
Математический анализ 2012-2013 учебный год (дневные отделения) 
 

ТЕМА 1. Аналитическая геометрия на плоскости 
 

Абсцисса точки С, разбивающей отрезок АВ в отношении 
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Ордината точки С, разбивающей отрезок АВ в отношении 
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Абсцисса середины отрезка АВ равна 
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В уравнении bkxy   значение k – это 
— координата точки пересечения прямой с осью абсцисс 
— координата точки пересечения прямой с осью ординат 
— угол, образованный прямой с положительным направлением оси абсцисс 
— тангенс угла, образованного прямой с положительным направлением оси абсцисс 
 
В уравнении bkxy   значение b – это 



— координата точки пересечения прямой с осью Оx 
— угловой коэффициент прямой 
— координата точки пресечения прямой с осью Оy 
— угол наклона прямой к оси Оx 
 
Прямая 0CAx  
— параллельна оси Oy 
— параллельна оси Ох 
— перпендикулярна оси Оy 
— пересекает ось Оy в одной точке 
 
Прямая 0CBy  
— параллельна оси Oy 
— перпендикулярна оси Ох 
—  параллельна оси Ох 
— пересекает ось Ох в одной точке 
 
Прямая 0 ByAx  при 0B  
— параллельна оси Oy 
— проходит через начало координат 
— не проходит через начало координат 
— перпендикулярна оси Ох 
 
Угол между двумя прямыми определяется формулой 
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Условие параллельности двух прямых имеет вид 
— 1= − 2 
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— 12= −1 
— 1 = 2 

 
Условие перпендикулярности двух прямых имеет вид 
— 1= − 2 
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— 12= − 1 
— 1= 2 
 
Углом между двумя прямыми называется 
— меньший угол, на который надо повернуть обе прямые до их совпадения с осью Оx 
— меньший угол, на который  надо повернуть одну прямую до ее совпадения с другой 
прямой 
— меньший угол, на который надо повернуть обе прямые до их совпадения с осью Оy 
— разность углов, образованных этими прямыми 
 
Уравнение прямой, проходящей через данную точку в данном направлении, имеет вид 
— bxy    
— ))(())(( 112112 xxyyyyxx   
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— y – y0=0(x – x0) 
 
В уравнении пучка прямых с центром в точке А угловой коэффициент  – 
— фиксированный 
— бесконечный 
— произвольный 
— всегда равен 0 
 
Уравнение пучка прямых с центром в точке  000 ; yxM  имеет вид 
— bxy    
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— 0 CByAx  
— 1 y – y0=(x – x0) 
 
Уравнение прямой в отрезках имеет вид 
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— y – y0=0(x – x0) 
 
Общее уравнение прямой имеет вид 
— 0 CByAx  
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Уравнение прямой, проходящей через точки )3;2(A  и )3;4( B , имеет вид 
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Расстояние от точки до прямой определяется формулой 
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Угловой коэффициент прямой Ax+By+C=0 при В0 равен 
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Тангенс угла наклона прямой 1
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Уравнение прямой, проходящей через точку )2;1(A  параллельно прямой 01  yx , 
имеет вид 
— 3 xy  
— 5 xy  
— 3 xy  
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Уравнение прямой, проходящей через точку )2;1(A  перпендикулярно прямой 
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В треугольнике с вершинами в точках )1;1(A , )2;1(B , )2;3( C уравнение медианы АМ 
имеет вид 
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В треугольнике с вершинами в точках )1;1(A , )2;1(B , )1;3(C  уравнение прямой АС 
имеет вид 
— xy   
— 1y  
— 1x  
— 1 xy  
 

Прямая 1
b
y

a
x , где 0a  и 0b  

— параллельна оси Ох 
— параллельна оси Oy 
— пересекает ось Ох в точке (а;0) 
— пересекает ось Oy в точке (а;0) 
 
Уравнение прямой, проходящей через точку )3;2(A  и образующей с положительным 
направлением оси Ох угол 045 , имеет вид 
— xy   



— 5 xy  
— 2 xy  
— 1 xy  
 
Уравнение прямой, проходящей через точку )1;4(B  и образующей с положительным 
направлением оси угол 0135 , имеет вид 
— 05  yx  
— 03  yx  
— 03  yx  
— 05  yx  
 
К прямой 14  xy  перпендикулярна прямая 

— 2
4
1

 xy  

— 2
4
1

 xy  

— 24  xy  
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Угол между прямыми 0432  yx  и 0123  yx  равен 
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Уравнение прямой, проходящей через точки ),( 11 yxA  и ),( 22 yxB , имеет вид 
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Расстояние от точки )1;2( A  до прямой 0934  yx  равно 
— 2,8 
— 4 
— 14 
— 7 
 



Из прямых 
а) 035  yx ;   б) 045  yx ;   в) 035  yx ;   г) 035  yx  параллельной к 
прямой 35  xy  будет 
— а) 
— в) 
— г) 
— б) 
 
Из прямых 
а) 032  yx ;   б) 032  yx ;   в) 052  yx ;   г) 032  yx  
перпендикулярной к прямой 32  xy  будет 
— а) 
— б) 
— г) 
— в) 
 
Точками пересечения прямой 01243  yx  с осями координат Ox  и Oy  являются 
соответственно точки 
— )0;4(A  и )3;0( B  
— )3;0( A  и )0;4(B  
— )3;4(A  и )4;3( B  
— )0;4(A и )3;0(B  
 
Уравнение прямой, проходящей через точки  3;2A  и  1;2 B , имеет вид 
— xy 2  
— 2y  
— 2x  
— 2 xy  
 
Уравнение прямой, проходящей через точки  1;3 A  и  1;2 B , имеет вид 
— 23  xy  
— xy   
— 1x  
— 1y  
 
Если 12 xx  , то уравнение прямой, проходящей через точки  11; yxA  и  22 ; yxB , имеет 
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Если 12 yy  , то уравнение прямой, проходящей через точки  11; yxA  и  22 ; yxB , имеет 
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— параллельны 
— перпендикулярны 
— образуют угол в 045  

— образуют угол, равный 
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Точка M  разбивает отрезок AB , где  2;1A ,  5;4B , так, что MBAM  2 . Координаты 
точки M  равны 
—  4;3  
—  3;2  
—  4;2  
—  5,3;5,2  
 
Расстояние от точки  4;3M  до прямой 12  xy  равно 
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Угловой коэффициент прямой 0632  yx  равен 
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Угол наклона прямой 0143  yx  к положительному направлению оси Ox  равен 
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В треугольнике с вершинами  2;3 A ,  3;2B ,  1;4 C  уравнение стороны BC  имеет 
вид 
— 72  xy  
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В треугольнике с вершинами  2;3 A ,  3;2B ,  1;4 C  длина медианы AM  равна 
— 35  
— 52  
— 53  
— 25  
 

Если  3;2A ,  3;6 B , то точка C , делящая отрезок AB  в отношении 
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Уравнение прямой, проходящей через точки  3;2A  и  1;2 B , имеет вид 
— 01  yx  
— 03  yx  
— 01  yx  
— 01  yx  
 
В треугольнике с вершинами  2;3 A ,  3;2B ,  1;4 C  уравнение высоты CD  имеет вид 
— 03  yx  



— 03  yx  
— 05  yx  
— 05  yx  
 
В треугольнике с вершинами в точках  3;2A ,  2;3 B ,  1;4 C  длина высоты АD  
равна 

— 
5
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— 23  
— 3  
— 18 
  



ТЕМА 2. Пределы последовательностей и функций 
 

Если 0)(lim
3




x
x

 , то функция (х) называется 

— бесконечно большой функцией в точке  
х = 3 
— бесконечно малой функцией  в точке х = 3 
— постоянной в точке х = 3 
— убывающей функцией в окрестности х = 3 
 
Если бесконечная числовая последовательность  na  имеет предел а, то   – окрестность 
точки а содержит 
— бесконечное число членов последовательности 
— конечное число членов последовательности 
— бесконечно малое число членов последовательности 
— ровно n членов 
 

Предел 
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32lim 2
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x
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5
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5
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Какое из утверждений верно? 
— Если последовательность имеет предел, то она монотонна 
— Если последовательность монотонна, то она сходится 
— Если последовательность монотонна и ограничена, то она имеет предел 
— Если последовательность сходится, то она знакопостоянна 
 
Выражение   
— равно 0 
— равно   
— равно – 
— является неопределенностью 
 
Если 


)(lim

0
xf

xx
, то функция )(xf  называется 

— бесконечно малой величиной в точке  
х = 0x  
— бесконечно большой величиной в точке х = 0x  



— непрерывной в точке х = 0x  
— константой 
 
Предел 






sin
0

Lim


равен 

— 0 
—  
— 1 
— –1 
 
Предел постоянной 0C  равен 
— 0 
— 1 
— самой постоянной 
— другой постоянной 
 
Предел произведения двух функций равен 
— сумме пределов этих функций 
— разности пределов этих функций 
— произведению пределов этих функций 
— отношению пределов этих функций 
 
Для существования предела функции )(xf  в точке 0x , равного числу 0a , необходимо 
и достаточно, чтобы в некоторой окрестности точки 0x  при условии, что )(x  – 
бесконечно малая функция в точке 0x  
— )()( xxf   
— )()( xaxf   
— )()( xaxf   

— 
)(

)(
x

axf


  

 

Предел 
n

n n






 



11lim равен 

—   
— 1 
— 2 
— e  
 
 – окрестностью точки а называется 
— интервал длиной   с центром в точке а 
— интервал длиной 2  с центром в точке а 
— интервал длиной 2 , содержащий точку 0 
— интервал длиной   с центром в нуле 



 
Если бесконечная числовая последовательность }{ na  имеет предел а, то вне    
окрестности точки а содержится 
— конечное число ее членов 
— бесконечное число ее членов 
— фиксированное число членов 
— ровно n членов 
 

Предел 
3103
372lim 2

2

3 

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x
 равен 

— 
5
8  

—  

—  

— 0 
 

Предел 
1351lim









 

n

n n равен 

— 15e  
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5

e  
— 15e  

— 3
5


e  

 
Если члены последовательностей }{ na , }{ nb , }{ nc  при любых Nn  удовлетворяют 
неравенствам nnn cba   и aca nnnn




limlim , то  

— abnn



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— abnn



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
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
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Если aann




lim , bbnn



lim  и для любых Nn  выполняется неравенство nn ba  , то 

— a=b  
— a<b 
— ba   
— ba   
 

8
5

8
5
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Предел 
n

n n

5

3
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Предел 23
32lim 2
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


 xx
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x
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— 
3
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Предел 
3114
23lim 2
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x
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— 0 
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3
2
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 Предел 524
753lim 3

2




 xx
xx

x
 равен 

— 0 
—   

— 
5
7

  

— 
2
5

  

 

Предел x
x

x

3sinlim
0

 равен 

— 3 

— 
3
1  

— 1 



— 0 
 

Предел 
x

x

x

2
sin

lim
0

 равен 

— 2 

— 
2
1  

— 0 
— 1 
 

Предел 
x

x x






 



31lim равен 

— 3
1

e  
— e 
— 3e  
—   
 

Предел 
2

2
31lim

x

x x






 


 равен 

— 4
3


e  

— 3
1

e  

— 4
3

e  
— e  
 

Предел 54
43lim




 x

x

x
 равен 

—   
— 0 

— 
4
3  

— 
5
4

  

 

Предел 32
23lim

2




 x
xx

x
 равен 

— 0 
—   



— 
2
1  

— 
2
2  

 

Если при 0xx   функция  x – бесконечно малая величина, то  x
1  – 

— равна бесконечности 
— бесконечно большая величина 
— постоянная величина 
— неопределенная величина 
 

Если при 0xx   функция  xf  – бесконечно большая величина, то  xf
1  – 

— равна нулю 
— постоянная величина 
— бесконечно малая величина 
— неопределенная величина 
 
Если в окрестности точки 0x  некоторую функцию  xf  можно представить как 
   xaxf  , где a – постоянное число,  x  – бесконечно малая величина при 0xx 

, то 
0

lim
xx

 xf  равен 

— a  
—  x  
—  xa   
— a  или  x  в зависимости от окрестности 0x  
 
Указать выражение, которое не является неопределенностью 
—    

— 







0
0  

—  1  
—    
 
Указать выражение, которое не является неопределенностью 
—    

— 







0
0  

—  2  
—  0  
 



9
lim 2

2

03  x
x

x
 равен 

—   
—   
— 0 
— 1 
 

9
lim 2

2

03  x
x

x
 равен 

—   
— 0 
— 1 
—   
 

202 4
3lim

x
x

x 
 равен 

—   
—   
— 0 
— –3 
 

202 4
3lim

x
x

x 
 равен 

—   
—   
— –3 
— 0 
 

 x
x

x
2

0
31lim 


 равен 

— 6e  
— 2e  

— 3
1
e

 

— 6
1
e

 

 

Если бесконечно малые в точке x0 функции α(x) и β(x) эквивалентны, то 
)(
)(lim

0 x
x

xx 



 равен 

— 0 
— 1 
—   
— A 0 , A ≠ 1 



 
Если 1)( 1  xex  и 1)(  xx  – бесконечно малые в точке x = 1 величины, то 
— α(x) и β(x) – эквивалентны 
— α(x) – бесконечно малая величина более высокого порядка, чем β(x) 
— α(x) – бесконечно малая величина более низкого порядка, чем β(x) 
—  α(x) и β(x) – бесконечно малые величины разных порядков 
 
Если )41ln()( xx   и xx 2)(   – бесконечно малые величины в точке x = 0 , то 
— α(x) и β(x) – эквивалентны 
— α(x) и β(x) – бесконечно малые величины одного порядка 
—  α(x) – бесконечно малая величина более низкого порядка, чем β(x) 
—  α(x) – бесконечно малая величина более высокого порядка, чем β(x) 
 
Если xx 3cos1)(   и 3)( xx   – бесконечно малые в точке x = 0 величины, то 
— α(x)  – бесконечно малая величина более высокого порядка, чем β(x) 
— α(x) и β(x) – бесконечно малые величины одного порядка 
— α(x) и β(x) – эквивалентны 
— α(x) – бесконечно малая величина более низкого порядка, чем β(x) 
 
Если xx 3sin)( 2  и xx 3)(   – бесконечно малые в точке x = 0 величины, то 
— α(x) и β(x) – эквивалентны 
— α(x) – бесконечно малая величина более низкого порядка, чем β(x) 
— α(x)– бесконечно малая величина более высокого порядка, чем β(x) 
— α(x) и β(x) – бесконечно малые величины одного порядка 
 

Если α(x) и β(x)  – бесконечно малые в точке x0 функции и 0
)(
)(lim

0


 x

x
xx 


, то 

— α(x) – бесконечно малая величина более высокого порядка, чем β(x) 
— α(x) и β(x) – эквивалентны 
— α(x) – бесконечно малая величина более низкого порядка, чем β(x) 
— α(x) и β(x) – бесконечно малые величины одного порядка 
 

Если α(x) и β(x) – бесконечно малые в точке x0 функции и  
 )(

)(lim
0 x

x
xx 


, то 

— α(x) – бесконечно малая величина более высокого порядка, чем β(x) 
— α(x) и β(x) – эквивалентны 
— α(x) – бесконечно малая величина более низкого порядка, чем  β(x) 
— α(x) и β(x) – бесконечно малые величины одного порядка 
 

Если  α(x) и β(x) – бесконечно малые в точке x0 функции и A
x
x

xx


 )(
)(lim

0 


, где A ≠ 0,  

A ≠ 1, то 
— α(x) и β(x) – эквивалентны 
— α(x) и β(x) – бесконечно малые величины одного порядка 



