<u>ЧУГУН С ВЕРМИКУЛЯРНЫМ</u> <u>ГРАФИТОМ</u>

1. Введение

2. Стандарты и структура

3. Управление ходом реакции

4. Выбор модификаторов

5. Модификаторы производства Toyo Denka Kogyo

1.ВВЕДЕНИЕ

Рис. 1. Промежуточная структура графита (сопротивление на разрыв 407 МПа, коэф. удлинения 6,2%.) (Х50 б/травления)

- Как известно, первые образцы вермикулярной структуры графита в чугуне были получены при экспериментах над переходными формами графита между пластинчатым и шаробразным состояниями, Рис. 1. Незавершенность реакции образования сферроподобных структур в различных случаях может быть объяснено как химсоставом модификаторов, так и определенными условями реакции. Подобные промежуточные структурнные формы графита получили наименование вермикулярных (vermicular- «червеобразный») или «компактных». Преимуществами чугуна с промежуточными формами (вермикулярного) графита (ЧВГ) являются как сопротивление разрыву не менее 300 МПа, достаточно удовлетворительный коэффициент удлинения, так и хорошая отливаемость (малое число раковин, малая пористость).
- Современные стандарты на ЧВГ были установлены в 1979 г. Международным технологическим литейным комитетом. С того же года к разработке собственных стандартов и оптимальных способов производства ЧВГ приступила Японская ассоциация литейных производств.

ФОРМИРОВАНИЕ ВЕРМИКУЛЯРНОГО ГРАФИТА

Рис. 2. Примерный ход процесса формирования вермикулярных структур

Как видно из Рис. 2, в момент начала модификации структура графита одинакова во всех местах расплава. При контакте графитового зерна с гамма-железом (γ-Fe) возникает эффект «окружения» зерна частицами гамма-железа и изоляции от основной массы расплава.

Содержащиеся в расплаве молекулы алюминия, титана, серы и других понижающих температуру плавления элементов образуют на границах гамма-решетки легкоплавкие зоны, через которые шарообразная структура контактирует с соседней. В результате эффекта «протекания» образуются длинные (червеобразные) цепочки.

Процесс формирования вермикулярного графита на первоначальном этапе сходен с процессом формирования шарообразной структуры, но из-за особенностей строения гамма-решетки железа процесс приводит к плоским вытянутым (червеобразным) формам графитной структуры.

2. СТАНДАРТЫ И СТРУКТУРА

Табл. 1 Обозначение марок чугунов с вермикулярным графитом в различных стандартах.

ISO 16112 ^[1]	ASTM A842-11 ^[2]	EN 16079 ^[3]	JIS G 5505 ^[4]	GB/T 26655-2011 ^[5]	SAE J1887 ^[6]	GOST 28394-89 ^[7]
ISO 16112/JV/300	300	EN-GJV-300	FCV 300	RuT300A	C300	ЧВГ30
ISO 16112/JV/350	350	EN-GJV-350	FCV 350	RuT350A	C350	ЧВГ35
ISO 16112/JV/400	400	EN-GJV-400	FCV 400	RuT400A	C400	ЧВГ40
ISO 16112/JV/450	450	EN-GJV-450	FCV 450	RuT450A	C450	ЧВГ45
ISO 16112/JV/500	-	EN-GJV-500	FCV 500	RuT500A	-	-

