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Governing equations

n(’[, X, V, S)dVdS - particle concentration with velocity [v; v + dv] and size [s; S + dS]

Williams equation
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G = BS P~ evaporation law

B — some coefficient p - power (0, 1/3 or 2/3, etc.)



d — particle diameter, v — particle volume

dv  2zDdv,

dt KT

( p— ps) d2-law, continuum regime

dv ad®v,
dt  (22mkT)

/ (p —p ) d-law, free-molecular regime
1/2 S

D — vapour diffusivity

V., —monomer volume
p — actual vapour pressure
P, — saturation pressure

T —temperature

k — Boltzmann constant (Friedlander, 2000)
M — mass of one molecule



d — particle diameter

S - particle volume

S - particle surface
area

S - particle diameter

In a pure evaporation problem the particle surface area or the particle diameter is a good

choice for phase variable.
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disappearance of
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Maximum entropy method

Nye (S) = EXp(_ZéciSi)
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L(n) = —J' n(s) Inn(s)ds — max
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Calculation scheme

M), M) M), M/

1) reconstruction of the particle size distribution by maximum entropy method
2) estimation of loss of the moments due to disappearance of particles
3) PD-reconstruction (determination of abscissas and weights) using residual values of

the moments
4) transport of the abscissas in phase space (evaporation)
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Constant evaporation law
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Power evaporation law
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Evaporation for lognormal distribution

dg = 50-10* m — geometric mean diameter

o = 1.35 — standard geometric deviation

Normalized distributions
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Evaporation for lognormal distribution
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Extended quadrature method of
moments

n(s)=ZN:Wi5(s—si) = n(s)= ZW,5 (s,s.)

50 (X, y) - kernel density function o — parameter (deviation)

An additional moment is needed to determine o

seminfinite support infinite support finite support
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Gamma Gaussian Beta

(Yuan, Fox, 2012)
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