Н.А. КОРЕШКОВ

О ВНУТРЕННИХ ДИФФЕРЕНЦИРОВАНИЯХ ПРОСТЫХ ЛИЕВЫХ ПУЧКОВ РАНГА 1

Аннотация. В работе доказано, что простые лиевы пучки ранга один над алгебраически замкнутым полем P характеристики 0, у которых операторы левого умножения являются дифференцированиями, имеют вид сэндвичевой алгебры $M_3(U,\mathcal{D}')$, где U — подпространство всех кососимметрических матриц в $M_3(P)$, а \mathcal{D}' — любое подпространство, содержащее $\langle E \rangle$ в пространстве всех диагональных матриц \mathcal{D} в $M_3(P)$.

Kлючевые слова: лиев пучок, картановская подалгебра, тор, внутреннее дифференцирование, сэндвичева алгебра.

УДК: 512.554

Лиевы пучки были введены в работе [1]. Их конструкция связана с нахождением первых интегралов некоторых гамильтоноых систем [2], [3].

Приведем определение лиева пучка. Пусть L — конечномерное векторное пространство над полем P. Обозначим через K пространство всех билинейных кососимметрических отображений из $L \times L$ в L.

Определение 1. Векторное пространство L над полем P называется лиевым пучком, если существует подпространство S из K такое, что для любого $s \in S$ выполняется соотношение

$$(asb)sc + (bsc)sa + (csa)sb = 0, \quad a, b, c \in L$$

(здесь xsy — образ пары $(x,y) \in L \times L$ при отображении s), т.е. линейная комбинация двух лиевых умножений из S снова является лиевым умножением. Это позволяет переформулировать определение 1 следующим образом.

Определение 2. Векторное пространство L над полем P называется лиевым пучком, если существует подпространство S из K такое, что для любых s и s' из S имеет место соотношение

$$J(a, b, c, s, s') + J(a, b, c, s', s) = 0, \quad a, b, c \in L,$$
(1)

где J(a, b, c, s, s') = (asb)s'c + (bsc)s'a + (csa)s'b.

Если $\dim S = n$, то лиев пучок часто будем называть n-кратным лиевым пучком и обозначать L(S).

Определение 2 с заменой термина "n-кратный лиев пучок" на "n-кратная алгебра Ли" использовалось в [4], [5]. Для этих алгебр в [5] были доказаны аналоги теорем Ли и Энгеля.

Заметим, что если в определении у n-арной алгебры Ли ([6]) n-2 аргументов считать фиксированными, то получим пример m-кратного лиева пучка, где $m=(n-2)\dim L$. Кроме того, конструкция n-кратного лиева пучка при n=2 под названием бигамильтоновой

операды рассматривалась в [7]. Важным примером лиева пучка является сэндвичева алгебра.

Определение 3. Сэндвичевой алгеброй $M_n(U,V)$ называется пара пространств U,V в пространстве матриц $M_n(P)$, для которых выполнено условие $u_1vu_2-u_2vu_1\in U$, когда $u_1,u_2\in U,v\in V$.

Легко проверить, что сэндвичева алгебра $M_n(U,V)$ является лиевым пучком U(V) в смысле определения 1, если в качестве подпространства умножений S рассматривать подпространство V.

Определим некоторые понятия для лиевых пучков, аналогичные соответствующим понятиям для алгебр Π и.

Если U и V — два подпространства в L(S), то символ UV или USV будет обозначать пространство $\langle usv, u \in U, v \in V, s \in S \rangle_P$.

Назовем лиев пучок L=L(S) разрешимым, если существует натуральное k такое, что $L^{(k)}=0$, гле $L^{(i+1)}=L^{(i)}L^{(i)}$, i>0, $L^{(0)}=L$.

Лиев пучок L = L(S) нильпотентен, если для некоторого натурального k имеем $L^k = 0$, где $L^{i+1} = L^i L$, $i \ge 1$, $L^1 = L$. В частности, лиев пучок L(S) абелев, если $L^2(S) = 0$.

Подпространство I в лиевом пучке L(S) назовем идеалом, если $xsy \in I$ для любых $x \in I$, $y \in L$, $s \in S$. Лиев пучок называется простым, если он не содержит нетривиальных идеалов и $L^2(S) \neq 0$.

Подпространство U в лиевом пучке L(S) назовем подалгеброй, если $xsy \in U$ при $x,y \in U$, $s \in S$.

Подпространство H в L(S) назовем картановской подалгеброй лиева пучка L(S), если H — нильпотентная подалгебра, совпадающая со своим нормализатором

$$N_{L(S)}(H) = \{ x \in L \mid hsx \in H \ \forall h \in H, \ \forall s \in S \}.$$

В работе [5] показано, что любой лиев пучок L(S) содержит картановскую подалгебру H, которая является нульпространством L_0 относительно регулярной пары $\{x_0, s_0\} \in L \times S$, т.е. $L_0 = L_0(x_0, s_0) = \{x \in L \mid (\operatorname{ad}_{s_0} x_0)^k x = 0, k \in \mathbb{N}\}$, где ad_{s_0} — оператор левого умножения, определенный элементом $s_0 \in S$. (Пара $\{x_0, s_0\} \in L \times S$ называется регулярной, если $\dim L_0(x_0, s_0)$ минимальна.) Размерность нулькомпоненты $L_0(x_0, s_0)$ регулярной пары $\{x_0, s_0\}$ будем называть рангом лиева пучка L(S) и обозначать rL(S).

