МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное учреждение высшего профессионального образования "Казанский (Приволжский) федеральный университет"

УТВЕРЖДАЮ

Проректор по на чной деятельности КФУ

Проф. Д.К. Нургалиев

12 th

Программа дисциплины

Б1.В.ДВ.2 Избранные вопросы исследования операций

Направление подготовки: 09.06.01 Информатика и вычислительная техника Направленность (профиль) подготовки: 05.13.18 - Математическое моделирование, численные методы и комплексы программ

Квалификация выпускника «Исследователь. Преподаватель-исследователь»

Форма обучения: очная Язык обучения: русский

1. КРАТКАЯ АННОТАЦИЯ

Дисциплина посвящена вопросам исследования операций, связанных с математическим моделированием сложных распределительных систем, включая системы распределения информационных, программных и аппаратных ресурсов. Дисциплина должна дать общее представление об основных задачах, математических моделях и основном математическом аппарате решения задач данной области.

1. Цели освоения дисциплины

В рамках дисциплины рассматриваются основные математические модели, связанные с распределением ресурсов в сложных системах, прежде всего в телекоммуникации и компьютерных сетях. Рассматриваются общие подходы к эффективному распределению непрерывных и дискретных ресурсов, условия оптимальности и алгоритмы поиска решений. Рассматриваются общие задачи, возникающие при проектировании вычислительных сетей с фиксированными и мобильными абонентами, и основные подходы к их решению. Рассматриваются также общие подходы к решению многошаговых задач распределения ресурсов, в том числе дискретных, динамических детерминированных и вероятностных моделей. Немало внимания в рамках дисциплины уделено вопросам исследования сложных систем на основе моделей равновесия. В качестве базовой модели равновесия в сложных системах используется вариационное неравенство. Рассма риваются элементы теория и базовые методы решения вариационных неравенств, а также их связь с другими общими задачами нелинейного анализа.

2. МЕСТО ДИСЦИПЛИНЫ (МОДУЛЯ) В СТРУКТУРЕ ОПОП

Дисциплина относится к дисциплинам по выбору в программе обучения аспирантов по направлению подготовки: <u>09.06.01 Информатика и вычислительная техника</u>, по профилю 05.13.11 «Математическое и программное обеспечение вычислительных машин, комплексов и компьютерных сетей». Дисциплина рекомендуется для выбора тем аспирантам, тема исследований которых связана с применением математических методов принят я решений и исследования операций при решении различных задач в области информатики и вычислительной техники.

Для успешного освоения данной дисциплины нужно освоение в качестве предшествующих общематематических и специальных дисциплин в объеме магистерской подготовки по соответствующему профилю.

3. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИ-ПЛИНЕ (МОДУЛЮ)

Знать:

- основные математические модели, связанные с распределением ресурсов в сложных системах, в телекоммуникации и компьютерных сетях;
 - теоретические знания об основных свойствах равновесных моделей;

Уметь:

- применять условия оптимальности для конкретных задач и выбирать алгоритмы поиска их решений;
- понимать основные подходы к построению равновесных моделей в сложных системах и их приложений;

Владеть:

- навыками построения математических моделей исследований операций и принятия решений;

- навыками практического применения методов математического моделирования для решения прикладных задач;

Демонстрировать способность и готовность:

- применять полученные знания на практике;
- применять полученные знания и навыки в своих научных и прикладных исследованиях.

В рез льтате освоения дисциплины формируются компетенции:

ПК-3-способность к преподаванию дисциплин и учебно-методической работе в областях профессиональной деятельности, в том числе, на основе результатов проведенных теоретических и экспериментальных исследований;

Владение широким кругом знаний и навыков в области математического моделирования, применения математического аппарата исследования операций и методов принятия решений, особенно для решения задач разработки математического и программного обеспечения вычислительных машин, комплексов и компьютерных сетей.

4. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

4.1. Распределение трудоёмкости дисциплины (в часах) по видам нагрузки обучающегося и по разделам дисциплины.

Общая трудоемкость дисциплины составляет 3 зачетные единицы, 108 часов: Лекции 18 ч., практика 18 ч., самостоятельная работа 72 ч.

Форма промежуточной аттестации по дисциплине: зачет в 4-м семестре.

