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Введение

Если на плоскости задано семейство кривых, дифференцируемо за-
висящее от одного вещественного параметра, то огибающей этого семей-
ства называется кривая, которая касается каждой кривой семейства. Се-
мейства кривых и прямых линий естественно появляются при изучении
геометрии кривых. Примерами могут служить семейства нормалей кри-
вой или семейство лучей, возникающее при отражении от кривой пучка
прямых.

Целью работы является изучение свойств огибающих и некоторых
других множеств точек, естественно связанных с огибающими и приме-
нение теории огибающих в некоторых задачах, возникающих в диффе-
ренциальной геометрии кривых на плоскости, а также построение оги-
бающих и иллюстрация полученных результатов с помощью пакета про-
грамм Mathematica.

Основным теоретическим источником при написании работы явля-
лась книга Д.Бруса и П.Джиблина «Кривые и особенности. Геометри-
ческое введение в теорию особенностей.» М.: Мир, 1988.

В первом параграфе вводится понятие понятия огибающей и дискри-
минантного множества D семейства плоских кривых. С помощью пакета
Mathematica были построены огибающие для различных семейств.

§2 посвящен изучению эволюты кривой как огибающей семейства ее
нормалей. В этом параграфе изучается также связь геометрии кривой
и геометрии ее эволюты, осуществляется построение эволют некоторых
кривых.

В §3 изучается дискриминантное множество семейства соприкасаю-
щихся окружностей заданной кривой. Стационарными кривыми этого
семейства, входящими в дискриминантное множество, оказываются со-
прикасающиеся окружности в вершинах данной кривой.

В четвертом параграфе рассматривается подход к определению оги-
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бающей как пределу пересечения соседних кривых семейства. Это мно-
жество E1, как и огибающая, является частью дискриминантного множе-
ства. Показано, что для семейства соприкасающихся окружностей мно-
жество E1 является пустым множеством.

Заключительный пятый параграф посвящен рассмотрению примеров
огибающих: параллельных кривых, ортотомических кривых и каустик.

В приложении приводятся программы в пакете Wolfram Mathematica,
с помощью которых осуществляется построение огибающих изучаемых
семейств кривых.
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1 Огибающая семейства плоских кривых

Параметризованной кривой на евклидовой плоскости R2 называется
гладкое отображение

γ : I 3 t 7→ γ(t) = {γ1(t), γ2(t)} ∈ R2, (1)

где I — некоторый открытый интервал вещественной прямой R.
Вектор

dγ

dt
=

{
dγ1
dt
,
dγ2
dt

}
= {γ′1(t), γ′2(t)} (2)

называется касательным вектором или вектором скорости кривой (1)
в точке t или в точке γ(t).

Параметризованная кривая (1) называется регулярной, если ни в од-
ной точке t ∈ I касательный вектор не обращается в нуль, то есть
(γ′1(t))

2 + (γ′2(t))
2 6= 0 при t ∈ I.

Кривой на плоскости R2 называют множество точек на R2, которое
локально (то есть в окрестности каждой своей точки) может быть задано
как образ регулярной параметризованной кривой.

Будем считать, что у кривой могут иметься точки, в которых выше-
указанное требование нарушается. Говоря точнее, в этом случае будем
говорить о кривых с особыми точками.

Кривая на плоскости может быть задана как множество точек, коор-
динаты которых удовлетворяют уравнению вида F (x1, x2) = 0. При этом
вектор

{∂F/∂x1, ∂F/∂x2}

является нормальным вектором кривой F (x1, x2) = 0.
Действительно, пусть α(t) — это параметризация кривой, заданной

уравнением F (x1, x2) = 0, в окрестности рассматриваемой точки. Тогда

F (α1(t), α2(t)) ≡ 0 =⇒ ∂F

∂x1

dα1

dt
+
∂F

∂x2

dα2

dt
= 0
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⇐⇒
{
∂F

∂x1
,
∂F

∂x2

}
⊥
{
dα1

dt
,
dα2

dt

}
.

Последнее равенство означает, что вектор N =
{
∂F
∂x1
, ∂F∂x2

}
перпендикуля-

рен касательному вектору T =
{
dα1

dt ,
dα2

dt

}
параметризованной кривой α.

Рис. 1. Касательная и нормаль кривой, заданной неявным уравнением.

Пусть теперь даны кривая F (x1, x2) = 0 и параметризованная кри-
вая γ(t), и пусть γ(t0) — общая точка рассматриваемых кривых, то есть
выполняется

F (γ1(t0), γ2(t0)) = 0.

Выясним, при каких условиях эти две кривые касаются в точке γ(t0).
Используя параметризацию α(t) кривой F (x1, x2) = 0, условие касания
можно представить в виде коллинеарности векторов{

dγ1
dt

(t0),
dγ2
dt

(t0)

}∥∥{dα1

dt
(t0),

dα2

dt
(t0)

}
.

Поскольку {
∂F

∂x1
,
∂F

∂x2

}
⊥
{
dα1

dt
,
dα2

dt

}
,

то условие касания F (x1, x2) = 0 и γ(t) имеет вид:

∂F

∂x1

dγ1
dt

+
∂F

∂x2

dγ2
dt

= 0. (3)
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Рис. 2. Общая точка двух кривых.

