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Mendeleev’s Periodic Law and Table
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Properties of chemical elements change smoothly (i.e. in the
simplest way) along the rows and columns. This enables to

predict properties of unknown elements by interpolation.




QSAR/QSPR: Quantitative Structure-Activity or
Structure-Property Relationships

Is It possible to apply the same approach to predict
properties of new chemical compounds?  vyag
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QSAR/QSPR: Quantitative Structure-Activity or
Structure-Property Relationships

Structure Descriptors
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Obtaining Models



QSAR/QSPR Models

SAR/QSAR/QSPR model is a functions f relating the value of some property y
(which can be physicochemical property, biological activity, etc) to the values of
descriptors X,...,Xy (which can represent chemical compounds, reactions, etc)

y oC F(C11"'1CP;X1 RRRR Xl\/l)

yOCCO+C1X1+...+CMXM

Continuous properties y are predicted by regression models
Discrete properties y are predicted by classification models

SAR/QSAR/QSPR models are obtained by finding the optimal values of model
coefficients using statistical learning (or machine learning) algorithms




Expected and Empirical Risk Functions

Empirical risk function is a prediction error on the training set

N . .
R (Cyeen Cp) = %Z(yJ ~F(c,,...,Co;X),..., Xy, ))? - squared loss function

Expected risk function is an expectation of a prediction error on any test set
drawn from the same distribution as the training set

1 &, -
R(C,,--,Cp) = E(—ZN Z(y‘ - F(Cl,---,Cp;X{,---,Xu )?) - squared loss function
j=1

So, the expected risk function characterizes the predictive ability of model f

Loss function I(f(x),y) is a measure Squared loss function
of discrepancy between computed 1(f (x —(f(x)— V)
f(x) and true property value y (100,9) = (T (x) =)




The Optimal Set of Model Coefficients

The optimal set of model coefficients c,,...,c, should minimize the expected
risk function and therefore provide a model with the highest predictive ability:

R(c,,...Cp) > min

How to perform such minimization?

In classical statistics it is assumed that:
R(c,,..C,) >min < R

emp (Cpy++-Cp) —> MIN

Is this correct? Almost correct for big data sets and absolutely not correct
for small data sets




Incorrectness of Empirical Risk Minimization
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Minimization of the empirical risk function does not guaranties the
best predictive performance of the model



Overfitting

@ = test data & = test data

& = train data

& = train data

Model is not overfitted Model Is overfitted

When the model is not overfitted (see at left), it fits the training (shown in green)
and the testing (shown in red) data with equal quality. When the model is

overfitted (see at right), the model perfectly matches the training data, but cannot
predict the testing data.




Viewpoint of Statistical Learning Theory

R(c,,..C,) >min < R, (c,..Co)+A-Q(F,N,do) > min

erp €

QO(F,N,d) — model complexity term

A — tradeoff parameter

Vv

TEST_ERROR = TRAINING_ERROR + MODEL_COMPLEXITY

All QSAR/QSPR models should be both accurate and simple. Since these
requirement usually contradict each other, one should always seek a
trade-off between them.




Optimal Complexity of Model

error

A <— undefrfitting overfitting —p»

optimal complexity

l

test set

training set

model complexity



Multiple Linear Regression
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Topliss: N/M > 5 for good models. Mathematicians: eff(N)/eff(M) > 10



Overfitting in Multiple Linear Regression
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Model complexity ~ the number of descriptors



Neural Networks

Input Layer

Hidden Layer

Output Layer

Neurons in the input layer correspond to descriptors, neurons in the output layer
— to properties being predicted, neurons in the hidden layer — to nonlinear latent
variables. Connection weights between neurons are adjustable parameters.




Overtraining and Early Stopping
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Overtraining vs Overfitting
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Overfitting in Neural Networks
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Model complexity ~ number of iterations



K Nearest Neighbours
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Overfitting for the k Nearest Neighbours
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Validating Models



Validation of Models

training set test set

=
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The full data set is split into two mutually exclusive sets, a larger one
(the 'training' set) and a smaller one (the 'test' set). The larger data
set is used to obtain the model, while the smaller data set is used to
validate the model.