Как известно, тождество Якоби, определяющее структуру алгебры Ли L, равносильно тому, что любой оператор левого умножения $\operatorname{ad} x, x \in L$, является дифференцированием в L при условии антикоммутативности, т. е. $\operatorname{ad} x[y,z] = [\operatorname{ad} x(y),z] + [y,\operatorname{ad} x(z)]$. Такие дифференцирования называют внутренними. Если оператор левого умножения $\operatorname{ad}_s x, x \in L, s \in S$, лиева пучка L(S) является дифференцированием, то $\operatorname{ad}_s x(ys'z) = (\operatorname{ad}_s x(y))s'z + ys'((\operatorname{ad}_s x)z)$ или (ys'z)sx + (zsx)s'y + (xsy)s'z = 0. Обозначим левую часть этого соотношения через $\mathcal{D}(y,z,x,s',s)$. Тогда соотношение (1), определяющее лиев пучок, можно представить в виле

$$\mathcal{D}(a, b, c, s, s') + \mathcal{D}(a, b, c, s's) = 0, \ a, b, c \in L, \ s, s' \in S.$$

То, что условие быть дифференцированием для операторов левого умножения в отличие от алгебр Π и обычно не выполняется, показывает

Теорема. Пусть L(S) — простой лиев пучок, dim S > 1, ранга 1 над алгебраически замкнутым полем P характеристики нуль. Тогда операторы левого умножения $\mathrm{ad}_s x, \ x \in L$, $s \in S$, пучка L(S) являются дифференцированиями, т. е. $\mathcal{D}(y,z,x,s',s) = 0,\ x,y,z \in L$, $s,s' \in S$, тогда и только тогда, когда L(S) совпадает c сэндвичевой алгеброй $M_3(U,\mathcal{D}')$,

где U-nодпространство всех кососимметрических матриц в $M_3(P)$, а $\mathcal{D}'-$ любое подпространство, содержащее $\langle E \rangle$, в пространстве всех диагональных матриц \mathcal{D} .

Доказательство. Как показано в [5], множество пар $U = \{(x_0, s_0), x_0 \in L, s_0 \in S\}$, для которых dim $L_0(x_0, s_0) = rL(S)$, образует непустое открытое в топологии Зарисского множество в $L \times S$.

С другой стороны, в [8] показано, что в любом простом лиевом пучке L(S) множество пар (x,s), для которых оператор $\mathrm{ad}_s x$ полупрост, также образует непустое открытое в топологии Зарисского множество в $L \times S$. Следовательно, существуют картановские подалгебры, содержащие ненулевые элементы x, для которых оператор $\mathrm{ad}_s x$ полупрост, когда s принадлежит некоторому подпространству $S' \subseteq S$. Если ранг L(S) равен единице, то существует картановская подалгебра H, совпадающая с тором T = T(S'), где T(S) — абелева алгебра, для любого элемента x которой оператор $\mathrm{ad}_s x$, $s \in S' \subseteq S$, полупрост.

Пусть $H = T = \langle h \rangle_P$. Легко видеть, что H будет картановской подалгеброй в алгебре Ли $L(s_0)$, определяемой тем же умножением s_0 , для которого пара (h, s_0) регулярна, а элемент h будет регулярным элементом для алгебры Ли $L(s_0)$.

Рассмотрим разложение алгебры Ли $L(s_0)$ в прямую сумму корневых пространств относительно $\operatorname{ad}_{s_0} h$, т. е.

$$L(s_0) = H + \sum_{\alpha \neq 0} L_{\alpha},$$

где $L_{\alpha} = \{x \in L \mid (\operatorname{ad}_{s_0} h)x = \alpha(h)x\}, H = L_0 = \{x \in L \mid (\operatorname{ad}_{s_0} h)x = 0\}, \alpha(h) \in P.$

Рассмотрим три случая.

