Министерство образования и науки Российской Федерации КАЗАНСКИЙ ПРИВОЛЖСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ

Институт математики и механики им. Н.И Лобачевского

КАФЕДРА АЛГЕБРЫ

Специальность: 010101.65 - Математика

Специализация: Алгебра и алгебраические структуры алгоритмической природы

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА

(Дипломная работа)

ОБОБЩЕННЫЕ МАТРИЧНЫЕ КОЛЬЦА

Pa	бота заве	ршена:	
"	"	2014г	Тапкин Д.Т.
Pa	бота допу	ущена к защите:	
Нау	учный рук	оводитель	
доп	цент к.ф-м	.н	
"	"	2014г	Абызов А.Н
Зав	зедующий	кафедрой	
док	ктор физ.м	ат. наук, профессор	
"	!!	2014г	Арсланов М.М.

Оглавление

Вве	3	
§ 1.	Предварительные результаты	5
§ 2.	Проблема изоморфизма для колец вида $\mathbb{M}_{\beta_1,\dots,\beta_n}(R)$	12
§ 3.	Чистота и строгая чистота колец	20
§ 4.	Строгая чистота матричных колец	24
Лит	31	

Введение

В теории колец заметную роль играют различные матричные кольца. Прежде всего это кольца формальных матриц. Кольца формальных матриц расширяют понятие кольца матриц порядка n над данным кольцом. Важный класс колец формальных матриц образуют кольца контекста Мориты (см. например [14] или [11, §14]). Среди колец формальных матриц особенно выделяют кольца треугольных матриц. Они часто появляются в теории представлений артиновых алгебр и служат источником примеров колец с асимметричными свойствами (например, артиново справа, но не слева и т.п.).

Любое кольцо с нетривиальными идемпотентами изоморфно некоторому кольцу формальных матриц. Кольцо эндоморфизмов разложимого модуля также является кольцом формальных матриц. Это говорит о целесообразности изучения колец формальных матриц. Они весьма полезны для решения некоторых задач о кольцах эндоморфизмов абелевых групп.

Систематические исследования колец матриц и модулей над ними были осуществлены Хагани и Варадараджаном в статьях [6] и [7]. Эти исследования проведены для колец треугольных матриц, что существенно уже общего случая. Изучение произвольных колец обобщенных матриц (то есть необязательно треугольных) и модулей над ними сталкивается с серьезными трудностями. Работы Хагани и Варадараджана вызвали большой интерес, и вскоре появилось довольно большое число статей ряда авторов. Среди них можно выделить работы [9] и [10]. Крыловым были рассмотрены модули над кольцами формальных матриц и условия инъективности и проективности для них. Также им были рассмотрены кольца формальных матриц порядка 2 со значением в некотором кольце. В частности, им был рассмотрен следующий вопрос: если даны два центральных элемента s и t кольца R, когда кольца $K_s(R)$ и $K_t(R)$ изоморфны? Полученный им результат [9, Следствие 2] гласит, что для области целостности или коммутативного локального кольца R и $s,t \in R, K_s(R) \cong K_t(R)$ если и только если $t = v\alpha(s)$, где $v \in U(R)$ и $\alpha \in \operatorname{Aut}(R)$. В статье [14, Следствие 4.11], результат Крылова был обобщен на произвольное коммутативное кольцо R, такое что $Z(R) \subseteq J(R)$. В статье [16] последний результат был обобщен уже на новый класс колец формальных матриц с $\eta_{ijk} = s^{1+\delta_{ik}-\delta_{ij}-\delta_{jk}}$, где $s \in C(R)$. Это кольцо формальных матриц обозначается $\mathbb{M}_n(R;s)$.

Отдельный интерес представляет свойство строгой чистоты колец формальных матриц. Хорошо известно, что кольцо эндоморфизмов модуля конечной длины является строго π -регулярным (лемма Фиттинга). Никольсон ([13]) показал, что строго π -регулярные кольца является строго чистыми. Таким образом, строго чистые кольца являются естественным обобщением ряда классических классов колец. С другой

стороны чистые, и в частности строго чистые кольца, являются важным подклассом класса колец со свойством замены. Кольца со свойством замены играют большую роль в современной теории колец и модулей. Так как из строгой чистоты кольца, вообще говоря, не следует строгая чистота колец матриц над ним, то одним из основных вопросов в теории чистых колец является описание колец, матричные кольца над которыми строго чисты. Этой проблеме в последние годы были посвящены статьи [3], [5], [15] и многие другие.

В дипломной работе изучаются проблема изоморфизма для колец формальных матриц и условия строгой чистоты для некоторых классов колец формальных матриц.

В параграфе 1 вводится кольцо формальных матриц $\mathbb{M}_{\beta_1,\dots,\beta_n}(R)$ и доказывается аналог теоремы Гамильтона-Кэли для них. В параграфе 2 рассматривается вопрос: если даны два набора центральных элементов β_1, \dots, β_n и $\gamma_1, \dots, \gamma_n$ кольца R, когда кольца $\mathbb{M}_{\beta_1,\dots,\beta_n}(R)$ и $\mathbb{M}_{\gamma_1,\dots,\gamma_n}(R)$ изоморфны? В двух случаях ответ на вопрос найден для произвольного коммутативного кольца R: если $\beta_1 = \beta$, $\beta_2 = \dots = \beta_n = 0$ и апп $_R(\beta) \subseteq J(R)$, и если $\beta_1 = \dots = \beta_n = \beta$ и апп $_R(\beta^2) \subseteq J(R)$. Если положить $Z(R) \subseteq J(R)$, то последний результат может быть обобщен на любые $\beta \in C(R)$. Из полученных в дипломной работе результатов следуют все ранее известные результаты связанные с проблемой изоморфизма колец формальных матриц, установленные в работах [9], [14] и [16]. В параграфе 3 вводится понятие чистых и строго чистых колец. В заключающем параграфе 4 приводится ряд результатов о строгой чистоте рассмотренных выше колец формальных матриц.

§ 1. ПРЕДВАРИТЕЛЬНЫЕ РЕЗУЛЬТАТЫ

Все кольца будем считать ассоциативными и с единицей, а модули и бимодули - унитарными. Радикал Джекобсона, центр, множество делителей нуля и группу обратимых элементов кольца R будем обозначать J(R), C(R), Z(R) и U(R) соответственно.

Пусть $R_1, R_2, ..., R_n$ - кольца, а M_{ij} - (R_i, R_j) -бимодули, причем $M_{ii} = R_i$, для всех $1 \le i, j \le n$. Пусть также $\varphi_{ijk}: M_{ij} \otimes_{R_j} M_{jk} \to M_{ik}$ будут (R_i, R_k) -бимодульными гомоморфизмами, с оговоркой, что φ_{iij} и φ_{ijj} - канонические изоморфизмы для всех $1 \le i, j \le n$. Введем обозначение $a \circ b = \varphi_{ijk}(a \otimes b)$ для $a \in M_{ij}, b \in M_{jk}$. За K обозначим множество всех $n \times n$ -матриц (m_{ij}) , с элементами $m_{ij} \in M_{ij}$ для всех $1 \le i, j \le n$. Простая проверка показывает, что относительно обычных операций сложения и умножения K будет кольцом, если и только если $a \circ (b \circ c) = (a \circ b) \circ c$ для всех $a \in M_{ik}, b \in M_{kl}, c \in M_{lj}, 1 \le i, k, l, j \le n$. Полученное кольцо K называется кольцом формальных матриц порядка n и обозначается $K(\{M_{ij}\}: \{\varphi_{ikj}\})$.

Определение 1. Кольцо формальных матриц $K(\{M_{ij}\}:\{\varphi_{ikj}\})$ порядка n, в котором $M_{ij}=R$ для всех $1\leq i,j\leq n$, называется кольцом формальных матриц над R порядка n и обозначается $K_n(R)$ или $K_n(R:\{\varphi_{ikj}\})$.

Пусть $K_n(R:\{\varphi_{ijk}\})$ будет кольцом формальных матриц над R порядка n. Положим $\eta_{ijk} = \varphi(1 \otimes 1)$ для всех $1 \leq i, j, k \leq n$. Тогда $a \circ b = \varphi_{ijk}(a \otimes b) = \eta_{ijk}ab$ для всех $a, b \in R$. Для любого $a \in R$ имеем $a\eta_{ijk} = \varphi_{ijk}(a \times 1) = \varphi_{ijk}(1 \otimes a) = \eta_{ijk}a$. Таким образом, $\eta_{ijk} \in C(R)$, и выполняются условия:

- 1) $\eta_{iij} = \eta_{ijj} = 1$, $1 \le i, j \le n$,
- 2) $\eta_{ijk}\eta_{ikl} = \eta_{ijl}\eta_{jkl}, \quad 1 \le i, j, k, l \le n.$

Первое условие выполняется в силу того, что φ_{iij} и φ_{ijj} - канонические изоморфизмы. А в силу ассоциативности операции \circ имеем $\eta_{ijk} \eta_{ikl} abc = \eta_{ijl} \eta_{jkl} abc$ для всех $a,b,c \in R$. Положив a=b=c=1 получаем второе условие.

В то же время, для любого набора $\{\eta_{ijk} \mid 1 \leq i, j, k \leq n\}$ центральных элементов R, удовлетворяющих первому и второму условию, можно положить $\varphi_{ijk}(a \otimes b) = \eta_{ijk}ab$ для всех $a, b \in R$. Непосредственная проверка показывает, что $K_n(R: \{\varphi_{ikj}\})$ будет кольцом формальных матриц над R порядка n. Таким образом, кольцо формальных матриц $K_n(R: \{\varphi_{ikj}\})$ однозначно определяется набором центральных элементов

 $\{\eta_{ijk} \mid 1 \leq i, j, k \leq n\}$. В этом случае кольцо формальных матриц $K_n(R : \{\varphi_{ikj}\})$ мы будем обозначать через $K_n(R : \{\eta_{ikj}\})$.

Предложение 2. Пусть $K = K_n(R:\{\eta_{ikj}\})$ - кольцо формальных матриц над R порядка $n,\ I = (I_{ij})$ - идеал в кольце K. Тогда

 $1)K_n(\{R/I_{ij}\}:\{\psi_{ikj}\})$ - кольцо формальных матрии, где $\psi:R/I_{ij} \bigotimes R/I_{jk} \to R/I_{ik}$ определяется по формуле $\psi_{ijk}(\bar{a} \otimes \bar{b}) = \eta_{ijk} \, ab + I_{ik}, \, 1 \leq i, j, k \leq n;$ 2) $K/I \cong K_n(\{R/I_{ij}\}:\{\psi_{ijk}\}).$

Доказательство. 1) Показывается непосредственной проверкой.

2) Отображение $\Phi: K \to K_n(\{R/I_{ij}\} : \{\psi_{ijk}\})$, действующее по правилу $\Phi((a_{ij})) = (a_{ij} + I_{ij})$, есть эпиморфизм колец с ядром $\text{Ker}(\Phi) = I$.

Трудно сказать что-либо конкретное об изоморфизмах произвольных колец формальных матриц над R. Однако, если кольцо R коммутативно, то верен следующий результат.

Предложение 3. Пусть $K_n(R:\{\eta_{ijk}\})$ - кольцо формальных матриц над коммутативным кольцом R порядка n и $\eta_{ijk} \in C(R)$, $1 \le i, j, k, \le n$. Тогда

- 1) если все $\eta_{ijk} \in U(R)$, то $K_n(R : \{\eta_{ijk}\}) \cong M_n(R)$.
- 2) если $K_n(R: \{\eta_{ijk}\}) \cong M_n(R)$, то все $\eta_{ijk} \in U(R)$.