Если семейство кривых Ct, t ∈ I, допускает существование регуляр-
ной кривой γ(t), которая в каждой своей точке t касается кривой семей-
ства Ct, то такую кривую γ(t) называют огибающей данного семейства
кривых.

Точка касания огибающей и кривой семейства называется характе-
ристической точкой кривой семейства.

Предположим, что семейство кривых, определенное уравнением

F (x1, x2, t) = 0, (4)

левая часть которого является гладкой функцией трех переменных, име-
ет огибающую γ(t). Так как всякая точка огибающей принадлежит со-
ответствующей кривой семейства, то

F (γ1(t), γ2(t), t) ≡ 0, t ∈ I. (5)

Дифференцируя соотношение (5) по t, получим

∂F

∂x1

dγ1
dt

+
∂F

∂x2

dγ2
dt

+
∂F

∂t
= 0. (6)

Сумму первых двух слагаемых в левой части получившегося соотноше-
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Рис. 3. Касание двух кривых.

ния (6) можно рассматривать как скалярное произведение вектора{
∂F

∂x1
,
∂F

∂x2

}
,

являющегося нормальным вектором кривой Ct семейства (4), и касатель-
ного вектора вектора {

dγ1
dt
,
dγ2
dt

}
огибающей γ(t). Поскольку кривые касаются, указанные векторы долж-
ны быть ортогональны:{

∂F

∂x1
,
∂F

∂x2

}
⊥
{
dγ1
dt
,
dγ2
dt

}
,

и их произведение поэтому равно нулю (3):

∂F

∂x

dγ1
dt

+
∂F

∂y

dγ2
dt

= 0.

Учитывая это, из равенства (6) получаем соотношение

∂F/∂t(γ1(t), γ2(t), t) = 0, (7)
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справедливое при всяком значении t.
Таким образом, огибающую следует искать, решая совместно урав-

нения
F (x1, x2, t) = 0, ∂F/∂t(x1, x2, t) = 0

и, исключая t, представлять решение этого уравнения в виде (1):

x1 = γ1(t), x2 = γ2(t).

Определение. Дискриминaнтным множеством cемействa (4) нaзы-
ваeтcя cлeдующee мнoжeствo

D = DF =

{
x ∈ R2 : ∃ t ∈ R, такое что F (t, x) =

∂F

∂t
(t, x) = 0

}
.

Ecли x ∈ D и F (t, x) = ∂F
∂t (t, x) = 0, тoгдa t сooтветствyeт x. Тaким

oбразoм, дaннoмy x сooтветcтвyeт пo мeньшeй мeрe oднo знaчeниe t.
Разрешая эти уравнения, мы определим x и y в функции параметра

t и найдем дискриминантную кривую данного семейства. Огибающая,
если она существует, должна входить в состав дискриминантной кривой,
которая может иметь несколько ветвей (рис. 4, рис. 5).

Примеры.

1. Пусть семейство прямых на плоскости задано уравнением
F (t, x1, x2) = 0, где

F (t, x) = x1 cos t+ x2 sin t− cos t sin t, (t, x) ∈ R× R2. (8)

Поставим задачу найти огибающую этого семейства.
Решение.
Имеем: {

F (t, x1, x2) = x1 cos t+ x2 sin t− cos t sin t,

F ′t(t, x1, x2) = −x1 sin t+ x2 cos t− cos 2t.

Тогда огибающая находится из следующих уравнений:
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Рис. 4. Дискриминантная кривая и огибающая семейства
полукубических парабол, заданная уравнением

3(x2 − t)2 − 2(x1 − t)3 = 0.

{
x1 cos t+ x2 sin t− cos t sin t = 0,

−x1 sin t+ x2 cos t− cos 2t = 0.
⇐⇒{

x1 cos t+ x2 sin t = cos t sin t,

−x1 sin t+ x2 cos t = cos 2t.
(9)

Используя метод Крамера, решаем систему линейных уравнений (9).
Вычисляем определители. Имеем:

∆ =

∣∣∣∣∣ cos t sin t

− sin t cos t

∣∣∣∣∣ = cos2 t+ sin2 t = 1

∆1 =

∣∣∣∣∣cos t sin t sin t

cos 2t cos t

∣∣∣∣∣ = cos2 t− sin t cos 2t

∆2 =

∣∣∣∣∣ cos t cos t sin t

− sin t cos 2t

∣∣∣∣∣ = cos 2t cos t+ sin2 t cos t

Отсюда получаем следующие уравнения огибающей:

x1 =
∆1

∆
= cos2 t− sin t cos 2t, x2 =

∆2

∆
= cos 2t cos t+ sin2 t cos t.
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Рис. 5. Огибающая семейства окружностей, заданная уравнением
(x1 − t)2 + x22 − 1 = 0.

Используя пакет Wolfram Mathematica, мы можем построить огибающую
этого семейства (рис. 6).

Рис. 6. Огибающая семейства прямых (8).

