Известия вузов. Математика 2009, № 12, с. 3–13 http://www.ksu.ru/journals/izv_vuz/ e-mail: izvuz.matem@ksu.ru

Ю.Р. АГАЧЕВ, Р.К. ГУБАЙДУЛЛИНА

КУБАТУРНЫЙ МЕТОД РЕШЕНИЯ ОДНОГО КЛАССА МНОГОМЕРНЫХ СЛАБОСИНГУЛЯРНЫХ ИНТЕГРАЛЬНЫХ УРАВНЕНИЙ

Аннотация. Для одного класса заданных на окружности двумерных слабосингулярных интегральных уравнений второго рода дано теоретическое обоснование кубатурного метода, основанного на специальной кубатурной формуле.

Ключевые слова: весовое пространство Лебега, интегральное уравнение, слабосингулярный интеграл, квадратурная формула Гаусса, метод кубатур, сходимость, оценка погрешности.

УДК: 517.968:519.64

Abstract. In this paper we consider one class of two-dimensional weakly singular integral equations of the second kind on a circumference. We theoretically substantiate the applicability of a cubature method based on a special cubature formula for solving equations of the mentioned class.

Keywords: weighted Lebesgue space, integral equation, weakly singular integral, Gauss quadrature formula, cubature method, convergence, error estimate.

В различных прикладных задачах механики (см., например, [1]–[3] и библиографию в них) встречаются слабосингулярные интегральные уравнения

$$Au \equiv u(x) + \int_D \frac{h(x,y)u(y)}{r^{\alpha}} dy = f(x), \quad 0 \le \alpha < 2,$$
(1)

где D — круг единичного радиуса с центром в начале координат, $x = (x_1, x_2), y = (y_1, y_2)$ его точки, r — евклидово расстояние от начала координат до точки $y, h(x, y) \in C(D \times D),$ $f(x) \in L_2(D)$ — данные, а u(y) — искомая функции. Такие уравнения, как правило, точно не решаются. Поэтому приходится разрабатывать методы их приближенного решения, наиболее эффективным из которых является метод механических кубатур.

В данной работе рассматривается способ исследования метода механических кубатур, основанный на сходимости и оценке погрешности в среднем. Этот способ, изложенный в работе [4], позволяет получить равномерную сходимость метода, а также его сходимость в узлах кубатурной формулы как следствия сходимости в среднем.

1. Вычислительная схема метода

Всюду ниже введены следующие обозначения:

$$\begin{split} u(r,\theta) &= u(r\cos\theta, r\sin\theta), \quad h(\rho,\varphi;r,\theta) = h(\rho\cos\varphi, \rho\sin\varphi; r\cos\theta, r\sin\theta), \\ f(\rho,\varphi) &= f(\rho\cos\varphi, \rho\sin\varphi), \quad \rho, r \in [0,1], \quad \varphi, \theta \in [0,2\pi]. \end{split}$$

Поступила 10.09.2007

Для решения уравнения (1) методом механических кубатур будем использовать одну из построенных ранее кубатурных формул [5]. Перейдем в (1) к полярной системе координат по обеим переменным ($x_1 = \rho \cos \varphi$, $x_2 = \rho \sin \varphi$, $y_1 = r \cos \theta$, $y_2 = r \sin \theta$), и интеграл из (1) заменим кубатурной суммой

$$\begin{split} T(hu) &= \int_D \frac{h(x,y)u(y)}{r^{\alpha}} dy = \\ &= \int_0^1 \frac{dr}{r^{\alpha-1}} \int_0^{2\pi} h(\rho,\varphi;r,\theta)u(r,\theta)d\theta \approx \frac{2\pi}{m} \sum_{k=1}^n A_k \sum_{i=1}^m h(\rho,\varphi;r_k,\theta_i)u(r_k,\theta_i). \end{split}$$

Здесь $n, m \in \mathbb{N}, A_k$ и r_k — коэффициенты и узлы квадратурной формулы типа Гаусса с весовой функцией Якоби $r^{1-\alpha}$ на отрезке [0,1], которые можно найти, например, из системы алгебраических уравнений

$$\sum_{k=1}^{n} A_k r_k^{\beta} = \int_0^1 r^{\beta - \alpha + 1} dr = \frac{1}{\beta - \alpha + 2}, \quad \beta = \overline{0, 2n - 1},$$

И

$$\theta_i = \frac{2i\pi}{m} + \omega, \quad \omega \in \mathbb{R}$$

Применяя указанную приближенную формулу к интегралу из (1), приходим к системе линейных алгебраических уравнений (СЛАУ)

$$c_{sp} + \frac{2\pi}{m} \sum_{k=1}^{n} A_k \sum_{i=1}^{m} h(\rho_s, \varphi_p; r_k, \theta_i) c_{ki} = f(\rho_s, \varphi_p), \quad s = \overline{1, n}, \quad p = \overline{1, m}, \tag{2}$$

относительно приближенных значений c_{ki} искомой функции $u(x) = u(r, \theta)$ в узлах (r_k, θ_i) $(k = \overline{1, n}, i = \overline{1, m}).$

Предположим (доказательство этого факта приводится ниже), что СЛАУ (2) имеет решение c_{ki}^* ($k = \overline{1, n}, i = \overline{1, m}$). Тогда приближенное решение уравнения (1) может быть получено одним из следующих способов:

1)

$$u_{nm}^*(\rho,\varphi) = f(\rho,\varphi) - \frac{2\pi}{m} \sum_{k=1}^n A_k \sum_{i=1}^m c_{ki}^* h(\rho,\varphi;r_k,\theta_i);$$
(3)

2)

$$u_{nm}^{*}(\rho,\varphi) = \frac{2}{m} \sum_{k=1}^{n} \sum_{i=1}^{m} c_{ki}^{*} l_{k}(\rho) \Delta_{M}(\varphi - \theta_{i}),$$
(4)

где $l_k(\rho)$ — фундаментальные многочлены Лагранжа по узлам $\{r_k\}_{k=1}^n$, $\Delta_M(\varphi)$ — обычное (в случае нечетного числа узлов m = 2M + 1) или модифицированное (в случае m = 2M) ядро Дирихле порядка M [6].

