подматрица состоит ров-
но из одного элемента – нуля. Нулевых подматриц большего размера в
матрице нет. Сумма размеров нулевой подматрицы 1× 1 равно 1+1=2<3,
следовательно исходная матрица вполне неразложима.

Теперь покажем, что матрица минимально вполне неразложима. По
следствию 3, в каждой строке ровно 2 положительных элемента, то есть
2× 3 = 6. Таким образом, по определению 6, матрица минимально вполне
неразложима.

Необходимость. Если, условие, что в каждой строке и каждом столбце
имеется ровно один нуль не выполняется, значит, есть строка или столбец,
в которых положительных элементов меньше, чем 2. По следствию 3 такая
матрица частично разложима.
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Перечислим все минимально вполне неразложимые матрицы порядка
n = 3. Как следует из теоремы 5, их 6 штук. 0 1 1

1 0 1
1 1 0

,

 0 1 1
1 1 0
1 0 1

,

 1 0 1
0 1 1
1 1 0

,

 1 0 1
1 1 0
0 1 1

,

 1 1 0
0 1 1
1 0 1

, 1 1 0
1 0 1
0 1 1

.

Для матриц порядка n = 4 приведем следующую теорему.
Теорема 6. Неотрицательная матрица порядка n = 4 минимально

вполне неразложима тогда и только тогда, когда не существует положи-
тельной подматрицы порядка n = 2 и в каждой строке и каждом столбце
ровно по 2 единицы.

Доказательство. Необходимость. Докажем от противного: пусть нену-
левая матрица порядка 4 минимально вполне неразложима, в каждой стро-
ке и каждом столбце ровно 2 единицы, но одна подматрица порядка n = 2
содержит 4 единицы. Тогда в столбцах и строках, пересекающих эту под-
матрицу, оставшиеся элементы равны 0. То есть, после очевидной переста-
новки строк и столбков получим матрицу вида

1 1 0 0
1 1 0 0
0 0
0 0 С


.

Эта матрица частично разложима в силу 1-го свойства леммы 1. Полу-
чили противоречие. Необходимое условие доказано.

Достаточность. Пусть в каждой строке и каждом столбце ровно 2 еди-
ницы и подматрицы 2-го порядка содержат не более 3 единиц.

Докажем вполне неразложимость по свойству 1) теоремы 1. Покажем,
что в нашей матрице нет нулевых подматриц размера 1× 3, 3× 1, 2× 2.

Подматриц вида  0
0
0

 ,
(
0 0 0

)
,

не может быть в матрице, так как нарушается условие, что в каждой строке
и каждом столбце ровно 2 единицы.

Если предположить, что в матрице есть нулевая подматрица 2 × 2, то
строках (и столбцах) на пересечении с этой подматрицей, получим положи-
тельную подматрицу . Что также противоречит условию: не более 3 единиц
в каждой подматрице второго порядка. Следовательно, наибольшая нуле-
вая подматрица имеет размер 1× 2, 2× 1. Матрица вполне неразложима.
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Докажем минимальность по определению 6. Исходя из условия, что в
каждой строке и каждом столбце ровно по две единицы, получаем, что
матрица минимально вполне неразложима. Теорема 6 доказана.

Теорема 7. Неотрицательная матрица порядка n = 4 минимально
вполне неразложима тогда и только тогда, когда она перестановочно по-
добна матрице

A =


1 1 0 0
1 0 1 0
0 1 0 1
0 0 1 1


Доказательство. То, что матрица A минимально вполне неразложи-

ма, проверяется непосредственно, с помощью теоремы 1. Следовательно,
минимально вполне неразложимые матрицы порядка 4 существуют. Пусть
дана произвольная неотрицательная минимально вполне неразложимая мат-
рица B порядка 4. Найдем в нашей матрице две строчки, в которых едини-
цы стоят в первом столбце и переставим их с первой и второй строчками.
Пользуясь минимально вполне неразложимостью матрицы, можем утвер-
ждать, что в первой строке в некотором k-ом столбце (k > 1) есть единица.
Переставим k-ый столбец со вторым. Столбец, в котором единица на 2-ой
позиции переставляем с третьим. В четвертом столбце единицы на 3-ей и
4-ой позиции. Строчку с единицей на 2-ой позиции переставляем с тре-
тьей строчкой. В последней строчке единицы будут на 3-ей и 4-ой позиции.
Таким образом, переставляя поочередно строки и столбцы, мы приведем
любую минимально вполне неразложимую матрицы к матрице A. Теорема
7 доказана.