2. Пусть F (t, x1, x2) = 0, где

F (t, x) = x1(sin 2t− sin t) + x2(cos t− cos 2t)− sin t, 0 < t < 2π. (10)

Найти огибающую этого семейства.
Решение.{
F (t, x1, x2) = x1(sin 2t− sin t) + x2(cos t− cos 2t)− sin t,

F ′t(t, x1, x2) = x1(2 cos 2t− cos t) + x2(− sin t+ 2 sin 2t)− cos t.
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Таким образом, получаем следующую систему уравнений для нахож-
дения огибающей:{

x1(sin 2t− sin t) + x2(cos t− cos 2t)− sin t = 0,

x1(2 cos 2t− cos t) + x2(− sin t+ 2 sin 2t)− cos t = 0.
(11)

С помощью пакета Wolfram Mathematica находим следующие урав-
нения огибающей семейства кривых:

x1 =
− cos t cos 2t− 2 sin t sin 2t

−3 cos t cos 2t+ 2 cos2 2t− 3 sin t sin 2t+ 2 sin2 2t
,

x2 =
2 cos 2t sin t− cos t sin 2t

−3 cos t cos 2t+ 2 cos2 2t− 3 sin t sin 2t+ 2 sin2 2t
.

На рис. 7 приведено изображение этой огибающей, построенное с по-
мощью пакета Wolfram Mathematica.

Рис. 7. Огибающая семейства (10).

2 Эволюта плоской кривой как огибающая

нормалей

Для кривой γ рассмотрим множество центров кривизны. Это множе-
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ство образует кривую

ε(t) = γ(t) +
N(t)

κ(t)
, (12)

называемую эволютой кривой γ [1].
Эволюта ε состоит из центров соприкасающихся окружностей.
В координатах уравнение (12) принимает вид

X = x(t)− y′ (x
′)2 + (y′)2

x′y′′ − x′′y′
. (13)

Y = y(t) + x′
(x′)2 + (y′)2

x′y′′ − x′′y′
. (14)

Покажем, что эволюта кривой γ является огибающей семейства нор-
малей этой кривой.

Для этого запишем уравнение семейства нормалей

x′(X − x(t)) + y′(Y − y(t)) = 0.

Далее продифференцируем это уравнение по t:

x′′(X − x(t)) + y′′(Y − y(t)) = (x′)2 + (y′)2

Запишем систему уравнений:{
x′(X − x(t)) + y′(Y − y(t)) = 0,

x′′(X − x(t)) + y′′(Y − y(t)) = (x′)2 + (y′)2.

Из этой системы найдем X и Y методом Крамера. Имеем:

∆ =

∣∣∣∣∣x′ y′

x′′ y′′

∣∣∣∣∣ = x′y′′ − x′′y′

∆1 =

∣∣∣∣∣ 0 y′

(x′)2 + (y′)2 y′′

∣∣∣∣∣ = −y′((x′)2 + (y′))2

∆2 =

∣∣∣∣∣x′ 0

x′′ (x′)2 + (y′)2

∣∣∣∣∣ = x′((x′)2 + (y′)2)
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Откуда

X − x(t) =
−y′((x′)2 + (y′)2)

x′y′′ − x′′y′
, Y − y(t) =

x′((x′)2 + (y′)2)

x′y′′ − x′′y′
,

что совпадает с уравнениями эволюты (13) и (14).
Эвольвентой кривой α(t) называется ортогональная траектория се-

мейства касательных прямых кривой α(t), то есть кривая, нормаль ко-
торой в каждой точке является касательной к α(t).

Из этого определения следует, что любая кривая α является эволь-
вентой по отношению к своей эволюте.

Пусть теперь кривая ε(t) является эволютой кривой γ(t), и пусть s —
натуральный параметр на эволюте. Будем предполагать в последующих
рассуждениях, что кривая ε задана уравнением ε(s) и поставим задачу
найти эвольвенту кривой ε(s). При этом ε′(s) = T (s) — это единичный
касательный вектор к кривой ε(s) и T ′(s) = κ(s)N(s), где κ(s) — кри-
визна кривой ε(s), а N(s) — единичный вектор главной нормали, N⊥T
[1], [2].

Рис. 8.

Пусть γ̃(s) — точка на эвольвенте, соответствующая точке ε(s). Та-
ким образом в качестве параметра на эвольвенте будем рассматривать
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длину дуги эволюты. Для вывода уравнения эвольвенты γ̃(s) запишем
ее уравнение в следующем виде:

γ̃(s) = ε(s) + λT (s), (15)

где λ = λ(s) — неизвестная функция. Поскольку γ̃(s) — ортогональная
траектория касательных, наша задача состоит в том, чтобы найти такую
функцию λ, чтобы выполнялось

dγ̃

ds
⊥ T (s). (16)

Продифференцируем (15) для нахождения касательного вектора к γ̃.
В результате получаем:

γ′(s) = ε′(s) + λ′(s)T (s) + λ(s)T ′(s). (17)

Из уравнения (16) следует, что γ′(s)T (s) = 0.
Поскольку T ′ ⊥ T (действительно, из T · T = 1 следует 2T · T ′ = 0),

то умножая (17) скалярно на T , получим

0 = 1 + λ′(s). (18)

Решая дифференциальное уравнение (18), находим λ:

λ′ = −1 =⇒ λ = −s+ s0,

где s0 — постоянная интегрирования, представляющая собой значение
параметра s, соответствующее некоторой точке ε(s0) кривой ε(s).

Подставляя найденную функцию λ(s) в уравнение (15), получаем
уравнение произвольной эвольвенты кривой ε, которая является эволю-
той исходной кривой γ:

γ̃(s) = ε(s) + (−s+ s0)T (s).