Доказательство. 1) Зададим отображение $\varphi: K_n(R: \{\eta_{ijk}\}) \to M_n(R)$, действующее по правилу $\varphi((a_{ij})) = \eta_{1ij}a_{ij}$. Непосредственая проверка показывает, что φ есть изоморфизм колец.

2) Обозначим имеющийся изоморфизм колец за $\varphi: K_n(R:\{\eta_{ijk}\}) \to M_n(R).$

Предположим что R - поле. Мы покажем что в этом случае все коэффициенты η_{ijk} отличны от нуля. В самом деле, пусть найдется $\eta_{ijk}=0$. Определим отображение $\psi: K_n(R:\{\eta_{ijk}\}) \to M_n(R)$, положив $\psi((a_{ij})) = (\eta_{1ij}a_{ij})$. Непосредственная проверка показывает, что ψ есть гомоморфизм колец. Однако $\ker(\psi) \neq 0$, и поэтому $\varphi(\ker(\psi))$ - отличный от нулевого двусторонний идеал в $M_n(R)$. А т.к. $\eta_{111}=1$, то $\varphi(\ker(\psi)) \neq M_n(R)$. Но в этом случае R это поле, а $M_n(R)$ - простое кольцо. Это противоречие показывает, что все коэффициенты η_{ijk} отличны от нуля.

Теперь рассмотрим общий случай. Обозначим $K = K_n(R:\{\eta_{ijk}\}), M = M_n(R)$ и предположим что существует $\eta_{abc} \not\in U(R)$. Тогда $\eta_{abc}R \neq R$ есть идеал в R и потому содержится в некотором максимальном идеале I кольца R. Т.к. C(K) = RE и C(M) = RE, то существует отображение $\alpha \in Aut(R)$, такое что $\varphi(rE) = RE$

 $\alpha(r)E$, для всех $r \in R$. Имеем $K/IK \cong M_n(R)/\alpha(I)M$. Согласно предложению 2, $K_n(R/I:\{\overline{\eta_{ijk}}\}) \cong M_n(R/\alpha(I))$, где $\overline{\eta_{ijk}} = \eta_{ijk} + I$. Заметим что $R = \alpha(R)$ и потому $M_n(R/\alpha(I)) \cong M_n(R/I)$. Но R/I поле, а $\overline{\eta_{abc}} = \overline{0}$. Это противоречие показывает, что $\eta_{ijk} \in U(R)$, $1 \leq i,j,k \leq n$.

Для начала рассмотрим матрицы порядка 3 вида $K_3(R:\{\eta_{ijk}\})$. Из материала представленного выше следует, что

```
\eta_{123} \, \eta_{213} = \eta_{121} = \eta_{212} = \eta_{312} \, \eta_{321},

\eta_{321} \, \eta_{231} = \eta_{323} = \eta_{232} = \eta_{132} \, \eta_{123},

\eta_{132} \, \eta_{123} = \eta_{131} = \eta_{313} = \eta_{213} \, \eta_{231}.
```

Более того, для произвольных центральных элементов η_{123} , η_{321} , η_{132} , η_{231} , η_{231} , и элементов η_{121} , η_{212} , η_{131} , η_{313} , η_{232} , η_{323} , определяемых из равенств выше, множество $K_3(R:\{\eta_{ijk}\})$ становится кольцом. Поэтому все формальные матричные кольца над R порядка 3 могут быть описаны шестью элементами.

Однако, аналогичный результат не верен для произвольных формальных матричных колец над R порядка n. Фиксируя набор центральных элементов $\beta_i, \beta_i' \in R$, можно рассмотреть подкласс формальных матричных колец, положив $\eta_{ijk} = b_j$, если i,j,k различны и перестановка (ijk) четная, и $\eta_{ijk} = b_j'$, если i,j,k различны и перестановка (ijk) нечетная. И если для матриц порядка 3 это достаточное условие, чтобы породить кольцо $K_3(R:\{\eta_{ijk}\})$, то для матриц порядка n мы дожны потребовать выполнение еще одного условия: $\beta_i\beta_j' = \beta_i'\beta_j$, для всех $1 \le i,j \le n$. Только в этом случае элементы η_{ijk} (i,j,k различны) можно дополнить до множества $\{\eta_{ijk} \mid 1 \le i,j,k \le n\}$, порождающего кольцо $K_n(R:\{\eta_{ijk}\})$.

Чтобы добиться удовлетворения равенства $\beta_i\beta_j'=\beta_i'\beta_j$, можно положить $b_1=b_2=\dots=b_n=c\in C(R)$ и $b_1'=b_2'=\dots=b_n'=q\in C(R)$. Когда c=1, это кольцо формальных матриц называют кольцом скрещенных матриц порядка n и обозначают $(R)_{\mathrm{id},q,n}$. Другой простой способ добиться равенства - это положить $b_i'=b_i$, для $1\leq i\leq n$. Начиная с этого момента, последний класс колец будет предметом рассмотрения этой дипломной работы.

Для $\beta_1,...,\beta_n\in C(R)$, определим η_{ijk} для всех $1\leq i,j,k\leq n$ по формуле

$$\eta_{ijk} = \beta_i^{\delta_{ik} - \delta_{ij}} \beta_j^{1 - \delta_{jk}} = \begin{cases} 1, & \text{если } i = j \text{ или } j = k, \\ \beta_j, & \text{если } i, j, k \text{ различны,} \\ \beta_i \beta_j, & \text{если } i = k \neq j. \end{cases}$$

Непосредственная проверка показывает, что набор $\{\eta_{ijk} \mid 1 \leq i, j, k \leq n\}$ отвечает условиям (1) и (2) представленным ранее, и, следовательно, определяет кольцо формальных матриц над R порядка n.

Определение 4. Пусть R кольцо, $\beta_1, ..., \beta_n \in C(R)$, $n \geq 2$ и пусть η_{ijk} определены как показано выше. Кольцо формальных матриц $K_n(R:\{\varphi_{ijk}\})$, определяемое множеством $\{\eta_{ijk}\}$, называется кольцом формальных матриц зависящим от параметров $\beta_1, ..., \beta_n$ и обозначается $\mathbb{M}_{\beta_1, ..., \beta_n}(R)$.

Таким образом, $\mathbb{M}_{\beta_1,\dots,\beta_n}(R)$ есть множество всех матриц порядка n над R с обычной операцией сложения и операцией умножения определенной следующим образом: для двух матриц порядка n над R - (a_{ij}) и (b_{ij}) ,

$$(a_{ij})(b_{ij}) = (c_{ij}),$$
 где $c_{ij} = \sum_{k=1}^{n} \beta_i^{\delta_{ij} - \delta_{ik}} \beta_k^{1 - \delta_{jk}} a_{ik} b_{kj}.$

К примеру,

$$\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix} = \begin{pmatrix} a_{11}b_{11} + \beta_1\beta_2a_{12}b_{21} & a_{11}b_{12} + a_{12}b_{22} \\ a_{21}b_{11} + a_{22}b_{21} & \beta_1\beta_2b_{21}a_{12} + b_{22}a_{22} \end{pmatrix} \text{ B } \mathbb{M}_{\beta_1,\,\beta_2}(R),$$

И

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \begin{pmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \end{pmatrix} = \begin{pmatrix} a_{11}b_{11} + \beta_1\beta_2a_{12}b_{21} + \beta_1\beta_3a_{13}b_{31} & * & * \\ a_{21}b_{11} + a_{22}b_{21} + \beta_3a_{23}b_{31} & * & * \\ a_{31}b_{11} + \beta_2a_{32}b_{21} + a_{33}b_{31} & * & * \end{pmatrix}$$
 B $\mathbb{M}_{\beta_1, \beta_2, \beta_3}(R)$.

Замечание 5. Для $\beta \in C(R)$, упорядоченная четверка $\begin{pmatrix} R & R \\ R & R \end{pmatrix}$ становится кольцом, если ввести поэлементную операцию сложения и операцию умножения действующую как

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} e & f \\ g & h \end{pmatrix} = \begin{pmatrix} ae + \beta bg & af + bh \\ ce + dg & \beta cf + dh \end{pmatrix}.$$

Получившееся кольцо было обозначено $K_{\beta}(R)$ Крыловым в [9], и оно было дальнейшем изучено в [9, 10, 15, 16]. В наших обозначениях, $\mathbb{M}_{1,\beta}(R) = \mathbb{M}_{\beta,1} = K_{\beta}(R)$. Более того, $\mathbb{M}_{\beta_1,\beta_2}(R) = \mathbb{M}_{1,\beta_1\beta_2} = K_{\beta_1\beta_2}(R)$ для всех $\beta_1,\beta_2 \in C(R)$.

Предложение 6. Пусть R - кольцо, $\beta_1, ..., \beta_n \in C(R)$ и $n \geq 2$. Тогда отображение $\Phi: \mathbb{M}_{\beta_1, ..., \beta_n}(R) \to \mathbb{M}_n(R)$, действующее как $(a_{ij}) \mapsto (\beta_i^{1-\delta_{ij}} a_{ij})$, является гомоморфизмом колец. Более того, верны следующие утверждения:

- 1) $\Phi(1) = 1$,
- 2) $(\text{Ker }\Phi)^2 = 0$,
- 3) Φ взаимно-однозначно тогда и только тогда, когда $\beta_1, ..., \beta_n$ являются неделителями нуля в R,
- 4) Φ сюръекция тогда и только тогда, когда $\beta_1,...,\beta_n \in U(R)$, что равносильно тому, что Φ есть биекция.

Доказательство. Для $A=(a_{ij}), B=(b_{ij})\in \mathbb{M}_{\beta_1,\dots,\beta_n}(R), \ AB=(c_{ij}), \ \text{где} \ c_{ij}=\sum_{k=1}^n \eta_{ikj}a_{ik}b_{kj}.$ Поэтому (i,j) - элемент матрицы of $\Phi(AB)$ равен

$$\beta_i^{1-\delta_{ij}} c_{ij} = \beta_i^{1-\delta_{ij}} \sum_{k=1}^n \beta_i^{\delta_{ij}-\delta_{ik}} \beta_k^{1-\delta_{kj}} a_{ik} b_{kj} = \sum_{k=1}^n (\beta_i^{1-\delta_{ik}} a_{ik}) (\beta_k^{1-\delta_{kj}} b_{kj}),$$

что совпадает с (i,j)-элементом матрицы $\Phi(A)\Phi(B)$. Таким образом, Φ сохраняет операцию умножения, ровно как и операцию сложения. Следовательно, Φ есть гомоморфизм колец. Легко видеть, что утверждения (1)-(4) выполняются.

Строение идеалов кольца $\mathbb{M}_{\beta_1,...,\beta_n}(R)$ показывает следующее предложение.

Предложение 7. Пусть R - кольцо, $n \ge 2$ и $\beta_1, ..., \beta_n \in C(R)$. Тогда $I \subseteq \mathbb{M}_{\beta_1, ..., \beta_n}(R)$ будет идеалом если и только если $I = (I_{ij})$ и выполняются следующие условия:

- 1) $I_{ii} \subseteq \bigcap_{k \neq i} (I_{ik} \cap I_{ki}), 1 \leq i \leq n;$
- 2) $\beta_i \beta_j (I_{ij} + I_{ji}) \subseteq I_{ii} \cap I_{jj}, i \neq j;$
- 3) $\beta_i I_{ij} \subseteq \bigcap_{k \neq j} I_{kj};$
- 4) $\beta_j I_{ij} \subseteq \bigcap_{k \neq i} I_{ik}$.