[1] ISO 16112, Compacted (vermicular) graphite cast irons — Classification

[2] ASTM A842-11, Standard specification for compacted graphite iron castings

[3] EN 16079, Founding — Compacted (vermicular) graphite cast irons

[4] JIS G 5505, Compacted (vermicular) graphite cast irons

[5] GB/T 26655-2011, Compacted (vermicular) graphite cast irons

[6] SAE J1887, Automotive compacted graphite iron castings

[7] GOST 28394-89, Vermicular graphite iron for castings. Grades

Стандарт	Марки	Сопротивление наразрыв, МПа	Предел текучести, МПа	Коэффициент Удлинения %	Твердость, НВ	Диаметр отпечатка по Бринеллю
ISO 16112 ^[1]	-	-	-	-	-	-
ASTM A842-11 ^[2]	Grade 250	250	175	3,0	179 макс.	4.50 мин.
JIS G 5505 ^[4]	FCV 250	-	-	-	-	-
GOST 28394-89 ^[7]	ЧВГ 25	-	-	-	-	-
ISO 16112	JV/300	300	210	2,0	140~210	-
ASTM A842–11	Grade 300	300	210	1,5	143~207	5.0 ~ 4.2
JIS G 5505	FCV 300	300	210	2,0	140~210	-
GOST 28394-89	ЧВГ 30	300	240	3,0	130~180	-
ISO 16112	JV/350	350	245	1,5	160~220	-
ASTM A842–11	Grade 350	350	245	1,0	163~229	4.7~4.0
JIS G 5505	FCV 350	350	245	1,5	150~220	-
GOST 28394-89	ЧВГ 35	350	260	2,0	140~190	-
ISO 16112	JV/400	400	280	1,0	180 ~ 240	-
ASTM A842–11	Grade 400	400	280	1,0	197 ~ 255	4.3~3.8
JIS G 5505	FCV 400	400	280	1,0	160 ~ 240	-
GOST 28394-89	ЧВГ 40	400	320	1,5	170 ~ 220	-
ISO 16112	JV/450	450	315	1,0	200~250	-
ASTM A842–11	Grade 450	450	315	1,0	207~269	4.2 ~ 3.7
JIS G 5505	FCV 450	450	315	1,0	170~250	-
GOST 28394-89	ЧВГ 45	450	380	0,8	190~250	-
ISO 16112	JV/500	500	350	0,5	220~260	-
ASTM A842–11	-	-	-	-	-	-
JIS G 5505	FCV 500	500	360	0,5	180~260	-
GOST 28394-89	-	-	-	-	-	-

Таблица 2. Стандартные нормы механических свойств чугуна с вермикулчрным графитом

FCV250	FCV300		(Станд	арт		0	бразец		Φ	отогра	афия	
(,) •·····X	1. P	Рис. 3]	FCV2	50	900°(Форм С × 2Н	аҮ Ти , охлах	пВ кд. печи	× 100 T _I	равлен	ние 3% н	итал
22. 31 ar /4.		Рис. 4]	FCV3	00		Форм	аҮ Ти	пВ	× 100 Tr	равлен	ние 3% н	итал
			К	оэффі одифі (%	ициеі икаци 6)	^{нт} Зе и на	ернист а 1 кв.	ость мм.	Размер зерна, мкм	Площадн графита, %	ь ,	Площа, перлита, Р	ць % Pf
行うで、	the second second	Рис. 3	3	4	0		192	2	39	12,0		0	0
(· · · · · · · · · · · · · · · · · · ·	Рис. 4	4	4	5		222	2	47	13,9	3	3,2	3,7
Рис.3	Рис. 4				Хим	и. состан	3		Сопр-ние	Проверочи	ные	Коэф.	Проч-
			С	Si	Mn	Р	S	Mg	на разрыв, МПа	напряжен МПа	ния Уд	длинени, %	НВ
		Рис. 3	3, 63	2,33	0,20	0,019	0,009	0,018	304	192		13,0	148
		Рис. 4	3, 65	2,75	0,20	0,020	0,009	0,016	334	205		11,8	166

FCV300] [C	Станда	арт		Ođ	разец			Фотог	рафия	
The weather the states of	Рис	. 5	F	FCV3	00		Форм	аҮ Тиг	ıB	×100	Травле	ние 3%	нитал
	у Рис	. 6	F	FCV3	00		Форм	аҮ Тиг	ıB	×100	Травле	ение 3%	нитал
	3		К	оэффі одифі (%	ицие икаці б)	^{нт} ии 36	ернист а 1 кв.	ость мм.	Размер зерна, мкм	Плоі граф 9	цадь рита, %	Плоп перли Р	цадь ra, % Pf
	7 Ри	c. 5		3′	7		308	3	40	13	3,6	6,7	7,3
the second se	Ри	c. 6		3	2		180		33	13	,2	8,7	10,0
Pue 5 Pue 6	7				Хим	и. соста	1B		Сопр-ние	е Пров	ерочные	Коэс). Проч-
			C	Si	Mn	Р	S	Mg	на разрын МПа	в, напј М	ряжения МПа	Удлин %	ность НВ
	Рис.	5	3, 65	2,80	0,21	0,028	0,011	0,014	350		279	6,4	161
	Рис.	63	3, 60	2,68	0,20	0,038	0,014	0,015	329		233	4,4	163

FCV350				Стан	ндарт			Образ	ец		Фот	ография	
	Ри	ис. 7	7	FCV	350		Фо	рмаҮ	ТипВ	×100	Трав	ление 3%	нитал
	Ри	1c. 8	3	FCV	/350	П	эиливн	ая зат	отовка ø25	×100	Травл	иение 4% г	іикрал
			-	Коэф моди	фици фика	іент ции	Зерн	истост	размер ъ зерна,	о Плог граф	цадь рита,	Площа перлита	ідь а, %
					(%)		на і	кв. мм	. МКМ	9	6	Р	Pf
	Р	чс.	7		44		,	206	41	13	3,5	14,0	16,3
TO DE WELL STALLE	Р	чс.	8	7	4(60)]	96	-	20	,5	28,6	36,0
Рис 7 Рис 8					Хим.	соста	В		Сопр-ние	Проверс	очные	Коэф.	Проч-
			С	Si	Mn	Р	S	Mg	на разрыв, МПа	напряж МП	сения [а	Удлинени. %	ность НВ
	Рис. '	7 3	, 69	2,71	0,20	0,019	0,009	0,017	371	223	3	10,6	170
	Рис. 8	8 3	, 69	2,57	0,46	0,045	0,012	0,012	416	269	9	6	159