— α(x) – бесконечно малая величина более высокого порядка, чем β(x) 
— α(x) – бесконечно малая величина более низкого порядка, чем β(x) 
 
Если xx sinln)(   и   xx 2)(  – бесконечно малые в точке 

2


x  величины, то 

— α(x) и β(x) – эквивалентны 
— α(x) – бесконечно малая величина более низкого порядка, чем β(x) 
— α(x) и β(x) – бесконечно малые величины одного порядка 
— α(x) – бесконечно малая величина более высокого порядка, чем β(x) 
 

Предел 2

2

0 3
2cos1lim

x
x

x




 равен 

— 
3

32  

— 
3
2  

— 
3
4  

— 
3
8  

 

Предел 
24

3sinlim
0  x

x
x

 равен 

— 0 

— 4 

— 12 

— 18 

 

Предел 
23

2lim 2

23

1 


 xx
xxx

x
 равен 

— ∞ 

— 0 

— –3 



— 3 

 

Предел 













12

1

2

2

3
43

5lim n
x n

n
 равен 

— 
4
7  

— –
4
1  

— 
4
9  

— 
4

17  

 

Предел 
x

xx
x 20 cos1

2sinlim


 равен 

— 2 

— 0 

— ∞ 

— 1 

 

Предел )2(lim 2 xxx
x




 равен 

— +∞ 

— –∞ 

— 1 

— 0 

 

Предел 
1

5sinlim 40  xx e
x  равен 

— 
4
5  



— 1 

— 0 

— 
4
5

  

 

Предел 
x

e x

x 3cos1
1lim

5

0 



 равен 

— 
3
5  

— 
3
5

  

— 0 

— ∞ 
  



ТЕМА 3. Непрерывность функций. Точки разрыва и асимптоты кривых 
 

Функция у = f(х) называется непрерывной в точке х0, если 
— она существует в окрестности точки х0 
— существует конечный предел 

0
lim

XX
f(x) 

— cуществует конечный предел 

0
lim

XX
f(х)= f(х0) 

— она существует в точке х0 и в ее окрестности 
 
Точка х0 для функции f(х) является точкой разрыва 1-го рода с конечным скачком, если 
— хотя бы один из односторонних пределов 

00
lim

XX
f(х) или 

00
lim

XX
f(х) равен конечному 

числу 
— конечные односторонние пределы

00
lim

XX
f(х)  

00
lim

XX
f(х) 

— существуют конечные односторонние пределы
00

lim
XX

f(х)и 
00

lim
XX

f(х) 

— хотя бы один из односторонних пределов в точке х0 бесконечен 
 
Точка х0 для функции f(х) является точкой разрыва 2-го рода, если 
— хотя бы один из односторонних пределов 

00
lim

XX
f(х) и 

00
lim

XX
f(х) бесконечен 

— хотя бы один из односторонних пределов 
00

lim
XX

f(х) и 
00

lim
XX

f(х) равен конечному 

числу 
— конечные односторонние пределы

00
lim

XX
f(х) =

00
lim

XX
f(х) 

— конечные односторонние пределы 
00

lim
XX

f(х)  
00

lim
XX

f(х) 

 
График функции у = f(х) имеет вертикальную асимптоту х = х0, если 
— существует 

X
lim f(x) 

— точка х0 является устранимой точкой разрыва для f(x) 
— точка х0 является точкой разрыва 2-го рода (с бесконечным скачком) 
— точка х0 является точкой разрыва 1-го рода (с конечным скачком) 
 
Если функция )(xfy   непрерывна в точке 0xx  , то 
— она определена в точке 0x  
— она может быть не определена в точке 0x  
— определена везде в окрестности точки 0x , кроме самой точки 0x  
— 


)(lim

0
xf

xx
 

 



Если функция )(xf  непрерывна на отрезке [a;b] и на концах этого отрезка принимает 
значения разных знаков, то 
— найдется хотя бы одна точка );( bac , в которой функция обращается в 0 
— ни в одной точке интервала (а;b) функция )(xf  не обращается в 0 
— во всем интервале (а;b) функция )(xf  положительна 
— во всем интервале (а;b) функция )(xf  отрицательна 
 
Если функция )(xf  непрерывна на отрезке [a;b], то она 
— может быть неограниченна на одном из концов отрезка [a;b] 
— может быть неограничена внутри интервала (а;b) 
— ограничена и сверху, и снизу 
— ограничена или сверху, или снизу 
 
Приращение функции )(xfy   на отрезке  xxx 00 ,  находится по формуле 
— )()( 00 xfxxf   
— )()( 00 xfxxf   
— )()( 00 xfxxf   
— )()( 00 xfxxf   
 
Функция непрерывна в точке, если 
— бесконечно малому приращению аргумента соответствует произвольное приращение 
функции 
— бесконечно малому приращению функции соответствует бесконечно большое 
приращение аргумента 
— бесконечно малому приращению аргумента соответствует бесконечно малое 
приращение функции 
— бесконечно малому приращению аргумента соответствует фиксированное 
приращение функции 
 
Функция непрерывна в интервале, если она  
— непрерывна на его концах 
— имеет конечное число точек разрыва 1-го рода на этом интервале 
— имеет одну точку разрыва 1-го рода в этом интервале 
— непрерывна в каждой его точке 
 
Точка разрыва с конечным скачком – это то же самое, что 
— точка разрыва 2-го рода 
— точка устранимого разрыва 
— точка разрыва 1-го рода 
— точка, в которой производная функции конечна 
 
Угловой коэффициент наклонной асимптоты находится по формуле 
— )(xfLim

x
k


  



— 
)(xf

x
Lim
x

k


  

— 
x
xf

Lim
x

k )(
0

  

— 
x
xf

Lim
x

k )(


  

 
У горизонтальной асимптоты bkxy   
— 0,0  bk  
— 0,0  bk  
— k  
— 0k  
 
Если функция )(xf  непрерывна в точке 0x  и 0)( 0 xf , то в бесконечно малой 
окрестности точки 0x  функция )(xf  
— обращается в 0 
— имеет тот же знак, что и )( 0xf  
— имеет произвольный знак 
— меняет знак с «−» на «+» 
 
Если в точке 0x  существуют не равные между собой конечные левый и правый пределы 
функции, то 
— 0x  – точка разрыва 2-го рода 
— 0x  точка разрыва 1-го рода 
— 0x   устранимая точка разрыва 
— в точке 0x  существует производная этой функции 
 
Если в точке 0x  хотя бы один из односторонних пределов функции бесконечен, то 
— 0x – точка разрыва 1-го рода 
— 0x  – устранимая точка разрыва 
— 0x  – точка разрыва 2-го рода 
— в точке 0x  не существует вертикальная асимптота 
 

Функция 
34

3
2 




xx
xy  имеет вертикальную асимптоту 

— 1x  
— 3,1  xx  
— 3x  
— 1y  
 

Функция 
xx

xy
42

2


  имеет вертикальную асимптоту 



— 4x  
— 4,0  xx  
— 0x  
— 2 xy  
 
Пусть   2lim

00




xf
xx

,   2lim
00




xf
xx

, тогда скачок функции  xf  в точке 0x  равен 

— –4 
— 4 
— 0 
— 2 
 

Дана функция 
1

652 2





x

xxy . Угловой коэффициент наклонной асимптоты равен 

— 1 
— 2 
—   
— –1 
 
Дана функция 523 2  xxy . Угловой коэффициент наклонной асимптоты равен 
— 3 
— 2 
— 0 
— не существует 
 

Дана функция 
x

xxy 322 
 . Уравнение наклонной асимптоты имеет вид 

— 3y  
— 2 xy  
— 2 xy  
— 2y  
 

Дана функция 
42

2




x
xy . Уравнение наклонной асимптоты имеет вид 

— 4y  
— 1y  
— 1x  
— 2x  
 

Функция 
xx
xxxf

4
)( 3

2




  имеет устранимую точку разрыва в точке 

— x = –2 
— x = 0 
— x = 2 



— не имеет устранимой точки разрыва 
 

Уравнение наклонной асимптоты для функции 
4

)( 2 


x
xxf  имеет вид 

— y = 0 
— x = –2 
— x = 2 
— y = x2 + 4 
 

Для функции 














1если 2,

;11если,1

;1если,2
2

xx
xx

x
y  

— x = –1 – устранимая точка разрыва; x = 1 – точка разрыва 1-го рода 
— x = –1 – точка разрыва 1-го рода; x = 1 – точка разрыва 2-го рода 
— x = 1  – точка разрыва 1-го рода 
— точек разрыва нет 
 

Для функции 














2если 2,

;22если,4

;2если,3
2

xx
xx

xx
y  

— x = –2 – точка разрыва 2-го рода; x = 2 – точка разрыва 1-го рода 
— x = –2 и x = 2 – устранимые точки разрыва 
— x = 2 – точка разрыва 1-го рода 
— x = –2  – точка разрыва  
1-го рода 
 

Для функции 





















2если ,6
;22если,1

;2если,6
2

x
x

xx
xx

y  

— x = –2 – точка разрыва 1-го рода 
— x = –2 – точка разрыва 2-го рода; x = 2 – точка разрыва 1-го рода 
— x = –2 и x = 2 – точки разрыва 1-го рода 
— точек разрыва нет 
 

Для функции 














2если 6,

;22если,1

;2если,5
2

x- x
xx

xx
y  

— x = –2 и x = 2 – точки разрыва 1-го рода 
— x = 2 – точка разрыва 1-го рода 
— x = –2 – точка разрыва 1-го рода; x = 2 – точка разрыва 2-го рода 
— x = –2 – точка разрыва 1-го рода; x = 2 – устранимая точка разрыва 
 



Для функции 













3если 4,

;31если,3
;1если,22

x x
xx

xx
y  

— x = 1 – устранимая точка разрыва; x = 3 – точка разрыва 1-го рода 
— x = 1 – точка разрыва 1-го рода; x = 3 – точка разрыва 2-го рода 
— x = 1 и x = 3 – точки разрыва 1-го рода 
— x = 3 – точка разрыва 1-го рода 
 

Уравнение наклонной асимптоты для функции 
1

322





x

xxy  имеет вид 

— 1 xy  
— 2 xy  
— 3 xy  
— 3 xy  
 

Уравнение наклонной асимптоты для функции 
x

xxy
223 

  имеет вид 

— xy  3  
— 32  xy  
— xy  2  
— xy   
 
Функция 

32
1

2 



xx

xy  имеет вертикальную асимптоту 

— 1x  
— 3x  
— 3,1  xx  
— 0y  
 

Функция 
xxx

xxy
43

4
23

2




  имеет устранимые точки разрыва в точках 

— x =–1, x = 0 
— x = –1, x = 4 
— x = –4, x = 1 
— x = 0, x = 4 
 
 Функция 

xx
xy

3
62

2 


  имеет точку разрыва 1-го рода в точке 

— x = 0 
— x = 6 
— x = 3 
— не имеет точки разрыва 1-го рода 
 



Функция 
xx

x
y

4
2

3 


  имеет устранимые точки разрыва в точках 

— 2,2  xx  
— 2,0,2  xxx  
— 2x  
— не имеет устранимых точек разрыва 
 

Функция 
4
62

2 




x
x

y  имеет точки разрыва 1-го рода в точках 

— x = –3 
— не имеет 
— x = –2, x = 2 
— x = –3, x = –2, x = 2 
 
Функция 

9
62

2 



x
xy  в точке x = 3 имеет 

— точку разрыва 2-го рода 
— устранимую точку разрыва 
— не имеет точки разрыва 
— имеет точку разрыва 1-го рода 
 

Функция 
6

3
2 




xx
x

y  имеет вертикальные асимптоты (асимптоту) 

— x = 2 
— x = –3, x = 2 
— x = –3 
— не имеет вертикальных асимптот 
 

Уравнение наклонной асимптоты для функции 
x
xxy





3

532 2

 имеет вид 

— 92  xy  
— 92  xy  
— 92  xy  
— 32  xy  

  



ТЕМА 4. Дифференциальное исчисление функции одной переменной  
 

Если функция )(xfy   в точке 0x  имеет производную )( 0xf  , то 

— 
x
y

xf



 )(

0
 

— 
x
yxf

x 



lim)(

0
0

 

— 
y
xxf

y 



lim)(

0
0

 

— 
y
xxf

x 



lim)(

0
0

 

 
Если производная функции )(xf  в точке 0x  равна нулю, т. е. )( 0xf  =0 , то касательная к 
графику функции в этой точке 
— параллельна оси Oy 
— параллельна оси Ox 
— не существует 
— образует острый угол с положительным направлением оси Ox 
 
Если функция )(xfy   дифференцируема в точке 0x , то она 
— разрывна в этой точке 
— непрерывна в точке 0x  
— возрастает 
— убывает 
 
Производная функции xy sin3  равна 
— 1sin3sin  xx  
— 3ln3cos x  
— xx cos3ln3sin   
— xx sinln3sin  
 
Дифференциалом функции в точке 0x  называется 
— производная функции в этой точке 
— приращение независимой переменной 
— главная линейная часть приращения функции в этой точке 
— приращение функции в этой точке 
 
Производная функции 231 xy   равна 
— 

231

3

x

x


  

—  3231 x  



— 
231

3

x

x


 

— 
2312

1

x
 

 
Дифференциал функции )(xfy   в точке 0x  равен 
— dxxfdy )( 0  
— )( 0xfdy   

— 
)( 0xf

dxdy


  

— 
dx

xfdy )( 0
  

 
Дифференциал от произведения функций )(xuu   и )(xvv   равен 
— vduudvuvd )(  
— udvvduuvd )(  
— uduvdvuvd )(  
— vdvuduuvd )(  
 
Дифференциал второго порядка функции )(xfy  равен 
— xdyyd 22   
— dxyyd 2  
— 22 dxyyd   
— xdyyd 22   
 
Производная функции 3cos xy   равна 
— 3sin x  
— 23sin x  
— 32 sin3 xx  
— xx sin3 2  
 
Производная функции xy 2arcsin  равна 
— 

241

1

x
 

— 
241

1

x
  

— 
241

2

x
 

— 
241

2
x

 

 



Производная функции в точке равна 
— тангенсу угла наклона к оси Ox нормали к кривой в этой точке 
— тангенсу угла наклона к оси Оx касательной к кривой в этой точке 
— углу наклона к оси Оx нормали к кривой в этой точке 
— углу наклона к оси Оx касательной в этой точке 
 
Производная функции )(xfy   в точке 0x  – это 
— скорость изменения функции в точке 
— относительное изменение функции в точке 
— скорость изменения аргумента 
— относительное изменение аргумента 
 
Производная сложной функции ))(( xfy   равна 
— ))(( xf   
— ))(( xf    
— ))(( xf    
— )())(( xxf    
 
Производная второго порядка от функции xy sin  равна 
— x2sin  
— x2cos  
— xcos  
— xsin  
 
Производная обратной функции )( ygx   к функции )(xfy   определяется по формуле 
— )()( xfyg   

— 
)(

1)(
xf

yg   

— 
)(

1)(
xf

yg


  

— 
)(

1)(
xf

yg


  

 
Производная функции xy alog  равна 

— xax 
1  

— 
x
aln

 

— 
ax ln

1  

— 
x
1  

 



Производная функции 
ctgx

y 1
  равна 

— x2sin  
— x2cos  
— 

x2cos
1  

— 
xctg 2

1
  

 
Производная второго порядка от функции xy cos  равна 
— xcos  
— x2sin  
— xcos  
— xsin  
 

Производная функции 
x

y
sin

1
  равна 

— 
xcos

1  

— 
x2sin

1
  

— x
tgx

sin
  

— 
x

ctgx
sin

  