Доказательство. Пусть $I \subseteq \mathbb{M}_{\beta_1,...,\beta_n}(R)$ - идеал. Обозначим за E_{ij} матричные единицы кольца $\mathbb{M}_{\beta_1,...,\beta_n}(R)$. В силу того, что E_{ii} - ортогональные идемпотенты в сумме дающие единицу, то $I = \sum_{i,j} E_{ii} I E_{jj}$. Введем обозначение $I_{ij} = E_{ii} I E_{jj}$. Тогда $I = (I_{ij})$. Остальные свойства, ровно как и обратное утверждение, проверяются непосредственной проверкой из свойств идеала.

В дальнейшем будем считать, что R - коммутативное кольцо с единицей, а $\beta_1, ..., \beta_n$ - произвольные, но фиксированные элементы кольца R. Покажем, что кольца формальных матриц вида $\mathbb{M}_{\beta_1,...,\beta_n}(R)$ можно рассматривать как классические матричные кольца над новым кольцом, которое является расширением кольца R. Рассмотрим свободный R-модуль \widehat{R} над кольцом R с базисом $\{e_A\}_{A \in 2^{\{1,...,n\}}}$. Операцию умножения в модуле \widehat{R} определим по правилу:

$$(\sum r_A' e_A) (\sum r_B'' e_B) = \sum r_A' r_B'' e_A e_B, \quad \text{где } e_A e_B = \beta_{A \cap B} e_{A \triangle B}, \ \beta_C = \prod_{k \in C} \beta_k \text{ и } \beta_\varnothing = 1.$$

Лемма 8. 1) Под действием введенных операций, \widehat{R} становится коммутативным кольцом. Исходное кольцо R можно рассматривать как подкольцо \widehat{R} под действием вложения $r\mapsto re_\varnothing$, $r\in R$.

2) Отображение $\pi: \mathbb{M}_{\beta_1,...,\beta_n}(R) \to M_n(\widehat{R})$, такое что $\pi((a_{ij})) = (a_{ij}e_{\{i\}\Delta\{j\}})$, является инъективным гомоморфизмом колец.

Доказательство. 1) Из определения операции умножения, получаем $e_A e_B = e_B e_A$ для всех $A, B \in 2^{\{1,...,n\}}$. Осталось доказать ассоциативность. Пусть $A, B, C \in 2^{\{1,...,n\}}$. Имеем

$$(e_A e_B) e_C = \beta_{A \cap B} e_{A \triangle B} e_C = \beta_{A \cap B} \beta_{(A \triangle B) \cap C} e_{(A \triangle B) \triangle C} =$$
$$\beta_{(A \cap B) \cup (A \cap C) \cup (B \cap C)} e_{(A \cup B \cup C) \setminus ((A \cap B) \cup (A \cap C) \cup (B \cap C))}.$$

Отсюда следует, что $(e_A e_B)e_C = (e_B e_C)e_A = e_A(e_B e_C)$.

2) Проверяется непосредственной проверкой.

Теперь мы можем ввести определитель и характеристический многочлен для $A\in \mathbb{M}_{\beta_1,\dots,\beta_n}(R),$ положив

$$\det_{\beta_1,\dots,\beta_n}(A) = \det_{\widehat{R}}(\pi(A)) \text{ if } \chi_{\beta_1,\dots,\beta_n;A}(\lambda) = \chi_{\pi(A)}(\lambda).$$

Непосредственная проверка, использующая представление перестановки в виде непересекающихся циклов, показывает, что $\det_{\beta_1,\dots,\beta_n}(A) \in R$ и $\chi_{\beta_1,\dots,\beta_n;A}(\lambda) \in R[\lambda]$ для всех $A \in \mathbb{M}_{\beta_1,\dots,\beta_n}(R)$. Таким образом, верна следующая теорема.

Теорема 9. Пусть
$$A, B \in \mathbb{M}_{\beta_1,...,\beta_n}(R)$$
. Тогда:
1) $\det_{\beta_1,...,\beta_n}(AB) = \det_{\beta_1,...,\beta_n}(A) \det_{\beta_1,...,\beta_n}(B)$;

- 2) матрица A обратима в $\mathbb{M}_{\beta_1,...,\beta_n}(R)$ если и только если $\det_{\beta_1,...,\beta_n}(A) \in U(R);$ 3) $\chi_{\beta_1,...,\beta_n;A}(A) = 0.$

 \S 2. Проблема изоморфизма для колец вида $\mathbb{M}_{eta_1,\ldots,eta_n}(R)$

Т.к. $\mathbb{M}_{\beta_1,\beta_2}(R) = \mathbb{M}_{1,\beta_1\beta_2}(R) = K_{\beta_1\beta_2}(R)$, то как следствие получаем

Теорема 10. [14, Следствие 4.11] Пусть R - коммутативное кольцо, такое что $Z(R) \subseteq J(R)$ и пусть $\beta, \gamma \in R$. Тогда $\mathbb{M}_{1,\beta}(R) \cong \mathbb{M}_{1,\gamma}(R)$ если и только если $\gamma = v\alpha(\beta)$, где $v \in U(R)$ и $\alpha \in \operatorname{Aut}(R)$.

Таким образом, достаточно рассмотреть случай $n \geq 3$. Начнем с простейших результатов и постепенно перейдем к главному результату этой части.

Предложение 11. Пусть R - кольцо, $n \geq 3$ и $\beta_1, \beta_2, ..., \beta_n \in C(R)$. Тогда верно следующее:

- 1) Ecau $v_1, ..., v_n \in U(R) \cap C(R)$ $u \in Aut(R)$, mo $\mathbb{M}_{\beta_1, ..., \beta_n}(R) \cong \mathbb{M}_{v_1 \alpha(\beta_1), ..., v_n \alpha(\beta_n)}(R)$.
- 2) Ecnu $\pi \in S_n$, mo $\mathbb{M}_{\beta_1,\ldots,\beta_n}(R) \cong \mathbb{M}_{\beta_{\pi(1)},\ldots,\beta_{\pi(n)}}(R)$.
- 3) Если $\pi_1, ..., \pi_n \in S_n$ и дано разложения единицы $1 = a_1 + a_2 + ... + a_n$ в сумму ортогональных идемпотентов a_i , то $M_{\beta_1, ..., \beta_n}(R) \cong M_{\gamma_1, ..., \gamma_n}(R)$, где $\gamma_i = \sum_{j=1}^n \beta_{\pi_j(i)} a_j$, $1 \le i, \le n$.

Доказательство. 1) Зададим отображение $\Theta: \mathbb{M}_{\beta_1,\dots,\beta_n}(R) \to \mathbb{M}_{v_1\beta_1,\dots,v_n\beta_n}(R)$ действующее по правилу $\Theta((a_{ij})) = ((v_i^{\delta_{ij}-1}a_{ij}))$. Легко видеть, что Θ это биекция сохраняющая операцию сложения. Более того, для $A = (a_{ij})$ и $B = (b_{ij})$ в кольце $\mathbb{M}_{\beta_1,\dots,\beta_n}(R)$, $AB = (c_{ij})$, где $c_{ij} = \sum_{k=1}^n \beta_i^{\delta_{ij}-\delta_{ik}} \beta_k^{1-\delta_{jk}} a_{ik} b_{kj}$, а (i,j)-элемент матрицы $\Theta(AB)$ равен

$$v_i^{\delta_{ij}-1}c_{ij} = \sum_{k=1}^n (v_i\beta_i)^{\delta_{ij}-\delta_{ik}} (v_k\beta_k)^{1-\delta_{jk}} (v_i^{\delta_{ik}-1}a_{ik}) (v_k^{\delta_{kj}-1}b_{kj}),$$

что совпадает с (i,j)-элементом матрицы $\Theta(A)\Theta(B)$. Таким образом, Θ сохраняет операцию умножения, и следовательно $\mathbb{M}_{\beta_1,\dots,\beta_n}(R)\cong\mathbb{M}_{v_1\beta_1,\dots,v_n\beta_n}(R)$. Поэтому $\mathbb{M}_{\alpha(\beta_1),\dots,\alpha(\beta_n)}(R)\cong\mathbb{M}_{v_1\alpha(\beta_1),\dots,v_n\alpha(\beta_n)}(R)$. Однако, легко видеть что отображение $(a_{ij})\mapsto (\alpha(a_{ij}))$ задает изоморфизм между $\mathbb{M}_{\beta_1,\dots,\beta_n}(R)$ и $\mathbb{M}_{\alpha(\beta_1),\dots,\alpha(\beta_n)}(R)$. Итак $\mathbb{M}_{\beta_1,\dots,\beta_n}(R)\cong\mathbb{M}_{v_1\alpha(\beta_1),\dots,v_n\alpha(\beta_n)}(R)$.

2) Зададим отображение $\Theta: \mathbb{M}_{\beta_1,...,\beta_n}(R) \to \mathbb{M}_{v_1\alpha(\beta_1),...,v_n\alpha(\beta_n)}(R)$ действующее по правилу $\Theta((a_{ij})) = ((a_{\pi(i)\pi(j)}))$. Легко видеть, что Θ это биекция сохраняющая операцию сложения. Более того, для $A = (a_{ij})$ и $B = (b_{ij})$ в $\mathbb{M}_{\beta_1,...,\beta_n}(R)$, $AB = (c_{ij})$, где $c_{ij} = \sum_{k=1}^n \beta_i^{\delta_{ij} - \delta_{ik}} \beta_k^{1 - \delta_{jk}} a_{ik} b_{kj}$, а $(\pi(i), \pi(j))$ -элемент матрицы $\Theta(AB)$ равен

$$c_{ij} = \sum_{\pi(k)=1}^{n} \beta_i^{\delta_{ij} - \delta_{ik}} \beta_k^{1 - \delta_{jk}} a_{ik} b_{kj},$$

что совпадает с $(\pi(i), \pi(j))$ -элементом матрицы $\Theta(A)\Theta(B)$.

3) Верна следующая цепочка изоморфизмов:

$$M_{\beta_{1},\beta_{2},...,\beta_{n}}(R) \cong M_{a_{1}\beta_{1},a_{2}\beta_{2},...,a_{1}\beta_{n}}(a_{1}R) \times ... \times M_{a_{n}\beta_{1},a_{n}\beta_{2},...,a_{n}\beta_{n}}(a_{n}R) \cong M_{a_{1}\beta_{\pi_{1}(1)},a_{1}\beta_{\pi_{1}(2)},...,a_{1}\beta_{\pi_{1}(n)}}(a_{1}R) \times ... \times M_{a_{n}\beta_{\pi_{n}(1)},a_{n}\beta_{\pi_{3}(2)},...,a_{n}\beta_{\pi_{n}(n)}}(a_{n}R) \cong M_{\beta_{\pi_{1}(1)}a_{1}+\beta_{\pi_{2}(1)}a_{2}+...+\beta_{\pi_{n}(1)}a_{n},\ \beta_{\pi_{1}(2)}a_{1}+\beta_{\pi_{2}(2)}a_{2}+...+\beta_{\pi_{n}(2)}a_{n},\ \beta_{\pi_{1}(n)}a_{1}+\beta_{\pi_{2}(n)}a_{2}+...+\beta_{\pi_{n}(n)}a_{n}}(R).$$

Кольцо называется нормальным, если все его идемпотенты центральны.