FCV350	FCV400			Ст	сандар	рт		Обр	азец			Фотог	рафия	
MAATY LOT	CO AANTO	Рис	c. 9	FC	CV35(0 1	Прили	вная з	агот	овка ø25	×100	Гравлен	ние 4% пі	акрал
7		Рис	. 10	FC	CV40(0	Φ	Рорма	Ү Ти	пВ	× 100	Травле	ние 3% н	итал
	20800198			Коз мод	эффиі цифик (%)	циент сации	Г Зеј 1 на	рнист 1 кв.	ость мм.	Размер зерна, мкм	Плон графі %	цадь ита,	Площа перлита Р	дь 1, % Pf
150.04	Town of the set	Ри	ic. 9		58(46	5)		168		-	14	,1	27,9	32,5
- A REAL	ONKORD OF DEL	Рис	c. 10		41			261		30	12,	,0	38,0	43,0
×100	×100				Хи	м. со	став			Сопр-ние	Провер	очные	Коэф.	Проч-
Рис. 9	Рис. 10		C	Si	Mn	Р	S	Mg	Ca	на разрыв. МПа	напрях МІ	жения Па	Удлинени %	ность ^I , HB
		Рис. 9	3, 86	52,57	0,52	0,045	0,012	0,014	-	409	26	53	7	170
		Рис. 10	3, 73	2,72	0,20	0,019	0,008	0,019	0,49	438	26	56	6,4	196

FCV450			Стандарт Образец							Фотография			
	Ри	c. 11	FC	V450		Φ	орма	Ү Ти	ıB	× 100 T	равлени	e 3%	нитал
	Ри	c. 12	FC	V450	900	Ф о°C × 2	орма Н, оз	Ү Тиі клаж.	іВ воздухом	×100 T	равлени	e 3%	нитал
			Коэ мод	ффици ифика (%)	іент ции	Зерн на 1	исто кв. м	СТЬ 4М.	Размер зерна, мкм	Площадь графита, %	I пе Р	Ілоща рлита	дь 1 <u>, %</u> Pf
	Ри	c. 11		46			186		28	11,8	45		51
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Ри	c. 12		45			215		28	12,1	71		80
Рис. 11 Рис. 12	C	C:	Mn	Хим.	соста	B	Ca	Sn	Сопр-ние на разрыв, МПа	Проверочн напряжен МПа	ные К ия Удл	ээф. инени, %	Проч- ность НВ
Рис.	3, 6	2 2,9	2 0,26	0,024	0,005	0,019	- -	0,040	481	322		2,8	206
Рис. 12		3, 73 2,61 0,2		0,026	0,010),010 0,019 0,49 0,045		558	435	3,4		237	

FCV450													
	· caller · · o.												
A 2000 Month op a she interested	2			Ст	андар	т		Обр	азец		Фото	графия	
		Рис.	13	FC	CV450)	Φ	орма	Ү Ти	ıВ	< 100 Травл	ение 3%	нитал
A CARLON DE CARL	0000			Коэс моді	ффици 1фика (%)	иент щии	Зерн на 1	нисто кв. 1	ость мм.	Размер зерна, мкм	Площадь графита, %	Площа перлит Р	адь а, % Pf
e considerate	3	Рис.	13		41			268		30	11,6	80	90,0
×100					Хим.	состан	3	,	,	Сопр-ние	Проверочные	Коэф.	Проч-
Рис. 13		C Si I		Mn	Р	S	Mg	Ca	Sn	на разрыв, МПа	напряжения МПа	Удлинени %	HB
											:	:	

Таблица 3. Диапазон изменения химического состава ЧВГ в ГОСТ и химический состав показанных ранее образцов.