 
Производная второго порядка от функции xy ln  равна 

— 2
1
x

 

— 2
1
x

  

— 1 
— –1 
 
Если в некоторой точке 0x  касательная к кривой )(xfy   перпендикулярна к оси Ox , то 
производная в этой точке 
— равна нулю 
— равна 1 
— не существует 
— непрерывна 
 

Производная функции 
tgx

y 1
  равна 



— 
x2cos

1  

— x2cos  

— 
x2sin

1  

— 
x2sin

1
  

 
Производная функции arctgxy   равна 

— 21
1
x

 

— arcctgx  
— tgx  

— 
x2sin

1
  

 
Производная функции xay   равна 

— 
a

a x

ln
 

— aa x ln  
— 1 xxa  
— aa x ln  
 

Дифференциал 







v
ud  равен 

— 
dv
du  

— 2v
udvvdu   

— 2v
vduudv   

— 2v
udvvdu   

 
Дифференциал ))(( xfCd  , где С − постоянная величина, равен 
— dxxfC )(  
— dxxfC ))((   
— dxxf )(  
— )(xf   
 



Дифференциал dy  функции xy 3ln  равен 

— 
x
xdx2ln3

 

— dx
x
1ln3 2  

— xdx2ln3  
— 

x
dxxln3  

 
Дифференциал dy  функции xy 2sin  равен 
— dxcos2  
— xdx2sin  
— xdx2sin  
— xdxsin2  
 
Значение производной функции 3 223 xy   в точке 10 x  равно 

— 
3
4  

— 
3
1  

— 
3
4

  

— 
3
1

  

 
Производная функции xy

3
3 sinlog3  равна 

— |cossin3 2 xx |cos3 2 x 3ln3
3sin3ogl x  

— xx cossin3 2  
 
Значение производной функции xy 3ln  в точке ex 0  равно 

— e
3

 

— 3 
— 3e 
— 0 
 

Дифференциал функции xey 2sin  в точке 
20


x  равен 

— –2edx 
— 0 
— –2dx 
— 2edx 



 
Значение производной функции  xxy 2ln 2   в точке 30 x  равно 

— 
4
1  

— 
3
1  

— 
3
2  

— 3
4

 

 
Производная второго порядка функции xxy ln2  равна 
— 3 
— 1ln2 x  
— 3ln2 x  
— 2ln2 x  
 
Производная второго порядка функции 2ln xxy   равна 

— 22


x
 

— x
2

 

— 
x
12   

— 2
12
xx

  

 

Дифференциал dy функции 
ctgx

y 1
  равен 

— tgxdx 

— x
dx

2cos  

— 
x

dx
2sin

 

— 
x

dx
2sin

  

 
Производная функции xxy cossin  равна 
— cosxsinx 

— x2cos
2
1

 



— x2sin
2
1

  

— x2cos  
 
Дифференциал dy функции tgxctgxy  равен 
— ctgxtgxdx  
— dx  
— 0 
— dx  
 
Дифференциал второго порядка функции xy 2cos  равен 
— 22cos xdx  
— xxd 22cos2  
— xxd 22cos  
— 22cos2 xdx  
 

Производная функции xy
2sin3  равна 

— xx 2sin3ln3
2sin   

— 1sin2 2
3sin  xx  

— xx cos3ln32
2sin   

— x2sin3  
 
Дифференциал второго порядка yd 2  функции xxy sincos  равен 
— 22sin2 xdx  
— 22cos2 xdx  
— 22cos2 xdx  
— 22sin2 xdx  
  



ТЕМА 5. Дифференциальное исчисление функции двух переменных (градиент и 
производная по направлению) 

 
 xZ  функции 532  yyxxZ  равна 
— yx 2  
— 32 yyx   
— 232 yyx   
— 532 2  yyx  
 
Определение частной производной функции в точке ),( 000 yxM  по переменой x  
возможно, если функция 
— определена только в самой точке ),( 000 yxM  
— определена только в некоторой окрестности точки ),( 000 yxM  
— не определена в точке ),( 000 yxM  
— определена в точке ),( 000 yxM  и в некоторой ее окрестности 
 
Если функция ),( yxfZ   дважды дифференцируема , то 
— yxxy ZZ   
— yxxy ZZ   
— yyxy ZZ   
— yyxx ZZ   
 

yZ  функции 532  yyxxZ  равна 

— 22 3
2

y
y

xx   

— 23
2

y
y

x
  

— 53
2

2
3

 y
yx

 

— 22 3yxx   
 
Полный дифференциал функции ),( yxfZ   определяется по формуле 
—  dxdyZZdZ yx   

— 
dyZ
dxZ

dZ
y

x




  

— dyZdxZdZ yx   



— dyZdxZdZ yx   
 

xxZ  функции 532  yyxxZ  равна 
— y2  

— 
y2

12   

— 2 
— 0 
 

xyZ  функции 532  yyxxZ  равна 

— 
y2

1
  

— 
y2

1  

— 
y2

12   

— 
2

2
3y

x   

 
Полный дифференциал второго порядка функции ),( yxfZ   равен 
— 22 dyZdxZ yyxx   

— 22 dyZdxZ yyxx   

— 22 )()( dyZdxZ yx   

— 22 2 dyZdxdyZdxZ yyxyxx   
 

xyZ   функции yxZ ln2  равна 

— 
y

x 12   

— 
y
x2  

— 2
2
y
x

  

— 
y

x 2

 

 
xxZ   функции yxZ ln2  равна 

— yln2  



— 
y
1  

— yln  
— yln2  
 
Равенство yxxy ZZ   имеет место для 
— интегрируемой функции ),( yxfZ   
— четной функции ),( yxfZ   
— любой дважды дифференцируемой функции ),( yxfZ   
— только однородной функции ),( yxfZ   
 

xy"Z  функции xyZ ln2  равна 

— 2
1
x

  

— 2
12
x

y   

— 2y 

— x
y2

 

 
xxZ   функции xyZ ln2  равна 

— 2y  

— 2

2

x
y

  

— 2

2

x
y  

— 2
2
x

y
  

 
xyZ   функции 723  yxyxZ  равна 

— 
x

x
2

13 2   

— 
x2

1
 

— 2
2

1


x
 

— 
x

yx
2

6   

 



Полный дифференциал dz  функции yxZ ln2  равен 

— 
y
dyxydxx

2

ln2   

— ydydxx ln2   

— dxdy
y
x2  

— 
y

dyxydxxy 2ln2   

 
При условиях B2 – 4AC < 0, A > 0 квадратичная форма Ax2 + Bxy + Cy2 является 
— знаконеопределенной 
— отрицательно определенной 
— неположительно определенной 
— положительно определенной 
 
При условии B2 – 4AC > 0 квадратичная форма Ax2 + Bxy + Cy2является 
— знаконеопределенной 
— отрицательно определенной 
— неположительно определенной 
— положительно определенной 
 
При условиях B2 – 4AC = 0, A < 0  квадратичная форма Ax2 + Bxy + Cy2 является 
— знаконеопределенной 
— отрицательно определенной 
— неположительно определенной 
— положительно определенной 
 
При условиях B2 – 4AC = 0, A > 0  квадратичная форма Ax2 + Bxy + Cy2 является 
— знаконеопределенной 
— неотрицательно определенной 
— неположительно определенной 
— положительно определенной 
 
Квадратичная форма –4x2 – 3xy + 2y2 является 
— знаконеопределенной 
— отрицательно определенной 
— неположительно определенной 
— неотрицательно определенной 
 
Квадратичная форма –4x2 + 3xy – 2y2 является 
— знаконеопределенной 
— отрицательно определенной 
— неположительно определенной 
— неотрицательно определенной 
 



Квадратичная форма 2x2 – 3xy + y2 является 
— знаконеопределенной 
— отрицательно определенной 
— неотрицательно определенной 
— положительно определенной 
 
Квадратичная форма 4x2 – 12xy + 9y2 является 
— знаконеопределенной 
— отрицательно определенной 
— неотрицательно определенной 
— положительно определенной 
 
Квадратичная форма  –9x2 + 24xy – 16y2 является 
— знаконеопределенной 
— отрицательно определенной 
— неотрицательно определенной 
— неположительно определенной 
 
Квадратичная форма  x2 – 4xy + 5y2 является 
— знаконеопределенной 
— неположительно определенной 
— неотрицательно определенной 
— положительно определенной 
—  

yyZ   функции 723  yxyxZ  равна 
— 2 
— 23  xx  
— 26  xx  

— 2
2

16 
x

x  

 
Полный дифференциал функции ܼ = ଶݕ ln  равен ݔ
 ݕ݀ݔ݀ݕݔ2 —
— ln ݔ݀ݔ +  ݕଶ݀ݕ
— ௬

మௗ௫
௫

+ ݕ2 ln  ݕ݀ݔ

— ଶ௬
௫
 ݕ݀ݔ݀

 
Полный дифференциал функции ܼ =  ଷ݁ଶ௬ равенݔ
ݔଶ݁ଶ௬(3݀ݔ — +  (ݕ݀ݔ2
ݔଶ௬(3݀݁ݔ — +  (ݕଶ݀ݔ
ݔଶ݁ଶ௬(3݀ݔ — −  (ݕ݀ݔ2
ݔଶ݁ଶ௬(3݀ݔ — + ଶ௫௬ௗ௬

௘
) 

 



Полный дифференциал функции ܼ = ଶݔ cos  равен ݕ2
cos)ݔ2 — ݔ݀ݕ2 − ݔ sin  (ݕ݀ݕ2
2)ݔ — cos ݔ݀ݕ2 − ݔ sin  (ݕ݀ݕ2
cos)ݔ2 — ݔ݀ݕ2 + ݔ sin  (ݕ݀ݕ2
2)ݔ — cos ݔ݀ݕ2 + ݔ sin  (ݕ݀ݕ2
 
Полный дифференциал функции ܼ = ௫మ

ୱୣୡ௬
 равен 

2)ݔ — cos ݔ݀ݕ + ݔ sin  (ݕ݀ݕ
2)ݔ — sin ݔ݀ݕ − ݔ cos  (ݕ݀ݕ
2)ݔ — cos ݔ݀ݕ − ݔ sin  (ݕ݀ݕ
2)ݔ — sin ݔ݀ݕ + ݔ cos  (ݕ݀ݕ
 
ܼ௫௬"  функции ܼ = ௫య

ୡ୲୥మ௬
 равна 

— − ଺௫మ୲୥௬
ୡ୭ୱమ௬

 

— ଶ௫
మ୲୥௬

ୡ୭ୱమ௬
 

— ଺௫
మ୲୥௬

ୡ୭ୱమ௬
 

— ଺௫
మ୲୥௬

ୱ୧୬మ௬
 

 
ܼ௫௫"  функции ܼ = ଶݕ tg  равна ݔ
— ଶ௬

మ ୡ୭ୱ௫
ୱ୧୬య௫

 

— ଶ௬
మ ୱ୧୬௫
ୡ୭ୱయ௫

 

— − ଶ௬మ ୡ୭ୱ௫
ୱ୧୬య௫

 

— − ଶ௬మ ୱ୧୬௫
ୡ୭ୱయ௫

 
 
ܼ௬௬"  функции ܼ =  равна ݕsinଶݔ
ݔ2 — cos  ݕ2
ݔ4− — sin  ݕ
ݔ2− — cos  ݕ2
ݔ4 — cos  ݕ
 
Полный дифференциал функции ܼ = lnඥݔଶ +  ଶ равенݕ
ݔ݀ݔ — +  ݕ݀ݕ
— ௗ௫

௫
+ ௗ௬

௬
 

— ௫ௗ௫ା௬ௗ௬
ඥ௫మା௬మ

 

— ௫ௗ௫ା௬ௗ௬
௫మା௬మ

 
 
ܼ௫௬ функции ܼ =  ݔcosec	ݔecݏ	ݕݔsecଶݕ−2ݔcosec	ݔsec	ݕ2ݔsecଶݕравна2 ݔଶtgݕ



 
ܼ௬௫ функции ܼ = ݔравна−2 ݕଶsinଶݔ sin ݔ2ݕ2 sin ݔ4ݕ2 sin ݔ4ݕ cos  ݕ
  



ТЕМА 6. Основные теоремы дифференциального исчисления. Применение 
производной для исследования функций 

 
Функция y=f(x) имеет в точке х0 максимум, если 
— 0)( 0  xf  
— 0)( 0  xf , 0)( 0  xf  
— 0)( 0  xf , 0)( 0  xf  
— 0)( 0  xf , 0)( 0  xf  
 
Условием выпуклости кривой y=f(x) в интервале (a , b) является 
— 0)(  xf  
— 0)(  xf  
— 0)(  xf  
— 0)(  xf  
 
Условием вогнутости кривой y=f(x) в интервале ( a , b) является 
— 0)(  xf  
— 0)(  xf  
— 0)(  xf  
— 0)(  xf  
 
Функция )(xfy  в точке 0x  имеет минимум, если 
— 0)( 0  xf , 0)( 0  xf  
— 0)( 0  xf , 0)( 0  xf  
— 0)( 0  xf , 0)( 0  xf  
— 0)( 0  xf , 0)( 0  xf  
 
Функция )(xf  имеет в точке 0x  максимум, если для всех x из некоторой окрестности 
точки 0x  выполняется неравенство 
— )()( 0 xfxf   
— 0)( 0 xf  
— )()( 0 xfxf   
— 0)( 0  xf  
 
Функция )(xf  имеет в точке 0x  минимум, если для всех x из некоторой окрестности 
точки 0x  выполняется неравенство 
— )()( 0 xfxf   
— 0)( 0 xf  
— 0)( 0  xf  



— )()( 0 xfxf   
 
Если функция y=f(x) во внутренней точке 0x  области определения дифференцируема и 
достигает в точке 0x  наибольшего и наименьшего значения, то производная функции в 
этой точке 
— 0)( 0  xf  
— )( 0xf   не существует 
— 0)( 0  xf  
—  )( 0xf  
 
Критическими точками функции f(x) на экстремум, называются точки, в которых для 
функции f(x) выполняется условие 
— 0)( 0  xf  
— 0)( 0  xf  
— 0)( 0  xf  
— )( 0xf  
 
Если на отрезке  ba;  для функции f(x) выполняются все условия теоремы Ролля, то на 
дуге AB найдется точка, в которой касательная к графику 
— проходит через начало координат 
— параллельна оси ординат 
— перпендикулярна оси абсцисс 
— параллельна оси абсцисс 
 
Из теоремы Лангранжа следует, что в интервале (a;b) найдется точка c такая, что 
— 0)(  cf  

— )()()( cf
ab

afbf 

  

— )()()( cf
ab

afbf 

  

— )()()( cf
ab

afbf 

  

 
К функциям f(x) и g(x) теорема Коши применима, если 
—  f(x) и g(x) непрерывны на (a;b) и дифференцируемы на (a;b) 
— f(x) и g(x) непрерывны на  ba;  и 0)(  xg  в интервале (a;b) 
—  f(x) и g(x) непрерывны на  ba; , дифференцируемы на (a;b) и 0)(  xg  в интервале 
(a;b) 
—  f(x) и g(x) непрерывны на (a;b), дифференцируемы на (a;b) и 0)(  xg  в интервале 
(a;b) 
 



Если функции f(x) и g(x) непрерывны на отрезке  ba; , дифференцируемы в (a;b) и 
0)(  xg  в интервале (a;b), то, согласно теореме Коши, в интервале (a;b) найдется точка 

с такая, что 

— 
)(
)(

)()(
)()(

cg
cf

agbg
afbf






  

— 
)(
)(

)()(
)()(

cg
cf

agbg
afbf






  