Лемма 12. Пусть R - нормальное кольцо, T - кольцо, $n \geq 3$ и $\beta_1, ..., \beta_n \in C(R)$. Тогда если $\mathbb{M}_{0, ..., 0}(R) \cong \mathbb{M}_{\beta_1, ..., \beta_n}(T)$, то $\beta_1 = ... = \beta_n = 0$.

Доказательство. Положим $S_1 = \mathbb{M}_{\underbrace{0,...,0}_n}(R), \ S_2 = \mathbb{M}_{\beta_1,...,\beta_n}(T), \ \mathrm{a} \ \Theta \ : \ S_1 \to S_2$

- указанный в условии изоморфизм. Предположим, что существует $\beta_i \neq 0$. В силу

предложения 11, можно считать что
$$\beta_1 \neq 0$$
. Заметим, что $I = \begin{pmatrix} 0 & R & \dots & R \\ R & 0 & \dots & R \\ \vdots & \vdots & \ddots & \vdots \\ R & R & \dots & 0 \end{pmatrix}$ -

нильпотентный идеал индекса 2 в S_1 , поэтому $\Theta(I)$ нильпотентный идеал индекса 2 в S_2 . Обозначим матричные единицы S_2 за F_{ij} , $1 \le i, j \le n$. Т.к. $F_{21}F_{13} = \beta_1F_{23} \ne 0$ в S_2 , то либо $F_{21} \notin \Theta(I)$, либо $F_{13} \notin \Theta(I)$. Не нарушая общности, можно предположить что $F_{21} \ne 0$. Таким образом, $F_{22}(F_{22} + F_{21}) - (F_{22} + F_{21})F_{22} = F_{21} \notin \Theta(I)$. А это значит, что элемент $(F_{22} + F_{21})$ по модулю идеала $\Theta(I)$ не централен в $S_2/\Theta(I)$, и следовательно $S_2/\Theta(I)$ не является нормальным кольцом. Однако, $S_2/\Theta(I) \cong S_1/I$ изоморфно прямому произведению n копий n, что очевидно является нормальным кольцом. Получили противоречие.

Пусть R - кольцо, $n \geq 3$, $\beta_i, \gamma_i \in C(R)$, $1 \leq i \leq n$. Положим $S_1 = \mathbb{M}_{\beta_1, \dots, \beta_n}(R)$, $S_2 = \mathbb{M}_{\gamma_1, \dots, \gamma_n}(R)$, E_{ij} - матричные единицы S_1 , F_{ij} - матричные единицы S_2 , $I \subseteq S_1$ - идеал порожденный $\{E_{ij} \mid i \neq j\}$, $J \subseteq S_2$ - идеал порожденный $\{F_{ij} \mid i \neq j\}$.

Лемма 13. Пусть R - коммутативное кольцо и пусть $\Theta: S_1 \to S_2$ - изоморфизм. Тогда $\Theta(I) = J$.

Доказательство. Предположим, что существуют $i \neq j$, такие что $F_{ij} \notin \Theta(I)$. Тогда $F_{ii}(F_{ii}+F_{ij})-(F_{ii}+F_{ij})F_{ii}=F_{ij}\notin \Theta(I)$. Это показывает, что элемент $(F_{ii}+F_{ij})$ по модулю идеала $\Theta(I)$ не центральный в $S_2/\Theta(I)$. Введем обозначение: $\beta_{[l]}(R)=$

 $\sum\limits_{k=1,\,k\neq l}^{k=n}\beta_kR.$ Легко видеть, что

$$I = \begin{pmatrix} \beta_1 \beta_{[1]}(R) & R & \dots & R \\ R & \beta_2 \beta_{[2]}(R) & \dots & R \\ \vdots & \vdots & \ddots & \vdots \\ R & R & \dots & \beta_n \beta_{[n]}(R) \end{pmatrix}.$$

Однако $S_2/\Theta(I) \cong S_1/I \cong \bigoplus_{k=1}^n R/\beta_k\beta_{[k]}(R)$, а последнее кольцо коммутативно. Получили противоречие. Поэтому $J \subseteq \Theta(I)$. Доказательство того, что $I \subseteq \Theta^{-1}(J)$ аналогично. Имеем $J \subseteq \Theta(I)$ и $J \supseteq \Theta(I)$. Отсюда $\Theta(I) = J$.

Из предложения 11 незамедлительно следует что кольца $M_{\beta,0,\dots,0}(R)$ и $M_{\beta a_1,\beta a_2,\dots,\beta a_n}(R)$ изоморфны для любого разложения единицы $1=a_1+a_2+\dots+a_n,\ n\geq 3$, в сумму ортогональных идемпотентов a_i . Более того, для коммутативного кольца R верна следующая теорема.

Теорема 14. Пусть R - коммутативное кольцо, $n \geq 3$, $\beta, \gamma_1, ..., \gamma_n \in R$ u ann $_R(\beta) \subseteq J(R)$. Тогда $\underbrace{\mathbb{M}_{\beta,0,...,0}(R) \cong \mathbb{M}_{\gamma_1,\gamma_2,...,\gamma_n}(R)}_{n}$ если u только если $\gamma_i = \alpha(\beta)v_ia_i$ для всех $i = \overline{1,n}$, где $\alpha \in \operatorname{Aut}(R)$, $v_i \in U(R)$, u $1 = a_1 + a_2 + ... + a_n$ - разложение единицы в сумму ортогональных идемпотентов a_i .

Доказательство. (⇐) Достаточность следует из предложения 11.

 (\Rightarrow) Положим $S_1=\underbrace{\mathbb{M}_{\beta,0,\ldots,0}}_{n}(R),\ S_2=\mathbb{M}_{\gamma_1,\gamma_2,\ldots,\gamma_n}(R),\ E_{ij}$ - матричные единицы $S_1,\ F_{ij}$ - матричные единицы $S_2,\ a\ \Theta:\ S_1\to S_2$ - указанный в условии изоморфизм. Для любого $r\in R$ имеем $rE\in C(S_1)$ и $\Theta(rE)\in C(S_2)$. Отсюда найдется $s\in R$ такой, что $\Theta(rE)=sE$. Зададим отображение $\alpha:\ R\to R$ действующее по правилу $\alpha(r)=s$. Непосредственная проверка показывает что $\alpha\in Aut(R)$.

Пусть $I=\beta S_1$ - идеал в S_1 . Тогда $\Theta(I)=\alpha(\beta)S_2$ тоже идеал, но уже в S_2 . В силу предложения 2 и изоморфизма $S_1/I\cong S_2/\Theta(I)$ получаем наличие изоморфизма $\mathbb{M}_{\underbrace{0,0,...,0}_n}(R/\beta R)\cong \mathbb{M}_{\bar{\gamma}_1,\bar{\gamma}_2,...,\bar{\gamma}_n}(R/\alpha(\beta)R)$. По лемме $12,\ \bar{\gamma}_i=\bar{0},\ \text{т.e.}\ \gamma_i=\alpha(\beta)y_i$ для некоторых $y_i\in R,\ 1\leq i\leq n$.

Положим $x_i = \alpha^{-1}(y_i)$ для всех $1 \leq i \leq n$. Тогда кольца S_2 и $\mathbb{M}_{\beta x_1,\beta x_2,...,\beta x_n}(R)$ изоморфны. Обозначим этот изоморфизм за Ψ . Непосредственная проверка показывает, что $\Psi \circ \Theta : S_1 \to \mathbb{M}_{\beta x_1,\beta x_2,...,\beta x_n}(R)$ также изоморфизм и $(\Psi \circ \Theta)(rE) = rE$ для любого

 $r \in R$. Далее мы будем исходить из предположения, что $S_2 = \mathbb{M}_{\beta x_1, \beta x_2, \dots, \beta x_n}(R)$.

Пусть $I = \beta x_1 S_2 + \beta x_2 S_2 + ... + \beta x_n S_2$ - идеал в S_2 . $\Theta^{-1}(I) = \beta x_1 S_1 + \beta x_2 S_1 + ... + \beta x_n S_1$ также идеал, но уже в S_1 . В силу изоморфизма $S_2/I \cong S_1/\Theta^{-1}(I)$ имеем, что $\beta = \beta x_1 \eta_1 + \beta x_2 \eta_2 + ... + \beta x_n \eta_n$ для некоторых $\eta_1, ..., \eta_n \in R$.

Заметим, что
$$I = \begin{pmatrix} 0 & R & \dots & R \\ R & 0 & \dots & R \\ \vdots & \vdots & \ddots & \vdots \\ R & R & \dots & 0 \end{pmatrix}$$
 - идеал в S_1 , поэтому $\Theta(I)$ идеал в S_2 . В си-

лу леммы 13 получаем
$$J=\left(egin{array}{ccc} 0&R&\ldots&R\\ R&0&\ldots&R\\ \vdots&\vdots&\ddots&\vdots\\ R&R&\ldots&0 \end{array} \right)\subseteq\Theta(I).$$
 На самом деле, $J=\Theta(I).$

И правда, предположим что существует $C=\mathrm{diag}(c_1,...,c_n)\in\Theta(I)$. В этом случае $\Theta(I)\ni CF_{11}=c_1F_{11}$. Положим $A=(a_{ij})=\Theta^{-1}(F_{11})$. Т.к. $(c_1F_{11})F_{11}=c_1F_{11}$, то $(c_1A)A=c_1A\in I\subseteq S_1$. Поэтому $c_1a_{11}=c_1a_{22}=...=c_1a_{nn}=0$. Обозначим $\widehat{A}=A-\mathrm{diag}(a_{11},...,a_{nn})$. Тогда $c_1A=c_1\widehat{A}$ и $c_1A=(c_1A)A=(c_1\widehat{A})A=c_1\widehat{A}^2=\begin{pmatrix}0&0\\0&A_1\end{pmatrix}$, где A_1 - квадратная матрица порядка n-1, все диагональные элементы которой равны нулю. Теперь легко видеть, что $c_1A=(c_1A)A=0$. Отсюда незамедлительно следует, что $c_1F_{11}=\Theta(A)=0$ и потому $c_1=0$. Доказательство того, что $c_2=...=c_n=0$ аналогично.

Итак, мы имеем $\Theta(I) = J$. Т.к. $\Theta(I)$ идеал в S_2 , то получаем что $(\beta x_i)(\beta x_j) = 0$ для всех $i \neq j$. Пусть $U_{ij} = \Theta(E_{ij})$ для всех $1 \leq i, j \leq n$, и пусть

$$U_{ii} = \begin{pmatrix} f_1^{(i)} & * & \dots & * \\ * & f_2^{(i)} & \dots & * \\ \vdots & \vdots & \ddots & \vdots \\ * & * & \dots & f_n^{(i)} \end{pmatrix}.$$

В кольце S_1 выполняются равенства $E_{ii}^2=E_{ii},\ E_{ii}E_{jj}=0$ для всех $i\neq j,$ и $1=E_{11}+E_{22}+...+E_{nn}.$ Аналогичные равенства для U_{ii} дают:

 $1=f_k^{(1)}+f_k^{(2)}+\ldots+f_k^{(n)},$ для всех $1\leq k\leq n,$ где $f_k^{(i)}$ - ортогональные идемпотенты.