2. Вспомогательные сведения

Пусть C(D) — пространство непрерывных в круге D функций с нормой

$$||z||_C \equiv ||z||_{C(D)} = \max_{r \in [0,1], \ \theta \in [0,2\pi]} |z(r\cos\theta, r\sin\theta)|.$$

Для функций $z \in C(D)$ при одной фиксированной переменной введем соответствующие нормы

$$||z(r,\cdot)||_{C(\theta)} = \max_{\theta \in [0,2\pi]} |z(r\cos\theta, r\sin\theta)|, \quad ||z(\cdot,\theta)||_{C(r)} = \max_{r \in [0,1]} |z(r\cos\theta, r\sin\theta)|.$$

Обозначим через $L_{2,q}(D) \equiv L_2$ пространство квадратично-суммируемых с весом $q(r) = r^{-\alpha}$ в круге D функций с нормой

$$||z||_2 \equiv ||z||_{L_{2,q}(D)} = \sqrt{\int_D \frac{|z(y)|^2}{r^{\alpha}} dy} = \sqrt{\int_0^1 \frac{dr}{r^{\alpha-1}} \int_0^{2\pi} |z(r\cos\theta, r\sin\theta)|^2 d\theta}, \quad z \in L_2$$

Тогда интегральное уравнение (1) можно рассматривать в пространстве L_2 как линейное операторное уравнение

$$Au \equiv u + Tu = f,\tag{5}$$

где

$$Tu = T(hu) = \int_0^1 \frac{dr}{r^{\alpha-1}} \int_0^{2\pi} h(\rho,\varphi;r,\theta) u(r,\theta) d\theta$$

Для функци
и $z\in L_2$ введем следующие нормы при произвольно фиксированных
 r и θ соответственно:

$$\|z(r,\cdot)\|_{L_{2}(\theta)} = \sqrt{\int_{0}^{2\pi} |z(r\cos\theta, r\sin\theta)|^{2} d\theta}, \quad \|z(\cdot,\theta)\|_{L_{2}(r)} = \sqrt{\int_{0}^{1} \frac{|z(r\cos\theta, r\sin\theta)|^{2}}{r^{\alpha-1}} dr}.$$

Пусть $\mathcal{L}_{n,\infty}$ — оператор алгебраического интерполирования функции $u(r,\theta)$ по узлам $\{r_k\}_{k=1}^n$ при произвольно фиксированном θ , $\Lambda_{\infty,m}$ — оператор тригонометрического интерполирования функции $u(r,\theta)$ по узлам $\{\theta_i\}_{i=1}^m$ при произвольно фиксированном r. Тогда $P_{nm}u = \mathcal{L}_{n,\infty}\Lambda_{\infty,m}u = \Lambda_{\infty,m}\mathcal{L}_{n,\infty}u$, где

$$(P_{nm}u)(r,\theta) = \frac{2}{m} \sum_{k=1}^{n} \sum_{i=1}^{m} u(r_k,\theta_i) l_k(r) \Delta_M(\theta - \theta_i), \tag{6}$$

а $l_k(r)$ и $\Delta_M(\theta)$ определены в разделе 1.

Лемма 1. Для любых $n = 1, 2, \ldots$ и $m = 1, 2, \ldots$ справедливы неравенства

$$||P_{nm}||_{C \to L_2} \le K_1 = \sqrt{\frac{2\pi}{2 - \alpha}},$$
(7a)

$$||P_{nm}||_{C\to C} \le K_2 n^{\gamma+1/2} \left(\frac{4}{\pi} + \frac{2}{\pi} \ln \frac{2m}{\pi}\right),$$
(7b)

где $\gamma = \max\{0, 1 - \alpha\}$, а K_2 — положительная постоянная, не зависящая от n и m.

Доказательство леммы опирается на результаты из [7], [8] и [9] для интерполяционных полиномов Лагранжа.

Для любой функции $z(r, \theta)$ $(r \in [0, 1], \theta \in [0, 2\pi])$ справедливо неравенство [7]

$$\|(\Lambda_{\infty m} z)(r, \cdot)\|_{L_2(\theta)}^2 \le \frac{2\pi}{m} \sum_{i=1}^m |z(r, \theta_i)|^2, \quad m = 1, 2, \dots$$
(8)

Тогда в силу (6) и ортогональности системы $\{l_k(r)\}_1^n$ в $L_2(r)$ (например, [9]) имеем

$$\begin{aligned} \|P_{nm}z\|_{2}^{2} &= \|\mathcal{L}_{n,\infty}\Lambda_{\infty,m}z\|_{2}^{2} = \left\|\sum_{k=1}^{n} (\Lambda_{\infty,m}z)(r_{k},\theta)l_{k}(r)\right\|_{2}^{2} \leq \\ &\leq \max_{r\in[0,1]} \|(\Lambda_{\infty,m}z)(r,\cdot)\|_{L_{2}(\theta)}^{2} \cdot \left\|\sum_{k=1}^{n} |l_{k}(r)|^{2}\right\|_{L_{2}(r)}^{2}.\end{aligned}$$

