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Mendeleev’s Periodic Law and Table 

Properties of chemical elements change smoothly (i.e. in the 

simplest way) along the rows and columns. This enables to 

predict properties of unknown elements by interpolation. 
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Is it possible to apply the same approach to predict 

properties of new chemical compounds? Yes 

QSAR/QSPR: Quantitative Structure-Activity or 

Structure-Property Relationships 

Descriptor 1 
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QSAR/QSPR: Quantitative Structure-Activity or 

Structure-Property Relationships 

A Structure Descriptors 
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Obtaining Models 



QSAR/QSPR Models 

SAR/QSAR/QSPR model is a functions f relating the value of some property y 

(which can be physicochemical property, biological activity, etc) to the values of 

descriptors x1,…,xM  (which can represent chemical compounds, reactions, etc)  

Continuous properties y are predicted by regression models 

Discrete properties y are predicted by classification models 

),...,( 1 Mxxfy

),...,;,...,( 11 MP xxccFy 

MM xcxccy  ...110

SAR/QSAR/QSPR models are obtained by finding the optimal values of model 

coefficients using statistical learning (or machine learning) algorithms 



Expected and Empirical Risk Functions 

Empirical risk function is a prediction error on the training set 
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Expected risk function is an expectation of a prediction error on any test set 

drawn from the same distribution as the training  set 
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So, the expected risk function characterizes the predictive ability of model f 

- squared loss function 

- squared loss function 

Loss function l(f(x),y) is a measure 

of discrepancy between computed 

f(x) and true property value y 

Squared loss function 
2))(()),(( yxfyxfl 



The Optimal Set of Model Coefficients 

The optimal set of model coefficients c1,…,cP should minimize the expected 

risk function and therefore provide a model with the highest predictive ability: 

min),...( 1 PccR

In classical statistics it is assumed that: 

min),...(min),...( 11  PempP ccRccR

Is this correct? Almost correct for big data sets and absolutely not correct 

for small data sets 

How to perform such minimization? 



Incorrectness of Empirical Risk Minimization  

Data approximation with polynoms of different order 

Minimization of the empirical risk function does not guaranties the 

best predictive performance of the model  
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Overfitting 

Model is not overfitted Model is overfitted 

When the model is not overfitted (see at left), it fits the training (shown in green) 

and the testing (shown in red) data with equal quality. When the model is 

overfitted (see at right), the model perfectly matches the training data, but cannot 

predict the testing data. 



Viewpoint of Statistical Learning Theory 

min),,(),...(min),...( 11   NFccRccR PempP

TEST_ERROR = TRAINING_ERROR + MODEL_COMPLEXITY 

Ω(F,N,δ) – model complexity term 

λ – tradeoff parameter  

All QSAR/QSPR models should be both accurate and simple. Since these 

requirement usually contradict each other,  one should always seek a 

trade-off between them. 



Optimal Complexity of Model 



Multiple Linear Regression 
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Regression 

coefficients 

Experimental property 

values 
Descriptor values 

M < N !!! 

Topliss: N/M > 5 for good models. Mathematicians: eff(N)/eff(M) > 10 

Y=CX 



y  c0  c1x1  ... cM xM



Overfitting in Multiple Linear Regression 

Model complexity ~ the number of descriptors 



Neural Networks 

Input Layer 

Hidden Layer 

Output Layer 

Neurons in the input layer correspond to descriptors, neurons in the output layer 

– to properties being predicted, neurons in the hidden layer – to nonlinear latent 

variables. Connection weights between neurons are adjustable parameters. 



Overtraining and Early Stopping 

training set 

test set 1 

test set 2 

point for early stopping 



Overtraining vs Overfitting 

Overtraining Overfitting 

Time Complexity 



Overfitting in Neural Networks 

Model complexity ~ number of iterations 



K Nearest Neighbours 
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Overfitting for the k Nearest Neighbours 

Model complexity ~ n/k 



Validating Models 



Validation of Models 

The full data set is split into two mutually exclusive sets, a larger one 

(the 'training' set) and a smaller one (the 'test' set). The larger data 

set is used to obtain the model, while the smaller data set is used to 

validate the model. 

