
Глава 1

Операционное исчисление.

1. Определение преобразования Лапласа.

Преобразование Лапласа ставит в соответствие функции f(t) действитель-
ной переменной t функцию F (p) комплексной переменной p = x + iy с
помощью соотношения

F (p) =

∞∫
0

e−ptf(t)dt.

Естественно, что не для всякой функции f(t) этот интеграл имеет смысл.
Поэтому начнём с определения класса функций f(t), для которых данное пре-
образование заведомо реализуемо.

Будем рассматривать функции f(t), определённые для всех значений дей-
ствительной переменной −∞ < t < +∞ и удовлетворяющие следующим усло-
виям:

1. При t < 0 f(t) ≡ 0.
2. При t ≥ 0 функция f(t) на любом конечном участке оси t имеет не

более чем конечное число точек разрыва первого рода.
3. При t → ∞ функция f(t) имеет ограниченную степень роста, то есть

для каждой функции рассматриваемого класса существуют такие положитель-
ные постоянные M и a, что для всех t > 0

|f(t)| ≤ Meat. (1)

Точная нижняя грань тех значений a, для которых имеет место неравенство
(2), называется показателем степени роста функции f(t).

Отметим, что функция f(t) может быть и комплексной функцией действи-
тельной переменной t : f(t) = f1(t) + i f2(t), где f1(t) и f2(t) - действи-
тельные функции.

Введём основное определение.
Определение. Преобразованием Лапласа заданной функции f(t) дей-

ствительной переменной t называется преобразование, ставящее в соответ-
ствие функции f(t) функцию F (p) комплексной переменной p = x + iy,
определённую с помощью интеграла

1



Глава 1. Операционное исчисление. 2

F (p) =

∞∫
0

e−ptf(t)dt. (2)

.
Этот интеграл является несобственным интегралом, зависящим от перемен-

ной p как от параметра.
Ясно, что e−pt = e−(x+iy)t = e−xte−iyt = e−xt(cos yt− i sin yt), а |e−pt| =

e−xt → 0 при t →∞, если x = Re p > 0.
Естественно поставить вопрос об области сходимости интеграла (2), и, тем

самым, об области определения функции F (p).

Теорема 1. Интеграл F (p) =
∞∫
0

e−ptf(t)dt сходится в области Re p > a,

где a - показатель степени роста функции f(t), причём в области Re p ≥
x0 > a этот интеграл сходится равномерно.

Легко показать, что сходимость интеграла (2) означает, что |F (p)| → 0 при
Re p →∞.

Класс функций, допускающих преобразование Лапласа, можно расширить,
если воспользоваться следующей леммой.

Лемма. Пусть функция f(t) действительной переменной t определена
для всех t ≥ 0, и пусть существует такое комплексное число p0, что сходится
интеграл

∞∫
0

e−p0tf(t)dt < M. (3)

Тогда для всех p, удовлетворяющих условию Re p > Re p0 сходится
интеграл

∞∫
0

e−ptf(t)dt. (4)

На основании этой леммы можно в качестве основного класса функций f(t)
действительной переменной t, для которых строится преобразование Лапласа
(2), рассматривать функции, удовлетворяющие условию (3).

Функция F (p) называется изображением Лапласа функции f(t). Функ-
ция f(t) называется оригиналом функции F (p). Связь функций f(t)

и F (p) символически обозначается следующим образом: f(t)
dots= F (p) или

F (p)
dots= f(t).

Наиболее важным классом функций комплексной переменной являются ана-
литические функции.

Теорема 2. Изображение Лапласа (2) функции f(t) является аналитиче-
ской функцией комплексной переменной p в области Re p > a, где a -
показатель степени роста функции f(t).

2. Изображение элементарных функций.

Пользуясь определением (2), найдём изображение ряда элементарных функ-
ций действительной переменной.



Глава 1. Операционное исчисление. 3

1. Единичная функция Хевисайда. Пусть f(t) = η(t) =
{

0, t < 0,
1, t > 0.