— 
)(
)(

)()(
)()(

cg
cf

agbg
afbf



  

— 
)(
)(

)()(
)()(

cf
cg

agbg
afbf






  

 
Правило Лопиталя применяется к неопределенности вида 
— 0  
—   
— 1  

— 

  

 
Правило Лопиталя применяется к неопределенности вида 
— 0  

— 
0
0  

—   
— 1  
 
Пусть функции f(x) и g(x) непрерывны в ],( 0 ax ,дифференцируемы в ),( 0 ax , причем 

0)(  xg , 


)(lim
0

xf
xx

 и 


)(lim
0

xg
xx

; существует конечный или бесконечный предел 

)(
)(lim

0 xg
xf

xx 


 , то 

— 
)(
)(

)(
)(

limlim
00

xg
xf

xxxg
xf

xx 






 

— 
)(
)(

)(
)(

lim
0

xg
xf

xg
xf

xx 





 

— 
)(
)(

)(
)(

limlim
00

xg
xf

xxxg
xf

xx 






 

— const
xg
xf

xx


 )(
)(

lim
0

 

 



Пусть функции f(x) и g(x) непрерывны в ],( 0 ax ,дифференцируемы в ),( 0 ax , причем 
0)(  xg , 0)(lim

0



xf

xx
 и 0)(lim

0



xg

xx
; существует конечный или бесконечный предел 

)(
)(lim

0 xg
xf

xx 


 , то 

— 
)(
)(

)(
)(

limlim
00

xg
xf

xxxg
xf

xx 






 

— 
)(
)(

)(
)(

lim
0

xg
xf

xg
xf

xx 





 

— c
xg
xf

xx


 )(
)(

lim
0

 

— 
)(
)(

)(
)(

limlim
00

xg
xf

xxxg
xf

xx 






 

 
Применима ли теорема Ролля к функции 3 2)1(2)(  xxf  на отрезке[1;2] 
— нет, y=f(x) разрывна на отрезке [1;2] 
— да, с=1 
— нет, y=f(x) не дифференцируема в интервале (1;2) 
— нет, )2()1( ff   
 
Применима ли теорема Лагранжа к функции 12)( 2  xxxf  на отрезке [0;2]  
— нет, функция f(x) разрывна на [0;2] 
— применима 
— нет, функция f(x) недифференцируема в (0;2) 
— нет, )2()0( ff   
 
Применима ли теорема Коши к функциям 32)(  xxf  и 3 1)(  xxg  на отрезке [0;2] 

— да, 
16
15

c  

— нет, )2()0( ff   
— нет, функция g(x) не определена при  1;0x  
— нет, функция g(x) недифференцируема на (0;2) 
 
Если функция y=f(x) дифференцируема в интервале (a;b) , то для возрастания f(x) в (a;b) 
необходимо и достаточно, чтобы для всех );( bax  выполнялось 
— 0)(  xf  
— 0)(  xf  
— 0)(  xf  
— 0)(  xf  
 
Если функция y=f(x) дифференцируема в интервале (a;b) , то для убывания f(x) в (a;b) 
необходимо и достаточно, чтобы для всех );( bax  выполнялось 



— 0)(  xf  
— 0)(  xf  
— 0)(  xf  
— 0)(  xf  
 
Дана функция 12)( 34  xxxf , тогда 
— х=0 является точкой минимума функции f(x) 

— 
8
3

x  является точкой минимума функции f(x)  

— функции f(x) не имеет экстремумов 

— 
8
3

x  является точкой максимума функции f(x) 

 

Функция xxxf 4
3

)(
3

  

— возрастает на   ;  
— возрастает на (–2:2) 
— возрастает на     ;22;  
— возрастает на [–1;2] 
 

Функция xxxf 4
3

)(
3

  

— убывает на (–2:2) 
— убывает на   ;  
— убывает на [–;2)  
— убывает на     ;22;  
 
Функция 3 32)(  xxf  
— выпукла на интервале )3;(  
— вогнута на интервале );3(   
— выпукла на интервале );3(   
— вогнута на интервале (3;5) 
 
Пусть функция y=f(x) непрерывна в (a;b), 0x – внутренняя точка этого промежутка и 

0)( 0  xf  (или )( 0xf   не существует), то 
— 0x – обязательно точка минимума 
— 0x – обязательно точка максимума 
— 0x – обязательно точка перегиба 
— в точке 0x  экстремум может существовать, а может и не существовать 
 
К функции y=f(x) на отрезке  ba;  теорема Ролля применима, если 



— f(x) непрерывна на  ba; , дифференцируема в (a;b) и f(a)=f(b) 
— f(x) непрерывна на  ba; и f(a)=f(b) 
— f(x) дифференцируема в (a;b) 
— f(x) непрерывна в (a;b), дифференцируема в (a;b) и f(a)=f(b)  
 
Из теоремы Лагранжа следует, что 
— любая касательная к графику функции f(x) в (a;b) параллельна хорде, стягивающей 
концы дуги f(x) на отрезке  ba;  
— касательная к графику функции f(x) в (a;b) параллельна любой хорде в этом 
интервале 
— хорда, стягивающая конца дуги f(x) на  ba; , параллельна оси OY 
— в интервале (a;b) найдется касательная, параллельная хорде, стягивающей концы 
дуги f(x) на отрезке  ba;  
 
Если точка 0x  является точкой перегиба графика f(x) с вертикальной касательной, то 
— 0)( 0  xf  
—  )( 0xf  
— 0)( 0  xf  и 0)( 0  xf  
— )( 0xf  
 
Если точка 0x  является точкой перегиба графика f(x) с наклонной касательной, то 
—  )( 0xf  
— 0)( 0  xf  и  0)( 0  xf  
— 0)( 0  xf  
— )( 0xf  
 
Точка 0x  называется точкой перегиба графика f(x) с горизонтальной касательной, если 
— 0)( 0  xf  и 0)( 0  xf  
— )( 0xf  
—  )( 0xf  
— 0)( 0  xf  
 
Применима ли теорема Ролля к функции xxf  23)(  на отрезке [0;2] 
— да, с=2 
— нет, функция f(x) не определена при ]2;0[x  
— нет, функция f(x) не дифференцируема в (0;2) 
— нет, )2()0( ff   
 
Применима ли теорема Лагранжа к функции xxf  12)(  на отрезке [–1;0] 
— нет, функция f(x) разрывна на [–1;0] 
— применима 
— нет, функция f(x) не дифференцируема в  



(–1;0) 
— нет, )0()1( ff   
 

Точками перегиба функции 2
4

6
4

xxy   являются 

— точки 321 x  и 322 x  
— только точка х=0 
— точки 21 x  и 22 x  

— у функции 2
4

6
4

xxy   нет точек перегиба 

 
Применима ли теорема Коши к функциям 12)(  xxf  и 3 2)(  xxg  на отрезке [0;3] 
— нет, функция g(x) не дифференцируема в (0;3) и 0)(  xg  в (0;3) 
— да, с=3 
— нет, функция g(x) разрывна на [0;3] 
— нет, g(x) не дифференцируема в (0;3) 
 

Функция 3
4

4
xxy   имеет точку перегиба с горизонтальной касательной в точке 

— (2;–2) 
— (0;–3) 
— 






 

4
3;1  

— (0;0) 
 

По правилу Лопиталя предел 20 5
3cos1lim

x
x

x




 равен 

— 0 

— 
5
3  

— 
10
9

  

— 
10
9  

 
Функция xxy 23   возрастает только при 
— );0( x  
— )2;3(x  
— );( x  
— )0;(x  
 
Кривая 53 24  xxy  вогнута при 



— );( x  

— 
















 ;

3
3

3
3;x  

— 









3
3;

3
3x  

—  3;3x  
 

Функция x
x

y 
1  убывает при 

— )1;1(x  
—  1;0)0;1( x  
—   ;1)1;(x  
—   ;0)0;(x  
 
При неопределенностях 








0
0  или 








  

—          xgxfxgxf
xxxx


 00

limlim  

— 
 
 

 
 xg
xf

xg
xf

xxxx 



 00

limlim  

—          xgxfxgxf
xxxx


 00

limlim  

—  
 

       
 xg

xgxfxgxf
xg
xf

xxxx 2
00

limlim





 

 

По правилу Лопиталя  x
e x

x 51ln
1lim

4

0 



 равен 

— 
5
1  

— –
5
1  

— 
5
4  

— –
5
4  

 
Функция  xfy   называется возрастающей в интервале  ba; , если для любых 

 bax ;1   и  bax ;2   
— из 21 xx   следует    21 xfxf   
— из 21 xx   следует    21 xfxf   
— из 21 xx   следует    21 xfxf   
— из 21 xx   следует    21 xfxf   



 

По правилу Лопиталя   x
x

x 2
3coslim

2

 равен 

— 
2
3

  

— 
2
3  

— 

3

  

— 

3  

 
Функция  xfy   называется убывающей в интервале  ba; , если для любых  bax ;1   
и  bax ;2   
— из 21 xx   следует    21 xfxf   
— из 21 xx   следует    21 xfxf   
— из 21 xx   следует    21 xfxf   
— из 21 xx   следует    21 xfxf   
 

По правилу Лопиталя 
xtg
xctg

x 4
2lim

4



 равен 

— 
2
1

  

— 
2
1  

— 1  
— 0 
 

Применима ли теорема Ролля к функции  
1

1
2 


x

xf  на отрезке  2;2  

— да, так как    22 ff   
— да, так как  xf  непрерывна на отрезке  2;2  и    22 ff   
— да, так как  xf  непрерывна на отрезке  2;2 , дифференцируема в  2;2  и 
   22 ff   

— нет, не выполняется условие непрерывности 
 
Абсциссы точек перегиба функции   342 24  xxxf  равны 
— 1  
— 1  и 0 

— 
3
1

  



— 
3

1
  

 
Применима ли теорема Лагранжа к функции   3 2xxf   на отрезке  1;1  
— нет, функция недифференцируема в  1;1  
— да, так как    11 ff   
— да, функция непрерывна на  1;1  и    11 ff   
— да, функция непрерывна на  1;1 , дифференцируема в  1;1  и    11 ff   
 
Условие   00  xf ,   00  xf  является условием 
— минимума 
— вогнутости 
— максимума 
— убывания 
 
Условие   00  xf ,   00  xf  является условием 
— максимума 
— выпуклости 
— возрастания 
— минимума 
  



ТЕМА 7. Применение дифференциального  исчисления в экономических 

исследованиях 

 

Функция f(x) в интервале (a , b) убывает все быстрее, если 
— 0)(  xf , 0)(  xf  
— 0)(  xf , 0)(  xf  
— 0)(  xf , 0)( xf  
— 0)(  xf , 0)( xf  
 
Функция f(x) в интервале (a, b) возрастает все медленнее, если 
— 0)(  xf , 0)(  xf  
— 0)( xf , 0)(  xf  
— 0)(  xf , 0)(  xf  
— 0)( xf , 0)(  xf  
 
Эластичность функции y = f(x) определяется по формуле 

— y
x
yyEx )(  

— 
yy

xyEx 
)(  

— 
y
yyEx


)(  

— y
y
xyEx )(  

 
Чтобы функция y = f(x) была эластичной в точке, показатель эластичности должен быть 
— больше нуля 
— меньше единицы 
— равен единице 
— больше единицы 
 
Чтобы функция y = f(x) была неэластичной в точке, показатель эластичности должен 
быть 
— меньше нуля 
— меньше единицы 
—  больше единицы 
—  равен единице 
 



Эластичность функции экономически означает 
— относительное изменение аргумента при относительном изменении функции 
— относительное изменение функции на 1% при относительном изменении аргумента 
— относительное изменение функции при относительном изменении аргумента 
— относительное изменение функции при относительном изменении аргумента на 1% 
 
Эластичность произведения двух функций )(uvE x  равна 
— )()( vEuuvE xx   
— )()( vEuE xx   
— )()( vEuE xx   
— )()( vEuE uv   
 

Эластичность частного двух функций 







v
uEx равна 

— 
)(
)(

vE
uE

x

x  

— 
)(
)(

uE
vE

x

x  

— 
2

)()(
x

vEuE xx   

— )()( vEuE xx   
 
Для получения максимальной прибыли необходимо, чтобы при данном объеме 
производства 0x  
— предельная выручка была больше предельных издержек 
— предельная выручка была меньше предельных издержек 
— предельная выручка равнялась предельным издержкам 
— предельная выручка была наибольшей 
 
Функция )(xfy  в интервале (a;b) возрастает, если 
— 0)(  xf  
— 0)(  xf  
— 0)(  xf  
— 0)(  xf  
 
Функция )(xfy  в интервале (a;b) убывает, если 
— 0)(  xf  
— 0)(  xf  
— 0)(  xf  
— 0)(  xf  
 



Функция )(xfy  в интервале (a;b) возрастает все быстрее, если 
— 0)(  xf , 0)(  xf  
— 0)(  xf , 0)(  xf  
— 0)( xf , 0)(  xf  
— 0)(  xf , 0)(  xf  
 
Функция )(xfy  в интервале (a , b) убывает все медленнее 
— 0)(  xf , 0)(  xf  
— 0)(  xf , 0)(  xf  
— 0)( xf , 0)(  xf  
— 0)( xf , 0)(  xf  
 
Эластичность спроса )( pS  относительно цены p определяется по формуле 

— )()( pS
p
SSE p   

— 
)(

)(
pSS

pSE p 
  

— )()( pS
S
pSE p   

— 
S

pSSE p
)()(


  

 
Если )(xK  – полные издержки, то предельные издержки определяются как 
— )(xK   
— )(lim

0
xK

xx
 

— )(lim
0

xK
x

 

—  dxxK )(  
 
Эластичность постоянной величины равна 
— постоянной величине 
— нулю 
— единице 
— двум 
 
Для получения максимальной прибыли достаточно, чтобы при данном объеме 
производства х0 
— )()( 00 xKxV   
— )()( 00 xKxV   
— )()( 00 xKxV   



— 0)()( 00  xKxV  
 
Экономически обусловленной областью определения функции полных издержек К(х) 
является 
— 0x  
— 0x  

— 







0)(
,0

xK
x

 

— 







0)(
,0

xK
x

 

 
Функция полных издержек К(х) в интервале (а;b) возрастает, если 
— 0)(  xK  
— 0)(  xK  
— 0)(  xK  
— 0)(  xK  
 
Функция полной выручки V(х) убывает в интервале (а;b), если 
— 0)(  xV  
— 0)(  xV  
— 0)(  xV  
— 0)(  xV  
 
Функция полных издержек К(х) в интервале (а;b) возрастает все медленнее, если 
— 0)(,0)(  xKxK  
— 0)(,0)(  xKxK  
— 0)(,0)(  xKxK  
— 0)(,0)(  xKxK  
 
Функция полных издержек К(х) в интервале (а;b) возрастает все быстрее, если 
— 0)(,0)(  xKxK  
— 0)(,0)(  xKxK  
— 0)(,0)(  xKxK  
— 0)(,0)(  xKxK  
 
Полная выручка V(х) при 0x  будет максимальной, если 
— 0)(,0)( 00  xVxV  
— 0)(,0)( 00  xVxV  
— 0)(,0)( 00  xVxV  
— 0)(,0)( 00  xVxV  



 
Спрос )( pS  будет эластичным при цене 0p , если показатель эластичности 
— больше нуля 
— меньше единицы 
— больше единицы 
— равен единицы 
 
Спрос )( pS  будет неэластичным при цене 0p , если показатель эластичности 
— меньше нуля 
— больше единицы 
— меньше единицы 
— равен единице 
 