І. Обозначим через Σ совокупность всех ненулевых корней для орератора $\mathrm{ad}_{s_0}\,h$. Предположим, что для любого $\alpha \in \Sigma$ функция $-\alpha$ не является корнем. Тогда подпространство $\mathcal{L} = \sum_{\alpha \neq 0} L_{\alpha}$ — нильпотентная подалгебра в алгебре Ли $L(s_0)$. Действительно, так как

 $e_{\alpha}s_0e_{\beta}\in L_{\alpha+\beta}$, когда $e_{\alpha}\in L_{\alpha}$, $e_{\beta}\in L_{\beta}$, то из условия $\alpha+\beta\neq 0$ вытекает, что \mathcal{L} — подалгебра. Так как характеристика поля P равна нулю, то все функции $\alpha+t\beta$, $t\in\mathbb{N}$, различны. Следовательно, в силу конечности числа корней, для любых $\alpha,\beta\in\Sigma$ существует $t\in\mathbb{N}$ такое, что $\alpha+t\beta\in\Sigma$, но $\alpha+(t+1)\beta\notin\Sigma$, т. е. $(\mathrm{ad}_{s_0}\,e_{\beta})^{t+1}e_{\alpha}=0$. Отсюда следует, что для любого $\beta\in\Sigma$ оператор $\mathrm{ad}_{s_0}\,e_{\beta}$ нильпотентен. Так как объединение всех корневых пространств $L_{\alpha},\,\alpha\in\Sigma$, образует множество Ли, т. е. замкнуто относительно операции s_0 , то по теореме Энгеля в форме Джекобсона ([9]) алгебра Ли $\mathcal{L}(s_0)$ нильпотентна. Поэтому $\mathcal{L}\supset\mathcal{L}^2\supset\cdots\supset\mathcal{L}^m\supset0$, где $\mathcal{L}^i=\mathcal{L}^{i-1}s_0\mathcal{L},\,i\geq 2$. Очевидно, $hs_0\mathcal{L}^i\subset\mathcal{L}^i$, т. е. \mathcal{L}^i инвариантно относительно оператора дифференцирования $\mathrm{ad}_{s_0}\,h$. Поэтому $\mathcal{L}^i=\sum_{\alpha\neq 0}\mathcal{L}^i_{\alpha}$, где $\mathcal{L}^i_{\alpha}=\{e^i_{\alpha}\in\mathcal{L}^i\mid (\mathrm{ad}_{s_0}\,h)e^i_{\alpha}=\alpha(h)e^i_{\alpha}\}$.

Обозначим $\Sigma_i = \{\alpha \in \Sigma \mid \exists e^i_\alpha \in \mathcal{L}^i_\alpha\}$. Так как $\mathcal{L}_i s_0 \mathcal{L}^j \subset \mathcal{L}^{i+j}$, то цепочка подмножеств $\Sigma_1 \supset \Sigma_2 \supset \cdots \supset \Sigma_m$ образует фильтрацию относительно операции сложения корней. Действительно, если $\alpha \in \Sigma_i$, $\beta \in \Sigma_j$ и $\alpha + \beta \in \Sigma$, то $\alpha + \beta \in \Sigma_{i+j}$. Предположим, что любой оператор левого умножения в L(S) является дифференцированием. Рассмотрим соотношение $\mathcal{D}(e^i_\alpha, e^j_\beta, h, s, s_0) = 0$. Оно может быть представлено в виде

$$\operatorname{ad}_{s_0} h(e_{\alpha}^i s e_{\beta}^j) = (\alpha + \beta)(h)(e_{\alpha}^i s e_{\beta}^j).$$

Таким образом, если $\alpha + \beta \in \Sigma$, то $e^i_{\alpha} s e^j_{\beta} \in \mathcal{L}^{i+j}$, в противном случае $e^i_{\alpha} s e^j_{\beta} = 0$, и можно считать, что $e^i_{\alpha} s e^j_{\beta} \in \mathcal{L}^{i+j}$, т. е. фильтрация в \mathcal{L} согласована и с операцией s. В частности, \mathcal{L} — алгебра Ли относительно s.

С другой стороны, определим в алгебре Ли $\mathcal{L}(s_0)$ центральную фильтрацию по правилу $\mathcal{L}_i = \{x \in \mathcal{L} \mid xs_0\mathcal{L} \subset \mathcal{L}_{i+1}\}, \ i = m, m-1, m-2, \ldots, 1, \ \text{где } \mathcal{L}_{m+1} = 0.$ Подпространства \mathcal{L}_i , как и \mathcal{L}^i , инвариантны относительно $\mathrm{ad}_{s_0} h$. Поэтому $\mathcal{L} = \sum_{\alpha \neq 0} \mathcal{L}_i^{\alpha}$, где $\mathcal{L}_i^{\alpha} = \{e_{\alpha}^i \in \mathcal{L}_i \mid (\mathrm{ad}_{s_0} h)e_{\alpha}^i = \alpha(h)e_{\alpha}^i\}$, причем $\mathcal{L}_{i-1} = L_{i-1} \oplus \mathcal{L}_i$, где $L_{i-1} = \langle e_{\alpha}^{i-1} \in \mathcal{L}_{i-1} \mid hs_0e_{\alpha}^{i-1} = \alpha(h)e_{\alpha}^{i-1}, e_{\alpha}^{i-1} \notin \mathcal{L}_i\rangle_P$. Следовательно, $\mathcal{L} = \bigoplus_{i=1}^m L_i$, $\mathcal{L}_i = \bigoplus_{j \geq i} L_j$.