Если матрица близка к частично разложимой, отсюда не следует, что
она минимально вполне неразложима. Приведем пример неотрицательной
матрицы порядка 5. 

1 1 0 0 0
0 1 1 0 0
1 0 1 1 0
0 0 1 0 1
0 0 0 1 1


Эта матрица близка к частично разложимой, по определению 5. Но есть

строка и столбец, с тремя единицами, по определению 6, такая матрица не
является минимально вполне неразложимой.
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§5. Канонические формы для минимально вполне
неразложимых матриц порядка n ≥ 4.

Минимально вполне неразложимых матриц порядка n ≥ 4 много. По-
этому будем искать каноническую форму минимально вполне неразложи-
мой матрицы с точностью перестановочной эквивалентности.

Рассмотрим матрицу порядка n ≥ 4

А =



1 1 0 0 . . . 0 0 0
1 0 1 0 . . . 0 0 0
0 1 0 1 . . . 0 0 0
· · · · · · · ·
0 0 0 0 . . . 0 1 0
0 0 0 0 . . . 1 0 1
0 0 0 0 . . . 0 1 1


(4)

Дадим формальное описание матрицы (4). Эта матрица содержит в
каждой строке и каждом столбце ровно две единицы. При этом 1-я строка
содержит единицы в 1-м и 2-м столбцах, последняя n-я строка содержит
единицы в (n − 1)-м и n-м столбцах. Строка с номером i (1 < i < n),
содержит единицы в (i− 1)-м и (i+ 1)-м столбцах.

Теорема 8. Матрица A вида (4) минимально вполне неразложима.
Доказательство. Сначала покажем, что матрица A вполне неразло-

жима.
Рассмотрим произвольно выбранную k-строчную подматрицу матрицы

A вида (4) (k ≤ n− 1). Она содержит ровно 2k единиц – по две в каждой
строке и не больше двух в каждом столбце. Докажем, что есть столбец,
в котором ровно одна единица. Отсюда, очевидно, будет следовать, что
ненулевых столбцов в подматрице больше, чем k, что и означает вполне
неразложимость матрицы (4) по теореме 1.

Предположим, что в выбранной подматрице не больше, чем k ненуле-
вых столбцов: не больше, чем (k − 1) столбцов, в которых не более двух
единиц и один столбец, к котором ровно одна единица. Тогда получаем не
больше, чем 2(k − 1) + 1 = 2k − 1 положительных элементов, что проти-
воречит тому, что в выбранной подматрице 2k положительных элементов.
Значит, ненулевых столбцов в подматрице больше, чем k

Пусть первая строка матрицы (4), которая не содержится в нашей под-
матрице имеет номер i. Рассмотрим возможные значения i.

• i = 1. Пусть первая строка матрицы (4), которая содержится в нашей
подматрице имеет номер i1. Очевидно, i1 > 1. Тогда (i1−1)-й столбец
подматрицы содержит единицу, и в этом столбце больше нет единиц.
Так как верхние строки не участвуют в нашей подматрице, а ниже
единиц нет вообще.
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• i = 2. В этом случае первый столбец подматрицы содержит ровно од-
ну единицу. Вторая единица в этом столбце стоит во второй строчке,
а она не содержится в подматрице.

• i ≥ 3. Тогда (i− 1)-й столбец подматрицы содержит ровно одну еди-
ницу (в (i−2)-й строке). Как и в предыдущем случае, вторая единица
в (i − 1)-ом столбце стоит в i-ой строчке, которая не содержится в
подматрице.

Таким образом, матрица A вида (4) вполне неразложима.
Покажем теперь, что матрица A минимально вполне неразложима. До-

казательство можно привести двумя способами:
1 способ. Применяем теорему 1. Возьмем произвольную единицу в k-

ой строке и заменим её нулем. В результате получим нулевую подматрицу
размера (k−1)×(n−k+1) или (n−k+1)×(k−1) . Сумма размеров: k−1+
n− k+1 = n. Таким образом, по лемме 1 получили частично разложимую
матрицу. Значит исходная матрица A вида (4), по определению, является
минимально вполне неразложимой.

2 способ. Доказательство вытекает из следствия 3. Если хотя бы одну
единицу заменить нулем, получим строку (столбец), содержащую меньше
двух положительных элементов. Такая матрица, по следствию 3, не яв-
ляется вполне неразложимой, то есть она частично разложима. Отсюда
следует, что матрица вида (4) минимально вполне неразложима.