Раздел дисциплины	Семестр	Лекции	Практические занятия	Лабораторные работы	Самостоятел ная работа
Модели распределения ресурсов.	4	4	4	0	16
Общие вопросы про- ектирования тополо- гии вычислительных сетей.	4	4	4	0	16
Дискретные задачи распределения ресурсов.	4	4	4	0	16
Понятие равновесия для исследования сложных систем.	4	6	6	0	24
Итого:		18	18	0	72

4.2. Тематический план лекционных и практических занятий по курсу

Модели распределения ресурсов: Задачи с неопределенностью цели. Многокритериальные задачи, формирование критериев и принципы оптимальности в векторной оптимизации. Простейшие модели распределения ресурсов. Задачи с непрерывными переменными. Условия оптимальности для общих задач распределения ресурсов. Условия оптимальности для задач равномерного распределения ресурсов. Аналитические и итера-

тивные методы решения задач распределения ресурсов. Задачи распределения ресурсов с непрерывными переменными при нескольких критериях.

Общие вопросы проектирования топологии вычислительных сетей: Задачи выбора местоположения узлов коммутации в вычислительных сетях. Задачи проектирования линий связи в вычислительных сетях. Задачи выбора пропускных способностей линий связи в вычислительных сетях. Задачи выбора маршрутов передачи информации в вычислительных сетях.

Дискретные задачи распределения ресурсов: Многошаговые процессы принятия решений. Метод динамического программирования. Метод динамического программирования для задачи распределения возобновляемого ресурса. Метод динамического программирования для задачи распределения дискретных ресурсов и задачи о рюкзаке. Задача оптимального распределения дискретных ресурсов с вогнутыми функциями. Многошаговые стохастические процессы. Марковская цепь и процесс. Многошаговые задачи распределения ресурсов на конечном числе этапов. Многошаговые задачи распределения ресурсов на бесконечном числе этапов.

Понятие равновесия для исследования сложных систем: Понятие равновесия и его обобщения для исследования сложных систем. Агрегированные равновесные модели взаимодействия экономических агентов. Типы равновесий на рынке однородного товара, статические и динамические модели рынка. Микроэкономические модели взаимодействия экономических агентов и обмен информацией. Игровые модели равновесия. Олигополистические рынки по Курно и Бертрану, стратегии поведения участников. Общие модели экономического равновесия. Модели равновесия Касселя-Вальда и Скарфа. Модели пространственного экономического равновесия Модель обмена. Индивидуальный спрос и равновесие. Модель Эрроу-Дебре. Процессы установления равновесных цен. Модели транспортного равновесия. Равновесная модель миграции и ее свойства. Вариационные неравенства. Свойства существования и единственности решений. Вариационные неравенства и другие задачи нелинейного анализа. Методы решения вариационных неравенств.

5. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

Основными формами занятий по дисциплине являются лекционные и практические занятия, а также самостоятельная работа аспирантов, которая включает самостоятельное изучение передовой учебной и научной литературы в области исследований операций. Аудиторные занятия практического типа проводятся в активной, дискуссионной форме, включая совместное решение задач, доклады, подготовленные студентами в процессе самостоятельной работы, дискуссии и обсуждения различных методом математического моделирования и методов исследования операций.

6. УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЯ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

Вопросы к практическим занятиям.

- 1. Что называется операцией?
- 2. Что составляет предмет исследования операций?
- 3. Дайте краткую характеристику основные этапы операционного исследования:
 - ✓ постановка задачи и уяснение задачи;
 - ✓ разработка математической модели;
 - ✓ выбор (разработка) метода решения задачи и алгоритма;
 - ✓ проверка адекватности и корректировка модели;
 - ✓ поиск решения на модели;
 - ✓ реализация найденного решения на практике;
 - ✓ оценка результатов и выработка рекомендаций для принятия решений.