Марка	Массовая доля элементов, %										
чугуна	С	Si	Mn	Р	S	Cr	Cu	<u>Mg*</u> ΣRE			
ЧВГ 30	3,5~3,8	2,2~3,0	0,2~0,6	До 0,08	До 0,025	До 0,15	-	<u>0,015~0,028</u> 0,10~0,20			
FCV 300	3,60~3,65	2,68~2,80	0,20~0,21	0,020~0,038	0,009~0,014	-	-	0,014~0,016			
ЧВГ 35	3,5~3,8	2,2~2,8	0,2~0,6	До 0,08	До 0,025	До 0,15	-	<u>0,020~0,028</u> 0,10~0,20			
FCV 350	3,69~3,86	2,57~2,71	0,20~0,52	0,019~0,045	0,009~0,012	-	-	0,012~0,017			
ЧВГ 40	3,1~3,5	2,0~2,5	0,4~1,0	До 0,08	До 0,025	До 0,20	0,4~0,6	<u>0,020~0,028</u> 0,10~0,20			
FCV 400	3,73	2,72	0,20	0,019	0,008	-	-	0,019			
ЧВГ 45**	3,1~3,5	2,0~2,5	0,8~1,2	До 0,05	До 0,025	До 0,30	0,8~1,0	<u>0,020~0,028</u> 0,10~0,20			
FCV 450	3,62~3,73	2,61~2,92	0,20~0,26	0,020~0,026	0,005~0,010	-	-	0,019			

*Цифры в числителе соответствуют содержанию остаточного магния в чугуне, в знаменателе – остаточному содержанию суммы редкоземельных элементов.

**Для получения износостойкого и теплостойкого перлитного ЧВГ допускается легирование чугуна марки ЧВГ 45 0,8~1,2% никеля и 0,2~0,4% молибдена.

Форма графита	Обозначение эталона в ГОСТ 3343-87	J	Формы графита IS G 5505	Shape factor η	Rang of graphite form of roundness-shape factor (R) by the image analysis equipment.	Степень шаровидности графит ISO 16112 2017	a
Пластинчатая	ΠΓφ1	Ι	flake	0,0	0,00 до 0,10	больше 0 до 0,10	Compositod
прямолинеиная							Compacted
Гнездообразная	ΠΓφ4	II		0,05	0,11 до 0,20	больше/равно 0,10 до 0,40	
Червеобразная	ΒΓφ2	III		0,20	0,21 до 0,30	больше/равно 0,40 до 0,525	
Нитевидная	КГф1	IV		0,40	0,31 до 0,55	больше/равно 0,525 до/вкл. 0,625	Intermediate
Компактная	КГф3	V		0,90	0,56 до 0,85	больше 0,625 до/вкл. 0,80	Nodules
Шаровидная	ШГф5	VI	Spheroidal	1,0	0,86 до 1,00	больше 0,80 до 1,0	

Рис. 14 Определение степени шаровидности графита ISO 16112:2017, JIS G 5505:2013, GOST 3443-87

 $R = A/A_{\rm m} = (4xA)/(\pi x l_{\rm m}^2)$

Метод вычисления процентной степени шаровидности графита, R_{sg} .

ISO 16112:2017

 $R_{\rm sg} = 100 \times (\sum A_{\rm nodules} + 0.5 \times \sum A_{\rm intermediates}) / \sum A_{\rm all}$

где А_{nodules} - пощадь частиц (*l*_m ≥ 10 мкм) классифицируемых как шаровидный графит; А_{intermediiates} - пощадь частиц (*l*_m ≥ 10 мкм) классифицируемых промежуточная форма графита; А_{all} - пощадь частиц больше чем или раной 10 мкм. JIS G 5505:2013

$$R_{\rm sg} = 100 \times (\eta^{\rm I} \times N_{\rm g}^{\rm I} + \eta^{\rm II} \times N_{\rm h}^{\rm II} + \eta^{\rm III} \times N_{\rm i}^{\rm III} + \eta_{\rm IV} \times N_{\rm j}^{\rm IV} + \eta_{\rm V} \times N_{\rm k}^{\rm V} + \eta_{\rm VI} \times N_{\rm l}^{\rm VI}) / N^{\rm All}$$

где η^i - степень шаровидности графитовых частиц группы i, N^i – число графитовых частиц группы i, i – форма графита, группы I, II, III, IV, V or VI.

GOST 3443-87

Количество шаровидного графита в процентах в структуре чугуна с вермикулярным графитом оценивается по Табл. 4 и шкале 2В.

Таблица 5. Доля шаровидного графита по отношению к вермикулярному оценивается средним процентом площади, занятой указанным графитом на шлифе.