Отсюда и из (8) находим

$$\|P_{nm}z\|_{2}^{2} \leq \frac{2\pi}{m} \max_{r \in [0,1]} \sum_{i=1}^{m} |z(r,\theta_{i})|^{2} \cdot \left\|\sum_{k=1}^{n} l_{k}^{2}(r)\right\|_{L_{2}(r)}^{2} \leq 2\pi \|z\|_{C}^{2} \int_{0}^{1} \frac{dr}{r^{\alpha-1}} \sum_{k=1}^{n} l_{k}^{2}(r).$$

Поскольку [9]

$$\int_{0}^{1} \frac{dr}{r^{\alpha-1}} \sum_{k=1}^{n} l_{k}^{2}(r) = \int_{0}^{1} \frac{dr}{r^{\alpha-1}} = \frac{1}{2-\alpha}$$

то из последнего неравенства окончательно получим

$$|P_{nm}z||_2^2 \le \frac{2\pi}{2-\alpha} ||z||_C^2,$$

что доказывает справедливость оценки (7а).

Для доказательства второй оценки леммы используем известный результат (для случая m = 2M в [10], для m = 2M + 1 в [11])

$$\|\Lambda_{\infty m}\|_{C(\theta)\to C(\theta)} \le \frac{4}{\pi} + \frac{2}{\pi} \ln \frac{2m}{\pi}.$$
(9)

Тогда с учетом (9) последовательно находим

$$\begin{aligned} \|P_{nm}z\|_{C} &= \|\Lambda_{\infty m}\mathcal{L}_{n\infty}z\|_{C} = \max_{r\in[0,1]} \|(\Lambda_{\infty m}\mathcal{L}_{n\infty}z)(r,\cdot)\|_{C(\theta)} \leq \\ &\leq \max_{r\in[0,1]} \|\Lambda_{\infty m}\|_{C(\theta)\to C(\theta)} \max_{\theta\in[0,2\pi]} \left|\sum_{k=1}^{n} z(r_{k},\theta)l_{k}(r)\right| \leq \left(\frac{4}{\pi} + \frac{2}{\pi}\ln\frac{2m}{\pi}\right) \max_{r,\theta} |z(r,\theta)| \sum_{k=1}^{n} |l_{k}(r)|. \end{aligned}$$

Используя известный результат из ([8], с. 344) о свойствах фундаментальных многочленов Лагранжа по узлам $\{r_k\}_1^n$, из последнего неравенства выводим

$$\|P_{nm}z\|_{C} \le K_{2}\left(\frac{4}{\pi} + \frac{2}{\pi}\ln\frac{2m}{\pi}\right)n^{\gamma+1/2}\|z\|_{C}$$

где K_2 — абсолютная положительная постоянная, зависящая, вообще говоря, от α . Следуя С.Н. Бернштейну (например, [12]), введем следующие обозначения:

 $E_{n,\infty}(u;r)_C$ — наилучшее равномерное приближение функции $u(r,\theta)$ алгебраическими многочленами степени не выше n по переменной r, коэффициенты которых являются про-

извольными непрерывными функциями относительно переменной θ ; $E_n(u;r)_C = E_n(u;r,(\theta))_C$ — наилучшее равномерное приближение функции $u(r,\theta)$ алгеб-

раическими многочленами степени не выше n по переменной r при любом фиксированном θ ; $E_{\infty,\mu}^{\top}(u;\theta)_C$ — наилучшее равномерное приближение функции $u(r,\theta)$ тригонометрическими полиномами порядка не выше μ по переменной θ , коэффициенты которых являются произвольными непрерывными функциями относительно переменной r;

 $E_{\mu}^{\top}(u;\theta)_{C} = E_{\mu}^{\top}(u;(r),\theta)_{C}$ — наилучшее равномерное приближение функции $u(r,\theta)$ тригонометрическими полиномами порядка не выше μ по переменной θ при любом фиксированном r. **Лемма 2.** Для любой непрерывной функции $u(r, \theta)$ равномерно относительно n = 1, 2, ... $u \ m = 1, 2, ...$ справедливы оценки

$$\|u - P_{nm}u\|_{2} \le 2K_{1} \min_{s \in \{0;1\}} \{(1+s)E_{n-1,\infty}(u;r)_{C} + (2-s)E_{\infty,\mu}^{\top}(u;\theta)_{C}\},$$
(10a)

$$\|u - P_{nm}u\|_{C} \leq \left[1 + K_{2}n^{\gamma+1/2}\left(\frac{4}{\pi} + \frac{2}{\pi}\ln\frac{2m}{\pi}\right)\right] \min_{s \in \{0,1\}} \{(1+s)E_{n-1,\infty}(u;r)_{C} + (2-s)E_{\infty,\mu}^{\top}(u;\theta)_{C}\},$$
(10b)

где μ — целая часть числа (m-1)/2, а K_1 и K_2 определены в лемме 1.

Доказательство. Рассмотрим тождество

$$u - P_{nm}u = (u - u_{nm}) - P_{nm}(u - u_{nm}),$$
(11)

где u_{nm} — произвольный двумерный многочлен вида (4) степени (n-1, [(m-1)/2]), построенный по системе узлов $\{(r_k, \theta_i)\}$. Тогда, с учетом неравенства (7а), из (11) следует

$$\|u - P_{nm}u\|_{2} \le (\|E\|_{C \to L_{2}} + \|P_{nm}\|_{C \to L_{2}})\|u - u_{nm}\|_{C} \le 2K_{1}\|u - u_{nm}\|_{C},$$
(12)

где E — единичный оператор.