В частности, и уравнение кривой γ имеет такой же вид

γ(s) = ε(s) + (−s+ s1)T (s) (19)
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для некоторого s1. Из уравнения (19) следует, что модуль разности γ(s) =

ε(s) равен длине дуги эволюты, отсчитанной от точки ε(s1). Отсюда по-
лучаем следующее предложение.

Предложение. Разность длин двух нормалей кривой γ, измеряемых
от точки кривой γ(s) до ее эволюты ε(s), взятых для двух различных
значений параметра s = s1 и s = s2, равно модулю разности |s2 − s1|, то
есть расстоянию между точками ε(s1) и ε(s2) вдоль эволюты.

3 Огибающая семейства соприкасающихся

окружностей кривой

Соприкасающейся окружностью кривой γ(t) в точке γ(t0) (или окруж-
ностью кривизны) называется окружность, проходящая через эту точку
и имеющая не менее чем второй порядок касания с кривой γ(t) в данной
точке.

Соприкасающаяся окружность существует в каждой точке γ(t0) кри-
вой, в которой кривизна отлична от нуля [1], [4]. Центр соприкасающейся
окружности лежит на главной нормали кривой. Радиус соприкасающей-
ся окружности равен 1

κ(t) , где κ(t) — кривизна кривой в точке, поэтому
центр соприкасающейся окружности называется центром кривизны, а
ее радиус — радиусом кривизны кривой (рис. 9).

Рис. 9. Соприкасающаяся окружность.
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В этом параграфе рассматривается семейство F соприкасающихся
окружностей кривой γ и находится дискриминантная кривая DF этого
семейства.

Пусть γ : I → R2 — кривая единичной скорости, кривизна которой
не обращается в нуль.

Центр соприкасающейся окружности кривой γ в точке γ(s) располо-
жен в точке γ(s) + 1

κ(s)N(s), ее радиус равен 1
κ(s) .

Поэтому уравнение семейства соприкасающихся окружностей имеет
вид (

σ − γ(s)− 1

κ(s)
N(s)

)2

− 1

κ(s)2
= 0, (20)

где s — параметр семейства, а σ — произвольная точка плоскости с ко-
ординатами x и y. Для нахождения дискриминантной кривой продиф-
ференцируем по s уравнение (20). Имеем:

2

(
σ − γ(s)− 1

κ(s)
N(s)

)
×(

−γ′(s)−
(

1

κ(s)

)′
N(s)−

(
1

κ(s)

)
N ′(s)

)
−
(

1

κ(s)2

)′
= 0 (21)

Применяя формулы Серре-Френе

dT

ds
= κN,

dN

ds
= −κT,

приведем уравнение (21) к следующему виду:(
σ − γ(s)− 1

κ(s)
N(s)

)(
−T (s) + T (s) +

κ′(s)
κ(s)2

N(s)

)
+

κ′(s)
κ(s)3

= 0

⇐⇒
(
σ − γ(s)− 1

κ(s)
N(s)

)(
κ′(s)
κ(s)2

N(s)

)
+

κ′(s)
κ(s)3

= 0.

Вынесем κ′ за скобки и получим:

κ′(s)
[(
σ − γ(s)− 1

κ(s)
N(s)

)
· N(s)

κ(s)2
+

1

κ(s)3

]
= 0.
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Учитывая, что N 2 = 1, получим:

κ′(s)(σ − γ(s))
N(s)

κ(s)2
= 0. (22)

Подставляя σ(s) = γ(s) в уравнение (22), убеждаемся, что кривая
γ(s) входит в дискриминантное множество.

Если в некоторой точке s0 выполняется κ′(s0) = 0, то уравнение (22)
обращается в тождество. Это означает, что соприкасающаяся окруж-
ность кривой γ(s) в точке s = s0 входит целиком в дискриминантное
множество.

Если κ′(s0) = 0, а κ(s0) 6= 0, то точка γ(s0) является вершиной
кривой γ [1]. Таким образом, дискриминантное множество содержит со-
прикасающиеся окружности в вершинах кривой γ (рис. 10).

В общем случае, кривые семейства Ft, соответствующие значениям t0
при которых F ′t(t0) ≡ 0, называются стационарными кривыми семейства
[4].

Предложение. Пусть γ : I → R2 — регулярная кривая, кривизна
которой не обращается в нуль. Тогда дискриминантное множество семей-
ства соприкасающихся окружностей кривой γ состоит из самой кривой
(образа кривой) и окружностей семейства, соответствующих вершинам
кривой γ.

4 Предел пересечения соседних кривых

семейства

В книге [1] приводится следующее альтернативное определение огибаю-
щей.

Определение. Огибающая E1 семейства кривых Ct — это предел
пересечения соседних кривых Ct.
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Рис. 10. Соприкасающиеся окружности, которые берутся в вершинах.

Пусть E1 ⊂ R2 — это множество всех x, для которых существуют
последовательность (xn) в R2, а также последовательности (tn), (t′n) в
R, удовлетворяющие следующим условиям (здесь xn = (x1n, x2n) — это
точка в R2):

1) для всех n требуем, чтобы tn 6= t′n и F (tn, xn) = F (t′n, xn) = 0, так
что xn ∈ Ctn ∩ Ct′n.