Заметим, что $S_2=\bigoplus_{i,j}U_{ij}R$. Т.к. $E_{ij}\in I$ для всех $i\neq j$, то $U_{ij}\in J$ для всех $i\neq j$. Поэтому

$$\begin{pmatrix} R & 0 & \dots & 0 \\ 0 & R & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & R \end{pmatrix} = \widehat{U_{11}}R \oplus \widehat{U_{22}}R \oplus \dots \oplus \widehat{U_{nn}}R, \text{ где } \widehat{U_{ii}} = \operatorname{diag}(f_1^{(i)}, f_2^{(i)}, \dots, f_n^{(i)}).$$

В частности, имеем $F_{11}=w_1\widehat{U_{11}}+w_2\widehat{U_{22}}+...+w_n\widehat{U_{nn}}$, для некоторых $w_1,...,w_n\in R$. Это дает нам $f_1^{(1)}=w_1f_1^{(1)}$ и $w_1f_k^{(1)}=0$ для $k\geq 2$. Поэтому $f_1^{(1)}f_k^{(1)}=w_1f_1^{(1)}f_k^{(1)}=0$. Схожие аргументы показывают, что $f_i^{(k)}f_j^{(k)}=0$ для всех k и $i\neq j$. Обозначим $f^{(k)}=f_1^{(k)}+f_2^{(k)}+...+f_n^{(k)}$. Тогда

$$U_{kk}(1-f^{(k)}) = \widehat{U_{kk}}(1-f^{(k)}) + (U_{kk} - \widehat{U_{kk}})(1-f^{(k)}) = (U_{kk} - \widehat{U_{kk}})(1-f^{(k)}) \in J.$$

Отсюда следует, что $U_{kk}(1-f^{(k)})=0$ и следовательно $f^{(k)}=1$.

Теперь, из того что $\Theta(I) = J$, следует что $\Theta(I^2) = J^2$.

$$I^2 = \left(\begin{array}{cc} 0 & 0 \\ 0 & I_1 \end{array}\right),$$

где I_1 есть квадратная матрица порядка n-1, все диагональные элементы которой равны нулю, а все недиагональные равны βR .

$$J^{2} = \sum_{i,j=1, i \neq j}^{n} \sum_{k=1, k \neq i, j}^{n} \beta x_{k} F_{ij} R.$$

В частности, имеем $\beta E_{23} \in I^2$, и потому $\beta U_{23} \in J^2$. Пусть $\beta U_{23} = (a_{ij})$, где $a_{ii} = 0$ для всех $1 \leq i \leq n$, и $a_{ij} = \sum_{k=1, k \neq i, j}^n \beta x_k a_{ij}^{(k)}$ для всех $i \neq j$. Т.к. $\beta U_{23} = \beta (U_{22}U_{23}) = U_{22}(\beta U_{23})$ и $\beta U_{23} = (\beta U_{23})U_{33}$, то $\beta U_{23} = (f_i^{(2)} f_j^{(3)} \beta a_{ij})$. Схожие аргументы показывают, что для всех $k \neq l$, $k, l \geq 2$, (i, j)-элемент матрицы βU_{kl} принадлежит идеалу $f_i^{(k)} f_j^{(l)} \beta R$.

Т.к.
$$\beta x_1 F_{23} \in J^2 = \Theta(I^2)$$
, то

$$\beta x_1 F_{23} = \Theta\left(\sum_{i,j=2,\,i\neq j}^n \mu_{ij} \beta E_{ij}\right) = \sum_{i,j=2,\,i\neq j}^n \mu_{ij} \beta U_{ij},$$
 для некоторых $\mu_{ij} \in R$.

Для (2,3)-элемента матрицы $\beta x_1 F_{23}$ получаем

$$\beta x_1 = \beta \left(\sum_{i,j=2, i \neq j}^n f_2^{(i)} f_3^{(j)} \lambda_{ij} \right),$$
 для некоторых $\lambda_{ij} \in R$.

Легко видеть, что для $(i_1, j_1) \neq (i_2, j_2)$, $\left(f_2^{(i_1)} f_3^{(j_1)}\right) \left(f_2^{(i_2)} f_3^{(j_2)}\right) = 0$ и потому

$$\left(\sum_{i,j=2,\,i\neq j}^{n} f_2^{(i)} f_3^{(j)} \lambda_{ij}\right) \left(\sum_{i,j=2,\,i\neq j}^{n} f_2^{(i)} f_3^{(j)}\right) = \left(\sum_{i,j=2,\,i\neq j}^{n} f_2^{(i)} f_3^{(j)} \lambda_{ij}\right).$$

Мы показали что

$$\beta x_1 = \beta x_1 \left(\sum_{i,j=2, i \neq j}^n f_2^{(i)} f_3^{(j)} \right) = \beta x_1 \left(\sum_{i=2}^n f_2^{(i)} \left(\sum_{j=2, j \neq i}^n f_3^{(j)} \right) \right) =: \beta x_1 f_{23},$$

Схожие рассуждения показывают, что для любого $k \geq 3$

$$\beta x_1 = \beta x_1 \left(\sum_{i,j=2, i \neq j}^n f_2^{(i)} f_k^{(j)} \right) = \beta x_1 \left(\sum_{i=2}^n f_2^{(i)} \left(\sum_{j=2, j \neq i}^n f_k^{(j)} \right) \right) =: \beta x_1 f_{2k}.$$

Отсюда следует, что $\beta x_1 = \beta x_1 * \left(\prod_{k=3}^n f_{2k}\right)$. Непосредственная проверка показывает, что

$$\prod_{k=3}^{n} f_{2k} = \sum_{\pi \in S_{n-1}} f_2^{(1+\pi(1))} f_3^{(1+\pi(2))} \dots f_n^{(1+\pi(n-1))} = \sum_{\pi \in S_{n-1}} f_1^{(\pi)},$$

где $f_1^{(\pi)}=f_2^{(1+\pi(1))}f_3^{(1+\pi(2))}...f_n^{(1+\pi(n-1))}$. Также для $\pi_1\neq\pi_2,\ f_1^{(\pi_1)}\neq f_1^{(\pi_2)}$. Более того, если мы введем аналогичные идемпотенты $f_k^{(\pi)}$ для βx_k , то для всех $k\neq l$ и $\pi,\sigma\in S_{n-1}$ мы имеем $f_k^{(\pi)}\neq f_l^{(\sigma)}$. Также

$$1 = \left(f_1^{(2)} + f_2^{(2)} + f_3^{(2)} + \dots + f_n^{(2)}\right) \dots \left(f_1^{(n)} + f_2^{(n)} + f_3^{(n)} + \dots + f_n^{(n)}\right) = \sum_{k=1}^{n} \left(\sum_{\pi \in S_{n-1}} f_k^{(\pi)}\right).$$

Обозначим $a_k = \sum_{\pi \in S_{n-1}} f_k^{(\pi)}$. Тогда $\beta x_k = \beta x_k a_k$ для всех $1 \le k \le n$, и $1 = a_1 + ... a_n$, где a_k - ортогональные идемпотенты. В начале доказательства мы показали что $\beta = \beta x_1 \eta_1 + \beta x_2 \eta_2 + ... + \beta x_n \eta_n$ для некоторых $\eta_1, ..., \eta_n \in R$. Отсюда $\beta x_k \eta_k a_k = \beta a_k$ для всех $1 \le k \le n$.

Положим $v_k = x_k a_k + (1 - a_k)$ и $\xi_k = \eta_k a_k + (1 - a_k)$. Имеем

$$\beta v_k \xi_k = \beta x_k \eta_k a_k + \beta (1 - a_k) = \beta a_k + \beta (1 - a_k) = \beta$$

 $\beta (1 - v_k \xi_k) = 0.$

Т.к. $\operatorname{ann}_{\mathbf{R}}(\beta) \subseteq J(R)$, то $(1 - v_k \xi_k) \in J(R)$, поэтому $1 - (1 - v_k \xi_k) = v_k \xi_k \in U(R)$ и $v_k \in U(R)$. Легко видеть, что $\beta x_k = \beta v_k a_k$.

Теорема 15. Пусть R - коммутативное кольцо, $n \geq 3$, $\beta, \gamma_1, ..., \gamma_n \in R$ u $\operatorname{ann}_R(\beta^2) \subseteq J(R)$. Тогда $\underbrace{\mathbb{M}_{\beta,\beta,...,\beta}(R)}_{n} \cong \mathbb{M}_{\gamma_1,\gamma_2,...,\gamma_n}(R)$ если u только если $\gamma_i = \alpha(\beta)v_i$ для всех $i = \overline{1,n}$, где $\alpha \in \operatorname{Aut}(R)$ u $v_i \in U(R)$.

Доказательство. (⇐) Достаточность следует из предложения 11.

 (\Rightarrow) Пусть $S_1 = M_{\underbrace{\beta,\beta,...,\beta}_{n}}(R)$, $S_2 = M_{\gamma_1,\gamma_2,...,\gamma_n}(R)$, E_{ij} - матричные единицы S_1 , F_{ij} - матричные единицы S_2 , а $\Theta: S_1 \to S_2$ - указанный в условии изоморфизм. Рассуждения, аналогичные рассуждениям из доказательства теоремы 14, показывают, что мы можем считать что $S_2 = M_{\beta x_1,...,\beta x_n}(R)$ для некоторых $x_1,...,x_n \in R$.

Положим $I \subseteq S_1$ - идеал порожденный $\{E_{ij} \mid i \neq j\}$, $J \subseteq S_2$ - идеал порожденный $\{F_{ij} \mid i \neq j\}$. В силу леммы 13 имеем $\Theta(I) = J$. Т.к. $\beta^2 E \in I$, то также $\beta^2 E \in J$. Для (1,1)-элемента матрицы $\beta^2 E$, как элемента из J, имеем $\beta^2 = \beta^2 x_1 \mu_1$ или $\beta^2 (1-x_1\mu_1)=0$, для некоторого $\mu_1 \in R$. Мы знаем что $\operatorname{ann}_R(\beta^2) \subseteq J(R)$. Отсюда $(1-x_1\mu_1)\in J(R)$, и потому $1-(1-x_1\mu_1)=x_1\mu_1\in U(R)$ и $x_1\in U(R)$. Доказательство того, что $x_2,...,x_n\in U(R)$ аналогично.

Теорема 16. Пусть R - коммутативное кольцо, такое что $Z(R) \subseteq J(R)$. Пусть $n \geq 3$ и $\beta, \gamma_1, ..., \gamma_n \in R$. Тогда $\underbrace{\mathbb{M}_{\beta,\beta,...,\beta}(R)}_{n} \cong \mathbb{M}_{\gamma_1,\gamma_2,...,\gamma_n}(R)$ если и только если $\gamma_i = \alpha(\beta)v_i$ для всех $i = \overline{1,n}$, где $\alpha \in \operatorname{Aut}(R)$ и $v_i \in U(R)$.

Доказательство. (⇐) Достаточность следует из предложения 11.

 (\Rightarrow) Если $\beta^2 \neq 0$, то $\operatorname{ann}_R(\beta^2) \subseteq J(R)$ и утверждение теоремы выполняется в силу теоремы 15. Теперь пусть $\beta^2 = 0$. Будем использовать те же обозначения, что и при доказательстве теоремы 15, и можно считать, что $S_2 = \mathbb{M}_{\beta x_1, \dots, \beta x_n}(R)$ для некоторых $x_1, \dots, x_n \in R$.