Тогда f(t)
dots= F (p) =

∞∫
0

e−ptdt = 1
p , причём функция F (p), очевидно, опреде-

лена в области Re p > 0. Таким образом,

η(t) =
{

0, t < 0
1, t > 0

dots=
1
p
, Re p > 0. (5)

2. Показательная функция. f(t) = eαt. Вычисляя интеграл (2), получим:

F (p) =
∞∫
0

e−pteαtdt = 1
p−α . Таким образом,

eαt dots=
1

p− α
, Re p > Re α. (6)

3. Степенная функция. f(t) = tν , ν > −1. В этом случае интеграл (2)
имеет вид

F (p) =

∞∫
0

e−ptf(t)dt =

∞∫
0

e−pttνdt, Re p > 0. (7)

Отметим, что при ν < 0 этот интеграл не удовлетворяет второму условию,
налагаемому на функцию-оригинал f(t) : точка t = 0 является точкой разры-
ва второго рода этой функции. Однако, как легко видеть, при ν > −1 рассмат-

риваемый интеграл относится к классу интегралов F̃ (p) = p
∞∫
0

e−ptf(t)dt, от-

личающихся от преобразования Лапласа дополнительным множителем p. Ука-
занное преобразование называется преобразованием Хевисайда. Очевидно,
что область определения функции F̃ (p) та же, что и для функции F (p).

Перейдём к вычислению интеграла (7). Начнём со случая, когда переменная
p принимает действительное значение p = x > 0. Сделав замену переменной
интегрирования xt = s, получим

F (x) =

∞∫
0

e−xttνdt =
1

xν+1

∞∫
0

e−ssνds =
Γ(ν + 1)

xν+1
, (8)

где Γ(ν + 1) - гамма-функция Эйлера.
Далее отметим справедливость следующего утверждения: пусть на отрезке

[a, b] действительной оси x задана непрерывная функция f(x) действи-
тельной переменной; тогда в некоторой области G комплексной плоскости,
содержащей отрезок [a, b] действительной оси, может существовать только
одна аналитическая функция f(z) комплексной переменной z, принимающая
данные значения f(x) на отрезке [a, b]. Функция f(z) называется анали-
тическим продолжением функции f(x) действительной переменной x
в комплексную область G.

Так как функция F (p), определённая формулой (7), является аналитиче-
ской в области Re p > 0, имеющей на положительной части действительной
оси x > 0; значение (8), то, в силу единственности аналитического продолже-
ния для функции F (p) в области Re p > 0, получим выражение
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F (p) =

∞∫
0

e−pttνdt = Γ(ν + 1)
/
pν+1. (9)

При этом в случае дробных ν следует выбирать ту ветвь многозначной функции
1
/
pν+1, которая является непосредственным аналитическим продолжением в

область Re p > 0 действительной функции 1
/
xν+1. Итак,

tν
dots= Γ(ν + 1)

/
pν+1, ν > −1, Rep > 0. (10)

Для целых ν = n из формулы (10) получим

tn
dots= Γ(n + 1)

/
pn+1 = n!/

pn+1. (11)

Вычисляя интеграл (2), можно получить изображение ещё ряда функций дей-
ствительной переменной, однако во многих случаях для вычисления изображе-
ния заданной функции удобнее, оказывается, пользоваться общими свойствами
изображения Лапласа.

3. Свойства изображения.

Свойство 1. Линейность изображения. Если Fi(p)
dots= fi(t), Rep >

ai, (i = 1, 2, ..., n), то, в силу известных свойств определенных интегралов,
имеем:

F (p) =
n∑

i=1

αiFi(p)
dots=

n∑
i=1

αifi(t), Re p > max ai, (12)

где αi - заданные постоянные числа, действительные или комплексные, а ai -
показатели степени роста функций fi(t).