2) также мы требуем, чтобы при n→∞: tn → t и t′n → t для некото-
рого t, а xn → x, где t, x — это точка из области определения функции
F . Устремляя n к бесконечности в равенстве F (tn, xn) = 0, получаем
F (t, x) = 0. Пусть f(t) = F (t, xn) для достаточно большого фиксиро-
ванного n. Тогда f(tn) = f(t′n) = 0. Существует такое τn, заключенное
между tn и t′n, такое что f ′(τn) = 0. Действительно, для всех больших n
замкнутый промежуток от tn до t′n будет лежать в области определения
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функции F , поскольку последовательности (tn) и (t′n) имеют один и тот
же предел t. Значит,

∂F/∂t(τn, xn) = 0.

Устремляя n к бесконечности, получаем

∂F/∂t(t, x) = 0.

Следовательно, огибающая
E1 ⊂ D. (23)

Не трудно привести пример семейства кривых, для которого множе-
ство E1 совпадает с огибающей. Таким примером может служить огиба-
ющая семейства окружностей, заданная уравнением (x1−t)2+x22−1 = 0

из §1 (см. рис. 5). Оставшаяся часть этого параграфа посвящена построе-
нию примера семейства кривых, для которого множество E1 оказывается
пустым. Этим примером является семейство соприкасающихся окружно-
стей кривой.

Рассмотрим участок кривой γ : t ∈ (a, b), на котором кривизна не
обращается в нуль и производная от кривизны тоже не обращается в
нуль. Тогда на этом участке радиусы кривизны во всех точках различны
и соответственно различны радиусы соприкасающихся окружностей.

Предложение. При выполнении указанных выше условий соприка-
сающиеся окружности образуют семейство вложенных друг в друга не
пересекающихся окружностей.

Доказательство. Сначала докажем вспомогательное утверждение.
Пусть даны две окружности ω1 и ω2 радиусов R1 и R2 с центрами в
точках O1 и O2 соответственно, и пусть R1 > R2. Тогда окружность ω2

лежит внутри окружности ω1 тогда и только тогда, когда

(R1 −R2) > O1O2. (24)
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Действительно, пусть линия центров O1O2 пересекает окружности ω1

и ω2 соответственно в точках B и C. И пусть A — произвольная точка
окружности ω2. Покажем, что точка A содержится внутри ω1.

Рис. 11.

Имеем (см. рис. 11):

O1A 6 O2A+O1O2 = O2B +O1O2 = O1B.

Точка B принадлежит окружности ω1 тогда и только тогда, когда

O1B < O1C ⇐⇒ O1O2 +R2 < R1 ⇐⇒ O1O2 < (R1 −R2),

откуда и следует, что произвольная точка A окружности ω2 лежит внут-
ри окружности ω1 тогда и только тогда, когда выполняется условие (24).

Пусть теперь O1 и O2 — это две точки на эволюте ε(s) кривой γ(s)

(как и ранее, s — это длина дуги на эволюте), соответствующие значе-
ниям s1 и s2 параметра s. Поскольку и кривизна κ(s) и производная
κ′(s) не обращаются в нуль, то кривизна кривой при возрастании па-
раметра s или монотонно возрастает или монотонно убывает и поэтому
различна во всех точках. Пусть для определенности κ(s1) < κ(s2), тогда
радиусы R1 и R2 соприкасающихся окружностей в точках γ(s1) и γ(s2)

удовлетворяют соотношению R1 > R2 и имеют соответственно вид

R1 = |ε(s1)− γ(s1)|, R2 = |ε(s2)− γ(s2)|.
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При этом, как было показано при рассмотрении эволюты,

R1 −R2 = |s1 − s2|.

Рис. 12.

Рис. 13. Соприкасающиеся окружности эллипса.

Тогда, поскольку длина отрезка прямой, соединяющего точки O1 и
O2, меньше длины |s1− s2| отрезка эволюты (см. рис. 12), соединяющего
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эти точки, то
O1O2 < |s1 − s2| = R1 −R2,

что и доказывает предложение. �
Если κ(s) 6= 0, то существует единственная соприкасающаяся окруж-

ность.
В качестве иллюстрации построим эволюту эллипса и ее соприкаса-

ющиеся окружности с помощью пакета Mathematica (см. рис. 14).

Рис. 14. Эволюта эллипса и ее соприкасающиеся окружности.
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5 Параллели плоских кривых, их

ортотомики и каустики

Параллели.
Пусть γ : I → R — кривая единичной скорости. Рассмотрим семей-

ство окружностей фиксированного радиуса r > 0 с центрами на γ(I).
Огибающая этого семейства называется кривой, параллельной кривой γ
на расстоянии r.

Составим уравнение рассматриваемого семейства:

F (t, x) = (x− γ(t))(x− γ(t))− r2 = 0. (25)

Для нахождения огибающей продифференцируем функцию (25) по t.
Имеем:

F ′(t, x) = −2γ′(t)(x− γ(t)).

Таким образом, получаем следующую систему уравнений для нахожде-
ния огибающей:

(x− γ(t))(x− γ(t))− r2 = 0, γ′(t)(x− γ(t)) = 0.

Введем замену (x− γ(t)) = y. Тогда система примет вид

y2 = r2, yγ′(t) = 0.