Покажем, что $x_1 \in U(R)$. Доказательство того что остальные x_i обратимы аналогично. Т.к. $\beta^2 = 0$, то $I \cap \operatorname{diag}(R, ..., R) = \operatorname{diag}(0, ..., 0)$ и $J \cap \operatorname{diag}(R, ..., R) = \operatorname{diag}(0, ..., 0)$.

$$J\ni F_{21}J=\beta x_1F_{23}R\oplus\ldots\oplus\beta x_1F_{2n}R=\beta x_1T.$$

Положим
$$I \ni A = (a_{ij}) = \Theta^{-1}(F_{21})$$
. Имеем

$$\beta x_1 \Theta^{-1}(T) = \Theta^{-1}(F_{21}J) = AI.$$

Для $i \neq j$ получаем

$$\beta x_1 \Theta^{-1}(T) = AI \ni AE_{ij} = \beta \sum_{k=1}^n a_{ki} E_{kj},$$
 т.к. $a_{kk} = 0$ для всех $1 \le k \le n$.

Поэтому $\beta a_{ki} = \beta x_1 u_{ki}$, для некоторых $u_{ki} \in R$. Таким образом $\beta A = x_1 U$. Отсюда

$$\beta F_{21} = \beta \Theta(A) = \Theta(\beta A) = \Theta(\beta x_1 U) = \beta x_1 \Theta(U),$$

и мы имеем $\beta = \beta x_1 y_1$, для некоторого $y_1 \in R$. Легко проверить что $x_1 \in U(R)$. \square

В статье [16] был рассмотрен класс колец формальных матриц с $\eta_{ijk} = s^{1+\delta_{ik}-\delta_{ij}-\delta_{jk}}$, где $s \in C(R)$. Это кольцо формальных матриц обозначается $\mathbb{M}_n(R;s)$. Заметим, что $\mathbb{M}_n(R;s) = \mathbb{M}_{\underline{s},\ldots,s}(R)$. Как следствие получаем теорему.

Следствие 17. [16, Теорема 18] Пусть R - коммутативное кольцо, такое что $Z(R) \subseteq J(R)$. И пусть $s,t \in R$ и $n \geq 3$. Тогда $\mathbb{M}_n(R;s) \cong \mathbb{M}_n(R;t)$ если и только если $t = v\alpha(s)$, где $v \in U(R)$ и $\alpha \in \operatorname{Aut}(R)$.

§ 3. Чистота и строгая чистота колец

Элемент a кольца R называется peryлярным, если aba=a для некоторого $b\in R$. Элемент a кольца R называется oбратимо peryлярным, если aua=a для некоторого $u\in U(R)$.

Еще более узким классом элементов являются строго регулярные элементы. Элемент a кольца R называется cmporo peryлярным, если он удовлетворяет одному из следующих эквивалентных условий:

- 1) $a^2x = a = ya^2$, для некоторых $x, y \in R$;
- 2) $aR = a^2R \text{ if } r(a) = r(a^2);$
- 3) $R = aR \oplus r(a)$;
- 4) aba = a и ab = ba для некоторого $b \in R$;
- 5) aua = a и au = ua для некоторого $u \in U(R)$;
- 6) a = ue = eu для некоторых $e^2 = e \in R$ и $u \in U(R)$;
- 7) $a^2u=a=ua^2$ для некоторого $u\in U(R)$.

Кольцо R называется $\it cmporo$ $\it perулярным$ $\it кольцом$, если все его элементы строго регулярны.

Элемент a кольца R называется $npaвым \pi$ -peryлярным, если он удовлетворяет одному из следующих эквивалентных условий:

- 1) $a^n \in a^{n+1}R$ для некоторого натурального $n \ge 1$;
- 2) $a^nR \in a^{n+1}R$ для некоторого натурального $n \ge 1;$
- 3) цепочка $aR\supseteq a^2R\supseteq\dots$ стабилизируется.

Аналогично вводят и левые π -регулярные элементы. В течении более 20 лет эти понятия изучались раздельно, пока не была доказан следующий результат.

Лемма 18 (Dischinger's Lemma). Если все элементы кольца R правые π -регулярные, то все элементы кольца R также и левые π -регулярные.

Элемент a кольца R называется cmporo π -perулярным, если он одновременно правый и левый π -регулярный, а кольцо R называют cmporo π -perулярным, если все его элементы строго π -perулярны. Связь между строго π -perулярными и строго регулярными кольцами устанавливает следующий результат.

Лемма 19 (Azumaya's Lemma). Если $a \in R$ строго π -регулярен и $a^n R = a^{n+1} R$ для некоторого натурального $n \ge 1$, то a^n строго регулярен и найдется $b \in R$, такой что ab = ba и $a^n = a^{n+1}b$.

Эта теорема приводит нас к следующей характеризации строго π -регулярных элементов.

Предложение 20 ([13]). Для элемента а кольца R следующие условия эквивалентны:

- 1) а строго π -регулярен;
- 2) найдется $n \ge 1$ такой, что $a^n = fw = wf$, где $f^2 = f \in R$, $w \in U(R)$ и a, f, w коммутируют друг с другом;
- 3) a^m строго регулярен для некоторого $m \ge 1$.

Элемент a кольца R называется uucmым, если a=e+u, где $e^2=e\in R$ и $u\in U(R)$. Если все элементы кольца R чисты, то кольцо R называется uucmым.

Теорема 21 ([8]). Пусть R - кольцо.

- 1) Если единица кольца R является суммой ортогональных ненулевых идемпотентов $e_1, ..., e_n$ и все $e_i R e_i$ чистые кольца, то R чистое кольцо.
- 2) Если R чистое кольцо, то для любого $n \in N$ кольцо $\mathbb{M}_n(R)$ всех $n \times n$ -матриц над R является чистым кольцом.
- 3) Если $M_1, ..., M_n$ модули и все $\operatorname{End}(M_i)$ чистые кольца, то $\operatorname{End}(M_1 \oplus ... \oplus M_n)$ чистое кольцо.

Доказательство. 1) По соображениям индукции можно считать, что n=2. Обозначим $e=e_1,\, 1-e=e_2$. Каждый элемент r кольца R можно представить в матричном виде

$$r = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \begin{pmatrix} eRe & eR(1-e) \\ (1-e)Re & (1-e)R(1-e) \end{pmatrix},$$

где по условию $a=f+u, f^2=f\in eRe, u$ - обратимый элемент в eRe с обратным u_1 . Тогда $(1-e)R(1-e)\ni d-cu_1b=g+v$, где $g^2=g\in (1-e)R(1-e)$ и $v\in U\left((1-e)R(1-e)\right)$. Тогда

$$r = \begin{pmatrix} f + u & b \\ c & g + v + cu_1 b \end{pmatrix} = F + U,$$

$$F = \begin{pmatrix} f & 0 \\ 0 & g \end{pmatrix} = F^2, \quad G = \begin{pmatrix} u & b \\ c & v + cu_1 b \end{pmatrix}.$$

Покажем что $G \in U(R)$. В самом деле,

$$\begin{pmatrix} e & 0 \\ -cu_1 & 1 - e \end{pmatrix} \begin{pmatrix} u & b \\ c & v + cu_1 b \end{pmatrix} \begin{pmatrix} e & -u_1 b \\ 0 & 1 - e \end{pmatrix} = \begin{pmatrix} u & 0 \\ 0 & v \end{pmatrix},$$

$$\begin{pmatrix} e & 0 \\ -cu_1 & 1 - e \end{pmatrix}, \begin{pmatrix} e & -u_1 b \\ 0 & 1 - e \end{pmatrix}, \begin{pmatrix} u & 0 \\ 0 & v \end{pmatrix} \in U(R).$$

Утверждения пунктов 2) и 3) следуют из 1).

Теорема 22 ([4]). Если R - кольцо и $2^{-1} \in R$, то R - чистое кольцо в точности тогда, когда в R каждый элемент - сумма обратимого элемента и квадратного корня из единицы. B этом случае каждый элемент кольца R - сумма двух обратимых элементов.

Доказательство. (\Rightarrow) Пусть $r \in R$ и (r+1)/2 = u + e, где $u \in U(R)$ и $e^2 = e \in R$. Тогда r = 2u + (2e - 1), где $2u \in U(R)$ и $(2e - 1)^2 = 1$.

(
$$\Leftarrow$$
) Пусть $r \in R$ и $2r-1=u+t$, где $u \in U(R)$ и $t^2=1$. Обозначим $e=(t+1)/2$. Тогда $u/2 \in U(R)$ и $e^2=(t^2+2t+1)/4=e$. Кроме того $r=u/2+e$.

Понятие чистоты можно обобщить, если потребовать вместо идемпотента периодичный элемент. Элемент a кольца R называется nonyчистым, если a=a+u, где $a^k=a^l, a\in R, k$ и l - различные натуральные числа и $u\in U(R)$. Если все элементы кольца R получисты, то кольцо R называется nonyчистым. Аналоги приведенных выше результатов верны и для получистых колец.

Теорема 23 ([18]). Пусть R - кольцо.

- 1) Если единица кольца R является суммой ортогональных ненулевых идемпотентов $e_1, ..., e_n$ и все $e_i R e_i$ получистые кольца, то R получистое кольцо.
- 2) Если R получистое кольцо, то для любого $n \in N$ кольцо $\mathbb{M}_n(R)$ всех $n \times n$ -матриц над R является получистым кольцом.
- 3) Если $M_1, ..., M_n$ модули и все $\operatorname{End}(M_i)$ получистые кольца, то $\operatorname{End}(M_1 \oplus ... \oplus M_n)$ получистое кольцо.

Теорема 24 ([18]). Если R - кольцо и $2^{-1} \in R$, то R - получистое кольцо в точности тогда, когда в R каждый элемент - сумма двух обратимых элементов и квадратного корня из единицы. В этом случае каждый элемент кольца R - сумма трех обратимых элементов.

Другим вариантом обобщения понятия чистоты является строгая чистота. Элемент a кольца R называется cmposo чистым, если a=e+u, где $e^2=e\in R, u\in U(R)$ и eu=ue. Если все элементы кольца R строго чисты, то кольцо R называется cmposo чистым. Следующая теорема гласит, что все строго π -регулярные элементы являются строго чистыми.

Теорема 25 ([13]). Если $a \in R$ строго π -регулярен, то a = e + u, где $e^2 = e \in R$, $u \in U(R)$ u eu = ue.

Если кольцо R строго чисто, то мы уже не можем утверждать что строго чисто и кольцо eRe для $e^2=e\in R$. Однако, верен следующий результат.

Предложение 26 ([13]). *Если* $e^2 = e \in R$ u $a \in eRe$ *cmporo чист* e eRe, *mo* a *cmporo чист* e R.

Теорема 27 ([13]). Если R - кольцо и $2^{-1} \in R$, то R - строго чистое кольцо в точности тогда, когда в R каждый элемент - сумма обратимого элемента и квадратного корня из единицы, которые коммутируют. B этом случае каждый элемент кольца R - сумма двух обратимых элементов.

§ 4. Строгая чистота матричных колец

Как было отмечено выше, чистота (получистота) кольца R влечет чистоту (получистоту) кольца матриц $M_n(R)$. Для строгой чистоты это не верно, и поэтому она представляет больший интерес. В статье [3] были полностью описаны коммутативные локальные кольца R для которых кольца матриц $M_n(R)$ строго чисты.