Обозначение	Площадь занятая шаровидным графитом, %
ВГ100	0
ВГ98	До 5
ВГ92	От 5 до 10
ВГ85	От 10 до 20
ВГ70	От 20 до 40

СТРУКТУРА ГРАФИТА И ПРОЧНОСТНЫЕ ПОКАЗАТЕЛИ

······

······

<u>Табл. 6. Показатели прочности различных сортов чугуна</u>												
	Сорт	C	E %	Предел теку (0,1%)	чести	Предел Прочности к	Коэф. удлинения					
A4	ASTM 8-74 кл. 25		4,4	10,5		17.5		< 1				
то	же кл. 30		4.2	14,0		21.1		то же				
то	же кл. 45		3,6	17,5		31.6		то же				
	ЧВГ		4.2	2 3,2 ~ 2 8	8,8	3 3.7 ~ 4 0).1	3~5				
	ВЧ		4.2	2 6,7 ~ 3 3	3,0	4 2.2 ~ 49	.2	7 ~ 12				
<u>T</u> a	<u>юл. 7</u> . Механи	ические сво	ойства	чугуна в зави	симост	ги от структур	ы грас	<u>фита</u>				
	Механически	ие свойства (цепочі	ı графі ки)	итового зерна	Me	еханические с	войств	за чугуна				
Структура графита	Длина мкм	Толщина мкм		Отношение	Пред н	ел прочности кг/кв. мм	Коэф. удлинения					
Ι	20	10	0 2~4 30~45					2 ~ 5				
II	150	50	50 2~5 35~			35 ~ 50		3 ~ 9				
III	150	20		3 ~ 10		30 ~ 45	1	,0 ~ 3,5				

ТРЕБУЕМАЯ ТОЛЩИНА ДЕТАЛЕЙ ИЗ ЧВГ

	CE	Структура	Толщина/диаметр (мм)							
			30	53	44,5 (кильблок)	200				
Твердость [HB]	4,3 4,0	Ферритная	140 ~ 155 180 ~ 205	135 ~ 150 170 ~ 180	120 ~ 130 135 ~ 145	120 ~ 130 130 ~ 140				
(10/3000)	4,3 4,0	Перлитная	225 ~ 245 210 ~ 260	175 ~ 245 175 ~ 240	195 ~ 205 195 ~ 215	160 ~ 180 160 ~ 190				

Табл. 8. Взаимоотношение размеров и твердости деталей из ЧВГ

Металлическая основа близка к структуре ВЧ и имеет в своем составе большой процент ферритных структур.

Средняя прочность составляет до 40 кгс/кв. мм, однако существует возможность повысить ее до 50 кгс/кв. мм увеличением доли содержания перлита путем добавления в расплав меди.

вопросы усадки

ЧВГ имеет преимущество перед ВЧ и СЧЗО (и выше) по показателям текучести и усадки, благодаря повышенному содержанию кремния.

отбеливание

Таблица 9. Показатели отбеливания различных сортов чугуна

CE	Ce	ерый чуг	ун	ı	ЧВГ		Высокопрочный чугун				
	3 мм	б мм	9 мм	3 мм	6 мм	9 мм	3 мм	6 мм	9 мм		
4,3	СЧ	СЧ	СЧ	18 мм	3 мм	СЧ	Цементит	14 мм	3 мм		
4,1	СЧ	СЧ	СЧ	21 мм	8 мм	СЧ	22 мм	16 мм	СЧ		
3,8	СЧ	СЧ	СЧ	Цементит	15 мм	СЧ	Цементит	Цементит	3 мм		

По содержанию цементита имеет преимущество перед СЧ, но уступает ВЧ.

x 100					
Сорт	СЧ	СЧ/ЧВГ	ЧВГ	ВЧ/ЧВГ	ВЧ
Сфероидизация	0	18	34	59	81
Растяжение кг/м	1 0.5	2 6.9	3 6.5	45.4	4 9.1
Удлинение	0.8	1.2	5.4	7.6	1 9.6
Твердость НВ	90	130	14 5	156	157
80		A construction of the design of the second se			×60%

Рис. 16 Графитная структура и механические свойства чугунов

Рис. 17

Рис. 18. Время охлаждения и механические свойства чугуна

3. УПРАВЛЕНИЕ ХОДОМ РЕАКЦИИ ПРИ ПОЛУЧЕНИИ ЧВГ

• 1) Ограничение сфероидизации магнием

 При недостатке магния в расплаве при начале и в ходе реакции сфероидизации сферичность графитной структуры нарушается. Используя статистику и формулы расчетов скорости сфероидизации существует возможность управления степенью сфероидизации путем сокращения доли магния в добавляемом модификаторе. Наиболее эффективным агентом для регулировки влияния магния на графаитную структуру является сера. При обеспечении требуемого соотношения магния и серы в модификаторе и четкого контроля уровня серы в расплаве имется возможность замедлять ход сфероидизации и добиваться получения промежуточных графитных структур. Допустимый в модификаторе для ЧВГ баланс объема магния крайне узок, что усложняет как расчеты состава, так и массовое производство такого модификатора.