Пусть $hse^i_{\alpha} = \lambda^i_{\alpha}h + \sum_{\delta,j}e^j_{\delta}(\alpha,i), \ \lambda^i_{\alpha} \in P$. Так как $e^1_{\alpha}s_0e^m_{\beta} = 0$, то равенство $\mathcal{D}(e^1_{\alpha},e^m_{\beta},h,s_0,s) = 0$ дает

$$\left(\lambda_{\beta}^{m}h + \sum_{\delta,j} e_{\delta}^{j}(\beta,m)\right)s_{0}e_{\alpha}^{1} - \left(\lambda_{\alpha}^{1}h + \sum_{\delta,j} e_{\delta}^{j}(\alpha,1)\right)s_{0}e_{\beta}^{m} = 0$$

или

$$\lambda_{\alpha}^{1}\beta(h)e_{\beta}^{m} - \lambda_{\beta}^{m}\alpha(h)e_{\alpha}^{1} - \sum_{\delta,j}e_{\delta}^{j}(\beta,m)s_{0}e_{\alpha}^{1} = 0.$$

Если j < m, то для любого e^j_δ существует e^1_α такой, что $e^j_\delta s_0 e^1_\alpha \neq 0$. Поэтому $e^j_b(\beta,m) = 0$, когда j < m-1 и $\lambda^m_\beta = 0$, т. е. $hse^m_\beta \in \mathcal{L}_{m-1}$.

Если уже доказано, что $hse_{\beta}^{j} \in \mathcal{L}_{j-1}, \ 2 \leq j \leq m$, то из условия $\mathcal{D}(e_{\alpha}^{1}, e_{\beta}^{j-1}, h, s_{0}, s) = 0$ имеем

$$(e_{\beta}^{j-1}sh)s_0e_{\alpha}^1 + (hse_{\alpha}^1)s_0e_{\beta}^{j-1} \equiv 0 \pmod{\mathcal{L}_{j-1}}.$$

Расписывая по определению внутренние скобки, получим

$$\left(\lambda_{\beta}^{j-1}h + \sum_{\delta,k} e_{\delta}^{k}(\beta,j-1)\right) s_{0}e_{\alpha}^{1} - \left(\lambda_{\alpha}^{1}h + \sum_{\delta,k} e_{\delta}^{k}(\alpha,1)\right) e_{0}e_{\beta}^{j-1} \equiv 0 \pmod{\mathcal{L}_{j-1}}$$

или

$$\lambda_{\beta}^{j-1}\alpha(h)e_{\alpha}^{1} + \sum_{\delta,k} e_{\delta}^{k}(\beta, j-1)s_{0}e_{\alpha}^{1} \equiv 0 \pmod{\mathcal{L}_{j-1}}.$$

Используя замечание для случая j=m, получаем $\lambda_{\beta}^{j-1}=0$ и $e_{\delta}^k(\beta,j-1)=0,\,k< j-2$, т. е. $hse_{\beta}^{j-1}\in\mathcal{L}_{j-2}$. Итак, $hse_{\beta}^j\in\mathcal{L}_{j-1},\,2\leq j\leq m$.

Обозначим через $P' = P(x_0, x_1, \dots, x_{n-1})$ поле рациональных функций от x_0, x_1, \dots, x_{n-1} . Пусть $L' = P' \underset{P}{\otimes} L$. Если s_0, s_1, \dots, s_{n-1} — некоторый базис пространства S, то рассмотрим

отображение $s'=\sum\limits_{i=1}^{n-1}x_is_i$ из $L'\times L'$ в L', определенное правилом $(f\otimes a)s'(g\otimes \widehat{a})=\sum\limits_{i=1}^{n-1}fgx_i\otimes (as_i\widehat{a})$, где $f,g\in P'$, $a,\widehat{a}\in L$, $f\otimes a,g\otimes \widehat{a}\in L'$.

Тогда легко проверить, что отображение s' задает на L' структуру алгебры Ли. Очевидно, что алгебра Ли L' имеет разложение $L' = \mathop{\otimes}\limits_{i=0}^m L_i', \ L_i' = P' \mathop{\otimes}\limits_P L_i, \ i \geq 1, \ L_0' = \langle h' \rangle, \ h' = 1 \otimes h.$ Соответственно получим $\mathcal{L}_i' = \mathop{\oplus}\limits_{j \geq i} L_j', \ i \geq 1.$

Если $\mathcal{L}S\langle h \rangle \subset \mathcal{L}$, то $\mathcal{L}(S)$ — идеал пучка L(S), что противоречит простоте последнего. Следовательно, $L'_1s'h' \not\subset \mathcal{L}'$, т.е. $L'_1=\langle x'_1 \rangle \oplus \widetilde{U}'_1$, где $U'_1=\{x'\in \mathcal{L}'\mid x's'h'\in \mathcal{L}'\}$ и $U'_1=\widetilde{U}'_1\oplus \mathcal{L}'_2$, причем $h's'x'_1\equiv \mu_0h' \pmod{\mathcal{L}'}$, $\mu_0\neq 0$, $\mu_0\in P'$. Пространство U'_1 является идеалом в алгебре \mathcal{L}' , а $W_1=\{x'\in L'_1\mid h's'x'_1\equiv \mu_0h' \pmod{\mathcal{L}},\ \mu_0\neq 0\}$ образует открытое в топологии Зарисского множество в L'_1 .