Эластичность функции спроса ppS  4)(  относительно цены p определяется как 

— 
p

SE p 


4
4)(  

— 
p

pSE p 


4
)(  

— 
p

SE p 


4
1)(  

— 
p

pSE p



4)(  

 
Эластичностью функции f(x) относительно аргумента х называется 
— предел относительного приращения функции при 0x  
— предел отношения относительного приращения аргумента к относительному 
приращению функции при 0x  
— предел функции при 0x  
— предел отношения относительного приращения функции к относительному 
приращению аргумента при 0x  
 
Экономически обусловленной областью для функции спроса ppS 28)(   будет 
— 0p  
— 4p  
— 4p  
— 40  p  
 
Средние издержки )(xK cp  при 0x  будут минимальны, если 
— 0)( 0 xKcp  
— 0)( 0  xKcp  
— 0)(,0)( 00  xKxK срcp  
— 0)(,0)( 00  xKxK срcp  



 
Полная выручка V(р) в интервале (а;b) возрастает все медленнее, если 
— 0)(,0)(  pVpV  
— 0)(,0)(  pVpV  
— 0)(,0)(  pVpV  
— 0)(,0)(  pVpV  
 
Полная выручка V(p) в интервале (а;b) убывает все быстрее, если 
— 0)(,0)(  pVpV  
— 0)(,0)(  pVpV  
— 0)(,0)(  pVpV  
— 0)(,0)(  pVpV  
 
Экономически обусловленной областью для функции полной выручки 212)( pppV   
будет 
— );(   
— );0(   
—  12;0  
— );12(   
 

Эластичность функции спроса 
2

1)(



p

pS  относительно цены p определяется как 

— 3)2(
)(




p
pSE p  

— 
p

pSE p
2)( 

  

— 
2

)(



p

pSE p  

—  2)2(
1)(



p

SE p  

 
Показатель эластичности функции xxy  3  при 1x  равен 
— 8 
— 2 

— 
8
1  

— 1 
 
Показатель эластичности функции 23  xy  при 2x  равен 
— 4 
— 36 



— 
72
1  

— 
3
1  

 
Показатель эластичности спроса pS 28   при цене 3p  равен 

— 
6
1  

— 2 
— 4 
— 3 
 
Показатель эластичности функции  1ln 2  xy  при x=1 равен 

— 
2ln

1  

— 2ln  

— 
2
2ln  

— 
2ln2

1  

 
Спрос   ppS  6  относительно цены p будет эластичным при 
—   ;3p  
—  3;0p  
—  6;3p  
—  3;p  
 
Полная выручка  pV  при заданном спросе   ppS 216   будет наибольшей при цене p, 
равной 
— 4 
— 8 
— 2 
— 6 
 
Спрос   ppS  8  относительно цены p будет неэластичным при 
—  8;4p  
—  4;0p  
—   ;4p  
—  4;p  
 
Показатель эластичности полной выручки  pV  при заданном спросе   ppS 416   при 
цене 1p  равен 



— 
3
2

 

— 
3
1

  

— 
3
1  

— 
3
2

  

 
Функция полных издержек   36100242 23  xxxxK , где x – объем производства, 
возрастает все медленнее в интервале 
—  ;4  
—  4;0  
—  4;  
—  ;0  
 

Полные издержки   13396
3

2
3

 xxxxK , где x – объем производства, возрастают все 

быстрее в интервале 
—  6;0  
—  6;  
—  ;6  
—   ;  
 
Полные издержки   40120242 23  xxxxK , где x – объем производства, возрастают 
все быстрее в интервале 
—  ;41  
—  4;0  
—  4;  
—  ;0  
 
Спрос   ppS 424  относительно цены p будет неэластичным при 
—  6;3p  
—   ;3p  
—  3;0p  
—  3;p  
 

Показатель эластичности функции 
92 


x

xy  при 2x  равен 

— 
13
5  

— 1 



— 
13
5

  

— 
5

13  

 

Если полные издержки и выручка соответственно составляют   20123
3

2
3

 xxxxK ; 

  11224
3

2
3

 xxxxV , то прибыль  xZ  будет максимальной при объеме 

производства x, равном 
— 2 
— 8 
— 4 
— 5 
 
Увеличение в спросе при постоянном предложении 
— уменьшает равновесную цену 
— увеличивает равновесную цену 
— уменьшает равновесное количество товара 
— сохраняет равновесное количество товара 
 
Уменьшение в спросе при постоянном предложении 
— увеличивает равновесную цену 
— увеличивает равновесное количество товара 
— уменьшает равновесную цену 
— сохраняет равновесное количество товара 
 
Уменьшение в предложении при постоянном спросе 
— увеличивает равновесную цену 
— увеличивает равновесное количество товара 
— уменьшает равновесную цену 
— сохраняет равновесное количество товара 
 
Увеличение в предложении при постоянном спросе 
— сохраняет равновесное количество товара 
— увеличивает равновесную цену 
— уменьшает равновесное количество товара 
— уменьшает равновесную цену 
 
Кривая Энгеля иллюстрирует зависимость между 
— ценой товара и спросом 
— ценой товара и предложением 
— денежным доходом и количеством приобретенного товара 
— затратами и объемом выпускаемой продукции 
 



С повышением равновесной цены 0p  
— спрос и предложение увеличиваются 
— спрос увеличивается, а предложение уменьшается 
— спрос и предложение уменьшаются 
— спрос уменьшается, а предложение увеличивается 
 
С снижением равновесной цены 0p  
— спрос уменьшается, а предложение увеличивается 
— спрос и предложение уменьшаются 
— спрос увеличивается, а предложение уменьшается 
— спрос и предложение увеличиваются 
  



ТЕМА 8. Неопределенные интегралы 
 

Функция F(x) является первообразной для функции f(x) в некотором промежутке, если в 
любой точке этого промежутка выполняется 
—  |)()( xFxf  F(x)=f(x)dx 
— )(xF  =f(x) 
— dF(x)=f(x) 
 
Если   CxFdxxf )()( , то выполняется 
— F(x)= )(xf   
— F(x)=f(x)dx 
— d(F(x)+С)=f(x)dx 
— )()( xfxF   
 
 )(xdF равен 
— )(xf   
— f(x)+С 
— F(x)+С 
— f(x) 
 
Если неопределенный интеграл имеет вид  dxxf )( , то дифференциал этого интеграла 
равен 
— F(x)dx 
— )(xf   
— )(xf  dx 
— f(x)dx 
 
Производная от неопределенного интеграла  dxxf )( равна 
— F(x) 
— F(x)+С 
— f(x) 
— )(xf   
 
Интегрирование по частям в неопределенных интегралах выполняется по формуле 
—  vduuv  
—  vduuv  
—  udvuv  
—  udvuv  
 
Выберите верное утверждение 
—    vdxudxuvdx  
—    vdxudxuvdx  
—   vduuvdxvu  



— 


vdx
udx

dx
v
u  

 
Интеграл  dxxkf )(  равен 
— k+  dxxf )(  
— k  dxxf )(  
— k  dxxf )(2  
— k  dxxf )(  
 
Интеграл   dxxxf ))()((  равен 
—   )()()( xfdxxxf   
—   dxxxxf )()()(   
—   dxxdxxf )()(   
—   dxxdxxf )()(   
 
Выберите правильное утверждение 

—   cx
x

dx 3
4

3 2 4
3  

—   3
1

3 2
3x

x

dx  

—   cx
x

dx 3
1

3 2
3  

—   c
xx

dx
33 2

3  

 
Выберите правильное утверждение 

— 5 35 3

8
5 xxdx   

— c
x

xdx  5 3
5 3 1

5
3  

— cxxdx 
5 85 3

8
5  

— cxxdx 
5 35 3

5
2  

 
Непрерывная функция имеет 
— только одну первообразную 
— бесконечное множество первообразных 
— две первообразных 



— конечное число первообразных 
 
Две различные первообразные одной и той же функции 

— равны между собой 

— отличаются на константу 

— отличаются на некоторую функцию 

— отличаются на переменную интегрирования 

 

Дифференциал от неопределенного интеграла равен 
— подынтегральному выражению 
— подынтегральной функции 
— нулю 
— бесконечности 
 
К интегрируемым функциям относятся все 
— возрастающие 
— непрерывные 
— прерывные 
— непостоянные функции 
 

Интеграл  12x
dx  равен 

— 
 

C
x


 212
1  

— Cx 12ln
2
1  

— Cx 12ln  

— C
x


 2)12(2

1  

 
Интеграл  tgxdx  равен 
— Cx  cosln  
— Cx sinln  
— Cx  sinln  

— Cxtg


2

2

 

 

Интеграл   x
dx

32
 равен 



— Cx 32ln  

— Cx 32ln
3
1  

— Cx  32ln
3
1  

— C
x


 2)32(

1  

 
Интеграл  ctgxdx  равен 

— Cx  cosln  

— Cx  sinln  

— Cxctg


2

2

 

— Cx sinln  
 

Интеграл   2)2( x
dx  равен 

— C
x


2
1  

— C
x


 2
1  

— C
x


 )2(2
1  

— C
x


 )2(2
1  

 

Интеграл 


)(
)(
x
dxx


  равен 

— C
x
x


 )(

)(

  

— Cx )(  

— C
x
x



)(
)(


  

— Cx )(ln  
 

Интеграл  x
xdxln

 равен 

— C
x
x


ln
 



— Cx 2ln  
— Cx lnln  

— Cx 2ln
2
1

 

 
Интеграл   dxe x 23  

— Ce x 23

3
1  

— Ce x 23  

— Ce x  23

2
1  

— Ce x 3

3
1  

 

Интеграл   22 xa
dx  равен 

— C
a
x
arcsin  

— C
a
x

a
arcsin1  

— C
a
xarctg

a


1  

— C
a
xarctg   

 

Интеграл 
 22 xa

dx  равен 

— C
a
x

a
arcsin1  

— C
a
x

a
 arcsin1  

— C
a
xarctg

a


1  

— C
a
x
arcsin  

 
Интеграл   dxxf ))((  равен 
—  dxxf )(  
—  dxxf )(  
—  dxxfx )(  



—  dxxf )(  
 

Интеграл   21 x
arctgxdx  равен 

— Cxarctg 2

2
1  

— Carctgx   
— Cxarctg 2  
— Cxarctg 22  
 

Интеграл  xx
dx
ln

 равен 

— C
x


ln
1

 

— C
x
2ln

1  

— C
x
2ln2

1  

— Cx lnln  
 
Интеграл dxx 3cos  равен 

— Cx 3sin
3
1  

— Cx 3sin  

— Cx 3cos
2
1 2  

— Cx 3sin3  
 
Интеграл  xdxctg2  равен 

— Cx 2sinln  

— Cx 2sinln
2
1

 

— Cx  2sinln
2
1  

— Cx 2sinln2  
 

Интеграл   xa
dx  равен  

— Cxa ln  

— Cxa  ln  



— C
xa


 2)(
1  

— C
xa




 2)(2
1  

 

Интеграл   ax
dx  равен  

— Cax ln  

— C
ax


 2)(
1  

— Cax  ln  

— C
ax




 2)(2
1  

 

Интеграл   42x
xdx  равен 

— Cx  )4ln( 2  

— C
x


 22 )4(
1  

— Cx  )4ln(
2
1 2  

— C
x

x 
4ln  

 
Если )()( xfxF  , то неопределенным интегралом  dxxf )(  называется совокупность 
функций вида 
— Cxf )(  
— CxF )(  
— CxF  )(  
— Cxf  )(  
 

Интеграл  dxx
2

cos2  равен 

— C

x


3

2
cos3

 

— Cx


2
cos

3
2 3  

—   Cxx  sin
2
1  



—   Cxx  sin
2
1  

 
Интеграл  xdxtg 2  равен 
— Cxtgx   
— Cxctgx   

— Cxtg


3

3

 

— Cxctg 2  
 
Интеграл  xdxe x cossin  равен 

— Cxe x sincos  
— Ce x  sin  
— Ce x sin  
— Cxe x sinsin  
 
Интеграл   dxe x3  равен 

— Ce x  3

3
1  

— Ce x 3

3
1  

— Ce x 3  
— Ce x 33  
 
Интеграл  xdx2sin  равен 

— Cxx  )2sin(
2
1  

— Cxx  )2sin
2
1(

2
1  

— Cx


3
sin 3

 

— Cx


3
cos3

 

 

Интеграл   24 x
xdx  равен 

— C
x


 22 )4(2
1  

— Cx  24ln
2
1  



— Cx  24ln
2
1

 

— Cx  24ln2  
 

Интеграл dx
xx

x





53
32

2  равен 

— Cxx  53ln 2  

— Cxx  53ln
2
1 2  

— Cxxxx 
5

3ln
2

2  

— 
 

C
xx




22 532
1  

 

Интеграл  tgx
dx  равен 

— Ctgx ln  
— Cctgx   
— Cx  sinln  
— Cx sinln  
 

Интеграл  ctgx
dx  равен 

— Cctgx ln  
— Ctgx   
— Cx  cosln  

— Cx cosln  
 

Интеграл  xtg
dx

2  равен 

— Cxtgx   
— Cxctgx   

— C
tgx


1  

— Cxtgx   
 
Интеграл 

 
 323x
dx  равен 



— 
 

C
x




 2232
1  

— Cx  323ln  

— 
 

C
x




 2236
1  

— 
 

C
x


 42312

1  

 

Интеграл 
 x
dx

45
 равен 

— Cx





2
45  

—   Cx  45ln
2
1

 

— 
 

C
x





3456

1  

— Cx  452  
 

Интеграл 
 29 x

xdx  равен 

— Cx


3
arcsin  

— Cx  29  

— Cx





4
9 2

 

— Cx  29  
 

Интеграл  xdxx cos  равен 
— Cxxx  cossin  
— Cxxx  cossin  
— Cxxx  cossin  
— Cxxx  cossin  
  



ТЕМА 9. Определенные, несобственные и кратные интегралы 
 

Если функция интегрируема на отрезке  , где ba  , и m  и M – соответственно 
наименьшее и наибольшее значения на отрезке  , то 

— m ( –a )≤ ≤ M ( – a ) 

— m ( a –b)≤ 
b

a
dxxf )( ≤ M ( a –b) 

— m (b– a )≤ 
a

b
dxxf )( ≤ M (b– a ) 

— M (b– a )≤ 
b

a
dxxf )( ≤m (b– a ) 

 
Функция )(xfy  интегрируема на отрезке , если она 
— непрерывна на этом отрезке 
— монотонна на этом отрезке 
— неотрицательна на этом отрезке 
— положительна на этом отрезке 
 
Значение определенного интеграла зависит 
— только от отрезка  ba;  
— только от подынтегральной функции )(xf  
— от отрезка интегрирования  ba;  и от подынтегральной функции )(xf  
— от способа вычисления определенного интеграла 
 
Если функция )(xf интегрируема и неотрицательна на  ba; , гдеab , то значение 
определенного интеграла будет 
— положительным 
—  неотрицательным 
— отрицательным 
— любым 
 
Теорема о среднем значении определенного интеграла выполняется, если функция 
— имеет конечное число точек разрыва первого рода 
— ограничена на отрезке  ba;  
— неотрицательна на  ba;  
— непрерывна на отрезке  ba;  
 

Несобственный интеграл 


a
dxxf )( сходится, если 

—  


b

ab
dxxfLim )(  

 ba;
 ba;

b 
b

a
dxxf )( b

 ba;



— 


b

ab
dxxfLim )(  – конечное число 

—  


b

ab
dxxfLim )(  

— 


b

ab
dxxfLim )(  не существует 

 
Если F(x) – первообразная к функции f(x) на [a ,b], то значение определенного интеграла 