Пример ①: Примерные соотношения остаточного содержания Mg и S в модифицированном

расплаве :

- Диапазон серы (S) 0,017 ~ 0,018% 0,019 ~ 0,020% 0,021 ~ 0,022% 0,025 ~ 0,026%
- Диапазон магния (Mg) 0,020 ~ 0,021% 0,022 ~ 0,023% 0,024 ~ 0,025% 0,026 ~ 0,027%

• 2>Ограничение сфероидизации титаном

- Для ограничения реакции сфероидизации графита в чугуне в присутствии Mg могут использоваться специальные ингибиторы сфероидизации, наиболее популярным из которых является Ti. Оптимальные соотношения Mg и вспомогательных ингибиторов для получения промежуточных структур определенного вида устанавливаются большинством производителей модификаторов экспериментально. Немаловажным моментом является способность остаточного Ti накапливаться в расплаве и влиять на свойства металла, в связи с чем желателен дополнительный технический контроль его содержания в готовом металле. Ниже приведена одна из стандартных формул исчисления объема титанового ингибитора в модификаторе:
- K2 = K1/остаток магния (*стандартное значение* $K2 10 \sim 20$)
 - ИЛИ
- $K2 = (\underline{4,4Ti+2,0As+2,3Sn+5,0Sb+290Pb+370Bi+1,6Al}) / \text{ остаток Mg},$
- где *K1* степень влияния ингибитора на реакцию.
- Влияние титановых ингибиторов становится заметным при значениях *К1* = 1,0-2,0. Важным моментом является тенденция к накоплению Ті и его соединений и необходимость дополнительного лабораторного контроля его содержания в возврате. По мнению производителей модификаторов, максимально допустимое содержание остаточного титана в расплаве для ЧВГ составляет не более 0,2% массы.
- Пример ① Применение магний-титанового модификатора (Fe-Si—Mg—Ti—Al) Объем модификатора 0,5 ~ 2,0% Диапазон магния (Mg) 0, 015 ~ 0,030% Диапазон серы (S) 0,01 ~ 0,03%
- Пример **2** :

Химсостав модификатора (Mg 4,0 ~ 5,0%, Ti 8,5 ~ 10.5%, Ce 0,2 ~ 0,35% Ca 4,0 ~ 5.5%, *Al* 1.0 ~ 1.5%, Si 48,0- ~ 52,0% Навеска: 0,30 ~ 0.45%

Химсостав расплава С 3,45 ~ 3,78%, Si 2,01 ~ 2.68%, Mn 0,43 ~ 0,49%, P 0,019 ~ 0,045%, S 0,010 ~ 0-,017%

- 3> Ограничение сфероидизации РЗМ (в т. ч. церием (Се))
- РЗМ обладают слабой степенью влияния на процессы образования шаровидных графитных структур, нежели магний. При получении промежуточных структур графита слабая реакция с РЗМдобавками дает возможность регулировки их содержания в широком диапазоне для получения промежуточных графитовых структур.
- Пример () Магний-цериевый (Fe-Si-Ce-Mg)
- Химсостав модификатора: Ce 2.5 ~ 7,5%, Mg 1 ~ 2%, Si 45 ~ 50%
- Химсостав расплава: С 3,6%, Si 2.6%, Mn 0.3%, P 0,06% S 0,02%
- Навеска: 1%
- Пример (2):РЗМ-модификаторы
- Химсостав модификатора: P3M 30,9% Si 33,2% Fe 32,2%
- Химсостав расплава: Si 2,0%, P3M 4,2 ~ 4,4%
- Навеска: 0,35%
- Пример ③: Сложный модификатор для вагранки
- Химсостав присадок:
- XT-Mg 18-8 (P3M 18,55%, Ca 2,70% Mg 8.39%, Si 39.40%)
 XT- 2 7 (P3M 27,70%, Ca 4,32%, Mg 0,37%, Si 40,79%)
 NF-8 (Mg 8,22%, Si 46,10%)
- Химсостав расплава: С 3,25 ~ 3,40%, Si 1,7 ~ 2,0%, P 0,05 ~ 0,07% S 0,07 ~ 0,09% Cr 0,02 ~ 0,05%
- Навеска: XT-Mg 18-8 (0,77%) + науглероживатель 0,5% + FeSi 0,6% (сэндвич-процесс)

• 4> Ограничение сфероидизации кальцием

- Как и РЗМ, кальций обладает малой степенью влияния на процессы сфероидизации и представляет интерес в получении промежуточных структур графита. Следует отметить, что присутствие ограниченного объема магния в кальций-кремниевом расплаве положительно влияет на формирование промеждуточных структур. Как известно, применение кальция ведет к образованию скорее хлопьевидных, нежели чисто шаровидных графитовых структур, что дает возможность также использовать его в качестве добавки-ингибитора в модификаторах для ЧВГ. Преимущество кальциевых добавок также в достаточно широкой возможности регулировки объема промежуточных структур.
- **Пример** (1) Кальциевый модификатор для ЧВГ Химсостав модификатора: Ca-Si 2 5 %
- Навеска: 1% (в ковш)
- Химсостав расплава: С 3,5 %, Si 2,5%