Если $\mathcal{L}_2S\langle h\rangle\subset\mathcal{L}_2$, то $\mathcal{L}_2(S)$ — идеал пучка L(S) и, как и выше, имеем $L_2's'h'\not\subset\mathcal{L}_2'$. Отсюда $L_2'=\langle x_2'\rangle\oplus\widetilde{U}_2'$, где $U_2'=\{x'\in\mathcal{L}_2'\mid x's'h'\in U_1'\},\,U_2'=\widetilde{U}_2'\oplus\mathcal{L}_3'$, причем $h's'x_2'\equiv\mu_1'x_1'\pmod{U_1'},\,\mu_1\neq 0,\,\mu_1\in P'$, и множество таких x_2' образует открытое в топологии Зарисского множество

 W_2 в L_2' . С другой стороны, $\widehat{W}_2 = \{x_2' \in L_2' \mid (\operatorname{ad}_{s'} h) x_2' \in W_1\}$ также образует открытое в L_2' множество. Следовательно, для элемента $x_2' \in W_2 \cap \widehat{W}_2$ выполнено сравнение $h's'x_2' \equiv \mu_1 x_1' \pmod{U_1'}$, $\mu_1 \neq 0$, причем для элемента x_1' имеет место $h's'x_1' \equiv \mu_0 h' \pmod{\mathcal{L}'}$, $\mu_0 \neq 0$ и, кроме того, $x_1's'x_2' \equiv \lambda_2 x_2' \pmod{U_2'}$. Заметим, что U_2' является идеалом алгебры \mathcal{L}' .

Через m шагов получим последовательность элементов x_i' , $i=1,\ldots,m$, и последовательность идеалов U_i' , $i=1,\ldots,m$, алгебры \mathcal{L}' таких, что $x_1's'x_i'\equiv \lambda_i x_i'\pmod{U_i'},\ \lambda_i\in P',$ $h's'x_i'\equiv \mu_{i-1}x_{i-1}'\pmod{U_{i-1}'},\ \mu_{i-1}\neq 0,\ \mu_{i-1}\in P',\ h's'U_i'\subset U_{i-1}',\ i\geq 2.$

Имеют место соотношения

$$(x'_1s'x'_i)s'h' \equiv -\lambda_i\mu_{i-1}x'_{i-1} \pmod{U'_{i-1}},$$

$$(x'_is'h')s'x'_1 \equiv \lambda_{i-1}\mu_{i-1}x'_{i-1} \pmod{U'_{i-1}},$$

$$(h's'x'_1)s'x'_i \equiv \mu_0\mu_{i-1}x'_{i-1} \pmod{U'_{i-1}}.$$

Из соотношения $J(x_1', x_i', h's', s') = 0$ получаем $\lambda_i = \lambda_{i-1} + \mu_0$, i > 2, $\lambda_2 = \mu_0$. Таким образом, $\lambda_i = (i-1)\mu_0$, $i \ge 2$. В частности, $\lambda_m = (m-1)\mu_0$. Но $x's'x_m' = 0$, так как $x_m' \in \mathcal{L}_m'$, т. е. m = 1 и поэтому $\mathcal{L} = \mathcal{L}(s_0)$ — абелева алгебра Ли.

Предположим, что $\dim \mathcal{L} > 1$. Пусть y' и y'' — два собственных линейно независимых вектора из \mathcal{L} . Тогда имеют место следующие формулы умножения: $hs_0y' = \alpha'y'$, $hs_0y'' = \alpha''y''$, α' , $\alpha'' \neq 0$, $hsy' \equiv \mu'h \pmod{\mathcal{L}}$, $hsy'' \equiv \mu''h \pmod{\mathcal{L}}$. Соотношение $\mathcal{D}(y', y'', h's_0, s) = 0$ дает $\mu'\alpha''y'' - \mu''\alpha'y' = 0$, т.е. $\mu' = \mu'' = 0$. Следовательно, $\mathcal{L}(S)$ является идеалом пучка L(S).

Таким образом, остается случай, когда $\dim L(S)=2$. Тогда, как показано в [10], $\dim S=2$ и в пространствах L и S существуют такие базисы e, f и $s_0, s,$ что формулы умножения имеют вид $es_0f=f, esf=e, es_0e=ese=fs_0f=fsf=0$. Пусть $ae+bf, \alpha e+\beta f, xe+yf$ — три произвольных элемента из L(S). Тогда $\mathcal{D}(ae+bf,\alpha e+\beta f,xe+yf,s_0,s)=\left| \begin{smallmatrix} \alpha & \beta \\ a & b \end{smallmatrix} \right| (xe+yf)\neq 0$, если $\left| \begin{smallmatrix} \alpha & \beta \\ a & b \end{smallmatrix} \right|\neq 0$, $(x,y)\neq (0,0)$. Таким образом, и в этом случае операторы левого умножения не являются, вообще говоря, дифференцированиями этого пучка.