Вопрос строгой чистоты колец формальных матриц над R еще не настолько хорошо изучен. Стоить отметить следующий интересный результат:

Теорема 28. [15, Теорема 22] Если s - нильпотентный элемент коммутативного локального кольца R, то кольцо $K_s(R)$ строго чисто.

Для колец большего порядка верны следующие результаты.

Лемма 29. Если кольцо R коммутативно и локально и $n \ge 1$. Тогда $A = (a_{ij}) \in \mathbb{M}_{\underbrace{0,...,0}}(R)$ обратим если и только если $a_{ii} \in U(R)$, для всех $1 \le i \le n$.

Доказательство. (\Rightarrow) Очевидно.

$$(\Leftarrow)$$
 Обозначим $D=\mathrm{diag}(a_{11},...,a_{nn})\in U(\mathbb{M}_{\underbrace{0,...,0}}(R)).$ Тогда

$$A = D + (A - D) = D (1 + D^{-1}(A - D)).$$

Обозначим $N=D^{-1}(A-D)$. Все элементы на главной диагонали матрицы N равны нулю, и поэтому легко видеть что $N^2=0$. Тогда

$$1 = 1 + N^3 = (1 + N)(1 - N + N^2).$$

Таким образом, матрица 1+N обратима, а значит обратима и матрица A. $\hfill \square$

Теорема 30. Если кольцо R коммутативно и локально, то кольцо матриц $M_{\underbrace{0,...,0}_{n}}(R)$ строго чисто для всех $n \geq 1$.

Доказательство. Доказательство будем вести индукцией по n. Для n=1 легко видеть, что каждый $a \in R$ можно представить в виде a=f+u, причем f можно положить равным нулю, если $a \in U(R)$.

Предположим что n>1 и все $(a_{ij})\in M_{\underbrace{0,...,0}_{n-1}}(R)$ допускают строго чистое разложение $(a_{ij})=(f_{ij})+(u_{ij}),$ такое что для всех $1\leq i\leq n-1$ $f_{ii}=0,$ если $a_{ii}\in U(R).$

Пусть теперь $A = (a_{ij}) \in \mathbb{M}_{\underbrace{0,...,0}}(R).$

Утверждается, что найдутся $(f_{ij})^2 = (f_{ij}) \in \mathbb{M}_{\underbrace{0,...,0}_{n}}(R)$ и $(u_{ij}) \in U(\mathbb{M}_{\underbrace{0,...,0}_{n}}(R))$, такие что

$$(a_{ij}) = (f_{ij}) + (u_{ij}), \quad (f_{ij})(u_{ij}) = (u_{ij})(f_{ij}).$$

Покажем это. Для удобства записи, матрицы из $\mathbb{M}_{\underbrace{0,...,0}_n}(R)$ будем рассматривать как элементы из $\mathbb{M}_n(\widehat{R})$ под действием вложения $(a_{ij}) \mapsto (a_{ij}e_{\{i\}\Delta\{j\}})$. Если $r \in R$, то элементы вида re_\varnothing будем записывать просто как r. Положим

$$A = \begin{pmatrix} A_1 & \alpha_1 \\ \alpha_2 & a_{nn} \end{pmatrix}, \quad \alpha_1 = (a_{1,n}e_{\{1,n\}}, ..., a_{n-1,n}e_{\{n-1,n\}})^T, \, \alpha_2 = (a_{n,1}e_{\{1,n\}}, ..., a_{n,n-1}e_{\{n-1,n\}}).$$

По предположению индукции, $A_1 \in \mathbb{M}_{\underbrace{0,...,0}}(R)$ имеет строго чистое разложение:

$$A_1 = F + U$$
, где $F = (f_{ij}e_{\{i\} \triangle \{j\}}), U = (u_{ij}e_{\{i\} \triangle \{j\}}),$

такое что для всех $1 \le i \le n-1$ $f_{ii} = 0$, если $a_{ii} \in U(R)$.

Случай 1. Пусть $a_{nn} \in J(R)$. Положим $f_{nn} = 1$ и $u_{nn} = a_{nn} - 1 \in U(R)$. За I обозначим единичную матрицу из $M_{\underbrace{0,...,0}_{n-1}}(R)$. Тогда $U - (u_{nn} + 1)I$ является обратимой матрицей в $M_{\underbrace{0,...,0}_{n-1}}(R)$. Пусть $\delta_1 = (U - (u_{nn} + 1)I)^{-1}(F - I)\alpha_1$ и $\delta_2 = \alpha_2(F - I)(U - (u_{nn} + 1)I)^{-1}$. Непосредственная проверка показывает, что разложение

$$A = \begin{pmatrix} A_1 & \alpha_1 \\ \alpha_2 & a_{nn} \end{pmatrix} = \begin{pmatrix} F & \delta_1 \\ \delta_2 & f_{nn} \end{pmatrix} + \begin{pmatrix} U & \alpha_1 - \delta_1 \\ \alpha_2 - \delta_2 & u_{nn} \end{pmatrix}$$

есть строго чистое разложение, ибо элементы F и $\left(U-(u_{nn}+1)I\right)^{-1}$ коммутируют.

Случай 2. Пусть $a_{nn} \in U(R)$. Положим $f_{nn} = 0$ и $u_{nn} = a_{nn} \in U(R)$. Достаточно показать, что найдутся γ_1 и γ_2 , такие что

$$G^2=G=\left(egin{array}{cc} F & \gamma_1 \\ \gamma_2 & f_{nn} \end{array}
ight),\,V=\left(egin{array}{cc} U & lpha_1-\gamma_1 \\ lpha_2-\gamma_2 & u_{nn} \end{array}
ight)$$
 и $GV=VG.$

Заметим, что

$$G^{2} = G \iff F\gamma_{1} = \gamma_{1}, \ \gamma_{2}F = \gamma_{2}.$$

$$GV = VG \iff F(\alpha_{1} - \gamma_{1}) + \gamma_{1}u_{nn} = U\gamma_{1}, \ \gamma_{2}U = (\alpha_{2} - \gamma_{2})F + u_{nn}\gamma_{2} \iff (A_{1} - a_{nn}I)\gamma_{1} = F\alpha_{1}, \ \gamma_{2}(A_{1} - a_{nn}I) = \alpha_{2}F.$$

Заметим, что γ_1 никоим образом не зависит γ_2 . Покажем существование γ_1 , существование γ_2 показывается аналогично. Для этого докажем, что система

$$\begin{cases} FX = X, \\ (A_1 - a_{nn}I)X = F\alpha_1 \end{cases}$$

имеет решение $X = (x_1 e_{\{1,n\}}, ..., x_{n-1} e_{\{n-1,n\}})^T, x_i \in R$. Введем дополнительные обозначения:

$$A_k = \left(a_{ij}e_{\{i\} \triangle \{j\}}\right)_{i,j=k}^n, \quad F_k = \left(f_{ij}e_{\{i\} \triangle \{j\}}\right)_{i,j=k}^n, \quad U_k = \left(u_{ij}e_{\{i\} \triangle \{j\}}\right)_{i,j=k}^n,$$

а также

$$A_{i} = \begin{pmatrix} a_{ii} & \beta_{i} \\ \beta'_{i} & A_{i+1} \end{pmatrix}, \quad F_{i} = \begin{pmatrix} f_{ii} & f_{i} \\ f'_{i} & F_{i+1} \end{pmatrix},$$

$$I_{i} = \operatorname{diag} \left(e_{\{i\} \triangle \{i\}}, ..., e_{\{n\} \triangle \{n\}} \right), \quad \alpha'_{i} = \left(a_{in} e_{\{in\}}, ..., a_{n-1,n} e_{\{n-1,n\}} \right)^{T},$$

$$X_{i} = \left(x_{i} e_{\{i,n\}}, ..., x_{n-1} e_{\{n-1,n\}} \right)^{T}.$$

Непосредственная проверка показывает, что исходная система равносильна системе

$$\begin{cases} F_i X_i = X_i, \\ (A_i - a_{nn} I_i) X_i = F_i \alpha_i', \end{cases} \quad 1 \le i \le n - 1.$$

А эта система, в свою очередь, переписывается как

$$\begin{cases} f_{ii} x_i e_{\{i,n\}} = x_i e_{\{i,n\}}, \\ (a_{ii} - a_{nn}) x_i e_{\{i,n\}} = f_{ii} a_{in} e_{\{i,n\}}, \end{cases} \quad 1 \le i \le n - 1.$$

Теперь, если $a_{ii} \in U(R)$, то по предположению индукции $f_{ii} = 0$ и $x_i = 0$ удовлетворяет системе. Если же $a_{ii} \in J(R)$, то $f_{ii} = 1$. А т.к. $a_{nn} \in U(R)$, то и $(a_{ii} - a_{nn}) \in U(R)$ и $x_i = (a_{ii} - a_{nn})^{-1}a_{in}$ удовлетворяет системе.

Аналогично случаю обычных матричных колец, можно рассмотреть подкольцо верхнетреугольных обобщенных матриц $\mathbb{T}_{\beta_1,...,\beta_n}(R) \subset \mathbb{M}_{\beta_1,...,\beta_n}(R)$.

Лемма 31. Если кольцо R коммутативно и локально, $n \ge 1$ и $\beta_1, ..., \beta_n \in R$. Тогда $A = (a_{ij}) \in \mathbb{T}_{\beta_1, ..., \beta_n}(R)$ обратим если и только если $a_{ii} \in U(R)$, для всех $1 \le i \le n$.

Доказательство. (\Rightarrow) Очевидно.

$$(\Leftarrow)$$
 Обозначим $D = \operatorname{diag}(a_{11}, ..., a_{nn}) \in U(\mathbb{T}_{\beta_1, ..., \beta_n}(R))$. Тогда

$$A = D + (A - D) = D (1 + D^{-1}(A - D)).$$

Обозначим $N = D^{-1}(A - D)$. Все элементы на главной диагонали матрицы N равны нулю, и поэтому легко видеть что $N^n = 0$. Тогда

$$1 = 1 + N^{2n+1} = (1+N)(1-N+N^2 - \dots + N^{2n}).$$

Таким образом, матрица 1+N обратима, а значит обратима и матрица A.

Теорема 32. Если кольцо R коммутативно и локально, $n \ge 1$ и $\beta_1, ..., \beta_n \in R$, то кольцо верхнетреугольных матриц $\mathbb{T}_{\beta_1,...,\beta_n}(R)$ строго чисто.

Доказательство. Доказательство будем вести индукцией по n. Для n=1 легко видеть, что каждый $a \in R$ можно представить в виде a=f+u, причем f можно положить равным нулю, если $a \in U(R)$.