Таким образом, теорема 8 доказана.

Рассмотрим теорему 8 и её доказательство на примере матрицы порядка
6: 

1 1 0 0 0 0
1 0 1 0 0 0
0 1 0 1 0 0
0 0 1 0 1 0
0 0 0 1 0 1
0 0 0 0 1 1


В случае i = 1, номер i1 = 3. 2-ой столбец подматрицы содержит ровно

одну единицу. Так как вторая единица в этом столбце находится в первой
строчке, которая не содержится в подматрице.

В случае i = 2 первый столбец подматрицы содержит ровно одну едини-
цу. В случае i ≥ 3, номер i = 4. Здесь 3-ий столбец подматрицы содержит
ровно одну единицу.

Отсюда следует, что ненулевых столбцов в любой k-строчной (k < 6)
подматрице больше, чем k. То есть матрица вполне неразложима. А ес-
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ли хотя бы одну единицу заменить нулем, получим частично разложимую
матрицу. По определени 5 она минимально вполне неразложима.

Изложенное выше доказательство теоремы 8 основано на идее, выска-
занной М.В.Зубковым. Теперь приведем доказательство, использующее язык
графов и теорему 4 из §3. Это доказательство нам понадобится далее, при
доказательстве теоремы 11.
Матрицу вида (4) можно представить в виде суммы двух матриц переста-
новки.

A = P +Q, (5)

где P и Q - матрицы перестановки порядка n.
Причем для n-нечетного матрицы примут вид:

P=



1 0 0 0 . . . 0 0
0 0 1 0 . . . 0 0
0 1 0 0 . . . 0 0
0 0 0 1 . . . 0 0
. . . . . . . . . . . . . . . . . . . . .
0 0 0 0 . . . 0 1
0 0 0 0 . . . 1 0


, Q =



0 1 . . . 0 0 0 0
1 0 . . . 0 0 0 0
0 0 . . . 0 0 0 0
. . . . . . . . . . . . . . . . . . . . .
0 0 . . . 0 0 1 0
0 0 . . . 0 1 0 0
0 0 . . . 0 0 0 1


.

А для n-четного:

P=



1 0 0 . . . 0 0 0
0 0 1 . . . 0 0 0
0 1 0 . . . 0 0 0
. . . . . . . . . . . . . . . . . . . . .
0 0 0 . . . 0 1 0
0 0 0 . . . 1 0 0
0 0 0 . . . 0 0 1


, Q =



0 1 0 0 . . . 0 0
1 0 0 0 . . . 0 0
0 0 0 1 . . . 0 0
0 0 1 0 . . . 0 0
. . . . . . . . . . . . . . . . . . . . .
0 0 0 0 . . . 0 1
0 0 0 0 . . . 1 0


.

Изобразим (0,1)- матрицу A в виде графа (см. опр. 4 §4):

1 2 3 . . . n− 1 n

Тогда матрицы P и Q изображаются в виде подграфов графа A.
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Рассмотрим 2 случая.
1) Число вершин n-нечетное число. Тогда

P :

1 2 3 4 5 . . . n− 1 n

Q:

1 2 3 4 . . . n− 2 n− 1 n

2) Число вершин n-четное число. Тогда

P :

1 2 3 . . . n− 2 n− 1 n

Q:

1 2 3 4 . . . n− 1 n

Умножим равенство (5) слева на матрицу P и учтем, что P 2 = E в
случаях 1) и 2). Тогда получим равенство

AP = E + PQ, (6)

Граф матрицы PQ имеет вид при нечетном n:

PQ:

1 2 4 . . . n− 1 n n− 2 n− 4 . . . 3
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То есть, начиная с вершины 1 совершается последовательный обход чет-
ных вершин до вершины n − 1, затем переход в нечетную вершину n, на-
чиная с которой обходятся нечетные вершины в порядке уменьшения но-
меров.

При четном n порядок обхода вершин в графе матрицы PQ частично
изменяется:

1 2 4 . . . n− 2 n n− 1 n− 3 . . . 3

По прежнему, начиная с 1 последовательно обходятся четные вершины
до четной вершины n включительно. Затем переход в нечетную вершину
n−1, начиная с которой обходятся нечетные вершины в порядке уменьше-
ния номеров.

Как видно, в обоих случаях граф матрицы PQ представляет собой
полный контур длины n, обходящий все вершины графа. То есть PQ–
неразложимая матрица. Отсюда, учитывая равенство (6) и теорему 4 из §3
заключаем, что AP–вполне неразложимая матрица. Поскольку матрицы
AP и A перестановочно эквивалентны, то A также вполне неразложима-
(см.утв. 3). Теорема доказана.