Пусть $Q_{\mu}(\theta)$ — тригонометрический полином наилучшего равномерного приближения порядка не выше $\mu = [(m-1)/2]$ для функции $u(r, \theta)$ по переменной θ . Тогда

$$||u - u_{nm}||_C \le ||u - Q_{\mu}(\theta)||_C + ||Q_{\mu}(\theta) - u_{nm}||_C = E_{\infty,\mu}^{\top}(u;\theta)_C + ||Q_{\mu}(\theta) - u_{nm}||_C,$$

и неравенство (12) может быть продолжено следующим образом:

$$||u - P_{nm}u||_2 \le 2K_1 \{ E_{\infty,\mu}^\top(u;\theta)_C + ||Q_\mu(\theta) - u_{nm}(r,\theta)||_C \}.$$

Если $u_{nm}(r,\theta)$ выбрать из условия

$$||Q_{\mu}(\theta) - u_{nm}||_{C} = E_{n-1,\infty}(Q_{\mu}; r)_{C},$$

то из последнего неравенства, с учетом свойств наилучших равномерных приближений, последовательно находим

$$\|u - P_{nm}u\|_{2} \leq 2K_{1}\{E_{\infty,\mu}^{\top}(u;\theta)_{C} + E_{n-1,\infty}(Q_{\mu};r)_{C}\} \leq \\ \leq 2K_{1}\{E_{\infty,\mu}^{\top}(u;\theta)_{C} + E_{n-1,\infty}(u;r)_{C} + E_{n-1,\infty}(u - Q_{\mu};r)_{C}\} \leq \\ \leq 2K_{1}\{E_{\infty,\mu}^{\top}(u;\theta)_{C} + E_{n-1,\infty}(u;r)_{C} + \|u - Q_{\mu}\|_{C}\} = \\ = 2K_{1}\{2E_{\infty,\mu}^{\top}(u;\theta)_{C} + E_{n-1,\infty}(u;r)_{C}\}.$$
(13)

Аналогично доказывается справедливость неравенства

$$||u - P_{nm}u||_2 \le 2K_1 \{ E_{\infty,\mu}^\top(u;\theta)_C + 2E_{n-1,\infty}(u;r)_C \},\$$

что вместе с (13) дает первую оценку (10а).

Неравенство (10b) доказывается с использованием оценки (7b) так же, как и неравенство (10a).

Ю.Р. АГАЧЕВ, Р.К. ГУБАЙДУЛЛИНА

3. Сходимость метода механических кубатур в среднем

Введем следующие обозначения: $P_{nm}^{\rho\varphi}h = P_{nm}^{\rho\varphi}h(\rho,\varphi;r,\theta)$ и $P_{nm}^{r\theta}h = P_{nm}^{r\theta}h(\rho,\varphi;r,\theta)$ — интерполяционные полиномы порядка (n,m) для функции $h(\rho,\varphi;r,\theta)$ по совокупности переменных (ρ,φ) и (r,θ) соответственно, построенные по аналогии с формулой (6). Обозначим через X_{nm} множество всех полиномов вида

$$u_{nm}(r,\theta) = \frac{2}{m} \sum_{k=1}^{n} \sum_{j=1}^{m} u_{nm}(r_k,\theta_i) l_k(r) \Delta_M(\theta - \theta_i)$$

Тогда СЛАУ (2) можно рассматривать в пространстве X_{nm} как линейное уравнение

$$A_{nm}u_{nm} \equiv u_{nm} + T_{nm}u_{nm} = P_{nm}f,\tag{14}$$

где оператор P_{nm} определен в (6), а

$$T_{nm}u_{nm} = P_{nm}^{\rho\varphi}T\left(P_{nm}^{r\theta}(hu_{nm})\right) = P_{nm}^{\rho\varphi}\int_0^1 \frac{dr}{r^{\alpha-1}}\int_0^{2\pi}P_{nm}^{r\theta}\left[h(\rho,\varphi;r,\theta)u_{nm}(r,\theta)\right]d\theta.$$

Теорема 1. Пусть выполнены следующие условия:

1) уравнение (1) однозначно разрешимо при любой правой части из L_2 ,

2) $h(\rho,\varphi;r,\theta)$ и $f(\rho,\varphi)$ являются непрерывными функциями своих аргументов. Тогда при

$$\beta_{nm} = p(\alpha) \|A^{-1}\|_2 \{ E_{n-1,\infty}(h;\rho)_C + E_{\infty,\mu}^{\top}(h;\varphi)_C + E_{n-1,\infty}(h;r)_C + E_{\infty,\mu}^{\top}(h;\theta)_C \} < 1$$

СЛАУ метода механических кубатур (2) однозначно разрешима. Приближенные решения u_{nm}^* , построенные по формуле (3) или (4), сходятся в пространстве L_2 к точному решению u^* уравнения (1) со скоростью, определяемой неравенством

$$\|u_{nm}^{*} - u^{*}\|_{2} \leq \frac{p(\alpha)B\|A^{-1}\|_{2}}{1 - \beta_{nm}} \bigg\{ E_{n-1,\infty}(f;\rho)_{C} + E_{\infty,\mu}^{\top}(f;\varphi)_{C} + E_{n-1,\infty}(h;\rho)_{C} + E_{\infty,\mu}^{\top}(h;\varphi)_{C} + E_{n-1,\infty}(h;r)_{C} + E_{\infty,\mu}^{\top}(h;\theta)_{C} \bigg\}, \quad (15)$$

где

$$p(\alpha) = 4K_1^2, \quad B = \max\{K_1^{-1}, \|A^{-1}\|_2 \cdot \|f\|_2\}, \quad K_1 = \sqrt{\frac{2\pi}{2-\alpha}},$$