Предположим что n>1 и все $(a_{ij})\in \mathbb{T}_{\beta_1,\dots,\beta_{n-1}}(R)$ допускают строго чистое разложение $(a_{ij})=(f_{ij})+(u_{ij}),$ такое что для всех $1\leq i\leq n-1$ $f_{ii}=0,$ если $a_{ii}\in U(R).$ Пусть теперь $A=(a_{ij})\in \mathbb{T}_{\beta_1,\dots,\beta_n}(R).$

Утверждается, что найдутся $(f_{ij})^2 = (f_{ij}) \in \mathbb{T}_{\beta_1,\dots,\beta_n}(R)$ и $(u_{ij}) \in U(\mathbb{T}_{\beta_1,\dots,\beta_n}(R))$, такие что

$$(a_{ij}) = (f_{ij}) + (u_{ij}), \quad (f_{ij})(u_{ij}) = (u_{ij})(f_{ij}).$$

Покажем это. Для удобства записи, матрицы из $\mathbb{T}_{\beta_1,\dots,\beta_n}(R)$ будем рассматривать как элементы из $\mathbb{M}_n(\widehat{R})$ под действием вложения $(a_{ij}) \mapsto (a_{ij}e_{\{i\} \triangle \{j\}})$. Если $r \in R$, то элементы вида re_{\varnothing} будем записывать просто как r. Положим

$$A = \begin{pmatrix} A_1 & \alpha \\ 0 & a_{nn} \end{pmatrix}, \quad \alpha = (a_{1,n}e_{\{1,n\}}, ..., a_{n-1,n}e_{\{n-1,n\}})^T.$$

По предположению индукции, $A_1 \in \mathbb{T}_{\beta_1,...,\beta_n}(R)$ имеет строго чистое разложение:

$$A_1 = F + U$$
, где $F = (f_{ij}e_{\{i\} \triangle \{j\}}), U = (u_{ij}e_{\{i\} \triangle \{j\}}),$

такое что для всех $1 \le i \le n-1$ $f_{ii} = 0$, если $a_{ii} \in U(R)$.

Случай 1. Пусть $a_{nn} \in J(R)$. Положим $f_{nn} = 1$ и $u_{nn} = a_{nn} - 1 \in U(R)$. За I обозначим единичную матрицу из $\mathbb{T}_{\beta_1,\dots,\beta_{n-1}}(R)$. Тогда $U - (u_{nn} + 1)I$ является обратимой матрицей в $\mathbb{T}_{\beta_1,\dots,\beta_{n-1}}(R)$. Пусть $\delta = (U - (u_{nn} + 1)I)^{-1} (F - I)\alpha$. Непосредственная проверка показывает, что разложение

$$A = \begin{pmatrix} A_1 & \alpha \\ 0 & a_{nn} \end{pmatrix} = \begin{pmatrix} F & \delta \\ 0 & f_{nn} \end{pmatrix} + \begin{pmatrix} U & \alpha - \delta \\ 0 & u_{nn} \end{pmatrix}$$

есть строго чистое разложение, ибо элементы F и $(U - (u_{nn} + 1)I)^{-1}$ коммутируют.

Случай 2. Пусть $a_{nn} \in U(R)$. Положим $f_{nn} = 0$ и $u_{nn} = a_{nn} \in U(R)$. Достаточно показать, что найдется γ , такое что

$$G^2 = G = \begin{pmatrix} F & \gamma \\ 0 & f_{nn} \end{pmatrix}, V = \begin{pmatrix} U & \alpha - \gamma \\ 0 & u_{nn} \end{pmatrix}$$
 и $GV = VG$.

Заметим, что

$$G^2 = G \iff F\gamma = \gamma.$$

 $GV = VG \iff F(\alpha - \gamma) + \gamma u_{nn} = U\gamma \iff (A_1 - a_{nn}I)\gamma = F\alpha.$

Чтобы показать существование γ достаточно доказать что система

$$\begin{cases} FX = X, \\ (A_1 - a_{nn}I)X = F\alpha \end{cases}$$

имеет решение $X = (x_1 e_{\{1,n\}}, ..., x_{n-1} e_{\{n-1,n\}})^T, x_i \in R$. Введем дополнительные обозначения:

$$A_k = (a_{ij}e_{\{i\}\triangle\{j\}})_{i,j=k}^n$$
, $F_k = (f_{ij}e_{\{i\}\triangle\{j\}})_{i,j=k}^n$, $U_k = (u_{ij}e_{\{i\}\triangle\{j\}})_{i,j=k}^n$

а также

$$A_{i} = \begin{pmatrix} a_{ii} & \beta_{i} \\ 0 & A_{i+1} \end{pmatrix}, \quad F_{i} = \begin{pmatrix} f_{ii} & f_{i} \\ 0 & F_{i+1} \end{pmatrix},$$

$$I_{i} = \operatorname{diag}\left(e_{\{i\} \triangle \{i\}}, ..., e_{\{n\} \triangle \{n\}}\right), \quad \alpha_{i} = (a_{in}e_{\{in\}}, ..., a_{n-1,n}e_{\{n-1,n\}})^{T},$$

$$X_{i} = (x_{i}e_{\{i,n\}}, ..., x_{n-1}e_{\{n-1,n\}})^{T}.$$

Непосредственная проверка показывает, что исходная система равносильна системе

$$\begin{cases} F_i X_i = X_i, \\ (A_i - a_{nn} I_i) X_i = F_i \alpha_i, \end{cases} \quad 1 \le i \le n - 1.$$

А эта система, в свою очередь, переписывается как

$$\begin{cases} f_{ii} x_i e_{\{i,n\}} + f_i X_{i+1} = x_i e_{\{i,n\}} & (\Lambda_i) \\ (a_{ii} - a_{nn}) x_i e_{\{i,n\}} + \beta_i X_{i+1} = f_{ii} a_{in} e_{\{i,n\}} + f_i \alpha_{i+1} & (\Gamma_i), \end{cases} \quad 1 \le i \le n - 1.$$

Остановимся отдельно на двух уравнениях:

$$\begin{cases} f_{n-1,n-1} x_{n-1} e_{\{n-1,n\}} = x_{n-1} e_{\{n-1,n\}}, \\ (a_{n-1,n-1} - a_{nn}) x_{n-1} e_{\{n-1,n\}} = f_{n-1,n-1} a_{n-1,n} e_{\{n-1,n\}}. \end{cases}$$

Если $a_{n-1,n-1} \in U(R)$, то по предположению индукции $f_{n-1,n-1} = 0$ и $x_{n-1} = 0$ удовлетворяет системе. Если же $a_{n-1,n-1} \in J(R)$, то $f_{n-1,n-1} = 1$. А т.к. $a_{nn} \in U(R)$, то и $(a_{n-1,n-1} - a_{nn}) \in U(R)$ и $x_{n-1} = (a_{n-1,n-1} - a_{nn})^{-1}a_{n-1,n}$ удовлетворяет системе.

Теперь пусть $i \leq n-2$ и уже найдено подходящее X_{i+1} . Покажем, что найдется x_i , удовлетворяющее уравнениям (Λ_i) и (Γ_i) .

Подслучай 1. Пусть $a_{ii} \in U(R)$. Тогда по предположению индукции $f_{ii} = 0$. Положим $x_i e_{\{i,n\}} = f_i X_{i+1}$. x_i очевидно удовлетворяет уравнению (Λ_i) . Покажем, что оно удовлетворяет и (Γ_i) . Т.к. $A_1 = F + U$ есть строго чистое разложение A_i , то $A_i = F_i + U_i$ есть строго чистое разложение A_i . В силу того что $f_{ii} = 0$, из $F_i^2 = F_i$ следует что $f_i = f_i F_{i+1}$. А из $E_i U_i = U_i E_i$ получаем $f_i U_{i+1} = a_{ii} f_i + (\beta_i - f_i) F_{i+1}$, что дает нам $f_i A_{i+1} = a_{ii} f_i + \beta_i F_{i+1}$. Тогда левая часть уравнения (Γ_i) преобразуется как

$$(a_{ii} - a_{nn}) x_i e_{\{i,n\}} + \beta_i X_{i+1} = (a_{ii} - a_{nn}) f_i X_{i+1} + \beta_i (F_{i+1} X_{i+1}) =$$

$$= ((a_{ii}f_i + \beta_i F_{i+1}) - a_{nn}f_i)X_{i+1} = (f_i A_{i+1} - a_{nn}f_i)X_{i+1} =$$

$$= f_i(A_{i+1} - a_{nn}I_{i+1})X_{i+1} = f_i F_{i+1}\alpha_{i+1} = f_i \alpha_{i+1} = f_{ii} a_{in} e_{\{i,n\}} + f_i \alpha_{i+1}.$$

Следовательно x_i удовлетворяет и (Γ_i) .

Подслучай 2. Пусть $a_{ii} \notin U(R)$. Тогда по предположению индукции $f_{ii} = 1$. Тогда $a_{ii} - a_{nn} \in U(R)$. Положим

$$x_i e_{\{i,n\}} = (a_{ii} - a_{nn})^{-1} \left(f_{ii} a_{in} e_{\{i,n\}} + f_i \alpha_{i+1} - \beta_i X_{i+1} \right).$$

Тогда x_i удовлетворяет (Γ_i). Осталось показать что x_i удовлетворяет и (Λ_i), т.е. $f_i X_{i+1} = 0$. В силу того что $f_{ii} = 1$, из $F_i^2 = F_i$ следует что $f_i F_{i+1} = 0$. И поэтому $f_i X_{i+1} = f_i (F_{i+1} X_{i+1}) = 0$.

Следствие 33. [5, Теорема 4.1] *Если* R - коммутативное локальное кольцо, то кольцо верхнетреугольных матриц $T_n(R)$ строго чисто для всех $n \ge 1$.

Литература

- [1] А.Н. Абызов, Д.Т. Тапкин, О некоторых классах колец формальных матриц, Изв. вузов. Матем. (ожидает печати)
- [2] Y. Baba, K. Oshiro, Classical Artinian rings and related topics Singapore: WS, 2009
- [3] G. Borooah, A.J. Diesl, T.J. Dorsey, Strongly clean matrix rings over commutative local rings, J. Pure Appl. Algebra 212 (2008) 281-296
- [4] V. Camillo, H.-P. Yu, Exchange rings, units and idempotents, Comm. Algebra 22 (1994) 4737-4749
- [5] J. Chen, X. Yang, Y. Zhou, On strongly clean matrix and triangular matrix rings, Comm. Algebra 34 (2006) 3659-3674
- [6] A. Haghany, K. Varadarajan, Study of formal triangular matrix rings, Comm. Algebra 27 (1999) 5507-5525
- [7] A. Haghany, K. Varadarajan, Study of modules over formal triangular matrix rings, J. Pure Appl. Algebra 147 (2000) 41-58
- [8] J. Han, W.K. Nicholson, Extensions of clean rings, Comm. Algebra 29 (2001) 2589-2595
- [9] P.A. Krylov, Isomorphism of generalized matrix rings, Algebra Logic 47 (4) (2008) 258-262
- [10] P.A. Krylov, A.A. Tuganbaev, Modules over formal matrix rings, J. Math. Sci. 171 (2) (2010) 248-295
- [11] T.Y. Lam, Lectures on Rings and Modules New York: Springer, 1999
- [12] W.K. Nicholson, Y. Zhou, Semiregular morphisms, Comm. Algebra 34 (2006) 219-233
- [13] W.K. Nicholson, Y. Zhou, Strongly clean rings and Fitting's lemma, Comm. Algebra 27 (1999) 3583-3592
- [14] G. Tang, C. Li, Y. Zhou, Study of Morita contexts, Comm. Algebra 42 (2014) 1668-1681
- [15] G. Tang, Y. Zhou, Strong cleanness of generalized matrix rings over a local ring, Linear Algebra Appl. 437 (2012) 2546-2559
- [16] G. Tang, Y. Zhou, A class of formal matrix rings, Linear Algebra Appl. 438 (2013) 4672-4688
- [17] D.T. Tapkin, Generalized matrix rings (preprint)
- [18] Y. Yuanqing, Semiclean rings, Comm. Algebra 31 (2003) 5609-5625
- [19] Y. Zhou, On (semi)regularity and the total of rings and modules, J. Algebra 322 (2009) 562-578