Теорема 9. Любую минимально вполне неразложимую матрицу мож-
но привести к виду (4).

Доказательство. Дана матрица A - минимально вполне неразложи-
мая, значит в каждой строке и каждом столбце ровно две единицы. Найдем
в нашей матрице две строчки, в которых единицы стоят в первом столб-
це и переставим их с первой и второй строчками. Пользуясь минимально
вполне неразложимостью матрицы, можем утверждать, что в первой стро-
ке в некотором k-ом столбце (k > 1) есть единица. Переставим k-ый стол-
бец со вторым. Возникает вопрос: может ли вторая единица в k-ом столбце
стоять во второй строчке. Ответ: нет, не может.

Действительно, переставляя k-ый столбец со вторым, мы получим мат-
рицу вида: 

1 1 0 . . . 0
1 1 0 . . . 0
0 0
... ... B
0 0


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где B матрица порядка n−2. То есть сумма размеров подматрицы, состав-
ленной из первых двух строк будет равна 2 + n − 2 = n. Следовательно,
такая матрица частично разложима.

Таким образом во второй строчке вторая единица стоит в s-ом столбце,
где s > 2. Переставляем s-ый столбец с третьим.

1 1 0 . . . 0
1 0 1 . . . 0
0 0
... ... С
0 0


Далее находим строчку, где первая единица на 2-ой позиции и перестав-

ляем её с третьей строчкой.
1 1 0 . . . 0
1 0 1 . . . 0
0 1 0
... ... D
0 0


Заметим, что теперь элемент с номером (3,3), получившейся матрицы,

равен нулю. Иначе мы бы опять получили частично разложимую матрицу.
Далее аналогично переставляем поочередно строки и столбцы.
В конце получим, что элементы (n− 1, n), (n, n− 1) и (n, n) элементы

равны 1, так как в каждой строчке и каждом столбце ровно две единицы.
. 

1 1 0 0 . . . 0 0 0
1 0 1 0 . . . 0 0 0
0 1 0 1 . . . 0 0 0
· · · · · · · ·
0 0 0 0 . . . 0 1 0
0 0 0 0 . . . 1 0 1
0 0 0 0 . . . 0 1 1


Таким образом, переставляя поочередно строки и столбцы, как показа-

но выше, мы приведем любую минимально вполне неразложимую матрицы
к виду (4). Что и требовалось доказать.

Можно сделать вывод: любая минимально вполне неразложимая мат-
рица порядка n ≥ 4 перестановочно эквивалентна матрице вида (4). Тем
самым мы доказали, что матрица (4) является канонической формой ми-
нимально вполне неразложимой матрицы относительно перестановочной
эквивалентности.
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Любая минимально вполне неразложимая матрица может быть приве-
дена к другой канонической форме. Для того, чтобы показать эту форму
понадобится теорема Cинкхорна и Кноппа из книги [1, Теорема 5.1; стр 88].
Приведем эту теорему.

Теорема 10. Пусть матрица С порядка n×n близка к частично разло-
жимой, (n > 1). Тогда матрица С при s ≥ 2 перестановочно эквивалентна
матрице вида

C =


A1 E1 0 . . . 0 0
0 A2 E2 . . . 0 0
· · · · · ·
0 0 0 . . . As−1 Es−1
Es 0 0 . . . 0 As

 ,

где каждая подматрицаEi имеет ровно один положительный элемент. Каж-
дый блок Ai, кроме As, порядка n = 1, причем подматрица As-близка к
разложимой.

Матрица С минимально вполне неразложима и, соответственно, мат-
рица содержит 2n элементов, только в том случае, когда As имеет порядок
1. Предположим, что As ≥ 2, тогда Es−1 это строка, а Es-столбец из s
элементов, один из которых положительный. Матрица C вполне неразло-
жима, но не является минимально вполне неразложимой. Действительно,
имеется строка и столбец, где единиц больше, чем 2. Следовательно, мат-
рица C минимально вполне неразложима тогда и только тогда, когда As

имеет порядок n = 1, то есть является матрицей вида

M =


1 1 0 . . . 0 0
0 1 1 . . . 0 0
· · · · · ·
0 0 0 . . . 1 1
1 0 0 . . . 0 1

 (7)

Теорема 11. Матрица вида (4) перестановочно эквивалентна матрице
вида (7).