II. Пусть среди ненулевых корней $\alpha \in \Sigma$ имеются такие, что $-\alpha \in \Sigma$, но $e_{\alpha}s_{0}e_{-\alpha} = 0$ для любых $e_{\alpha} \in L_{\alpha}$ и $e_{-\alpha} \in L_{-\alpha}$. Тогда опять для любого $\beta \in \Sigma$ оператор $\mathrm{ad}_{s_{0}} e_{\beta}$ нильпотентен и, следовательно, алгебра Ли $\mathcal{L}(s_{0})$ нильпотентна. Для изучения этого случая рассмотрим ситуацию с операторами $\mathrm{ad}_{s} x, s \in S, x \in L$.

Пусть e_1, \ldots, e_m — базис в L, а s_1, \ldots, s_n — базис в S. Тогда любой оператор $\mathrm{ad}_s \, x$ можно представить в виде $\sum_{i=1}^m \sum_{k=1}^n x_i \alpha_k \, \mathrm{ad}_{s_k} \, e_i$, если $x = \sum_{i=1}^m x_i e_i$, $s = \sum_{k=1}^n \alpha_k s_k$, $x_i, \alpha_k \in P$. Пусть

$$(ad_{s_k} e_i)e_j = \sum_{r=1}^m A_{ikrj}e_r, i = 1, \dots, m, j = 1, \dots, m, k = 1, \dots, n, A_{ikrj} \in P$$
. Тогда $(ad_s x)e_j = \sum_{r=1}^m A_{ikrj}e_r$

 $\sum\limits_{r=1}^m\sum\limits_{i=1}^m\sum\limits_{k=1}^nx_ilpha_kA_{ikrj}e_r,\,j=1,\ldots,m$, т. е. оператор $\mathrm{ad}_s\,x$ в базисе e_1,\ldots,e_m задается матрицей

$$(B_{jr})$$
, где $B_{jr} = \sum_{i=1}^m \sum_{j=1}^n x_i \alpha_k A_{ikrj}, \ j=1,\ldots,m, \ r=1,\ldots,m.$

Обозначим через W пространство $\langle \operatorname{ad}_s x, s \in S, x \in L \rangle_P = \langle \operatorname{ad}_{s_k} e_i, i = 1, \ldots, m, k = 1, \ldots, n \rangle_P$. Пространство W ненулевое, так как в противном случае L(S) — абелев пучок, что противоречит его простоте. Пусть \widetilde{W} — совокупность всех ненулевых операторов вида $\operatorname{ad}_s x, s \in S, x \in L$, в алгебре всех линейных операторов $\operatorname{End}_P(L)$. Так как L(S) — простой лиев пучок, то алгебра $\operatorname{Ass} W$ (ассоциативная алгебра, порожденная множеством W) действует неприводимо на пространстве L. В силу алгебраической замкнутости поля P алгебра $\operatorname{Ass} W$ совпадает с полной матричной алгеброй $M_m(P)$.

Обозначим через $a_r = a_r(x_1, \ldots, x_m, \alpha_1, \ldots, \alpha_n)$ коэффициенты характеристического многочлена матрицы B, элементы которой являются линейными функциями от x_1, \ldots, x_m , $\alpha_1, \ldots, \alpha_n$. Тогда множество нулей системы уравнений $a_r = (-1)^r \sigma_r(\lambda_1, \ldots, \lambda_m), r = 1, \ldots, m$, где $\sigma_r(\lambda_1, \ldots, \lambda_m)$ — элементарные симметрические многочлены, определяет аффинное многообразие M в пространстве P^{2m+n} . В [8] показано, что множество полупростых (диагонализируемых) операторов из \widetilde{W} определяет непустое открытое в топологии Зарисского множество N в аффинном многообразии M. Так как один из характеристических корней оператора $\mathrm{ad}_s x$ всегда равен нулю, то, полагая $\lambda_1 = 0$ и добавляя условия $\lambda_i \neq 0$, $i = 2, \ldots, m, \lambda_i + \lambda_j \neq 0, 2 \leq i < j \leq m$, определяем новое непустое открытое подмножество \widetilde{N} , соответствующее полупростым операторам с добавленными условиями в аффинном многообразии M.