 $a \ \mu = [(m-1)/2].$

Доказательство. Для любого $u_{nm} \in X_{nm}$ в силу (5) и (14) имеем

$$\|Au_{nm} - A_{nm}u_{nm}\|_{2} = \|Tu_{nm} - T_{nm}u_{nm}\|_{2} \leq \leq \|Tu_{nm} - P_{nm}^{\rho\varphi}Tu_{nm}\|_{2} + \|P_{nm}^{\rho\varphi}Tu_{nm} - T_{nm}u_{nm}\|_{2} \equiv I_{1} + I_{2}.$$
 (16)

Рассмотрим каждое из этих слагаемых по отдельности. Использовав неравенство Гёльдера для многомерных интегралов, для первого слагаемого из (16) получим

$$I_{1} \equiv \|Tu_{nm} - P_{nm}^{\rho\varphi}Tu_{nm}\|_{2} = \left\| \int_{0}^{1} \frac{dr}{r^{\alpha-1}} \int_{0}^{2\pi} (h - P_{nm}^{\rho\varphi}h)(\rho,\varphi;r,\theta) \cdot u_{nm}(r,\theta)d\theta \right\|_{2} \leq \\ \leq \left\| \left(\int_{0}^{1} \frac{dr}{r^{\alpha-1}} \int_{0}^{2\pi} |(h - P_{nm}^{\rho\varphi}h)(\rho,\varphi;r,\theta)|^{2}d\theta \right)^{1/2} \right\|_{2} \cdot \|u_{nm}\|_{2},$$

откуда, применив (10а), находим

$$I_{1} \leq \sqrt{\frac{2\pi}{2-\alpha}} \max_{r,\theta} \|h - P_{nm}^{\rho\varphi}h\|_{2} \cdot \|u_{nm}\|_{2} \leq \\ \leq 4K_{1}^{2} \{E_{n-1,\infty}(h;\rho)_{C} + E_{\infty,\mu}^{\top}(h;\varphi)_{C}\} \|u_{nm}\|_{2}.$$
(17)

Оценим теперь второе слагаемое из (16). Используя степень точности (2n-1,m-1) применяемой кубатурной формулы, имеем

$$I_{2} \equiv \|P_{nm}^{\rho\varphi}Tu_{nm} - T_{nm}u_{nm}\|_{2} = \left\|P_{nm}^{\rho\varphi}\int_{0}^{1}\frac{dr}{r^{\alpha-1}}\int_{0}^{2\pi} (h - P_{nm}^{r\theta}h)(\rho,\varphi;r,\theta) \cdot u_{nm}(r,\theta)d\theta\right\|_{2}.$$

Применяя к этому интегралу неравенства Гёльдера, (7а) и (10а), последовательно выводим

$$I_{2} \leq \|P_{nm}\|_{C \to L_{2}} \max_{\rho,\varphi} \left(\int_{0}^{1} \frac{dr}{r^{\alpha-1}} \int_{0}^{2\pi} |(h - P_{nm}^{r\theta}h)(\rho,\varphi;r,\theta)|^{2} d\theta \right)^{1/2} \|u_{nm}\|_{2} = \\ = \|P_{nm}\|_{C \to L_{2}} \max_{\rho,\varphi} \|h - P_{nm}^{r\theta}h\|_{2} \cdot \|u_{nm}\|_{2} \leq \\ \leq 4K_{1}^{2} \{E_{n-1,\infty}(h;r)_{C} + E_{\infty,\mu}^{\top}(h;\theta)_{C}\} \|u_{nm}\|_{2}.$$
(18)

Из (16)–(18) получаем

 $\varepsilon_{nm} \equiv \|A - A_{nm}\|_{X_{nm} \to L_2} \le p(\alpha) \big\{ E_{n-1,\infty}(h;\rho)_C + E_{\infty,\mu}^\top(h;\varphi)_C + E_{n-1,\infty}(h;r)_C + E_{\infty,\mu}^\top(h;\theta)_C \big\},$ где константа $p(\alpha)$ зависит от α и определяется следующим образом:

$$p(\alpha) = 4K_1^2, \quad K_1 = \sqrt{\frac{2\pi}{2-\alpha}}.$$

Рассмотрим теперь норму $\delta_{nm} \equiv ||f - P_{nm}f||_2$. Применив лемму 2, получим

$$\delta_{nm} \le 4K_1 \big\{ E_{n-1,\infty}(f;\rho)_C + E_{\infty,\mu}^\top(f;\varphi)_C \big\}.$$
(19)

Следовательно (например, [13]), при

$$\beta_{nm} \equiv \varepsilon_{nm} \|A^{-1}\|_2 \leq \\ \leq p(\alpha) \|A^{-1}\|_2 \left\{ E_{n-1,\infty}(h;\rho)_C + E_{\infty,\mu}^{\top}(h;\varphi)_C + E_{n-1,\infty}(h;r)_C + E_{\infty,\mu}^{\top}(h;\theta)_C \right\} < 1 \quad (20)$$

существует A_{nm}^{-1} , причем

$$\|A_{nm}^{-1}\|_{2} \le \|A^{-1}\|_{2}(1-\beta_{nm})^{-1},$$
(21)

и для решений $u^* = A^{-1}f$
и $u^*_{nm} = A^{-1}_{nm}P_{nm}f$ справедлива оценка

$$\|u^* - u^*_{nm}\|_2 \le (\delta_{nm} + \beta_{nm} \|f\|_2)(1 - \beta_{nm})^{-1} \|A^{-1}\|_2$$

Отсюда и из (19), (20) получаем утверждение теоремы.