Данное свойство позволяет по найденным изображениям функций найти изображения много-
члена, тригонометрических и гиперболических функций. Например, с помощью (6) получим

cos ωt =
1

2

(
eiωt + e−iωt

) dots
=

1

2

(
1

p− iω
+

1

p + iω

)
=

p

p2 + ω2
, Re p > |Im ω| . (13)

Аналогично,

sin ωt
dots
=

ω

p2 + ω2
, Re p > |Im ω| . (14)

Свойство 2. Пусть F (p)
dots= f(t), Re p > a, тогда

1
α

F
( p

α

)
dots= f(αt). (15)

Действительно,
∞∫
0

e−ptf(αt)dt = 1
α

∞∫
0

e−
p
α τf(τ)dτ = 1

αF ( p
α ).

Свойство 3. Теорема запаздывания. Пусть F (p)
dots= f(t), Re p > a, и

задана функция fτ (t) =
{

0, t < τ, τ > 0,
f(t− τ), t ≥ τ.

Тогда

fτ (t)
dots= Fτ (p) = e−pτF (p). (16)

Действительно, Fτ (p) =
∞∫
0

e−ptfτ (t)dt =
∞∫
τ

e−ptf(t− τ)dt. Сделаем в по-

следнем интеграле замену переменной, положив t − τ = t′. Тогда Fτ (p) =
∞∫
0

e−p(t′+τ)f(t′)dt′ = e−pτF (p), что и доказывает свойство 3.
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В качестве примера рассмотрим изображение ступенчатой функции

f(t) =

{
0, t < τ,
nf0, nτ ≤ t < (n + 1)τ, n = 1, 2, ...

Представим f(t) с помощью единичной функции Хевисайда η(t) :

f(t) = f0 [η(t− τ) + η(t− 2τ) + ... ] .

Использовав свойство линейности и теорему запаздывания, получим:

f(t)
dots
= F (p) = f0e−pτ 1

p
+ f0e−2pτ 1

p
+ ... =

f0

p

e−pτ

1− e−pτ
.

Свойство 4. Изображение производной. Сейчас мы докажем одно из
основных свойств изображения, позволяющее заменить дифференцирование
оригинала умножением изображения на независимую переменную.

Если функция f ′(t) удовлетворяет условиям существования изображения

и f(t)
dots= F (p), Re p > a, то

f ′(t)
dots= pF (p)− f(0), Re p > a. (17)

Действительно, интегрируя по частям, получим: f ′(t)
dots=

∞∫
0

e−ptf ′(t)dt =

e−ptf(t)|∞0 + p
∞∫
0

e−ptf(t)dt = pF (p)− f(0), что и требовалось.

Аналогично может быть доказано
Свойство 4∗. Если функция f (n)(t) удовлетворяет условиям существо-

вания изображения и f(t)
dots= F (p), Re p > a, то

f (n)(t)
dots= pn

[
F (p)− f(0)

p
− f ′(0)

p2
− ...− f (n−1)(0)

pn

]
, Re p > a. (18)

Формула (18) особенно упрощается в том случае, когда f(0) = f ′(0) =
... = f (n−1)(0) = 0 :

f (n)(t)
dots= pn · F (p). (19)

Свойство 5. Изображение интеграла. Пусть F (p)
dots= f(t), Re p > a,

тогда

t∫
0

f(τ)dτ
dots=

1
p
F (p), Re p > a. (20)

Действительно, используя формулу (2) и меняя, далее, порядок интегриро-

вания, получаем
t∫
0

f(τ)dτ
dots=

∞∫
0

e−pt

(
t∫
0

f(τ)dτ

)
dt =

∞∫
0

f(τ)
(∞∫

τ

e−ptdt

)
dτ =

1
p

∞∫
0

e−pτf(τ)dτ = 1
pF (p), что и доказывает формулу (20).