С другой стороны, условие, что пространство, натянутое на собственные векторы оператора $\mathrm{ad}_s \, x$, которые отвечают ненулевым собственным значениям, образует нильпотентную подалгебру коразмерности один, задается системой алгебраических уравнений относительно $\{x_i\}, \{\alpha_i\}, \{\lambda_i\}$. Множество решений этой системы является замкнутым подмножеством \widetilde{M} многообразия M. В силу замечания в начале п. II пересечениие $\widetilde{N} \cap \widetilde{M}$ непусто, т. е. существует пара (h, s_0) , для которой у оператора $\mathrm{ad}_{s_0} \, h$ имеется нильпотентная подалгебра $\mathcal L$ коразмерности один в L, натянутая на собственные векторы этого оператора, причем все собственные значения λ_i оператора $\mathrm{ad}_{s_0} = h|_{\mathcal L}$ и их суммы $\lambda_i + \lambda_j$ ненулевые.

Таким образом, случай II сводится к случаю I.

III. Далее рассмотрим случай, когда в системе корней Σ существует корень α такой, что $-\alpha \in \Sigma$, причем существуют векторы $e_{\alpha} \in L_{\alpha}$ и $e_{-\alpha} \in L_{-\alpha}$ такие, что $e_{\alpha}s_0e_{-\alpha} \neq 0$. Так как $e_{\alpha}s_0e_{-\alpha} \in L_0 = \{x \in L \mid (ad_{s_0}h)x = 0\} = H = \langle h \rangle$, то в этом случае алгебра Ли $L(s_0)$ содержит простую трехмерную алгебру Ли $sl_2(P)$. Согласно теореме Леви любую алгебру Ли над полем нулевой характеристики можно представить в виде прямой суммы ее радикала и полупростой алгебры. Так как ранг алгебры $L(s_0)$ равен единице, то полупростая компонента алгебры $L(s_0)$ совпадает с простой трехмерной алгеброй Ли $sl_2(P)$. Выберем стандартный базис в $sl_2(P)$ из элементов e, h, f с таблицей умножения $hs_0e = 2e$, $hs_0f = -2f$, $es_0f = h$. Рассматривая алгебру Ли $L(s_0)$ как модуль над $sl_2(P)$ относительно присоединенного действия, в силу его полной приводимости получим $L(s_0) = sl_2(P) \oplus \mathcal{L}$, $\mathcal{L} = \bigoplus V_{\lambda}$, где каждое слагаемое V_{λ} — неприводимый $sl_2(P)$ -модуль с базисом v_0, v_1, \ldots, v_m , $m = \lambda(h)$, $m+1 = \dim V_{\lambda}$, и следующей таблицей действий:

$$hs_0v_k = (m-2k)v_k, \quad k = 0, \dots, m,$$

$$fs_0v_k = v_{k+1}, \quad k = 0, \dots, m-1, \quad fs_0v_m = 0,$$

$$es_0v_0 = 0, \quad es_0v_k = k(m-k+1)v_{k-1}, \quad k = 1, \dots, m.$$

Если m=2t четно, то $hs_0v_t=0$ и $L_0(h)\supset \langle v_t,h\rangle$, что противоречит условию $L_0(h)=\langle h\rangle$. Таким образом, в сумме $\mathcal{L}=\bigoplus\limits_{\lambda}V_{\lambda}$ имеются только неприводимые модули четных размерностей. Из условия $V_{\lambda}s_0V_{\mu}\subset V_{\lambda+\mu}$ следует $V_{\lambda}s_0V_{\mu}=0$, так как $\lambda(h)+\mu(h)$ четно для нечетных $\lambda(h)$ и $\mu(h)$. Это означает, что $\mathcal{L}(s_0)$ — коммутативная алгебра Ли.

Если количество слагаемых в сумме $\bigoplus V_{\lambda}$ больше одного, то рассмотрим соотношение $\mathcal{D}(v_{\varkappa}^i,v_{\mu}^j,h,s_0,s)=0$, где $v_{\varkappa'}^i\in V_{\varkappa},v_{\mu}^j\in V_{\mu}$. Из него следует $\lambda_{\varkappa}^i(\overline{m}-2j)v_{\mu}^j-\lambda_{\mu}^j(m-2i)v_{\varkappa}^i=0$, $m+1=\dim V_{\varkappa},\,\overline{m}+1=\dim V_{\mu}$. Так как m и \overline{m} нечетны, то $\lambda_{\varkappa}^i=\lambda_{\mu}^j=0$, т. е. $\mathcal{L}(S)$ — идеал в L(S).

Если $\mathcal{L} = V_{\mu}$, но dim $\mathcal{L} > 1$, то, применяя аналогичные вычисления для $v_{\mu}^{i}, v_{\mu}^{j}, i \neq j$, опять получим, что $\mathcal{L}(S)$ — идеал в L(S).

Так как случай dim $\mathcal{L}=1$ исключен условием о четности размерности неприводимых компонент V_{λ} , то остается единственная возможность, когда $L(s_0) \cong sl_2(P)$.

Как показано в [10], в этом случае простой лиев пучок ранга один реализуется в виде сэндвичевой алгебры $M_3(U,V)$, где U — пространство всех кососимметрических матриц в $M_3(P)$, а V — любое подпространство в пространстве всех симметрических матриц в $M_3(P)$, содержащее подпространство $\langle E \rangle$ (E — единичная матрица).