равно 

— F(a )–F(b) 
— F(x)+С 
— F(b)–F(a ) 
— F(x)–С 
 

Функция f(x) интегрируема на отрезке [1;8],  
8

1
13)( dxxf  и  

3

1
4)( dxxf . Тогда 

интеграл 
8

3
)( dxxf  равен 

— 9 
— –9 
— 17 
— –17 
 

Интеграл 
a

a
dxxf )(  равен 

— 0 
— 2f(a) 
— 2a 
— 1 
 
Если функция f(x) интегрируема на [a ,b], то f(x) интегрируема и на [b, a ] и выполняется 

— 
b

a
dxxf )( =– 

a

b
dxxf )(  

— 
b

a
dxxf )( =  

a

b
dxxf )(  

— 
b

a
dxxf )( =–  

a

b
dxxf )(  

— 
b

a
dxxf )( = 



a

b
dxxf )(  

 


b

a
dxxf )(



Несобственный интеграл 


a
dxxf )( расходится, если 

— 


b

ab
dxxfLim )( – конечное число 

—  


b

ab
dxxfLim )(  

— 0)( 


b

ab
dxxfLim  

— 


b

ab
dxxfLim )( – конечное отрицательное число 

 
Если фигура образуется кривыми )(1 xfy   и )(2 xfy   и на отрезке [a ,b], где 1xa   и 

2xb   )( 21 xx   – абсциссы точек пересечения двух кривых, )()( 12 xfxf  , то площадь 
этой фигуры определяется по формуле 

— dxxfxfS
b

a
))()(( 12   

— dxxfxfS
b

a
))()(( 12   

— dxxfxfS
b

a
))()(( 21  

— dxxfxfS
b

a
))()(( 21 

 
 
Определенный интеграл по частям вычисляется по формуле 

— 
b

a

b

a
vduuv |)(  

— 
b

a

b

a
udvuv |)(  

— 
b

a

b

a
vduuv |)(  

— 
b

a

b

a
uvduv )(|)(  

 
Выберите верное утверждение 

—   
b

a

c

a

b

c
dxxfdxxfdxxf )()()(  

—   
b

a

c

a

c

b
dxxfdxxfdxxf )()()(  

—   
b

a

c

a

b

c
dxxfdxxfdxxf )()()(  



—   
b

a

a

c

b

c
dxxfdxxfdxxf )()()(  

 
Для непрерывной на отрезке  ba; , где a , функции )(xf  найдется хотя бы одна точка 
t  такая, что 

—  
b

a
batfdxxf ))(()(  

—  


b

a ab
tfdxxf )()(  

—  
b

a
batfdxxf ))(()(  

—  
b

a
abtfdxxf ))(()(

 
 


b

a
dxxf )(  численно равен площади фигуры, образованной кривой )(xfy  , прямыми 

ax  , bx  , 0y )( ba  ,  если 
— 0)( xf  
— 0)( xf  
— )(xf  – возрастающая функция 
— 0)( xf  
 
Если фигура образована кривой )(xfy   )0)(( xf , прямыми ax  , bx  )( ba  , 

0y , то площадь этой фигуры равна 

— 
b

a
dxxf )(  

— 
a

b
dxxf )(  

— 
b

a
dxxf )(  

—  
b

a
dxxf ))(1(  

 
Если фигура образуется кривыми )(1 xfy   и )(2 xfy   и на отрезке [a ,b], где  1xa   и 

2xb   )( 21 xx   – абсциссы точек пересечения двух кривых, )()( 21 xfxf  , то площадь 
этой фигуры определяется по формуле 

—  dxxfxfS
b

a
))()(( 12   

b



— dxxfxfS
b

a
))()(( 12   

— dxxfxfS
b

a
))()(( 21  

— dxxfxfS
b

a
))()(( 21   

 

Если  
4

1
5)( dxxf , а  

6

4
3)( dxxf , то 

6

1
)( dxxf  равен 

— 2 
— –2 
— 15 
— 8 
 

Если  
5

0
10)( dxxf , а  

2

0
4)( dxxf , то 

5

2
)( dxxf  равен 

— 14 
— –6 
— 6 
— 3 
 

Если  
3

1
4)( dxxf , то  

3

1
)1)(( dxxf  равен 

— 4 
— 6 
— 32 
 

Если  
6

2
5)( dxxf , то  

6

2
))(1( dxxf  равен 

— 4 
— –4 
— –1 
— 1 
 

Если  
6

1
12)( dxxf , а  

6

3
7)( dxxf , то 

3

1
)( dxxf  равен 

— –5 
— 19 
— 3 
— 5 
 



Интеграл  
b

a
dxxfk ))((  равен 

— 
b

a
dxxfk )(  

— 
b

a
dxxf )(  

— 
b

a
dxxfkab )(  

— 
b

a
dxxfabk )()(  

 

Несобственным интегралом 


a
dxxf )(  непрерывной на  ;a  функции )(xf  называется 

— интеграл, который не дифференцируется 
— интеграл, который не вычисляется 

— конечный или бесконечный предел 

b

a
b

dxxf )(lim  

— интеграл, не имеющий первообразную 
 

Интеграл 


0

2

2
sin dxx

 равен 

— 
2
  

— 
2
1  

— 0 

— 
2

1  

 

Интеграл 




0

3 dxe x  равен 

—   

— 
3
1

  

— 0 

— 
3
1  

 

Интеграл 


0
21 x

dx  равен 



— 
2
  

— 
4
  

—   
—   
 

Несобственным интегралом 


b
dxxf )(  непрерывной на  b;  функции )(xf  называется 

— интеграл, не имеющий первообразную 
— интеграл, от которой не существует дифференциал 
— интеграл от возрастающей функции 

— конечный или бесконечный предел 

b

a
a

dxxf )(lim  

 

Интеграл 


2
24 x

dx  равен 

— 
4
  

—   

— 
8


  

— 
8
  

 

Интеграл 


1

0
24 x

dx  равен 

— 
12
  

— 
6
  

— 
3
  

— 
4
  

 

Интеграл 




1
3

2

4 x
dxx  равен 

— 5ln
3
1

  

— +  
—   



— 5
4ln

3
1

 

 

Интеграл 
1

0

2
xdxe x  равен 

— 
2

1e  

— 1e  

— 
2

1 e  

— 1–e 
 

Если  
4

2
7)( dxxf , то   

4

2
2)( dxxf  равен 

— 2 
— 5 
— 3 
— 10 
 

Интеграл 
3

4

2cos



 x
tgxdx  равен 

— 
3
1

  

— 2 
— 4 
— 1 
 

Интеграл xdxe x 
1

0

2
 равен 

— 
e
e

2
1  

— 
e

e1  

— 
e

e
2

1  

— 
e

e 1  

 

Интеграл 


2

0 24 x
xdx  равен 



—  212   

— 4ln
2
1  

— 
4
1ln

2
1

 

—  122   
 

Интеграл 
2

4

2




xdxctg  равен 

— 
4

4  

— 
3
1

  

— 
3
1  

— 
4

4   

 

Интеграл   
2

0
2cos



dxxx  равен 

— 
8

2  

— 
2

2  

— 
8

2
  

— 
8

42   

 

Интеграл   
4

0
2sin2



dxxx  равен 

— 
16

8 2  

— 
8

82   

— 
16

82   

— 
8

8 2  

 



Интеграл 
e

x
xdx

1

2ln
 равен 

— 
3
1  

— 0 
— 1 
— 3 
 

Интеграл 
2

0
cos



xdxx  равен 

— 
2

2   

— 
2

2  

— 
2

2
 

— 
2
  

  



ТЕМА 10. Числовые ряды 
 

Числовой ряд сходится, если 
— предел его общего члена равен нулю 
— последовательность его частичных сумм ограничена 
— последовательность его частичных сумм имеет конечный предел 
— члены ряда монотонно убывают по абсолютной величине 
 
 Числовой ряд с положительными членами сходится, если 
— сходится ряд, члены которого меньше членов данного ряда 
— сходится ряд, члены которого больше членов данного ряда 
— предел его общего члена равен нулю 
— этот ряд является гармоническим 
 
Согласно интегральному признаку сходимости, числовой ряд с положительными 

членами 


1n
na  расходится, если несобственный интеграл 



1
)( dxxf , где f(n)= na  

— больше 1 
— равен 1 
— равен конечному числу 
— является бесконечно большим 
 
Согласно признаку сравнения числовой ряд с положительными членами расходится, 
если 
— расходится гармонический ряд 
— расходится ряд, члены которого больше членов данного ряда 
— расходится ряд, члены которого меньше членов данного ряда 
— расходится ряд, составленный из членов геометрической прогрессии 
 

По признаку Даламбера, если 1lim 1 




n

n
n a

a
, то ряд  с положительными членами 

— сходится 
— расходится 
— сходится условно 
— может как сходиться, так и расходиться 
 
Если числовой ряд сходится, то предел общего члена ряда равен 
— 1 
— –1 
— 0 
— – 
 

Числовой ряд ...1...
3
1

2
11 

n
 называется 

— натуральным 



— гармоническим 
— сходящимся 
— рациональным 
 

В числовом ряде 


1 13
2

n n
n  предел общего члена равен 

— 0 
—  
— 1 

— 
3
2  

 

Общим  членом ряда  ...
7
8

5
6

3
4

1
2  будет 

— 
12

2
n

n

 

— n2  

— 
12

1
n

 

— 
12

2
n
n  

 

Гармонический ряд 


1

1
n n

 является 

— сходящимся 
— расходящимся 
— условно сходящимся 
— абсолютно сходящимся 
 

В числовом ряде 


1 123

2
n n

n  предел общего члена равен 

— 
3
2  

—  
— 0 
— 1 
 

Если числовой ряд 


1n
na  сходится, а С – постоянное число, то ряд 



1n
nCa  

— расходится 
— сходится или расходится 
— сходится только условно 
— сходится 
 



Если ряды 


1n
na  и 



1n
nb  сходятся, то 

— ряд )(
1

 


n
nn ba  сходится, а )(

1
 


n
nn ba  расходится 

— ряд )(
1

 


n
nn ba  сходится 

— ряд )(
1

 


n
nn ba  расходится 

— ряд )(
1

 


n
nn ba  сходится условно 

 
Необходимым признаком сходимости числовых рядов является 
— 0lim 

 nn
a  

— 
 nn

alim  

— 1lim 
 nn

a  

— 2lim 
 nn

a  
 
Числовой ряд расходится, если 
— предел его общего члена равен нулю 
— последовательность его частичных сумм имеет конечный предел 
— предел последовательности его частичных сумм бесконечен 
— число членов бесконечно 
 
Сумма членов бесконечной убывающей геометрической прогрессии определяется по 
формуле 
— nqb1  

— 
q

b
1

1  

— n
bb n 


2

1  

— )1(1  nqb  
 
Выражение ......321  naaaa  называется 
— последовательностью 
— числовым рядом 
— арифметической прогрессией 
— геометрической прогрессией  
 
Суммой ряда S называется 
— сумма первых n членов 
— конечный предел последовательности частичных сумм 
— предел общего члена ряда 



— остаток ряда 
 
Если в числовом ряде предел общего члена равен нулю, то ряд 
— обязательно расходится 
— обязательно сходится 
— может сходиться, а может расходиться 
— сходится абсолютно 
 
Если в числовом ряде предел общего члена не равен нулю, то ряд 
— сходится 
— расходится 
— может сходиться, а может расходиться 
— сходится условно 
 

Если несобственный интеграл 


1
)( dxxf  равен конечному числу, то согласно 

интегральному признаку сходимости числовой ряд с положительными членами 


1n
na , 

где )(nfan   
— сходится условно 
— расходится 
— сходится 
— может сходиться, а может расходиться 
 
Согласно признаку сравнения числовой ряд с положительными членами сходится, если 
— сходится ряд, составленный из членов геометрической прогрессии 
— сходится ряд, члены которого меньше членов данного ряда 
— члены данного ряда меньше членов другого ряда 
— сходится ряд, члены которого больше членов данного ряда 
 
Чтобы знакочередующийся числовой ряд сходился абсолютно, он должен 
— сходиться условно 
— расходиться 
— сходиться 
— расходиться условно 
 
Для исследования сходимости знакочередующихся рядов применяется 
— интегральный признак Коши 
— признак сравнения 
— признак Даламбера 
— признак Лейбница 
 
Признак Даламбера является достаточным признаком сходимости 
— знакочередующихся рядов 
— степенных рядов 
— рядов с положительными членами 



— гармонического ряда 
 
Интегральный признак Коши применяется для исследования сходимости 
— знакочередующихся рядов 
— числовых рядов с положительными, монотонно убывающими членами 
— степенных рядов 
— сходящихся рядов 
 

Если 0lim 
 nn

a , то ряд 


1n
na  

— сходится 
— сходится условно 
— расходится 
— сходится абсолютно 
 

Знакочередующийся ряд   






1

11
n

n
n a  сходится условно, если 

— он расходится 
— ряд расходится, а ряд, составленный из абсолютных  величин членов данного ряда, 
сходится 
— ряд сходится, и сходится ряд, составленный из абсолютных  величин членов данного 
ряда 
— ряд сходится, а ряд, составленный из абсолютных  величин членов данного ряда, 
расходится 
 
Знакочередующийся числовой ряд сходится абсолютно, если 
— сходится ряд, составленный из абсолютных  величин членов данного ряда 
— предел его общего члена по абсолютной величине равен нулю 
— члены ряда по абсолютной величине монотонно убывают 
— выполняется признак Лейбница 
 
Признак Лейбница является 
— необходимым признаком сходимости знакочередующихся рядов 
— достаточным признаком абсолютной сходимости знакочередующихся рядов 
— достаточным признаком расходимости рядов 
— достаточным признаком сходимости знакочередующихся рядов 
 

По признаку Даламбера, если 1lim 1 




n

n

n a
a

, то ряд с положительными членами 

— расходится 
— может как сходиться, так и расходиться 
— сходится 
— сходится условно 
 

В числовом ряде 




1

2

23n n
n  предел общего члена равен 



— 0 

— 
3
1  

—  

— 
3
2  

 
Сумма числового ряда существует , если ряд 
— сходится 
— расходится 
— содержит бесконечное число членов 
— содержит только положительные члены 
 
Если числовой ряд сходится, то его n-й остаток 
— стремится к бесконечности 
— равен нулю 
— стремится к нулю 
— стремится к единице 
 

Согласно признаку сравнения, числовой ряд 


1n
na сходится, если 

— 
n

an
1

  

— 
n

an
1

  

— 2
1

n
an   

— 2
1

n
an   

 
Одним их условий признака Лейбница сходимости знакочередующихся рядов является 
— nn aa 1  
— nn aa 1  
— nn aa 1  
— nn aa 1  
 

Числовой ряд 


 1 12
1

n n
 

— сходится по необходимому признаку сходимости 
— сходится по интегральному признаку 
— расходится 
— условно сходится 
 



Числовой ряд 


1 3
1

n n
 

— сходится 
— условно сходится 
— сходится абсолютно 
— расходится 
 

Числовой ряд 



1 12
12

n n
n  

— сходится условно 
— сходится абсолютно 
— сходится по необходимому признаку сходимости 
— расходится 
 

Числовой ряд 


1 3

1
n n

 

— расходится 
— сходится по признаку Даламбера 
— сходится по необходимому признаку 
— сходится по признаку сравнения 
 

Числовой ряд  









1

1

23
1

n

n

n
 

— расходится 
— сходится по признаку Даламбера 
— сходится по признаку Лейбница 
— абсолютно сходится 
 

Числовой ряд  









1

1

12
1

n

n

n
n  

— расходится 
— сходится по признаку Даламбера 
— сходится по признаку Лейбница 
— абсолютно сходится 
 