Larson, S. C. (1931). J. Edic. Psychol., 22:45–55. 



(Cross-)Validation 

-  Training set 

-  Test set 

-  Training set 

-  Test set 

Hold-out (cross-)validation   
(Devroye, L. and Wagner, T. J. (1979) IEEE 

Transaction in Information Theory, 25(5):601–604.) 

V-Fold cross-validation 

(Geisser, S. (1975)  J. Amer. Statist. Assoc., 

70:320–328) 

 

Leave-one-out (LOO) cross-validation 

(Stone, M. (1974) J. Roy. Statist. Soc. Ser. B, 

36:111–147.) 

Arlot S., Celisse A. (2010) Statistics Survers, 4:40-79 



Statistical Parameters for (Cross-)Validation  





N

n

ny
N

y
1

1





N

n

n yySS
1

2)(





N

n

nn yyPRESS
1

2)ˆ(

N

PRESS
PRMSE 

SS

PRESSSS
R




2

SS

PRESSSS
Q


2

- property arithmetic mean 

- variance; is the sum of squared deviations of 

experimental values 

- the predictive sum of squares of the differences 

between the experimental and computed property 

values  

- predictive root-mean-square error 

- predictive determination coefficient for hold-out 

(cross-)validation 

- predictive determination coefficient for any other type 

of cross-validation 



Methods of (Cross-)Validation:  
Advantages and Disadvantages 

Hold-out (cross-)validation 

Computationally the most efficient 

Estimations are largely biased and strongly depend on splitting.   

The variance of estimations is the largest. 

V-Fold cross-validation – trade-off between the hold-out validation 

and the leave-one-out cross-validation     
 

Leave-one-out cross-validation 

Estimations are almost unbiased and do not depend on splitting 

The variance of estimations is the smallest 

Requires very intensive computations 



Limitations and Misuse of Cross-Validation 

Cross-validation yields meaningful results only if the test set and training 

set are independently drawn from the same population. 

One should avoid specially designed “optimal” splits into the training and 

test sets because they might become mutually dependent. 

Cross-validation should not be used for descriptor or model selection 

using the entire data set. Such selection should be carried out on every 

training set using an inner cross-validation loop.  

Training and test sets should not contain exactly the same or very close 

compounds because this makes them mutually dependent 



Internal Cross-Validation 

Internal cross-validation is performed 

after supervised descriptor or model 

selection in the inner (internal) cycle 

Internal cross-validation can be used 

for selecting descriptors or models 

Internal cross-validation cannot be used 

for validating  models because 

predictions are not completely “blind” 



External Cross-Validation 

External cross-validation is performed 

before descriptor or model selection in 

the outer (external) cycle 

External cross-validation can be used 

for validating  models because 

predictions in it are completely “blind” 

External cross-validation is the only 

correct way to assess the predictive 

performance of QSAR/QSPR models 



Assessing Predictive Performance of Models 
Hisotgram of RMSEcv

RMSEcv
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Predictive performance of a model cannot be 

assessed in statistically sound way from a 

single value of PRMSE or Q2. 

To do this, it is necessary to study the 

distribution of the values of PRMSE or Q2 

resulted from  renumbering of compounds in 

database or, better, from bootstrap. 

One should assess predictive performance of 

a method on the given dataset 

3D-QSAR models, Method of Continuous Molecular Fields, 5-fold CV, pIC50 for protease inhibition 



Assessing Statistical Significance of Models 

Hisotgram of Q2

Q2
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In order to prove the 

statistical significance of 

a regression model, it is 

necessary to test the 

statistical hypothesis 

that the mean of the 

distribution of Q2 is 

greater than zero.   