- 4. Классификация экономико-математических моделей.
- 5. Сформулируйте основные принципы моделирования.
- 6. К какому типу можно отнести задачу математика А.К.Эрланг о времени ожидания телефонной связи?
- 7. На какие основные группы можно разделить исходные данные при решении задачи?
- 8. Что изучает наука «исследование операций»?
- 9. В чем состоит постановка задачи в области исследования операций?
- 10. Чем характеризуется математическая модель?
- 11. Сформулируйте понятие графа.
- 12. Что называется гамильтоновым и эйлеровым путем
- 13. Какой граф называется ориентированным (или орграфом)
- 14. Чему равна степень входа и степень выхода изолированной вершины ориентированного графа?
- 15. Какие действия выполняет алгоритм Дейкстры?
- 16. Какие существуют алгоритмы обхода графа?Принцип работы алгоритма в глубину. Принцип работы алгоритма в ширину.
- 17. Какую задачу решает алгоритм Дейкстры?
- 18. В чем отличие задачи решаемой алгоритмом Флойда от задачи решаемой алгоритмом Дейкстры?
- 19. В чем заключается алгоритм Прима? Чем отличается алгоритм Прима от Курскала?
- 20. Что называется линейным программированием?Приведите примеры задач, решаемых методами линейного программирования.
- 21. Что такое целевая функция? Что включает в себя экономико-математическая модель любой задачи линейного программирования?
- 22. В чем состоит геометрический метод решения задачи линейного программирования?
- 23. В чем состоит базисное решение системы m –линейных уравнений с n переменными, где m<n?
- 24. В чем заключаются правила получения двойственной задачи?
- 25. Чем характеризуются конечные игры с полной информацией и нулевой суммой?
- 26. Что называется стратегией игры? Что подразумевается под понятием цена игры?
- 27. Что определяет понятие стратегии для Макса (или Мина)? Что называется смешанной стратегией игрока?
- 28. Понятие равновесия и его обобщения для исследования сложных систем.
- 29. Агрегированные равновесные модели взаимодействия экономических агентов.
- 30. Типы равновесий на рынке однородного товара, статические и динамические модели рынка.
- 31. Микроэкономические модели взаимодействия экономических агентов и обмен информацией.
- **32.** Игровые модели равновесия. Олигополистические рынки по Курно и Бертрану, стратегии поведения участников.
- **33.** Общие модели экономического равновесия. Модели равновесия Касселя-Вальда и Скарфа. Модели пространственного экономического равновесия.
- 34. Модель обмена. Индивидуальный спрос и равновесие.
- 35. Модель Эрроу-Дебре. Процессы установления равновесных цен.
- 36. Модели транспортного равновесия. Равновесная модель миграции и ее свойства.
- 37. Вариационные неравенства. Свойства существования и единственности решений.
- 38. Вариационные неравенства и другие задачи нелинейного анализа. Методы решения вариационных неравенств.

7. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

7.1. Регламент дисциплины.

Цикл аудиторных занятий по предмету составляет 18 лекционных часов, 18 часов практических занятий и 72 часа самостоятельной работы, всего 3 зачетные единицы.

7.2. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины и учебно-методическое обеспечение самостоятельной работы аспирантов

Оценочные средства текущего контроля состоят из проверки домашних заданий, подготовки аспирантами ответов по вопросам программы, подготовки рефератов и защиты их в аудитории.

Возможные темы рефератов:

- **1.** Микроэкономические модели взаимодействия экономических агентов и обмен информацией.
- 2. Игровые модели равновесия. Олигополистические рынки по Курно и Бертрану, стратегии поведения участников.
- **3.** Общие модели экономического равновесия. Модели равновесия Касселя-Вальда и Скарфа. Модели пространственного экономического равновесия.
- 4. Модель обмена. Индивидуальный спрос и равновесие.
- 5. Модель Эрроу-Дебре. Процессы установления равновесных цен.
- 6. Модели транспортного равновесия. Равновесная модель миграции и ее свойства.

САМОСТОЯТЕЛЬНАЯ РАБОТА АСПИРАНТОВ (СРА) включает следующие виды работ: изучение теоретическое (лекционного) материала, самостоятельные исследования и изучение теоретического материала по решению различных задач исследования операций, решение задач и упражнения, подготовка докладов для практических занятий, подготовка к дискуссиям по темам практических занятий.