Ряд  




1 5
1

n
n

n n  

— расходится 
— сходится условно 
— сходится абсолютно 
— может как сходиться, так и расходиться 
 

Ряд 




1
2 12
1

n n
 



— расходится 
— сходится по признаку Лейбница 
— сходится по признаку Даламбера 
— сходится по интегральному признаку 
 

Числовой ряд  









1
2

1

1
1

n

n

n
 

— расходится 
— сходится абсолютно 
— сходится условно 
— может как сходиться, так и расходиться 
 

Сумма числового ряда 




1
2 3
1

n n
 

— равна конечному числу 
— не существует 
— бесконечна 
— равна нулю 
 

Сумма числового ряда 




1 1
1

n n
 

— равна конечному числу 
— бесконечна 
— равна нулю 
— равна 1 
 

Сумма числового ряда  








1

11
n

n

n
 

— не существует 
— бесконечна 
— равна конечному числу 
— равна 2 
 

Общим членом ряда ...
7
1

5
1

3
11   будет 

— 
12

1
n

 

—  
12

1 1


 

n

n

 

—  
12

1 1


 

n

n

 

— 
12

1
n

 

  



ТЕМА 11. Комплексные числа 
 

Число i  называется мнимой единицей, если 
— 12 i  

— 1
3

i  
— 1i  
— 14 i  
 
К комплексному числу iyx   сопряженным является комплексное число 
— ixy   
— iyx   
— ixy   
— yix   
 
Сумма комплексных чисел 111 iyxZ   и 222 iyxZ   определяется по формуле 
— )()( 122121 yxiyxZZ   
— )()( 212121 yyixxZZ   
— )()( 212121 yyixxZZ   
— 212121 yiyxxZZ   
 
Если iZ 32  , то 2Z  равно 
— 512 i  
— i1213  
— -5 
— 13 
 
Разность двух комплексных чисел 111 iyxZ   и 222 iyxZ   определяется по 
формуле 
— )()( 212121 yyixxZZ   
— 212121 yiyxxZZ   
— )()( 122121 yxiyxZZ   
— )()( 212121 yyixxZZ   
 
Произведение двух комплексных чисел 111 iyxZ   и 222 iyxZ   равно 
— )()( 1221212121 yxyxiyyxxZZ   
— )()( 1221212121 yxyxiyyxxZZ   
— 212121 yiyxxZZ   
— 212121 yiyxxZZ    
 
Если iyxZ  , то 2Z  равно 



— 22 2 yixyx   
— ixyyx 2)( 22   
— 22 yx   
— ixyyx 2)( 22   
 
 Если iyxZ   и iyxZ  , то ZZ  равно 
— 22 yx   

— )(
2
1 22 yx   

— )( 22 yx   
— 22 xy   
 
Если iyxZ  , то 2Z  равно 
— 22 yx   
— ixyyx 2)( 22   
— ixyyx  )( 22  
— ixyyx 2)( 22   
 
Выражение )23)(23( ii   равно 
— 5 
— 13 
— 9–4i 
— 9+4i 
 
Если iyxZ   и iyxZ  , то ZZ   равно 
— x2  
— )(2 iyx   
— 0 
— iy2  
 

Если iyxZ   и iyxZ  , то 
Z
Z  равно 

— –1 

— 22
21

yx
ixy


  

— 
22

21
yx

ixy


  

— 2222

22 2
yx

ixy
yx
yx





  



 
Если iyxZ  , то iZ  равно 
— ixy   
— 22 yx   
— )( ixy   
— ix  
 
Если iyxZ 21  , iyxZ  22 , то 21ZZ  равно 
— ixyyx 3)(2 22   
— )(2 22 yx   
— ixyyx 3)(2 22   
— )(2 22 yx   
 
Если iyxZ  , то 3Z  равно 
— 33 iyx   
— 33 yx   
— )3()3( 3223 yyxixyx   
— )3()3( 3223 yyxixyx   
 
Если iyxZ  , то 3Z  равно 
—  3223 3)3( yyxixyx   
— 33 yx   
— 33 yx   
— )3()3( 3223 yyxixyx   
 
Если i  – мнимая единица, то 3i  равно 
— i  
— –1 
— 1 
— i  
 
К комплексному числу iyx   сопряженным является комплексное число 
— ixy   
— ixy   
— iyx   
— iyx   
 
Если i   мнимая единица, то 4i  равно 
— –1 



— i  
— 1 
— i  
 
Если iyxZ 21  , iyxZ  22 , то 21 iZZ   равно 
— )(3 iyx   
— )(2)( yxiyx   
— )(2)( yxiyx   
— )(2)( yxiyx   
 
Если iyxZ   и iyxZ  , то ZiZ   равно 
— )()( yxiyx   
— )()( yxiyx   
— )()( yxiyx   
— )()( yxiyx   
 
Если iyxZ   и iyxZ  , то ZiZ   равно 
— )()( yxiyx   
— )()( yxiyx   
— )()( yxiyx   
— )()( yxiyx   
 
Если i – мнимая единица, то 5i  равно 
— i  
— i  
— 1 
— –1 
 
Если iyxZ  , то iZ  равно 
— ixy   
— ixy   
— yx   
— ix  
 
Сумма корней квадратного уравнения 01722  xx  равна 
— 2 
— 0 
— 4 
— –2 
 
Если 1x  и 2x  – корни квадратного уравнения 02562  xx , то 21 xx   равно 
— 25 



— –7 
— –1 
— 6 
 

Если 1x  и 2x  – корни уравнения 01342  xx , то 
2

1

x
x

 равно 

— –2 
— –3 

— i
13
12

13
5
  

— i
5

121  

 
Если 1x  и 2x  – корни уравнения 02582  xx , то  2

21 xx   равно 
— 0 
—  –36 
— 9 
— 36 
 
Если 1x  и 2x  – корни уравнения 02552  xx , то 21 xx   равно 
— 12,5 
— –12,5 
— 25 
— –25 
 
Если 1x  и 2x  – корни уравнения 01362  xx , то  2

21 xx   равно 
— 16 
— 0 
— –16 
— 36 
 
Если 1x  и 2x  – корни уравнения 092 x , то 21 xx   равно 
— 9 
— –9 
— 6 
— –6 
 
Если 1x  и 2x  – корни уравнения 05,1872  xx , то 21 xx   равно 
— 7 
— 14 
— 5 
— 0 
 



Если Z1 = 5 + 4i и Z2 = 3 + i , то 
2

1

Z
Z

 равно  

— 
3
5  + 4i 

— 1,1 + 0,7i 
— 1,9 + 0,7i 
— 

8
19  + 

8
7 i 

 

Если Z1 = 3 + 2i и Z2 = 6 – 4i , то 
2

1

Z
Z

 равно 

— 
2
1  – 

2
1 i 

— 
26
5 + 

13
6 i 

— 
2
1  + 

5
6 i 

— 
2
1  + 

13
6 i 

 

Если  Z1 = 6 – 5i и Z2 = 4 + 3i , то 
2

1Z – 2
2Z   равно 

— 24 – 24i 
— 36 – 84i 
— 4 – 84i 
— 16 – 24i 
 
Если Z = 3 + 4i, то 3Z равно 
— 171 – 172i 
— –117 – 44i 
— 27 – 64i 
— 27 + 64i 
 
Если Z = 3 – 2i, то 3Z равно 
— 27 – 8i 
— 63 + 46i 
— 27 + 8i 
— –9 + 46i 
 
Если Z1 = 1 – 2i и  Z2 = 2 + 3i , то 2

1Z · Z2 равно 
— 6 –17i 
— –6 – 9i 
— 10 + 15i 



— 6 + 17i 
 
Если Z1 = 4 + 3i и  Z2 = 2 – 3i , то 1Z · 2

2Z  равно 
— –28 – 21i 
— 88 – 9i 
— 48 + 33i 
— 16 – 63i 
 
Если  x1  и  x2  – корни уравнения 034102  xx  , то 2

2
2
1 xx   равно 

— 60i 
— 90i 
— 0 
— –36 
 
Если  x1  и  x2  – корни уравнения 040122  xx  , то 2

2
2
1 xx   равно 

— 72 
— 64 
— 48i 
— 12 
  



ТЕМА 12. Дифференциальные уравнения, интегрируемые в квадратурах 
  
 
Дифференциальным уравнением называется 
—  уравнение, связывающее независимую переменную, неизвестную функцию и ее 
производные 
— уравнение, содержащее производную независимой переменной 
— уравнение, которое легко интегрируется 
— уравнение, которое решается дифференцированием 
 
Решить дифференциальное уравнение  это означает 
— дифференцирование уравнения 
— интегрирование 
— нахождение независимой переменной 
— нахождение производной функции 
 
Дифференциальное уравнение называется линейным, если 
— неизвестная y в первой степени 
— все производные неизвестной функции  в первой степени 
— оно линейно относительно y и ее производных 
— решение записывается в виде явной функции 
 
Обыкновенным дифференциальным уравнением называется уравнение 
— которое просто интегрируется 
— которое содержит только независимую переменную и неизвестную функцию 
— в котором неизвестная функция зависит от двух переменных 
— в котором неизвестная функция зависит от одной переменной 
 
Число постоянных в общем решении дифференциального уравнения определяется 
— порядком дифференциального уравнения 
— старшей степенью неизвестной функции 
— видом правой части 
— старшей степенью независимой переменной 
 
Частным решением дифференциального уравнения первого порядка называется 
— решение при y = x 
— решение, получающееся из общего решения при определенном значении постоянной 
C  
— решение при y = x2 
— решение в виде частного двух функций 
 
Дифференциальным уравнением первого порядка называется 
— уравнение, в котором независимая переменная x в первой степени 
— уравнение, в котором неизвестная функция y  в первой степени 
— уравнение, которое содержит производную неизвестной функции только первого 
порядка 



— уравнение первой степени 
 
Дифференциальное уравнение называется линейным уравнением первого порядка, если 
— оно линейно относительно x и y 
— оно линейно относительно x и y' 
— сводится к уравнениям с разделяющимися переменными 
— оно линейно относительно y и y' 
 
Функция f (x, y) является однородной функцией своих аргументов k-го порядка, если 
— ),(),( yxfttytxf k  
— kxy   
— xy k   
— kxy   
 
Среди дифференциальных уравнений: 
а) xexyy  22 ;  б) xxyy 2sin5  ;  в) xeyyy 2 ;   г) tgx

y
xy 

3   

линейными дифференциальными уравнениями первого порядка являются уравнения 
— в) 
— б) 
— в,г) 
— а,в) 
 
Уравнение  y'= f (x, y) называется однородным, если 
— f (x, y) = 0 
— функция f (x, y) является однородной функцией своих аргументов нулевого порядка 
— все переменные в первой степени 
— функция  f (x, y) является однородной функцией своих аргументов первого порядка 
 
Из дифференциальных уравнений: 

а) y' + y = x; б)  y' – 2y = cos x; в) x
y
xy 2sin2  ; г) xexyy   

не является линейным дифференциальным уравнением первого порядка только 
уравнение 
— а) 
— б) 
— в) 
— г) 
 
Из дифференциальных уравнений: 
а) 22)( xyy  ; б) xexyy  2 ; в) xyyx sin3  ; г) xexyy 2  
является линейным уравнением первого порядка уравнение 
— а) 
— б) 
— в) 



— г) 
 
Из данных дифференциальных уравнений: 
а) xxyy cos3  ; б) yxyyx 2 ; в) xxyy 2sin2  ; г) 22 xyyyx   
является уравнением Бернулли уравнение 
— а) 
— б) 
— в) 
— г) 
 
Порядок дифференциального уравнения определяется 
— порядком наивысшей производной, входящей в уравнение 
— показателем степени независимой  переменной 
— показателем степени неизвестной функции 
— порядком расположения производной   
 
Решением дифференциального уравнения ),( yxfy   называется 
— любая непрерывная функция 
— функция )(xy  , которая при подстановке в это уравнение обращает его в тождество 
— любая дифференцируемая функция 
— любая интегрируемая функция 
 
В линейном уравнении )()( xqyxpy   функции p(x), q(x) являются 
— только возрастающими 
— неизвестными функциями 
— известными функциями независимой переменной x 
— одна из функций известная, другая неизвестная 
 
Общее решение дифференциального уравнения ),,( yyxfy   содержит 
— одну произвольную постоянную 
— четыре произвольные постоянные  
— три произвольные постоянные 
— две произвольные постоянные 
 
Из дифференциальных уравнений: 
а) xexyy 22  ; б) xyyy 2sin43  ; в) xxyy cos3 2  ; г) xxeyy  3   
линейным является уравнение 
— а) 
— в) 
— г) 
— б)  
 
Среди дифференциальных уравнений: 

а) xexyy  22 ;     б) xyyy sin22  ; в) x
y
xy cos2
 ;    г) xexyy 23   



линейными дифференциальными уравнениями первого порядка являются уравнения 
— а,в) 
— б,в) 
— а) 
— г) 
 
Под интегрированием дифференциального уравнения понимается 
— нахождение интеграла от правой части уравнения 
— решение дифференциального уравнения 
— нахождение интеграла от функции у 
— нахождение интеграла от переменной х 
 
Среди дифференциальных уравнений: 
а) ;23 2xyyx   б) xexyy 32  ; в) xxyy sin2  ; г) tgxxyy  33  
 линейным является уравнение 
— а) 
— б) 
— в) 
— г) 
 
Общее решение уравнения 0 yy  имеет вид 

— 
Cx

y



1  

— Cxy   
—  cxey   

— 
Cx

y 1
  

 
Если 1)0( y , то частное решение уравнения  0 yy  имеет вид 
— 1 xey  
— xey   
— 1 xey  
— xey 2  
 
Уравнение Бернулли имеет вид 
— ),( yxfy   
— )()( xqyxpy   
— )(21 xfyayay   
— nyxqyxpy )()(   
 
Уравнение Бернулли является линейным уравнением при 
— 2n  



— 1n  
— 3n  
— 0n  
 
Общее решение уравнения 0ln  xyx  имеет вид 
— Cxy  2ln  

— Cxxy  )1ln2(
4

2

 

— Cxy 
2

ln2

 

— )ln(Cxy   
 
Уравнение nyxqyxpy )()(   называется 
— линейным 
— линейным уравнением первого порядка 
— уравнением n-го порядка 
— уравнением Бернулли 
 
Дифференциальное уравнение )()( xqyxpy   называется 
— уравнением Бернулли 
— однородным 
— линейным уравнением первого порядка 
— уравнением с разделяющимися переменными 
 
Общее решение уравнения Бернулли nyxqyxpy )()(   содержит 
— n произвольных постоянных 
— две произвольные постоянные 
— бесконечное число произвольных постоянных 
— одну произвольную постоянную 
 
Порядком дифференциального уравнения называется 
— старшая степень неизвестной функции 
— порядок наивысшей производной, входящей в уравнение 
— старшая степень независимой переменной x 
— порядок наименьшей производной, входящей в уравнение 
 
Начальное условие дифференциального уравнения ),( yxfy   будет задано, если в 
уравнении 
— известно одно из решений 
— известно общее решение 
— известно значение функции y  при 0xx   
— правая часть постоянна 
 



Начальное условие 00 )( yxy   в дифференциальном уравнении ),( yxfy   задается для 
определения 
— общего решения 
— частного решения 
— правой части этого уравнения 
— порядка уравнения 
 
Если 1)0( y , то частное решение уравнения 02  yy  имеет вид 
— 12  xey  
— 12  xey  
— xey 2  
— 12  xey  
 