One can use one 

sample z-test  or t-test 

for this purpose 

p-value < 2.2e-16 

3D-QSAR models, Method of Continuous Molecular Fields, 5-fold CV, pIC50 for protease inhibition 



Comparing Predictive Performance of Models 

A B

0
.5

0
.6

0
.7

0
.8 Two-Sample t-Test 

 

t = -0.8905 

df = 187.926 

p = 0.3744 

 

Difference between 

mean values of RMSEcv 

is not significant 

3D-QSAR models, Method of Continuous Molecular Fields, 5-fold CV, pIC50 for protease inhibition 



Appling Models 



Applicability Domain 

The applicability domain of a QSAR model is “the response and 

chemical structure space in which the model makes predictions with a 

given reliability” 

 

Netzeva, T. I. et al. ALt. Lab. Anim. 2005, 33, 155–173.  

The AD of a (Q)SAR is the physico-chemical, structural, or biological 

space, knowledge or information on which the training set of the model 

has been developed, and for which it is applicable to make predictions 

for new compounds. The AD of a (Q)SAR should be described in terms 

of the most relevant parameters i.e. usually those that are descriptors 

of the model. Ideally, the (Q)SAR should only be used to make 

predictions within that domain by interpolation not extrapolation. 
 

The Setubal Workshop report 



Applicability Domain (AD) 
PRMSE 

coverage 

density 

Prediction errors tend to increase with the increase of the distance from the 

training set (distance to model) and the decrease of the point distribution density. 

The more similar is a test compound to the training set, the more reliable are 

predictions for it. Outside AD predictions are made by extrapolation, inside AD – 

by interpolation. 

Outside AD 



Methods for Defining Applicability Domain 

• Based on descriptor ranges 

• Based on the distance to the training set in descriptor 

space 

• Based on prediction variance (distance in model space) 

• Based on probability density in descriptor space 

• Based on algorithms of one-class classification 

• Based on conditional and unconditional probabilities 

Netzeva, T.I., et al., Atla - Alternatives to Laboratory Animals, 2005. 33(2): p. 155-173. 

Jaworska J., et al., Atla - Alternatives to Laboratory Animals, 2005. 33(5): p. 445-459. 

Tetko, I.V., et al., J. Chem. Inf. Model., 2008. 48(9): p. 1733-1746. 

Sushko, I., et al., J. Chem. Inf. Model., 2010. 50(12): p. 2096-2111.  



Measures for Defining Applicability Domain 

X – distance to model; Y – absolute prediction error; ------ - mean absolute 

prediction error for 1/K-part of points  

Good Bad 

If the measure is good, the step level should increase with the increase of the 

distance to model 

3D-QSAR model, Method of CMF, prediction variance AD, pIC50 for protease inhibition 



Measures for Defining Applicability Domain 

X – coverage (quota or percentage of compounds inside applicability domain);  

Y – mean absolute prediction error for all compounds outside applicability domain 

Good Bad 

If the measure is good, the mean absolute prediction error should increase with 

the increase of coverage 

3D-QSAR model, Method of CMF, prediction variance AD, pIC50 for protease inhibition 



Assessment of Predictive Error 
Are predictions made for compounds outside AD always unreliable?                

Are predictions made for compounds inside AD always reliable? 
No 

In addition to AD, it is necessary also to assess predictive errors   

Method 1 for assessing predictive error: 

- Calculate uncertainty of model coefficients 

- Propagate this uncertainty through the model using Monte-Carlo 

simulation (or analytically for simple linear models): 

Method 2 for assessing predictive error: 

- Create an ensemble of training sets from the initial data set using a 

resampling procedure (such as bootstrap) 

- Build a model for each of the training sets 

- Make predictions using ensemble of models 

- Analyze prediction distribution (its variance estimates prediction error) 



OECD Principles for the Validity of 

QSAR Models 

• A defined endpoint 

• An unambigious algorithm 

• A defined domain of applicability 

• Appropriate measures of goodness-of-fit, 

robustness and predictivity 

• A mechanistic interpretation, if possible 

Gramatica, P., Principles of QSAR models validation: internal and external. 

QSAR & Combinatorial Science, 2007. 26(5): p. 694-701. 

37th Joint Meeting of the Chemicals Committee and Working Party on 

Chemicals, Pesticides and Biotechnology in November 2004 
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Questions? 