Из второго уравнения следует, что y = λN(t), а из первого тогда
получим λ2 = r2. Следовательно, y = ±rN(t), а

x = γ(t)± rN(t).

Построим некоторые параллели кривых с помощью пакета Mathematica
(рис. 15).
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Рис. 15. Некоторые параллели к параболе и эллипсу.

Ортотомики.

Пусть γ : I → R2 — кривая единичной скорости и

F (t, x) = (x− γ(t))2 − γ(t)2 = 0 (26)

— уравнение семейства окружностей Ct с центрами на γ(t), проходящих
через точкуO (начало координат). Будем предполагать, что начало коор-
динат не принадлежит образу γ, то есть что γ(t) никогда не обращается
в 0. Найдем огибающую этого семейства.

Продифференцируем уравнение (26), тогда получим

∂F/∂t = −2γ′(x− γ)− 2γγ′ = 0. (27)

Уравнение (27) эквивалентно следующему

γ′x = 0,

откуда следует, что
x = λ(t)N(t). (28)
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Рис. 16.

Подставляя (28) в (26), получим

(λN − γ)2 − γ2 = 0.

Раскрывая скобки, получаем

λ2 − 2λ(Nγ) + γ2 − γ2 = 0 или

λ(λ− 2(Nγ)) = 0.

Отсюда следует, что

λ = 0 или λ = 2(Nγ). (29)

Таким образом, дискриминантная кривая семейства (26) состоит из точ-
ки O и множества точек, заданных уравнением

δ = 2(γ,N)N, t ∈ I. (30)

Поскольку (γ(t), N) — расстояние от точки O до касательной к γ(t), то
δ(t) — это точка, симметричная точке O относительно касательной к γ
(рис. 16 и 17).
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Рис. 17.

Параметризованную кривую, заданную уравнением (30), называют
ортотомической кривой или ортотомикой кривой γ.

На рис. 18 с помощью пакета Mathematica построена ортотомика кри-
вой

γ(t) = (2.8 cos t+ cos 2t+ 1, 2.8 sin t+ sin 2t).

Рис. 18. Ортотомика улитки Паскаля.
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Каустики.
Определение. Огибающая лучей, выходящих из точки O и отра-

женных от кривой γ называется каустикой при отражении для кривой
γ относительно точки O.

Рис. 19. Отраженный луч.

Предложение. Каустика кривой γ при отражении для лучей, выхо-
дящих из точки O, совпадает с эволютой ортотомики кривой γ относи-
тельно точки O.

Доказательство. Надо доказать, что δ′ ⊥ δ − γ ⇐⇒ δ′(δ − γ) = 0.
Из формулы (30) мы знаем, что

δ = 2(γ,N)N.

Теперь продифференцируем это уравнение и получим

δ′ = 2[(γ′N) + γN)]N + 2(γN)N ′ = 2[−κ(γT )N + κ(γN)T ] =

− 2κ[(γT )N − (γN))T ]. (31)
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Теперь вычислим (δ − γ) и получим

(δ − γ) = 2(γN)N − γ.

Перемножим скалярно δ′ и (δ − γ). Имеем:

[(γT )N + (γN)T ][2(γN)N − γ] =

2(γT )(γN)N 2 + (γN)2TN − (γT )(γN)− (γN)(γT ) = 0. (32)

Из уравнения (32) следует, что вектор γ− δ направлен перпендикулярно
ортотомике. Следовательно, луч отраженный от кривой γ направлен по
нормали к ортотомике. �

На рис. 20 приведено изображение каустики, построенное с помощью
пакета Wolfram Mathematica.

Рис. 20. Каустика улитки Паскаля.
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Приложение

Построение огибающей семейства окружностей

Implicit[x_, y_, c_] := (x - c)^2 + y^2 - 1;

tv[A_][c_] := D[Implicit[x, y, c], c]

Ogib = Solve[{Implicit[x, y, c] == 0,

D[Implicit[x, y, c], c] == 0}, {x, y}]

Implicit1[x_, y_, c_] := (x - 0)^2 + y^2 - 1

Implicit2[x_, y_, c_] := (x + 1)^2 + y^2 - 1

Implicit3[x_, y_, c_] := (x - 1)^2 + y^2 - 1

Implicit4[x_, y_, c_] := (x - 2)^2 + y^2 - 1

Implicit5[x_, y_, c_] := (x + 2)^2 + y^2 - 1

plot1 = ContourPlot[Implicit1[x, y, c] == 0, {x, -2, 2}, {y, -2, 2},

DisplayFunction -> Identity];

plot2 = ContourPlot[Implicit2[x, y, c] == 0, {x, -2, 2}, {y, -2, 2},

DisplayFunction -> Identity];

plot3 = ContourPlot[Implicit3[x, y, c] == 0, {x, -2, 2}, {y, -2, 2},

DisplayFunction -> Identity];

plot4 = ContourPlot[Implicit4[x, y, c] == 0, {x, -2, 2}, {y, -2, 2},

DisplayFunction -> Identity];

plot5 = ContourPlot[Implicit5[x, y, c] == 0, {x, -2, 2}, {y, -2, 2}];

plot6 = ParametricPlot[{{x, y} /. Ogib}, {c, -100, 100},

PlotStyle -> {RGBColor[0, 0, 0], Thick}];