4. Сходимость в узлах

Каждой непрерывной функции двух аргументов $g(r, \theta)$ поставим в соответствие $n \cdot m$ мерный вектор $\overline{g} = (g(r_k, \theta_i))$ $(1 \le k \le n, 1 \le i \le m)$, где $\{r_k\}, \{\theta_i\}$ — узлы кубатурной формулы. Норму вектора \overline{g} обозначим через

$$\|\overline{g}\|_{\overline{C}} = \max_{k,i} |g(r_k, \theta_i)|.$$

Теорема 2. В условиях теоремы 1 приближенные решения $u_{nm}^*(r, \theta)$, построенные по формуле (3) или (4), сходятся в узлах кубатурной формулы к точному решению $u^*(r, \theta)$ уравнения (1) со скоростью, определяемой неравенствами

$$\|u^* - u^*_{nm}\|_{\overline{C}} \le K_1 \|h\|_C \|u^* - u^*_{nm}\|_2 + 4K_1 \|u^*_{nm}\|_2 \big(E_{n-1,\infty}(h;r)_C + E^{\top}_{\infty,\mu}(h;\theta)_C\big),$$
(22)

$$\|u^{*} - u_{nm}^{*}\|_{\overline{C}} \leq K_{1} \frac{p(\alpha)c(h,f)\|A^{-1}\|_{2}}{1 - \beta_{nm}} \bigg\{ E_{n-1,\infty}(f;\rho)_{C} + E_{\infty,\mu}^{\top}(f;\varphi)_{C} + E_{n-1,\infty}(h;r)_{C} + E_{\infty,\mu}^{\top}(h;\theta)_{C} + E_{n-1,\infty}(h;\rho)_{C} + E_{\infty,\mu}^{\top}(h;\varphi)_{C} \bigg\}, \quad (23)$$

где $c(h, f) = \max\{\|h\|_{C}B, K_{1}^{-2}\|f\|_{C}\}, \beta_{nm}, p(\alpha), K_{1} \ u \ B$ определены в теореме 1.

Доказательство теоремы ведется с использованием следующего свойства интерполяционного многочлена Лагранжа:

$$\left(P_{nm}^{\rho\varphi}(u_{nm})\right)(\rho_k,\varphi_i) = u_{nm}(\rho_k,\varphi_i).$$

В условиях теоремы для любых $k,\,i~(1\leq k\leq n,\,1\leq i\leq m)$ получаем

$$|u^{*}(\rho_{k},\varphi_{i}) - u^{*}_{nm}(\rho_{k},\varphi_{i})| = |(Tu^{*} - T_{nm}u^{*}_{nm})(\rho_{k},\varphi_{i})| \leq \\ \leq |(Tu^{*} - Tu^{*}_{nm})(\rho_{k},\varphi_{i})| + |(Tu^{*}_{nm} - T_{nm}u^{*}_{nm})(\rho_{k},\varphi_{i})|.$$

Применяя неравенство Гёльдера и используя степень точности кубатурной формулы для оценки второго слагаемого, получаем

$$\begin{aligned} |u^{*}(\rho_{k},\varphi_{i}) - u_{nm}^{*}(\rho_{k},\varphi_{i})| &\leq \left(\int_{0}^{1} \frac{dr}{r^{\alpha-1}} \int_{0}^{2\pi} |h(\rho_{k},\varphi_{i};r,\theta)|^{2} d\theta\right)^{1/2} \cdot \\ &\cdot \left(\int_{0}^{1} \frac{dr}{r^{\alpha-1}} \int_{0}^{2\pi} |u^{*}(r,\theta) - u_{nm}^{*}(r,\theta)|^{2} d\theta\right)^{1/2} + \left|\int_{0}^{1} \frac{dr}{r^{\alpha-1}} \int_{0}^{2\pi} (h - P_{nm}^{r\theta}h)(\rho_{k},\varphi_{i};r,\theta)u_{nm}^{*}(r,\theta) d\theta\right| \leq \\ &\leq K_{1} \|h\|_{C} \|u^{*} - u_{nm}^{*}\|_{2} + \|u_{nm}^{*}\|_{2} \left(\int_{0}^{1} \frac{dr}{r^{\alpha-1}} \int_{0}^{2\pi} |(h - P_{nm}^{r\theta}h)(\rho_{k},\varphi_{i};r,\theta)|^{2} d\theta\right)^{1/2}, \end{aligned}$$

откуда с помощью леммы 2 находим

$$\begin{aligned} |u^*(\rho_k,\varphi_i) - u^*_{nm}(\rho_k,\varphi_i)| &\leq K_1 \|h\|_C \|u^* - u^*_{nm}\|_2 + \|u^*_{nm}\|_2 \max_{\rho,\varphi} \|h - P^{r\theta}_{nm}h\|_2 \leq \\ &\leq K_1 \|h\|_C \|u^* - u^*_{nm}\|_2 + \|u^*_{nm}\|_2 \cdot 4K_1 \{E_{n-1,\infty}(h;r)_C + E^{\top}_{\infty,\mu}(h,\theta)_C\}. \end{aligned}$$

Таким образом, оценка (22) получена. Оценка (23) следует из (22), (15) и (21).

5. Равномерная сходимость метода механических кубатур

Из теоремы 1 следует

Теорема 3. В условиях теоремы 1 погрешность приближенного решения в равномерной метрике может быть оценена неравенством

$$\begin{aligned} \|u^* - u_{nm}^*\|_C &\leq K_1 \|h\|_C \cdot \|u^* - u_{nm}^*\|_2 + 2K_1 \|u_{nm}^*\|_2 \big(\max\{1, K_2 n^{\gamma+1/2} G(m)\} + K_2 n^{\gamma+1/2} G(m) \big) \cdot \\ & \cdot \big[E_{n-1,\infty}(h;r) + E_{\infty,\mu}^\top(h;\theta) + E_{n-1,\infty}(h;\rho) + E_{\infty,\mu}^\top(h;\varphi)_C \big] + \\ & + 2(1 + K_2 n^{\gamma+1/2} G(m)) \big[E_{n-1,\infty}(f;\rho)_C + E_{\infty,\mu}^\top(f;\varphi)_C \big], \end{aligned}$$
(24)

где

$$G(m) = \frac{4}{\pi} + \frac{2}{\pi} \ln \frac{2m}{\pi}, \quad \gamma = \max\{0, 1 - \alpha\},$$

а константы K_1 и K_2 определены в лемме 1.