Аналогичным образом может быть доказано

Свойство 5∗. Пусть F (p)
dots= f(t), Re p > a, тогда
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t∫
0

dt1

t1∫
0

dt2...

tn−1∫
0

f(tn)dtn
dots=

1
pn

F (p), Re p > a. (21)

Свойство 6. Изображение свёртки. Свёрткой функций f1(t) и f2(t)
называется функция ϕ(t), определённая соотношением

ϕ(t) =

t∫
0

f1(τ)f2(t− τ)dτ =

t∫
0

f1(t− τ)f2(τ)dτ. (22)

Если f1(t)
dots= F1(p), Re p > a1, f2(t)

dots= F2(p), Re p > a2, то

ϕ(t) =

t∫
0

f1(τ)f2(t− τ)dτ
dots= F1(p) · F2(p), Re p > max(a1, a1). (23)

Для вычисления изображения свёртки воспользуемся формулой (2) и изме-
ним порядок интегрирования:

∞∫
0

e−pt

 t∫
0

f1(τ)f2(t− τ)dτ

dt =

∞∫
0

f1(τ)dτ

∞∫
τ

e−ptf2(t− τ)dt.

Сделав замену переменных t − τ = t′ во внутреннем интеграле, окончательно
получим

t∫
0

f1(τ)f2(t− τ)dτ
dots=

∞∫
0

e−pτf1(τ)dτ

∞∫
0

e−pt′f2(t′)dt′ = F1(p) · F2(p),

что и требовалось доказать.
Аналогично доказывается формула Дюамеля:

p · F1(p) · F2(p)
dots= f1(0) · f2(t) +

t∫
0

f ′1(τ)f2(t− τ)dτ.

Свойство 7. Дифференцирование изображения. Пусть F (p)
dots= f(t),

Re p > a, тогда

F ′(p)
dots= − t · f(t), Re p > a. (23)

Действительно, F ′(p) = d
dp

∞∫
0

e−ptf(t)dt = −
∞∫
0

e−pt · t · f(t)dt
dots= − t · f(t),

что и утверждается.

Свойство 7∗. Пусть F (p)
dots= f(t), Re p > a, тогда

F (n)(p)
dots= (−1)n · tn · f(t). (24)
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Свойство 8. Интегрирование изображения. Если функция f(t)/t удо-

влетворяет условиям существования изображения и F (p)
dots= f(t), Re p > a,

то
f(t)

t

dots=
∞∫
0

e−pt f(t)
t

dt =

∞∫
p

F (q)dq. (25)

Обозначим

I(p) =

∞∫
0

e−pt f(t)
t

dt. (26)

Найдём производную функцию I(p), дифференцируя интеграл (26) по пара-

метру: I ′(p) = −
∞∫
0

e−ptf(t)dt = −F (p). Отсюда, учитывая очевидное условие

I(∞) = 0, получим: I(p) = I(∞)−
p∫
∞

F (p)dp =
∞∫
p

F (p)dp.

В качестве примера найдём изображение функции sin ωt
t

. Так как sin ωt
dots
= ω

p2+ω2 , то

sin ωt

t

dots
=

∞∫
p

ω

p2 + ω2
dp =

π

2
− arctan

p

ω
. (27)

С помощью свойства 5 из выражения (27) получаем

si t =

t∫
0

sin τ

τ
dτ

dots
=

1

p

(π

2
− arctan p

)
. (28)

Функция si t носит название интегрального синуса.

Свойство 8. Теорема смещения. Пусть F (p)
dots= f(t), Re p > a, тогда

для любого комплексного числа λ

F (p + λ)
dots= e−λtf(t), Re p > a− Re λ. (29)

Действительно, при Re p > a − Reλ выполнено
∞∫
0

e−pte−λtf(t)dt =

∞∫
0

e−(p+λ)tf(t)dt = F (p + λ), что и доказывает теорему смещения.

Формула (29) может быть применена для определения изображения функции e−λt на функ-
цию f(t), для которой изображение известно. Так, с помощью этой формулы и уже полученных
изображений можно найти

t · eαt dots
=

1

(p− α)2
, Re p > Re α, (30)

tn · eαt dots
=

n!

(p− α)n+1
, Re p > Re α, (31)

e−αt sin ωt
dots
=

ω

(p + α)2 + ω2
, Re p > | Im ω| − Re α (32)

и так далее.

4. Определение оригинала по изображению.