Пусть $u=E_{12}-E_{21}, u'=E_{13}-E_{31}, u''=E_{23}-E_{32}$ — базис в пространстве кососимметрических матриц порядка три. Обозначим через $v=\sum_{i=1}^3 a_i E_{ii}, \ v'=\sum_{i=1}^3 b_i E_{ii}$ произвольные элементы из пространства диагональных матриц \mathcal{D} . Тогда

$$\mathcal{D}(u, u', u'', v, v') = u'v'u''vu + uvu''v'u' - uv'u''vu' - - u'v'u''v'u = a_2b_3E_{11} - a_2b_3E_{11} + a_3b_2E_{11} - a_3b_2E_{11} = 0.$$

Тот же результат получается при любой перестановке базисных элементов $u,\,u',\,u''.$

С другой стороны, если
$$v = \sum_{1 \le i < j \le 3} a_{ij} F_{ij}, \ v' = \sum_{1 \le i < j \le 3} b_{ij} F_{ij}$$
, где $F_{ij} = E_{ij} + E_{ji}$, то

$$\mathcal{D}(u, u', u'', v, v') = \begin{vmatrix} a_{12} & a_{23} \\ b_{12} & b_{23} \end{vmatrix} E_{13} + \begin{vmatrix} a_{13} & a_{12} \\ b_{13} & b_{12} \end{vmatrix} E_{31} + + \begin{vmatrix} a_{13} & a_{23} \\ b_{13} & b_{23} \end{vmatrix} (E_{12} + E_{21}) - \left(\begin{vmatrix} a_{13} & a_{12} \\ b_{13} & b_{12} \end{vmatrix} + \begin{vmatrix} a_{12} & a_{23} \\ b_{12} & b_{23} \end{vmatrix} \right) E_{32}.$$

Таким образом, простые лиевы пучки ранга один над алгебраически замкнутым полем характеристики нуль, у которых операторы левого умножения являются дифференцированиями, имеют вид $M_3(U, \mathcal{D}')$, где U — подпространство всех кососимметрических матриц в $M_3(P)$, а \mathcal{D}' — любое подпространство, содержащее $\langle E \rangle$ в пространстве всех диагональных матриц \mathcal{D} в $M_3(P)$.

Литература

- [1] Кантор И.Л., Персиц Д.Б. О замкнутых пучках линейных скобок Пуассона, IX Всесоюзн. геометрич. конф. (Штинца, Кишинев, 1988), с. 141.
- [2] Олвер П. Приложения групп Ли к дифференциальным уравнениям (Мир, М., 1989).
- [3] Трофимов В.В., Фоменко А.Т. Алгебра и геометрия интегрируемых гамильтоновых дифференциальных уравнений ("Факториал", "Проспериус", Удмуртск. гос. ун-т, Ижевск, 1995).
- [4] Корешков Н.А. О нильпотентности п-кратных алгебр Ли и ассоциативных п-кратных алгебр, Изв. вузов. Матем., № 2, 33–38 (2010).
- [5] Корешков Н.А. Теоремы Ли и Энгеля для n-кратных алгебр Ли, Сиб. матем. журн. **54** (3), 601–609 (2013).
- [6] Филиппов В.Т. n-лиевы алгебры, Сиб. матем. журн. **26** (6), 126–140 (2007).
- [7] Доценко В.В., Хорошкин А.С. Формула характера операды пары согласованных скобок и бигамильтоновой операды, Функц. анализ и его прилож. 41 (1), 1–22 (2007).
- [8] Корешков Н.А. Торы в простых лиевых пучках, Изв. вузв. Матем., № 6, 48–53 (2016).
- [9] Капланский И. Алгебры Ли и локально конечные группы (Мир, М., 1974).
- [10] Корешков Н.А. Простые лиевы пучки малых размерностей, Сиб. матем. журн. 55 (3), 428–439 (2014).

Н.А. Корешков

Казанский (Приволжский) федеральный университет, 420008, г. Казань, ул. Кремлевская, д. 18, Россия,

e-mail: Nikolai.Koreshkov@kpfu.ru

N.A. Koreshkov

Inner derivations of simple Lie pencils of rank 1

Abstract. We prove that simple Lie pencils of rank 1 over algebraically closed field P of characteristic 0, whose operators of left multiplications have the form of sandwich algebra $M_3(U, \mathcal{D}')$, where U is a subspace of all skew-symmetric matrices in $M_3(P)$, \mathcal{D}' is any subspace containing $\langle E \rangle$ in a space of all diagonal matrices \mathcal{D} in $M_3(P)$.

Keywords: Lie pencil, Cartan subalgebra, torus, inner derivation, sandwich algebra.

N.A. Koreshkov

Kazan (Volga Region) Federal University, 18 Kremlyovskaya str., Kazan, 420008 Russia,

e-mail: Nikolai.Koreshkov@kpfu.ru