Доказательство. Пусть u^* и u^*_{nm} — решения исходного и аппроксимирующего уравнений соответственно. Тогда имеют место следующие соотношения:

$$u^* = f - Thu^* \equiv f - Tu^*,$$
$$u^*_{nm} = P_{nm}f - P^{\rho\varphi}_{nm}T(P^{r\theta}_{nm}(hu^*_{nm}))$$

Рассмотрим разность точного и приближенного решений по норме пространства C. Имеем

$$\|u^* - u^*_{nm}\|_C \le \|f - P_{nm}f\|_C + \|Tu^* - Tu^*_{nm}\|_C + \\ + \|Tu^*_{nm} - P^{\rho\varphi}_{nm}Tu^*_{nm}\|_C + \|P^{\rho\varphi}_{nm}Tu^*_{nm} - P^{\rho\varphi}_{nm}T(P^{r\theta}_{nm}(hu^*_{nm}))\|_C.$$
 (25)

Для первого слагаемого в (25) с помощью (10b) находим

$$\|f - P_{nm}f\|_{C} \le 2\left(1 + K_{2}n^{\gamma+1/2}G(m)\right)\left\{E_{n-1,\infty}(f;\rho)_{C} + E_{\infty,\mu}^{\top}(f;\varphi)_{C}\right\},\tag{26}$$

где

$$G(m) = \frac{4}{\pi} + \frac{2}{\pi} \ln \frac{2m}{\pi}.$$

Второе слагаемое в (25) оценим с помощью неравенства Гёльдера

$$\|Tu^{*} - Tu^{*}_{nm}\|_{C} = \max_{\rho,\varphi} \left| \int_{0}^{1} \frac{dr}{r^{\alpha-1}} \int_{0}^{2\pi} h(\rho,\varphi;r,\theta) \left[u^{*}(r,\theta) - u^{*}_{nm}(r,\theta) \right] d\theta \right| \leq \\ \leq \max_{\rho,\varphi} \left(\int_{0}^{1} \frac{dr}{r^{\alpha-1}} \int_{0}^{2\pi} |h(\rho,\varphi;r,\theta)|^{2} d\theta \right)^{1/2} \cdot \left(\int_{0}^{1} \frac{dr}{r^{\alpha-1}} \int_{0}^{2\pi} |u^{*}(r,\theta) - u^{*}_{nm}(r,\theta)|^{2} d\theta \right)^{1/2} \leq \\ \leq K_{1} \|u^{*} - u^{*}_{nm}\|_{2} \cdot \|h\|_{C}.$$
(27)

Аналогично оценивается третье слагаемое в (25):

$$\|T(hu_{nm}^{*}) - P_{nm}^{\rho\varphi}T(hu_{nm}^{*})\|_{C} = \left\|\int_{0}^{1} \frac{dr}{r^{\alpha-1}} \int_{0}^{2\pi} (h - P_{nm}^{\rho\varphi}h)(\rho,\varphi;r,\theta) \cdot u_{nm}^{*}(r,\theta)d\theta\right\|_{C} \leq \\ \leq \left\|\left(\int_{0}^{1} \frac{dr}{r^{\alpha-1}} \int_{0}^{2\pi} |(h - P_{nm}^{\rho\varphi}h)(\rho,\varphi;r,\theta)|^{2}d\theta\right)^{1/2}\right\|_{C} \cdot \|u_{nm}^{*}\|_{2} \leq K_{1} \max_{r,\theta} \|h - P_{nm}^{\rho\varphi}h\|_{C} \|u_{nm}^{*}\|_{2}.$$

Поэтому в силу (10b) имеем

$$\|T(hu_{nm}^{*}) - P_{nm}^{\rho\varphi}T(hu_{nm}^{*})\|_{C} \leq \\ \leq 2K_{1} \left(1 + K_{2}n^{\gamma+1/2}G(m)\right) \left\{E_{n-1,\infty}(h;\rho)_{C} + E_{\infty,\mu}^{\top}(h;\varphi)_{C}\right\} \|u_{nm}^{*}\|_{2}, \quad (28)$$

где в силу теоремы 1 норма $||u_{nm}^*||_2$ ограничена равномерно относительно n, m. Для последнего слагаемого в (25) с помощью неравенства Гёльдера находим

$$\begin{split} I &\equiv \|P_{nm}^{\rho\varphi}T(hu_{nm}^{*}) - P_{nm}^{\rho\varphi}T(P_{nm}^{r\theta}(hu_{nm}^{*}))\|_{C} \leq \|P_{nm}\|_{C \to C} \cdot \\ & \cdot \left\| \int_{0}^{1} \frac{dr}{r^{\alpha-1}} \int_{0}^{2\pi} \left(h - P_{nm}^{r\theta}(h)\right)(\rho,\varphi;r,\theta)u_{nm}^{*}(r,\theta)d\theta \right\|_{C} \leq \|P_{nm}\|_{C \to C} \cdot \\ & \cdot \left\| \left(\int_{0}^{1} \frac{dr}{r^{\alpha-1}} \int_{0}^{2\pi} |h - P_{nm}^{r\theta}(h)|^{2} d\theta \right)^{1/2} \right\|_{C} \|u_{nm}^{*}\|_{2} = \|P_{nm}\|_{C \to C} \max_{\rho,\varphi} \|h - P_{nm}^{r\theta}h\|_{2} \cdot \|u_{nm}^{*}\|_{2}. \end{split}$$

Отсюда с учетом (7b) и (10a) получаем

$$I \le 4K_1 K_2 n^{\gamma + 1/2} G(m) \left\{ E_{n-1,\infty}(h; r)_C + E_{\infty,\mu}^\top(h; \theta)_C \right\} \|u_{nm}^*\|_2.$$
⁽²⁹⁾

Тогда из (25)–(29) находим оценку (24).