Рассмотрим методы определения оригинала по заданному изображению. От-
метим здесь, что имеются различные таблицы изображений наиболее часто встре-
чающихся в приложениях функций, так что при решении конкретных задач часто
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удаётся в справочнике найти выражение оригинала для полученного изображе-
ния. Однако, такой метод подбора далеко не всегда оказывается удовлетвори-
тельным. Нашей дальнейшей целью является изложение общего метода постро-
ения оригинала по изображению.

1. Формула Меллина. начнём со случая, когда по условиям задачи извест-
но, что заданная функция F (p) комплексной переменной p является изобра-
жением кусочно-гладкой функции f(t) с ограниченной степенью роста |f(t)| <
Meat, причём значение постоянной a задано. Требуется по заданной функции
F (p) построить искомую функцию f(t). Эта задача решается с помощью сле-
дующей теоремы.

Теорема 1. Пусть известно, что заданная функция F (p) в области Re p >
a является изображением кусочно-гладкой функции f(t) действительной пе-
ременной t и обладает степенью роста a. Тогда

f(t) =
1

2πi

x+i∞∫
x−i∞

eptF (p)dp, x > a. (33)

Формула (30) часто называется формулой Меллина, она, в определённом
смысле, является формулой обратной преобразованию Лапласа (формула (2)),
так как выражает оригинал через заданное изображение.

В качестве примера применения теоремы 1 рассмотрим вопрос об определе-
нии изображения произведения по известным изображениям сомножителей.

Теорема 2. Пусть f1(t)
dots= F1(p), Re p > a1 и f2(t)

dots= F2(p), Re p >
a2. Тогда

f(t) = f1(t)f2(t)
dots=

1
2πi

x+i∞∫
x−i∞

F1(q)F2(p− q)dq =
1

2πi

x+i∞∫
x−i∞

F1(p− q)F2(q)dq,

(34)
причём функция F (p) определена и аналитична в области Re p > a1 + a2,
а интегрирование производится по любой прямой, параллельной мнимой оси,
лежащей правее прямых Re p = a1 и Re p = a2.

Пример. Пусть f1(t) = cos ωt, f2(t) = t. Найдём изображение функции f(t) = t cos ωt.

Так как cos ωt
dots
= p

p2+ω2 , t
dots
= 1

p2 , то

F (p) =
1

2πi

x+i∞∫
x−i∞

qdq

(q2 + ω2)(p− q)2
,

где Re p > |Im ω| , а интегрирование производится по любой прямой, параллельной мнимой оси и
лежащей правее прямой Re p = |Im ω| . В качестве такой прямой интегрирования выберем пря-
мую, проходящую левее точки q = p, и рассмотрим на комплексной плоскости замкнутый контур
Γ, состоящий из отрезка [x − iR, x + iR] данной прямой и замыкающей его в правой полу-
плоскости дуги полуокружности |q − x| = R. Внутри данного контура подинтегральная функция
является всюду аналитической, кроме точки q = p, которая есть полюс второго порядка данной
функции. Точка q = ∞ является нулём третьего порядка этой функции. Поэтому значение инте-
грала определяется вычетом в особой точке подинтегральной функции. Заметив, что обход контура
Γ, совершается в отрицательном направлении, получим

F (p) = −
d

dq

[
q

(q2 + ω2)

]
q=p

=
p2 − ω2

(q2 + ω2)2
.

Итак,

t cos ωt
dots
=

p2 − ω2

(q2 + ω2)2
.
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Следующая теорема формулирует достаточные условия того, что заданная
функция F (p) комплексной переменной p является изображением некоторой
функции f(t) действительной переменной t.

Теорема 3. Пусть функция F (p) комплексной переменной p = x + iy
удовлетворяет следующим условиям:

а) F (p) - аналитическая функция в области Re p > a;
б) в области Re p > a функция F (p) стремится к нулю при |p| → ∞

равномерно относительно arg p;

в) для всех Re p = x > a сходится интеграл
x+i∞∫
x−i∞

|F (p)|dy < M, x > a.

Тогда функция F (p) при Re p > a является изображением функции
f(t) действительной переменной t, которая определяется выражением f(t) =

1
2πi

x+i∞∫
x−i∞

eptF (p)dp, x > a.