Табл. 10. Условия реакции

Печи	Вагранка 4т/низкочастотная 3т
Десульфуризация	Непрерывная в ковше с пористой пробкой
Шихта	Чугун 43 %, возврат 55 %
Масса плавки	600 кг
Температура разливки	1470 °C
Модификатор	Химсостав: Fe·Si - 1,18%, Mg - 8,8%, Ce - 4,4% Доля модификатора: 0,8%
Графитизация	Химсостав: ферросилиций 75% Доля модификатора: 0,4%
Гемпература в форме	1470 °C

Табл. 11. Соотношение химсостава

С	Si	Mn	Р	S	Cu
3,70	2,70	0,60	0,040	0,011~ 0,023	0,50

Рис. 19 Доля серы и сопротивление на разрыв (доля модификатора 0,8%)

Рис. 20 Доля серы и остаточный церий (доля модификатора 0,8%)

4. ВЫБОР МОДИФИКАТОРОВ ДЛЯ ЧВГ

Возможные способы замедления процесса сфероидизации

- 1. Снижение доли магния
- 2. Введение титанового ингибитора
- 3. Введение РЗМ-ингибитора
- 4. Введение кальциевого ингибитора

Химсостав	Mg	Ti	P3M/Ce	Ca	Si	Остаток
Пример А	4,0 ~ 5,0 4,5 ~ 5,5	8,5 ~ 10,5 8,0 ~ 10,0	0,20 ~ 0,35 0,30 ~ 0,40	4,0 ~ 5,5 До 1,0	48,0 ~ 52,0 50,0 ~ 54,0	Al 1,0 ~ 1,5; ост. Fe Al 1,0 ~ 1,5; ост. Fe
Пример В	3,0 ~ 4,0 6,0 ~ 8,0	-	7,5 ~ 8,5 1,0 ~ 3,0	1,5 ~ 2,5 5,0 ~ 7,0	43,0 ~ 57,0 43,0 ~ 47,0	остальное Fe остальное Fe
Пример С	4,5 4,0	-	4,0 7 ~ 8	1,0 ~ 1,5 1,0 ~ 1,5	50,0 45,0	остальное Fe остальное Fe
Пример D	1,7 ~ 2,0	-	8,0 ~ 9,0	-	45,0	остальное Fe

Таблица 12. Примеры состава рыночных модификаторов для ЧВГ (%)

Рис. 22 СТРУКТУРА ЧУГУНА В ЗАВИСИМОСТИ ОТ ДОЛИ ЦЕРИЯ (1)

Рис. 23 СТРУКТУРА ЧУГУНА В ЗАВИСИМОСТИ ОТ ДОЛИ ЦЕРИЯ (2)

5. МОДИФИКАТОРЫ Тоуо Denka ДЛЯ ЧВГ

Твблица 13. Модификаторы серии Vermicalloy

Наименование	Si (%)	Mg (%)	Ca (%)	RE (%)	Al (%)	Гранулярность
Varmicalloy	47	1,8	0,2	8,7	1,0	2 ~ 12
Varmicalloy S	60	2,4	0,3	5,5	1,0	2 ~ 12
Varmicalloy D	45	1,9	0,4	8,8	1,0	3 ~ 12
Varmicalloy HM	47	2,5	0,3	9,0	1,0	2 ~ 12
VA-T-3	47	1,7	0,4	5,5	1,0	1 ~ 10
VA-33A	45	3,2	0,22	3,1	1,0	2 ~ 12
VA-39 (K)	45	3,0	0,6	9,0	1.0	2 ~ 20
TDCR-2HR-D	45	2,2	0,6	2,5	1,0	2 ~ 10
TDCR-2HR-H	45	1,9	0,4	5,7	1,0	2 ~ 10
TDCR-3HR	45	3,3	1,5	4,1	1,0	2 ~ 12

РАЗВИТИЕ ТЕХНОЛОГИИ

Модификатор Vermicalloy является стандартным освоенным продуктом в номенклатуре модификаторов для ЧВГ Toyo Denka Kogyo.

- Vermicalloy (Mg 1,8%, P3M 8.7%)
- Несколько лет назад был разработан новый сорт модификатора для ЧВГ VA-T-3 с пониженным содержанием РЗМ. Необходимость в новом типе модификатора была обусловлена ростом относительного объема шаровидных структур в ЧВГ массового производства.
- VA-T-3 (Mg 1,7%, P3M 5.5%)
- Одновременно снижением концентрации РЗМ было достигнуто предотвращение образования цементита и отбеленного слоя без первичной графитизации (с экономией расхода инокулянта).