Larson, S. C. (1931). J. Edic. Psychol., 22:45-55.




(Cross-)Validation

LA [ [ VA | KA | .
- Hold-out (cross-)validation
[ - Training set (Devroye, L. and Wagner, T. J. (1979) IEEE
- Test set Transaction in Information Theory, 25(5):601-604.)
ba | [ [ b4 [ [ [ ]
(AT I 1T AT V-Fold cross-validation
(Geisser, S. (1975) J. Amer. Statist. Assoc.,
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Arlot S., Celisse A. (2010) Statistics Survers, 4:40-79



Statistical Parameters for (Cross-)Validation

N
y = %Z y" - property arithmetic mean
n=1
N
qSS = Z(y” — y)z - variance; is the sum of squared deviations of
=1 experimental values

N ) . L _
PRESS = Z(yn _y")? the predictive sum of squares of the differences

~ between the experimental and computed property

values
PRMSE = 1/ PRII\IESS - predictive root-mean-square error
R2 — SS —PRESS - predictive determination coefficient for hold-out
SS’ (cross-)validation
02 = SS — PRESS - predictive determination coefficient for any other type
SS of cross-validation




Methods of (Cross-)Validation:

Advantages and Disadvantages

Hold-out (cross-)validation

Computationally the most efficient

Estimations are largely biased and strongly depend on splitting.
The variance of estimations is the largest.

V-Fold cross-validation — trade-off between the hold-out validation
and the leave-one-out cross-validation

Leave-one-out cross-validation

Estimations are almost unbiased and do not depend on splitting
The variance of estimations is the smallest

Requires very intensive computations




Limitations and Misuse of Cross-Validation

Cross-validation yields meaningful results only if the test set and training
set are independently drawn from the same population.

One should avoid specially designed “optimal” splits into the training and
test sets because they might become mutually dependent.

Training and test sets should not contain exactly the same or very close
compounds because this makes them mutually dependent

Cross-validation should not be used for descriptor or model selection
using the entire data set. Such selection should be carried out on every
training set using an inner cross-validation loop.




n fold cross-vaidation

Internal Cross-Validation

Generation of descriptors

l

Descriptors selection

Internal cross-validation is performed
after supervised descriptor or model
selection in the inner (internal) cycle

v

(n-1)/n training set

'

model development

,

1/n test set prediction

Internal cross-validation can be used
for selecting descriptors or models

:

Internal cross-validation cannot be used
for validating models because
predictions are not completely “blind”

statistical evaluation




n fold cross-vaidation

External Cross-Validation

Generation of descriptors

v

(n-1)/n training set

l

External cross-validation is performed
before descriptor or model selection in
the outer (external) cycle

Descriptors selection

'

model development

'

1/n test set prediction

External cross-validation can be used
for validating models because

predictions in it are completely “blind”

\

statistical evaluation

External cross-validation is the only
correct way to assess the predictive
performance of QSAR/QSPR models




Assessing Predictive Performance of Models

Hisotgram of RMSEcv

Predictive performance of a model cannot be
assessed in statistically sound way from a
single value of PRMSE or Q2.
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One should assess predictive performance of
a method on the given dataset
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To do this, it is necessary to study the
distribution of the values of PRMSE or Q2
resulted from renumbering of compounds in
database or, better, from bootstrap.
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RMSEcv

3D-QSAR models, Method of Continuous Molecular Fields, 5-fold CV, pIC50 for protease inhibition



Assessing Statistical Significance of Models

Hisotgram of Q2

In order to prove the
statistical significance of
a regression model, it is
necessary to test the p-value < 2.2e-16
statistical hypothesis
that the mean of the
distribution of Q2 is
greater than zero.
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One can use one
sample z-test or t-test
for this purpose
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Q2
3D-QSAR models, Method of Continuous Molecular Fields, 5-fold CV, pIC50 for protease inhibition



Comparing Predictive Performance of Models

N Two-Sample t-Test
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3D-QSAR models, Method of Continuous Molecular Fields, 5-fold CV, pIC50 for protease inhibition



Appling Models



Applicability Domain

The applicability domain of a QSAR model is “the response and
chemical structure space in which the model makes predictions with a
given reliability”

Netzeva, T. I. et al. ALt. Lab. Anim. 2005, 33, 155-173.