Во многих практически важных случаях интеграл (33), дающий выражение
оригинала по заданной функции F (p) комплексной переменной может быть
вычислен с помощью методов вычисления контурных интегралов от функции
комплексной переменной. Пусть функция F (p), первоначально заданная в об-
ласти Re p > a, может быть аналитически продолжена на всю плоскость p
и пусть её аналитическое продолжение при Re p < a удовлетворяет условиям
леммы Жордана. В этом случае интеграл (33) может быть вычислен при помощи
теории вычетов.

Пример. Найдём оригинал функции F (p) = ω
p2+ω2 , Re p > 0. Так как условия теоремы 3

выполнены, то

F (p)
dots
= f(t) =

1

2πi

x+i∞∫
x−i∞

ept ω

p2 + ω2
dp, x > 0.

Аналитическое продолжение функции F (p) в левую полуплоскость Re p < 0, функция ω
p2+ω2 ,

удовлетворяет условиям леммы Жордана и имеет две особые точки - полюсы первого порядка при
p1,2 = ±iω. Поэтому при t ≥ 0

f(t) =
2∑

k=1

res

[
ept ω

p2 + ω2
, pk

]
=

ωeiωt

2iω
−

ωe−iωt

2iω
= sin ωt, t ≥ 0.

Рассмотрим далее частные случаи, когда определение оригинала для задан-
ной функции F (p) комплексной переменной производится особенно просто.

Предположим, что изображение F (p) аналитично в бесконечно удалённой
точке (тогда F (∞) = 0 ). Оказывается, что в этом случае оригинал можно
находить, беря формально сумму оригиналов членов лорановского разложения
функции F (p) в окрестности бесконечно удалённой точки.

Первая теорема разложения. Если F (p) правильна в бесконечно уда-
лённой точке и имеет в её окрестности |p| ≥ R лорановское разложение

F (p) =
∞∑

k=1

ck

pk
, (35)

то оригиналом F (p) служит (умноженная на η(t) ) функция

f(t) =
∞∑

k=1

ck

(k − 1)!
tk−1. (36)
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Пример 1. Пусть

F (p) =
1√

p2 + 1
.

Эта функция является однозначной аналитической функцией в окрестности точки p = ∞, причём
в окрестности этой точки функция F (p) может быть разложена в ряд Лорана:

F (p) =
∞∑

k=0

(−1)k (2k)!

22k(k!)2
·

1

p2k+1
.

Поэтому формула (36) даёт

1√
p2 + 1

dots
=

∞∑
k=0

(−1)k t2k

22k(k!)2
=

∞∑
k=0

(−1)k

(
t
2

)2k

(k!)2
.

Полученный ряд представляет собой разложение весьма важной специальной функции - функции
Бесселя нулевого порядка

J0(t) =
∞∑

k=0

(−1)k

(
t
2

)2k

(k!)2
.

Таким образом,
1√

p2 + 1

dots
= J0(t). (37)

Пример 2. Пусть

F (p) =
1

p
e
− 1

p .

Эта функция, очевидно, удовлетворяет условиям первой теоремы разложения, причём

F (p) =

∞∑
n=1

(−1)n−1 1

(n− 1)!
·

1

pn
.

Тогда

1

p
e
− 1

p
dots
=

∞∑
n=0

(−1)n tn

(n!)2
=
∞∑

n=0

(−1)n

(
2
√

t
2

)2n

(n!)2
= J0(2

√
t). (38)

Вторая теорема разложения. Если F (p) = A(p)
B(p) - рациональная, пра-

вильная и несократимая дробь, p1, p2, ... , pk - нули функции B(p), то ориги-
нал этой функции-изображения имеет вид

f(t) =
∑
(pk)

res[F (pk)epkt], (39)

где сумма берётся по всем полюсам функции F (p). Если все полюсы функции
F (p) - первого порядка, то

f(t) =
∑
(pk)

A(pk)
B′(pk)

epkt. (40)