Общее решение уравнения 0ln2  xyx  имеет вид 
— Cxy  2ln2  
— Cxy  2ln2  
— Cxy  2ln4  
— Cxy  2ln  
 
Если   21 y , то частное решение уравнения 0ln3 2  xyx  имеет вид 
— 2ln3  xy  
— 2ln9 3  xy  
— 2ln6  xy  
— 2ln3 3  xy  
 

Общее решение уравнения 0
2


 xe
x
y  имеет вид 

— Cey x 
2

 

— Cey x 
2

2
1  

— Cey x 
2

2  

— Cey x  12

2
1  

 

Если  
e

y 21  , то частное решение уравнения 02
2


 xe
x
y  имеет вид 

— 
e

ey x 12
   

— 
2

2 xey   



— 
e

ey x 12
  

— 
e

ey x 24
2
   

 

Общее решение уравнения 0sin
cos

2 


x
x

y  имеет вид 

— Cxy  3sin3  
— Cxy  sin2  

— Cxy 
3

sin 3

 

— Cxy 
3

sin 3

 

 
Если 1)0( y , то частное решение уравнения 0 xye x  имеет вид 
— xx exey    
— 3  xx exey  
— 1  xx exey  
— 2  xx exey  
 

Если 2)
4

( 
y , то частное решение уравнения 02cos2  tgxyx  имеет вид 

— xtgy 22  
— 24 2  xtgy  

— 
2
3

cos
1

2 
x

y  

— 12  xtgy  
 
Уравнение Бернулли является уравнением с разделяющимися переменными при 
— 1n  
— 1n  
— 0n  
— 2n  
 
Из данных дифференциальных уравнений  

 1) 
y
x

x
yy  ;   2)   xexy

dx
dyx  sin3 ; 

 3) xyxyy cos23  ;   4) 022  yx
dx
dy  

уравнениями Бернулли являются только 
— 3),4) 



— 2) 
— 1),3) 
— 1),4) 
 
Решением дифференциального уравнения 1 ytgxy  является функция 

— 
x

y
cos

1
  

— tgxy   
— tgxy   
— ctgxy   
 
Интегральная кривая, которая определяет решение уравнения 1 yyx  при   11 y , 
имеет вид 

                             
— A 
— B 
— C 
— D 
 
Из данных дифференциальных уравнений 
 1) 0232 2  yxy ;  2)    dxyxdyyx 223  ; 
 3) 022  yyx ;   4) 32 yeyxyy x  
уравнениями с разделяющимися переменными являются 
— 3) 
— 1),2) 
— 2),4) 
— 1),4) 
 
Решением дифференциального уравнения xxyy 22   является функция 

— 
2

1 xey   

— 
2xey   

 

 

 

 

 

 

 

 

 

 

 



— 
2

1 xey   

— 
2

1 xey   
 
Интегральная кривая, соответствующая решению дифференциального уравнения 

3 yyx  при   31 y , имеет вид 

  
— C 
— B 
— D 
— A 
 

Решением дифференциального уравнения 
x

e
x
yy

x 1
  является функция 

— 1 nxy   

— 1


x
ey

x

 

— 1


x
ey

x

 

— 1
x

ey
x

 

 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 
 

 

  

2 

0 

-4 

3 

 
 

Интегральная кривая, соответствующая решению дифференциального уравнения 
4 yyx  при   62 y , имеет вид 

               
               
               
               
               
              -2 
    
               
               
               
               
               
               
— A 
— C 
— D 
— B                                                                                                                                             
 
Решением дифференциального уравнения xeyy 23  является функция 
—  xey 2  
— xey   
— xx eey  2  
— xx eey  2  
 
Интегральная кривая, которая определяет решение уравнения   yyx  2  при   40 y
, имеет вид 
                                                     y     D 
              B       

                      C     
 4                                                                                   
      
 

 -2        0  1   2                        x    
                  
                  -2         
                 
                                                                         -4 
— С 
— В 
— D 
— А 
 



Решением дифференциального уравнения 1 yсtgxy  является функция 

— 
x

ctgxy
sin

1
  

— 
x

tgxy
sin

1
  

— 1
cos

1


x
y  

— 
x

ctgxy
sin

1
  

 
Из данных дифференциальных уравнений 

 1)   043  dxydyyx ;  2) dxxydy
e x

2
2

1



; 

 3) 04 2  yxy ;   4)   0133  yxyy  
уравнениями с разделяющимися переменными являются только 
— 1),3) 
— 2),4) 
—  2),3) 
— 1),4) 
 

Решением дифференциального уравнения 2
32
x

y
x

y   является функция 

— 12  xy  

— 2
1
x

y   

— 
x

y 1
  

— 2xy   
 

Функция 32

3

),(
yyx

xyxf


  является однородной функцией 

— 3-го порядка 
— 6-го порядка 
— 0-го порядка 
— 1-го порядка 
 
Общее решение уравнения xey 2''  имеет вид 

— 21
2

2
1 CxCey x   

— 21
2

4
1 CxCey x   

— Cxey x  2  



— 21
24 CxCey x   

 

Общее решение уравнения 2
cos'' xy   имеет вид 

— 212
cos

4
1 CxCxy   

— 212
cos

4
1 CxCxy   

— 212
cos4 CxCxy   

— 212
cos4 CxCxy   

 

Общее решение уравнения 2

1''
x

y   имеет вид 

— 214

1 CxC
x

y   

— 21ln CxCxy   

— 214

1 CxC
x

y   

— 21ln CxCxy   
 

Общее решение уравнения 2''
x

ey


  имеет вид 

— 21
2

4
1 CxCey

x




 

— 21
24 CxCey
x




 

— 21
2

4
1 CxCey

x




 

— 21
24 CxCey
x




 
 
Если y(1) = 0, то частное решение уравнения xy′ – x = y имеет вид 
— )ln( xexy   

— xxy ln  
— xy ln  

— 11


x
y  

 
Функция 323 3),( yyxxyxf   является однородной функцией 
— 8-го порядка 
— 6-го порядка 



— 3-го порядка 
— 0-го порядка 
 
Общее решение уравнения xy″ – y′ = 0 имеет вид 

— 2
2

12
1 CxCy   

— 21

2

2
CxCxy   

— 2
2

12 CxCy   
— 21

22 CxCxy   
 
Общее решение уравнения xy″ + y′ = 0 имеет вид 

— 2
2

12
1 CxCy   

— 21 ln CxCy   
— 21

2 CxCxy   

— 21

2

2
CxCxy   

 
Если y(1) = 1, то частное решение уравнения xy′ + x = y имеет вид 

— x
xy 1ln  

— x
exy ln  

— 22  xy  
— 2exy   
 
Общее решение уравнения y″ = sin2x имеет вид 
— 212sin4 CxCxy   

— 212sin
4
1 CxCxy   

— 212sin4 CxCxy   

— 212sin
4
1 CxCxy   

 
Общее решение уравнения y′ + 2x = 2xy имеет вид 
— Cxy  22  

— 1
2

 Cxey  
— Cxy  2  

— 1
22  Cxey  

 



Из данных дифференциальных уравнений 

 1) 12  xeyyx ;     2) 2

3

x
yy  ; 

 3) 032  yxyy ;     4) 0232 2  yx
dx
dy  

уравнениями с разделяющимися переменными являются только 
 
— 1), 2) 
— 1), 3) 
— 2), 3) 
— 2), 4) 
 
Из данных дифференциальных уравнений 

 1) 023  yxyy ;     2) 3

3

x
y

x
yy   

 3) xeyyyx 22  ;    4) 0232 2  yxy  
уравнениями Бернулли являются только 
— 1), 3) 
— 2), 3) 
— 2), 4) 
— 1), 4) 
  



ТЕМА 13. Линейные дифференциальные уравнения 2-го порядка с постоянными 
коэффициентами 

 
Общее решение дифференциального уравнения )(21 xfyayay   содержит 
— две произвольные постоянные 
— три произвольные постоянные 
— одну произвольную постоянную 
— четыре произвольные постоянные 
 
Общее решение однородного уравнения 096  yyy  имеет вид 
— xx eCeCy 3

2
3

1    
— xeCCy 3

21 )(   
— xexCCy 3

21 )(   
— xeCCy 3

21 )(   
 
Вид частного решения линейного неоднородного дифференциального уравнения 2-го 
порядка с постоянными коэффициентами зависит от 
— вида правой части и корней характеристического уравнения 
— порядка этого уравнения 
— общего решения однородного дифференциального уравнения 2-го порядка 
— произвольных постоянных 
 

Если 







 const

y
yyy

2

1
21,

 
– решения уравнения 021  yayay  и 21,СC   некоторые 

постоянные, то общее решение этого уравнения имеет вид 
— 211 CyCy   
— 2211 yCyCy   
— )/()( 2121 yyCCy   
— 

2

2

1

1

y
C

y
Cy   

 
Характеристическое уравнение для линейного однородного уравнения 021  yayay  
имеет вид 
— 21

2 arar   
— 0)( 21

2  aarr  
— 021

2  arar  
— 012

2
1  rara  

 
Общее решение однородного дифференциального уравнения 043  yyy  имеет вид 
— xexCCy 2

21 )(   
— xx eCeCy 2

4
1    



— xCxCy sin4cos 21   
— xCxCy 4cossin 21   
 
Общее решение однородного дифференциального уравнения 0168  yyy  имеет 
вид 
— xCxCy 4sin4cos 21   
— xxCCy 4sin)( 21   
— xexCCy 4

21 )(   
— xx eCeCy 4

2
4

1    
 
Общее решение уравнения 054  yyy  имеет вид 
— xx eСeСy 2

5
1    

— xx eСeСy 5
21    

—   xexССy 4
21   

— xСxСy 5sincos 21   
 
Общее решение уравнения 054  yyy  имеет вид 
—  xСxСey x sincos 21

2    
—  xСxСey x 2sin2cos 21   
—  xССey x

21
2    

—  xССey x
21 2  

 
Общее решение уравнения 0136  yyy  имеет вид 
—   xexССy 3

21   
— xx eСeСy 2

2
3

1   
—  xСxСey x 2sin2cos 21

3   
—  xСxСey x 3sin3cos 21

2   
 
Общее решение линейного однородного дифференциального уравненияy″ + y′ – 20y = 0 
имеет вид 
— xx eCeCy 4

2
5

1   
— xx eCeCy 4

2
5

1    
— xx eCeCy 4

2
5

1
   

— xx eCeCy 4
2

5
1

  
 
Общее решение линейного однородного дифференциального уравнения  
y″ – 2y′ – 15y = 0 имеет вид 
— xx eCeCy 5

2
3

1
   



— xx eCeCy 5
2

3
1    

— xx eCeCy 5
2

3
1   

— xx eCeCy 5
2

3
1

  
 
Общее решение линейного однородного дифференциального уравнения 
y″ – 7y′ + 12y = 0 имеет вид 
— xx eCeCy 4

2
3

1
   

— xx eCeCy 4
2

3
1    

— xx eCeCy 4
2

3
1   

— xx eCeCy 4
2

3
1

  
 
Общее решение уравнения  y″ + 14y′ + 49y = 0  имеет вид 
— xCxCy 7sin7cos 21   
— xx eCeCy 7

2
7

1
  

—   xexCCy 7
21   

—   xexCCy 7
21

  
 
Общее решение уравнения y″ – 16y′ + 64y = 0 имеет вид 
— xx eCeCy 8

2
8

1
  

— xCxCy 8sin8cos 21   
—   xexCCy 8

21   
—   xxCCy 8sin21   
 
Общее решение уравнения  y″ + 8y′ + 25y = 0 имеет вид 
—  xCxCey x 4sin4cos 21

3   
—  xCxCey x 4sin4cos 21

3    
— xx eCeCy 3

2
4

1    
—  xCxCey x 3sin3cos 21

4    
 
Общее решение уравнения y″ + 16y = 0 имеет вид 
— xCxCy 4sin4cos 21   
—   xexCCy 4

21   
— xx eCeCy 4

2
4

1
  

—  xCxCey x 4sin4cos 21
4  

 
 
Общее решение уравнения 03  yy  имеет вид 
— xeCy 3

1  
— xeCCy 3

21 )(   



— xeCCy 3
21   

— xCy 13  
 
Общее решение уравнения 09  yy  имеет вид 
— xx eCeCy 3

2
3

1
  

— xCxCy 3sin3cos 21   
— xexCCy 3

21 )(   
— )3sin3cos( 21

3 xCxCey x    
 
Общее решение уравнения 016  yy  имеет вид 
— xeCCy 4

21   
— xexCCy 4

21 )(   
— xCxCy 4sin4cos 21   
— xx eCeCy 4

2
4

1    
 
Общее решение уравнения  y″ + 4y′ = 0 имеет вид 
— xexCCy 4

21 )(   
— xeCCy 4

21 )(   
— xeCCy 4

21
  

— xx eCeCy 4
2

4
1    

 
Если  r1 = –2 , r2 = 3 – корни характеристического уравнения некоторого линейного 
однородного дифференциального уравнения 2-го порядка с постоянными 
коэффициентами, то данное уравнение имеет вид 
—  y″ – y′ – 6y = 0 
— y″ + y′ – 6y = 0 
— y″ – y′ – 6 = 0 
— y″ + y′ – 6 = 0 
 
Если r = 4 ± 3i – корни характеристического уравнения некоторого линейного 
однородного дифференциального уравнения 2-го порядка с постоянными 
коэффициентами, то данное уравнение имеет вид 
— y″ + 8y′ + 25y = 0 
— y″ – 25y′ + 8y = 0 
— y″ – 8y′ + 25y = 0 
— y″ + 25y′ + 8y = 0 
 
Если r1 = r2 = 4 – корни характеристического уравнения некоторого линейного 
однородного дифференциального уравнения 2-го порядка с постоянными 
коэффициентами, то данное уравнение имеет вид 
— y″ – 4y′ = 0 
— y″ – 8y′ + 16y = 0 



— y″ – 4y = 0 
— y″ + 8y′ + 16y = 0 
 
Общее решение уравнения 2y″ + 8y = 0 имеет вид 
— )4sin4cos( 21

2 xCxCey x   
— xx eCeCy 4

2
4

1    
— xx eCeCy 2

2
2

1    
— )2sin2cos 21 xCxCy   
 
Если r1 = –3 , r2 = –2 – корни характеристического уравнения некоторого линейного 
однородного дифференциального уравнения 2-го порядка с постоянными 
коэффициентами, то данное уравнение имеет вид 
— y″ – 5y′ + 6y = 0 
— y″ – 6y′ + 5y = 0 
— y″ + 6y′ + 5y = 0 
—  y″ + 5y′ + 6y = 0 
 
Если r = 3 ± 5i – корни характеристического уравнения некоторого линейного 
однородного дифференциального уравнения 2-го порядка с постоянными 
коэффициентами, то данное уравнение имеет вид 
— y″ + 6y′ + 34y = 0 
— y″ + 6y′ + 16y = 0 
— y″ – 6y′ + 16y = 0 
— y″ – 6y′ + 34y = 0 
 
Если r1 = r2 = –5 – корни характеристического уравнения некоторого линейного 
однородного дифференциального уравнения 2-го порядка с постоянными 
коэффициентами, то данное уравнение имеет вид 
— y″ – 5y′ = 0 
— y″ + 10y′ + 25y = 0 
— y″ – 5y = 0 
— y″ – 10y′ + 25y = 0 
 
Общее решение уравнения 2y″ – y′ – 3y = 0 имеет вид 

— 
xx eCeCy 2

3

21    
— xx eCeCy 3

2
2

1    

— )
2
3sin

2
3cos( xBxAey x    

— )
2
3sin

2
3cos( xBxAxey x    