Show[{plot1, plot2, plot3, plot4, plot5, plot6},

DisplayFunction -> $DisplayFunction]
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Построение эволюты эллипса и ее соприкасающихся
окружностей

x[t_] = 2*Cos[t];

y[t_] = Sin[t];

f[t_] = x[t] -

D[y[t], t]*(D[x[t], t]^2 +

D[y[t], t]^2)/(D[x[t], t]*D[y[t], {t, 2}] -

D[y[t], t]*D[x[t], {t, 2}]);

g[t_] = y[t] +

D[x[t], t]*(D[x[t], t]^2 +

D[y[t], t]^2)/(D[x[t], t]*D[y[t], {t, 2}] -

D[y[t], t]*D[x[t], {t, 2}]);

w[t_] = (3/2) Cos[t]^3;

q[t_] = -3 Sin[t]^3;

u[t_] = (3 Sqrt[2]/8) + (Sqrt[250]/8) Cos[t];

v[t_] = (-3 Sqrt[2]/4) + (Sqrt[250]/8) Sin[t];

plot1 = ParametricPlot[{u[t], v[t]}, {t, 0, 2 Pi},

PlotRange -> {{-3, 3}, {-3.5, 3.5}}, PlotStyle -> {Orange, Thick}];

plot2 = ParametricPlot[{x[t], y[t]}, {t, 0, 2 Pi},

PlotRange -> {{-3, 3}, {-3.5, 3.5}}, PlotStyle -> {Red, Thick}];

plot3 = ParametricPlot[{w[t], q[t]}, {t, 0, 2 Pi},

PlotRange -> {{-3, 3}, {-3.5, 3.5}}, PlotStyle -> {Blue, Thick}];

okr[t_] = \[Sqrt]((2*Cos[t] - 3/2 Cos[t]^3)^2 + (Sin[t] +

3*Sin[t]^3)^2);

ok[t_] = \[Sqrt]((2*Cos[t] - 3/2 Cos[t]^3)^2 + (Sin[t] +

3*Sin[t]^3)^2);

plot5 = Graphics[Circle[{w[Pi/4], q[Pi/4]}, okr[Pi/4]]];

plot4 = Graphics[{PointSize[.02], Point[{w[Pi/4], q[Pi/4]}]}];

plot6 = Graphics[Circle[{w[Pi/12], q[Pi/12]}, ok[Pi/12]]];

plot7 = Graphics[{PointSize[.02], Point[{w[Pi/12], q[Pi/12]}]}];

Show[{plot2, plot3, plot4, plot5, plot6, plot7}]
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Построение параллельных кривых для параболы

x[t_] = t;

y[t_] = t^2;

plot = ParametricPlot[{x[t], y[t]}, {t, -6, 6},

PlotRange -> {{-5, 5}, {-2, 9}},

PlotStyle -> Thick];

a = -2;

f1[t_] = x[t] + a*D[y[t], t]/Sqrt[D[x[t], t]^2 + D[y[t], t]^2];

g1[t_] = y[t] - a*D[x[t], t]/Sqrt[D[x[t], t]^2 + D[y[t], t]^2];

plot1 = ParametricPlot[{f1[t], g1[t]}, {t, -6, 6},

PlotStyle -> Thick];

a2 = -1;

f2[t_] = x[t] + a2*D[y[t], t]/Sqrt[D[x[t], t]^2 + D[y[t], t]^2];

g2[t_] = y[t] - a2*D[x[t], t]/Sqrt[D[x[t], t]^2 + D[y[t], t]^2];

plot2 = ParametricPlot[{f2[t], g2[t]}, {t, -6, 6},

PlotStyle -> Thick];

a = 1;

f3[t_] = x[t] + a*D[y[t], t]/Sqrt[D[x[t], t]^2 + D[y[t], t]^2];

g3[t_] = y[t] - a*D[x[t], t]/Sqrt[D[x[t], t]^2 + D[y[t], t]^2];

plot3 = ParametricPlot[{f3[t], g3[t]}, {t, -6, 6},

PlotStyle -> Thick];

Show[{plot, plot1, plot2, plot3}, AspectRatio -> Automatic]

Построение параллельных кривых для эллипса

x[t_] = 2 Cos[t];

y[t_] = Sin[t];

plot = ParametricPlot[{x[t], y[t]}, {t, -50, 50},

PlotRange -> {{-3.5, 3.5}, {-3, 3}}, PlotStyle -> Thick];

a = -1.3;
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f1[t_] = x[t] + a*D[y[t], t]/Sqrt[D[x[t], t]^2 + D[y[t], t]^2];

g1[t_] = y[t] - a*D[x[t], t]/Sqrt[D[x[t], t]^2 + D[y[t], t]^2];

plot1 = ParametricPlot[{f1[t], g1[t]}, {t, -50, 50},

PlotStyle -> Thick];

a2 = -1;

f2[t_] = x[t] + a2*D[y[t], t]/Sqrt[D[x[t], t]^2 + D[y[t], t]^2];

g2[t_] = y[t] - a2*D[x[t], t]/Sqrt[D[x[t], t]^2 + D[y[t], t]^2];

plot2 = ParametricPlot[{f2[t], g2[t]}, {t, -50, 50},

PlotStyle -> Thick];

