Foundry Products Division

An Alternative Route for the Production of Compacted Graphite Irons

Kjell Wardenær TCS Elkem Foundry Div., Norway

Graphite Structures

Relative Damping Capacity

Mechanical Properties of Cast Iron

	Matrix	Tensile [MPa]	Modulus [GPa]	Fatigue [MPa]	Therm.Cond. [W/Km]	Hardness [HB]	Elongation [%]
Grey Iron	Pearlitic	200 - 270	105 - 115	95 - 110	44 - 52	175 - 230	0 – 1
CC Iron	Ferritic	330 - 410	130 - 150	155 - 185	40 - 45	130 - 190	5 – 10
	Pearlitic	420 - 580	130 - 155	190 - 225	31 - 40	200 - 250	2 - 5
Ductile	Ferritic	400 - 600	155 - 165	185 - 210	32 - 38	140 - 200	15 – 25
	Pearlitic	600 - 700	160 - 170	245 - 290	25 - 32	240 - 300	3 – 10

Note: Ferritic CG iron shows comparable thermal conductivity to pearlitic grey iron, but has a much better tensile strength

CGI replaces....

Proportion of nodular graphite in CG-Iron

Effect of nodular graphite on mechanical properties

Thermal conductivity

Possible Production Routes

Typical Characteristics

- •0.005 0.03 % Mg •0.02 0.05 % Ce
- regular Mg-alloys
- narrow Mg-range
- flakes in heavy sections
- nodules in thin sections
- difficult to control

- medium inoculation effect required
- carbides in thin sections
- tendency to nodular graphite in thin sections

- •0.01 0.015 % N
- nitrided FeMn
- mild compaction in thin sections
- strong compaction in heavy sections
- neutralised by Ti or Al
- may cause porosity

- •0.08 0.15 % Ti
- •0.035 0.15 % Mg
- •(Mg,Ti,Ce)-alloys
- •CG in both thin and heavy sections
- Ti-contamination of returns
- poor machinability

Production by high RE-MgFeSi

- Rare earth's are reported to have beneficial effects on section sensitivity
- High rare earth is easier to control than Magnesium
- Improves fading resistance
- The entire treatment is done in one go treatment alloy with balanced total composition
- Rare earth's may be an attractive alternative to the use of Titanium especially when it comes to machining

Production by CompactMag[™] Alloy

С	ompactMag [™]	
Si	44 – 48	%
Mg	5.0 - 6.0	%
Ca	1.8 – 2.3	%
RE	5.5 – 6.5	%
ΑΙ	Max 1.0	%
	Balance Iron	

- Ladle treatment or in the mould
- 0.30 0.45 wt% alloy addition depending on base sulphur level
- 0.1 0.5 wt % mild inoculant addition may be needed

Alloy Addition Rates

- Alloy addition rates depend on the base metal composition and treatment process:
 - Undertreatment: 0.4 1 wt% MgFeSi
 - Titanium: 1 2 wt% MgFeSi +
 0.1 0.6 wt% Ti
 - CompactMag[™]: 0.3 0.4 wt%
- Inoculant should be added from 0 to 0.8 wt%

MgFeSi Undertreatment vs. CompactMag™

MgFeSi (1%RE) Addition: 0.8wt%

CompactMag™ Addition: 0.35wt%

Typical Mechanical Properties

		Example	Example	l
Property	Grey Iron (ISO 100)	Compacted by Titanium	Compacted by CompactMag™	Ductile Iron (ISO 400-12)
Yield strength [MPa]	-	290	330	min. 250
Tensile Strength [MPa]	min. 100	365	380	min. 400
Elongation [%]	ca. 0.5	4.5	5	min. 15

Slag Formation

Addition:	
MgFeSi:	1.5wt%
FeTi:	0.25wt%

Addition:

CompactM	ag™: 0.35wt%
Other:	None

Comparison of Treatment Cost

Example:

Titanium	
1.3 wt% MgFeSi	\$ 13
0.25 wt% FeTi	\$ 6
0.3 wt% Inoculant	\$ 5
Total Cost	\$ 24

CompactMag [™]	Μ	
0.35 wt% CompactMag	\$	5
0.2 wt% Inoculant	\$	3
Total Cost	\$	8

About \$ 16 savings per MT iron!!

- Base iron composition
- Sulphur content of base iron
- Preconditioning
- Sandwich cover
- Inoculation
- Final iron composition

Base Iron Composition

C.E	4.3 – 4.5	%
С	3.7 – 3.9	%
Si	1.5 – 2.0	%
S	0.007 – 0.017	%
Р	Max 0.03	%

Note: *Impurities should be kept low*

High Sulphur Treated Iron

Preconditioning

- Preconditioning of CGI may be useful to control base oxygen and make reproducible conditions for nucleation and growth of graphite
- Preconditioning needs to introduce some low stability source of oxygen, preferentially to the saturation level of the iron
- Addition of 0.1 0.2 wt% of the Ultraseed[®] inoculant is found to be useful (approx. 10 ppm O)

Effect of Sandwich Cover

Inoculation

• Different inoculants may be used successfully to make CGI, but is not always necessary.

Recommendations for inoculant:

- Barium containing:
 - Foundrisil[®] inoculant
 - Barinoc[®] inoculant
- Strontium containing:
 - Superseed [®] inoculant
- Time for addition: sandwich cover, ladle or in stream may all be used.

Final CGI Composition

C.E	4.4 – 4.7	%
С	3.6 – 3.8	%
Si	2.3 – 2.9	%
S	0.007 – 0.010	%
Mg	0.007 – 0.009	%
Се	0.006 - 0.008	%

- Undertreatment with Mg, normally MgFeSi
- Suppression of nodules to compacted form by using Mg + Ti
- The use of CompactMag[™] Mg/RE system

- wider production window and more flexibility
- low reactivity in the ladle, thus reducing the need for subsequent inoculation
- Iow residual Mg and RE levels, which reduces susceptibility to chill
- can be used over a range of sulphur levels within normal limits for CGI production
- low slag generation
- no contamination of returns with Ti
- used in conjunction with Foundrisil[®] inoculant cover in the treatment ladle minimises the need for post inoculation