7.3. Вопросы к зачету

- 1. Классификация экономико-математических моделей.
- 2. Основные группы, на которые делятся исходные данные при решении задачи?
- 3. Постановка задачи в области исследования операций?
- 4. Чем характеризуется математическая модель?
- 5. Графы и способы их представления. Гамильтоновы и эйлеровы пути в графе.
- 6. Степень входа и выхода изолированной вершины ориентированного графа.
- 7. Алгоритм Дейкстры.
- 8. Принцип работы алгоритма в глубину и в ширину.
- 9. Алгоритмом Флойда для задачи Дейкстры.
- 10. Алгоритмы Прима и Курскала.
- 11. Принцип линейным программирования. Приведите примеры задач, решаемых методами линейного программирования.
- 12. Целевая функция. Что включает в себя экономико-математическая модель любой задачи линейного программирования?
- 13. Геометрический метод решения задачи линейного программирования.
- 14. Построение базисного решения системы m –линейных уравнений с n переменными.
- 15. Двойственная задача.
- 16. Характеристика конечные игры с полной информацией и нулевой суммой.
- 17. Игровые стратегии. Смешанной стратегия игрока.
- 18. Понятие равновесия и его обобщения для исследования сложных систем.
- 19. Агрегированные равновесные модели взаимодействия экономических агентов.
- 20. Типы равновесий на рынке однородного товара, статические и динамические модели рынка.
- 21. Микроэкономические модели взаимодействия экономических агентов и обмен информацией.

- 22. Игровые модели равновесия. Олигополистические рынки по Курно и Бертрану, стратегии поведения участников.
- **23.** Общие модели экономического равновесия. Модели равновесия Касселя-Вальда и Скарфа.
- 24. Модели пространственного экономического равновесия.
- 25. Модель обмена. Индивидуальный спрос и равновесие.
- 26. Модель Эрроу-Дебре. Процессы установления равновесных цен.
- 27. Модели транспортного равновесия.
- 28. Равновесная модель миграции и ее свойства.
- 29. Вариационные неравенства. Свойства существования и единственности решений.
- 30. Вариационные неравенства и другие задачи нелинейного анализа.
- 31. Методы решения вариационных неравенств.

7.4. Таблица соответствия компетенций, критериев оценки их освоения и оценочных средств

Индекс ком-	Расшифровка компе-	Показатель форми-	Оценочное средство
петенции	тенции	рования компетен-	_
		ции для данной дис-	
		циплины	
	ПК-3-способность к		
	преподаванию дисци-	Аспирант овладел	Защита реферата по
	плин и учебно-	специальным матери-	теме.
	методической работе в	алом по предмету в	Зачет по темам лек-
	областях профессио-	степени достаточной	ционных и практиче-
ПК-3	нальной деятельности,	для преподавания	ских занятий.
	в том числе, на основе	дисциплины в ВУЗе и	
	результатов проведен-	выполнению научных	
	ных теоретических и	исследований в обла-	
	экспериментальных	сти исследования	
	исследований;	операций.	

8. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПРИ ОСВОЕНИИ ДИСЦИПЛИНЫ (МОДУЛЯ)

Для подготовки к зачету по дисциплине рекомендуется сочетание разных форм самостоятельной работы аспирантов:

- 1. Чтение основной и дополнительной литературы. Самостоятельное изучение материала по литературным источникам.
- 2. Работа с библиотечным каталогом, самостоятельный подбор необходимой литературы.
 - 3. Работа со словарем, справочником.
 - 4. Поиск необходимой информации в сети Интернет.
 - 5. Конспектирование источников.
 - 6. Реферирование источников.
 - 7. Составление аннотаций к литературным источникам.
 - 8. Составление рецензий и отзывов на прочитанный материал.
 - 9. Составление обзора публикаций по теме.
 - 10. Составление и разработка словаря (глоссария).
 - 11. Составление или заполнение таблиц.
 - 12. Составление библиографии (библиографической картотеки).
- 13. Работа по трансформации учебного материала, перевод его из одной формы в другую.