a3 = -0.5;

f3[t_] = x[t] + a3*D[y[t], t]/Sqrt[D[x[t], t]^2 + D[y[t], t]^2];

g3[t_] = y[t] - a3*D[x[t], t]/Sqrt[D[x[t], t]^2 + D[y[t], t]^2];

plot3 = ParametricPlot[{f3[t], g3[t]}, {t, -50, 50},

PlotStyle -> Thick];

a4 = -0.8;

f4[t_] = x[t] + a4*D[y[t], t]/Sqrt[D[x[t], t]^2 + D[y[t], t]^2];

g4[t_] = y[t] - a4*D[x[t], t]/Sqrt[D[x[t], t]^2 + D[y[t], t]^2];

plot4 = ParametricPlot[{f4[t], g4[t]}, {t, -50, 50},

PlotStyle -> Thick];

a = 1;

f5[t_] = x[t] + a*D[y[t], t]/Sqrt[D[x[t], t]^2 + D[y[t], t]^2];

g5[t_] = y[t] - a*D[x[t], t]/Sqrt[D[x[t], t]^2 + D[y[t], t]^2];

plot5 = ParametricPlot[{f5[t], g5[t]}, {t, -50, 50},

PlotStyle -> Thick];

a = 0.5;

f6[t_] = x[t] + a*D[y[t], t]/Sqrt[D[x[t], t]^2 + D[y[t], t]^2];

g6[t_] = y[t] - a*D[x[t], t]/Sqrt[D[x[t], t]^2 + D[y[t], t]^2];

plot6 = ParametricPlot[{f6[t], g6[t]}, {t, -50, 50},

PlotStyle -> Thick];

a = 0.2;

f7[t_] = x[t] + a*D[y[t], t]/Sqrt[D[x[t], t]^2 + D[y[t], t]^2];

g7[t_] = y[t] - a*D[x[t], t]/Sqrt[D[x[t], t]^2 + D[y[t], t]^2];

plot7 = ParametricPlot[{f7[t], g7[t]}, {t, -50, 50},

PlotStyle -> Thick];

a = 0.0;

f8[t_] = x[t] + a*D[y[t], t]/Sqrt[D[x[t], t]^2 + D[y[t], t]^2];

g8[t_] = y[t] - a*D[x[t], t]/Sqrt[D[x[t], t]^2 + D[y[t], t]^2];
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plot7=ParametricPlot[{f8[t], g8[t]}, {t, -50, 50},

PlotStyle -> Thick];

Show[{plot, plot1, plot2, plot3, plot4, plot5, plot6, plot7},

AspectRatio -> Automatic]

Ортотомика улитки Паскаля

x[t_] = 2.8 Cos[t] + Cos[2 t] + 1;

y[t_] = 2.8 Sin[t] + Sin[2 t];

f[t_] = (-2 D[y[t], t]) (-x[t]*D[y[t], t] +

y[t]*D[x[t], t])/(D[x[t], t]^2 + D[y[t], t]^2);

g[t_] = (2 D[x[t], t]) (-x[t]*D[y[t], t] +

y[t]*D[x[t], t])/(D[x[t], t]^2 + D[y[t], t]^2);

plot1 = ParametricPlot[{x[t], y[t]}, {t, 0, 2 Pi},

PlotRange -> {{-10, 10}, {-10, 10}}, PlotStyle -> Thick];

plot2 = ParametricPlot[{f[t], g[t]}, {t, 0, 2 Pi},

PlotRange -> {{-10, 10}, {-10, 10}}, PlotStyle -> Thick];

Show[{plot1, plot2}]

Каустика улитки Паскаля

x[t_] = 2.8 Cos[t] + Cos[2 t] + 1;

y[t_] = 2.8 Sin[t] + Sin[2 t];

f[t_] = (-2 D[y[t], t]) (-x[t]*D[y[t], t] +

y[t]*D[x[t], t])/(D[x[t], t]^2 + D[y[t], t]^2);

g[t_] = (2 D[x[t], t]) (-x[t]*D[y[t], t] +

y[t]*D[x[t], t])/(D[x[t], t]^2 + D[y[t], t]^2);

u[t_] = f[t] -

D[g[t], t]*(D[f[t], t]^2 +

D[g[t], t]^2)/(D[f[t], t]*D[g[t], {t, 2}] -
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D[g[t], t]*D[f[t], {t, 2}]);

v[t_] = g[t] +

D[f[t], t]*(D[f[t], t]^2 +

D[g[t], t]^2)/(D[f[t], t]*D[g[t], {t, 2}] -

D[g[t], t]*D[f[t], {t, 2}]);

plot1 = ParametricPlot[{x[t], y[t]}, {t, 0, 2 Pi},

PlotRange -> {{-10, 10}, {-10, 10}}, PlotStyle -> {Red, Thick}];

plot2 = ParametricPlot[{f[t], g[t]}, {t, 0, 2 Pi},

PlotRange -> {{-10, 10}, {-10, 10}}, PlotStyle -> {Blue, Thick}];

plot3 = ParametricPlot[{u[t], v[t]}, {t, -(3/4) Pi, (3/4) Pi},

PlotRange -> {{-10, 10}, {-10, 10}}, PlotStyle -> {Green, Thick}];

Show[{plot1, plot2, plot3}]
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