Из теоремы 3 можно вывести достаточные условия равномерной сходимости приближенных решений, построенных методом механических кубатур, к точному решению уравнения (1). А именно, справедлива

Теорема 4. Пусть выполнены предположения:

1) непрерывная функция $f(r, \theta)$ удовлетворяет по каждой переменной условию Гёльдера с показателем $\beta > \gamma + 1/2$ при $\gamma < 1/2$, а при $\gamma \ge 1/2$ имеет частные производные f'_r и f'_{θ} , удовлетворяющие по соответствующим переменным условию Гёльдера с показателем $\beta > \gamma - 1/2$;

2) непрерывная по совокупности переменных $h(\rho, \varphi, r, \theta)$ по каждой из переменных равномерно относительно других удовлетворяет условию Гёльдера с показателем $\beta > \gamma + 1/2$ при $\gamma < 1/2$, а при $\gamma \ge 1/2$ имеет частные производные h'_{ρ} , h'_{φ} , h'_{r} , h'_{θ} , удовлетворяющие условию Гёльдера с показателем $\beta > \gamma - 1/2$ по переменной соответственно ρ , φ , r, θ ;

3) уравнение (1) однозначно разрешимо при любой непрерывной правой части.

Тогда приближенные решения $u_{nm}^*(r,\theta)$ при m = O(n) сходятся равномерно к точному решению $u^*(r,\theta)$ со скоростью (24).

Замечание. Равномерная сходимость имеет место и при другом согласовании параметров n и m; в частности, они могут быть связаны ([13], [14]) между собой так, чтобы правая часть в оценке (24) была минимальной.

Литература

- [1] Михлин С.Г. Многомерные сингулярные интегралы и интегральные уравнения. М.: Физматгиз, 1962.
 254 с.
- [2] Партон В.З., Перлин П.И. Интегральные уравнения теории упругости. М.: Наука, 1977. 312 с.
- [3] Хай М.В. Двумерные интегральные уравнения типа ньютоновского потенциала и их приложения. Киев: Наук. думка, 1993. – 253 с.
- [4] Габдулхаев Б.Г. К численному решению интегральных уравнений методом механических квадратур // Изв. вузов. Математика. – 1972. – № 12. – С. 23–39.
- [5] Габдулхаев Б.Г., Губайдуллина Р.К. О кубатурных формулах для одного класса многомерных слабо сингулярных интегралов // Матеріали II Міжнародної науково-практичної конференції "Дні науки-2006", Т. 35. Математика. – Дніпропетровськ, 2006. – С. 12–18.
- [6] Зигмунд А. Тригонометрические ряды. Т. 2. М: Мир, 1965. 538 с.
- [7] Габдулхаев Б.Г. Кубатурные формулы для многомерных сингулярных интегралов. І // Тр. Ин-та матем. АН Болгарии. – София, 1970. – Т. 11. – С. 181–196.

КУБАТУРНЫЙ МЕТОД РЕШЕНИЯ

- [8] Сеге Г. Ортогональные многочлены. М.:Физматгиз, 1962. 500 с.
- [9] Турецкий А.Х. Теория интерполирования в задачах. Минск: Изд-во "Высшая школа", 1968. 320 с.
- [10] Габдулхаев Б.Г. Квадратурные формулы для сингулярных интегралов и метод механических квадратур для сингулярных интегральных уравнений // Тр. Международной конференции по конструктивной теории функций. – Варна, 19–25 мая 1970. – С. 35–49.
- [11] Иванов В.В. Теория приближенных методов и ее применение к численному решению сингулярных интегральных уравнений. – Киев: Наук. думка, 1968. – 287 с.
- [12] Бернштейн С.Н. Собрание сочинений. Т. П. М.: Изд-во АН СССР, 1954. 629 с.
- [13] Габдулхаев Б.Г. Прямые методы решения некоторых операторных уравнений. І // Изв. вузов. Математика. – 1971. – № 11. – С. 33–44.
- [14] Габдулхаев Б.Г. Прямые методы решения некоторых операторных уравнений. II // Изв. вузов. Математика. – 1971. – № 12. – С. 28–38.

Ю.Р. Агачев

доцент, кафедра теории функций и приближений, Казанский государственный университет, 420008, г. Казань, ул. Кремлевская, д. 18,

e-mail: jagachev@ksu.ru

Р.К. Губайдуллина

аспирант, кафедра теории функций и приближений, Казанский государственный университет, 420008, г. Казань, ул. Кремлевская, д. 18,

e-mail: grenata@mail.ru

Yu.R. Agachev

Associate Professor, Chair of Theory of Functions and Approximations, Kazan State University, 18 Kremlyovskaya str., Kazan, 420008 Russia,

e-mail: jagachev@ksu.ru

R.K. Gubaidullina
Postgraduate, Chair of Theory of Functions and Approximations,
Kazan State University,
18 Kremlyovskaya str., Kazan, 420008 Russia,

e-mail: grenata@mail.ru