Рис. 24. Примеры модификации

В связи с низким содержанием магния рекомендуется добавление модификатора непосредственно в ковш

Химический состав и эффективность графитизации

Таблица 14. Расплав

С	Si	Mn	Р	S	Mg	Эф Мд	Cu	Cr	Мо	Ni	Al	v	Ti	Sn	Pb	Sb	Nb	Zn	Ce	В	V1 3B.	V2 3B.	Т℃С
3,78	2,14	0,40	0,018	0,008	0,000		0,02	0,03	0,01	0,02	0,0046	0,0000	0,0125	0,0018	0,0000	0,0018	0,0023	0,0467	0,0002	0,0004			

Таблица 15. После модификации Vermicalloy (доля Mg 0,015725)

мин	С	Si	Mn	Р	S	Mg	Эф Мд	Cu	Cr	Мо	Ni	Al	V	Ti	Sn	Pb	Sb	Nb	Zn	Ce	В	V1 зв.	V2 3B.	Т°С
3	3,78	2,84	0,40	0,019	0,009	0,006	38,2%	0,03	0,03	0,01	0,02	0,0168	0,0000	0,0135	0,0019	0,0000	0,0017	0,0024	0,0335	0,0201	0,0003	5469	5482	1435
8	3,59	2,83	0,40	0,019	0,008	0,005	31,8%	0,03	0,03	0,01	0,02	0,0143	0,0000	0,0136	0,0021	0,0000	0,0021	0,0024	0,0314	0,0177	0,0005	5489	5429	1368
13	3,51	2,81	0,40	0,019	0,009	0,004	25,4%	0,03	0,03	0,01	0,02	0,0121	0,0000	0,0135	0,0021	0,0000	0,0025	0,0022	0,0281	0,0170	0,0005	5523	5464	-

Рис. 25

Рис. 26

<u>Примечание</u>: ввиду сложности характера влияния скорости охлаждения на прочность металла выражения зависимостей времени и мех. свойств отливки справедливы для определенного диапазона химических составов, толщин отливок и условий производства

МЕХАНИЧЕСКИЕ СВОЙСТВА

Таблица 16.

	Vermicalloy										
Время охлаждения	3 мин.	8 мин.	13 мин	В самозатвердевающей форме							
Предел на растяжение, МПа	395	400	396	382							
Удлинение, %	7,8	8,4	9,3	5,8							
Твердость, HBD	4,65	4,65	4,70	4,70							
Твердость, НВ	167	167	163	163							
V звука	5482	5429	5464	5413							

Рис. 27

Рис. 28

<u>Примечание</u>: ввиду сложности характера влияния скорости охлаждения на прочность металла выражения зависимостей времени и мех. свойств отливки справедливы для определенного диапазона химических составов, толщин отливок и условий производства

СТРУКТУРНЫЙ КОНТРОЛЬ

Диапазон скоростей :5400~5630 м/сек (замеры 5400~5550 м/сек) Доля Mg :0,005~0,015% (замеры 0,006~0,01%)

<u>Примечание</u>: ввиду сложности характера влияния скорости охлаждения на прочность металла выражения зависимостей времени и мех. свойств отливки справедливы для определенного диапазона химических составов, толщин отливок и условий производства

УЗ-КОНТРОЛЬ ЗАТУХАНИЕМ

Скорость звука при УЗ-контроле чугунов рассчитывается по формуле

$$V = a(E/\rho)^{\frac{5}{2}}$$

где р-плотность, Е – модуль Юнга, а - константа.

табл. 14 приведены показатели плотности, модуля Юнга и скорости звука стандартных материалов, из которых видно возрастнание этих показателей от СЧ к ВЧ.

	Плотность, г/куб.см	Модуль Юнга, ГПа	V звука, м/с	Примечания
СЧ	7,0 ~ 7,5	73,5 ~ 127,4	< 5000	Для СЧ15 – СЧ35
ЧВГ	7,0 ~ 7,2	140 ~ 155	5000 ~ 5500	
ВЧ	7,1 ~ 7,3	165 ~ 185	5550 ~ 5720	Для ВЧ40 – ВЧ80
СТАЛЬ	7,8	205,8	5920	

Табл. 17. Средние показатели механических свойств металлов

СОДЕРЖАНИЕ РЗМ И СТРУКТУРА ОТЛИВКИ

Для ВЧ50-70: процесс сфероидизации не получает ощутимого замедления после разливки в форму, и присутствие РЗМ в расплаве не оказывает серьезного влияния на формирование промежуточных структур. При нулевом содержании РЗМ в модификаторе коэффициент сфероидизации составлял до 80%.

Замедления сфероидизации удалось добиться отказом от первичной модификации барием.

Для ЧВГ35: в отсутствие РЗМ характерна структура СЧ-ВЧ (практически без промежуточных структур).