Доказательство. Утверждение теоремы 11 следует из теоремы 9. В си-
лу этой теоремы матрица вида (4), как и любая другая минимально вполне
неразложимая матрица, перестановочно эквивалентна матрице вида (4).
Но мы укажем конкретный способ построения матриц перестановок, пре-
образующих матрицу (4) в матрицу (7). Рассмотрим равенство (6):

AP = E + PQ.

Доказано выше (см.док-во теоремы 8), что PQ–неразложимая матри-
ца, её граф есть полный контур, то есть контур длины n, обходящий все
вершины графа.
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Матрицу М можно представить в виде

M = E +G,

где

G =


0 1 0 . . . 0
0 0 1 . . . 0
· · · · ·
0 0 0 . . . 1
1 0 0 . . . 0

 .

Граф G, очевидно, есть полный контур.

1 2 . . . n

Любые два полных контура изоморфны как графы. Соответственно,
матрицы PQ и G перестановочно подобны, то есть существует матрица
перестановки H, такая что HT (PQ)H = G. Следовательно,

HTA(PH) = HTEH +HTPQH = E +G =M.

Здесь HT и PH-искомые преобразующие матрицы. Теорема 11 доказа-
на.

Пример. Приведем матрицу А =


1 1 0 0 0 0
1 0 1 0 0 0
0 1 0 1 0 0
0 0 1 0 1 0
0 0 0 1 0 1
0 0 0 0 1 1

 к матрице

M =


1 1 0 0 0 0
0 1 1 0 0 0
0 0 1 1 0 0
0 0 0 1 1 0
0 0 0 0 1 1
1 0 0 0 0 1

 , с помощью доказательства теоремы 11.

Доказано выше, что матрицы PQ и G перестановочно подобны, то есть
существует матрица перестановки H, такая что HT (PQ)H = G. Из этого
равенства следует, что (PQ)H = HG.
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Решая это уравнение, относительно H, получим

H =


1 0 0 0 0 0
0 0 0 0 0 1
0 1 0 0 0 0
0 0 0 0 1 0
0 0 1 0 0 0
0 0 0 1 0 0

 .

Из равенства HTA(PH) =M следует, что (AP )H = HM ,
где P -матрица перестановки.

AP =


1 0 1 0 0 0
1 1 0 0 0 0
0 0 1 0 1 0
0 1 0 1 0 0
0 0 0 0 1 1
0 0 0 1 0 1

 .

Тогда

APH =


1 0 1 0 0 0
1 1 0 0 0 0
0 0 1 0 1 0
0 1 0 1 0 0
0 0 0 0 1 1
0 0 0 1 0 1

 ·


1 0 0 0 0 0
0 0 0 0 0 1
0 1 0 0 0 0
0 0 0 0 1 0
0 0 1 0 0 0
0 0 0 1 0 0

 =


1 1 0 0 0 0
1 0 0 0 0 1
0 1 1 0 0 0
0 0 0 0 1 1
0 0 1 1 0 0
0 0 0 1 1 0

 .

HM =


1 0 0 0 0 0
0 0 0 0 0 1
0 1 0 0 0 0
0 0 0 0 1 0
0 0 1 0 0 0
0 0 0 1 0 0

 ·


1 1 0 0 0 0
0 1 1 0 0 0
0 0 1 1 0 0
0 0 0 1 1 0
0 0 0 0 1 1
1 0 0 0 0 1

 =


1 1 0 0 0 0
1 0 0 0 0 1
0 1 1 0 0 0
0 0 0 0 1 1
0 0 1 1 0 0
0 0 0 1 1 0


Равенство (AP )H = HM выполняется, следовательно, H нашли верно.
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Теорема 12. Любая минимально вполне неразложимая матрица пе-
рестановочно эквивалентна матрице вида (7).

Доказательство. Из теоремы 9 следует, что любая минимально вполне
неразложимая матрица перестановочно эквивалентна матрице A вида (4).
То есть существуют перестановочные матрицы P и Q такие, что A = PBQ.

Матрица A вида (4), по теореме 11, перестановочна эквивалентна мат-
рице M вида (7). То есть существуют перестановочные матрицы U и V
такие, что M = UAV .

Домножим первое равенство слева на U и на V справа, получим UAV =
UPBQV = M . Обозначим S = UP , R = QV , тогда M = SBR. Так как
U, P,Q, V - перестановочные матрицы, то S,R - тоже перестановочные.
Следовательно, минимально вполне неразложимая матрица B перестано-
вочно эквивалентна матрице вида (7).
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