The AD of a (Q)SAR is the physico-chemical, structural, or biological
space, knowledge or information on which the training set of the model
has been developed, and for which it is applicable to make predictions
for new compounds. The AD of a (Q)SAR should be described in terms
of the most relevant parameters i.e. usually those that are descriptors
of the model. Ideally, the (Q)SAR should only be used to make
predictions within that domain by interpolation not extrapolation.

The Setubal Workshop report




Applicability Domain (AD)

PRMSE
AST X Ba
o Outside AD
0.9 7 — ' coverage
40 50 60 70 80 90 100
density

-0.5 0 0.5

Prediction errors tend to increase with the increase of the distance from the
training set (distance to model) and the decrease of the point distribution density.
The more similar is a test compound to the training set, the more reliable are
predictions for it. Outside AD predictions are made by extrapolation, inside AD —
by interpolation.




Methods for Defining Applicability Domain

« Based on descriptor ranges

« Based on the distance to the training set in descriptor
space

« Based on prediction variance (distance in model space)
« Based on probability density in descriptor space

« Based on algorithms of one-class classification

« Based on conditional and unconditional probabillities

Netzeva, T.l., et al., Atla - Alternatives to Laboratory Animals, 2005. 33(2): p. 155-173.
Jaworska J., et al., Atla - Alternatives to Laboratory Animals, 2005. 33(5): p. 445-459.
Tetko, I.V., et al., J. Chem. Inf. Model., 2008. 48(9): p. 1733-1746.

Sushko, I., et al., J. Chem. Inf. Model., 2010. 50(12): p. 2096-2111.
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Measures for Defining Applicability Domain
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X — distance to model; Y — absolute prediction error; ------ - mean absolute

prediction error for 1/K-part of points

If the measure is good, the step level should increase with the increase of the
distance to model

3D-QSAR model, Method of CMF, prediction variance AD, plIC50 for protease inhibition



Measures for Defining Applicability Domain
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X — coverage (quota or percentage of compounds inside applicability domain);
Y — mean absolute prediction error for all compounds outside applicability domain

If the measure is good, the mean absolute prediction error should increase with
the increase of coverage

3D-QSAR model, Method of CMF, prediction variance AD, plIC50 for protease inhibition



Assessment of Predictive Error

Are predictions made for compounds outside AD always unreliable?

NO

Are predictions made for compounds inside AD always reliable?

In addition to AD, it is necessary also to assess predictive errors

Method 1 for assessing predictive error:

- Calculate uncertainty of model coefficients

- Propagate this uncertainty through the model using Monte-Carlo
simulation (or analytically for simple linear models):

Method 2 for assessing predictive error:

- Create an ensemble of training sets from the initial data set using a
resampling procedure (such as bootstrap)

- Build a model for each of the training sets

- Make predictions using ensemble of models

- Analyze prediction distribution (its variance estimates prediction error)




OECD Principles for the Validity of
QSAR Models

* A defined endpoint
* An unambigious algorithm
* A defined domain of applicability

* Appropriate measures of goodness-of-fit,
robustness and predictivity

« A mechanistic interpretation, if possible

37t Joint Meeting of the Chemicals Committee and Working Party on
Chemicals, Pesticides and Biotechnology in November 2004

Gramatica, P., Principles of QSAR models validation: internal and external.
QSAR & Combinatorial Science, 2007. 26(5): p. 694-701.
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Questions?