- 14. Ведение дневника (дневник практики, дневник наблюдений, дневник самоподготовки и т.д.)
 - 15. Прослушивание учебных аудиозаписей, просмотр видеоматериала.
 - 16. Выполнение аудио и видеозаписей по заданной теме.
- 17. Подготовка к различным формам промежуточной и итоговой аттестации (к тестированию, контрольной работе, зачету, экзамену).
 - 18. Выполнение домашних контрольных работ.
- 19. Самостоятельное выполнение практических заданий репродуктивного типа (ответы на вопросы, тренировочные упражнения, опыты, задачи, тесты).
 - 20. Выполнение творческих заданий.
 - 21. Проведение опыта и составление отчета по нему.
 - 22. Подготовка устного сообщения для выступления на занятии.
 - 23. Написание реферата. Подготовка к защите (представлению) реферата на занятии.
 - 24. Подготовка доклада и написание тезисов доклада.
- 25. Выполнение комплексного задания или учебного проекта по учебной дисциплине. Подготовка к его защите на семинарском или практическом занятии.
 - 26. Подготовка к участию в деловой игре, конкурсе, творческом соревновании.
 - 27. Подготовка к выступлению на конференции.

9. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИС-ЦИПЛИНЫ (МОДУЛЯ)

9.1. Основная литература:

- 1. Моделирование информационных ресурсов: теория и решение задач: учебное пособие / Г.Н. Исаев. М.: Альфа-М: ИНФРА-М, 2010. 224 с. URL: http://znanium.com/bookread.php?book=193771
- 2. Коннов, И.В. Нелинейная оптимизация и вариационные неравенства/ И.В. Коннов. Казань: Казан. гос. ун-т, 2013.- 508 с.
- 3. Лесин В.В., Лисовец Ю.П. Основы методов оптимизации. М.: Лань, 2011. 352c. URL: http://e.lanbook.com/books/element.php?pl1_id=1552
- 4. Сухарев А.Г., Тимохов А.В., Федоров В.В. Курс методов оптимизации. М.: Физматлит, 2011. 384c. URL: http://e.lanbook.com/books/element.php?pl1_id=2330

9.2. Дополнительная литература:

- 1. Лабскер, Л. Г. Теория игр в экономике: (практикум с решениями задач): учебное пособие для студентов, обучающихся по направлению "Экономика" / Л. Г. Лабскер, Н. А. Ященко; под ред. Л. Г. Лабскера., 2-е изд., стер..- Москва: Кнорус, 2013.- 259 с.
- 2. Коннов, И. В. Многошаговые процессы принятия решений: Метод. разраб. / И.В. Коннов; Казан. гос. ун-т. Фак. вычисл. математики и кибернетики.?Казань: Казан. гос. ун-т, 2004.- 40 с.
- 3. Измаилов А.Ф., Солодов М.В. Численные методы оптимизации. М.: Физматлит, 2008. 320c. URL: http://e.lanbook.com/books/element.php?pl1_id=2184
- 4. Методология и технология имитационных исследований сложных систем: современное состояние и перспективы развития[Электронный ресурс]: Моногр./ В.В. Девятков М.: Вуз. учеб.: ИНФРА-М, 2013. 448 с. . Режим доступа: http://www.znanium.com/bookread.php?book=427491.
- 5. Коннов И.В. Электронный образовательный ресурс "Дополнительные главы теории игр", 2013 http://tulpar.kpfu.ru/course/view.php?id=498

9.3. Интернет-ресурсы.

- Интернет-ресурсы по математике: http://exponenta.ru;
- Портал математических интернет-ресурсов: http://www.math.ru;
- Портал математических интернет-ресурсов: http://www.allmath.com;
- Портал ресурсов по математике и ИТ: http://algolist.manual.ru;
- Научный портал по математическим наукам: http://www.mathnet.ru;
- Электронная библиотечная система «Лань»: http://e.lanbook.com;
- Электронная библиотечная система «Знаниум»: http://znanium.com

10. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ И ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ ДИС-ЦИПЛИНЫ (МОДУЛЯ)

Аудитории, оборудованные мультимедийным оборудованием, компьютерные классы.

Программа составлена в соответствии с требованиями ФГОС ВО аспирантуры (Приказ Минобрнауки РФ от 30.07.2014 № 872)

Автор(ы): д.ф.-м.н., профессор Коннов И.В.

Рецензенты: д.т.н., профессор Латыпов Р.Х. к.ф.-м.н., доцент Андрианова А.А.

Программа одобрена на заседании Учебно-методической комиссии Института ВМ и ИТ КФУ от 11 сентября 2014 г. протокол № 1.