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Modeling of quantum systems



“...The underlying physical
laws necessary for the
mathematical theory of a
large part of physics and
the whole of chemistry are
thus completely known,
and the difficulty is only
that the exact application
of these laws leads to
equations much too
complicated to be
soluble...”

1929 Paul Dirac




‘Modeling of quantum systems
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Current simulation paradigm
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Classical computer algorithms

DFT: Errors in transition states,
Charge transfer excitations, anions,...

DFT = density functional theory
QMC = Quantum Monte Carlo
MP2 = Second order perturbation

scheme
CCSD(T) = Coupled cluster scheme

CCSD(T)

Exact treatment

M. Head-Gordon, M. Artacho,
Physics Today 4 (2008)



'QC simulations of physical systems

“Bo3MOXKHO, ANA nporpecca B
NOHUMaHNN TaKUX ABNEHNIN HaM
HeaoCTaeT MaTeMATUYECKOM
TEOPUM KBAHTOBbIX aBTOMAaTOB.
Takne o6beKTbl MOrnm bbl
NOKa3aTb HAM MmaTemaTUyecKkue
MOAENN AeTEPMUHUPOBAHHbIX
NPOLLEeCCOB C COBEPLLUEHHO
HEeNpPWUBbIYHbIMW CBOMCTBAMMU...”

0. N. MaHuH, Beiyucaumoe u
Heablyucaumoe. 1980

“I...] Nature isn't classical, ..., and
if you want to make a simulation
of nature, you'd better make it
guantum mechanical, and by
golly it's a wonderful problem,
because it doesn't look so easy.”

R.P. Feynman —Int. J. Theor.
Phys. 21, 467 (1982)



Quantum computer simulation
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‘Quantum computing paradigm

Quantum model
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Elements of qguantum computation



Bits and qubits

e Two states classical bit e Two levels quantum system (qubit)

Polarization vector:
$=(S,, Ss Sg=const)

Density matrix:

B (pll Plzj
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Measurement

Physical states as vectors in a complex vector spaces
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Basis states

Observables as Hermitian matrices
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Quantum superposition
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Quantum superposition

Composition of multiple quantum systems: tensor product structure
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Two-qubits

Basis states

Separable: ‘TT> ‘\L¢> "N«> ‘»LT>

Entangled: ‘(Di>= L QTT>i‘\L\L>)
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EPR Paradox

Let us use a bit different notation:

s-t)-(;)  a--(3)
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Then
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x)=U, (al2)+2) = (4 2)+|-2))

EPR = Einsten, Podolsky, and Rosen
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This is a singlet state, it is isotropic

V)= i(ﬁ X,—X)—|— x,+x>)

J2

But

Physical reality

If, without in any way disturbing a system,
we can predict with certainty

(i.e, with probability equal to unity) the
value of physical quantity, then

there exists an element of physical reality
corresponding to this physical

guantity.



Quantum gates

Dynamics governed by Schrédinger equation

O¢ [ (t)) = —+H (1))

From continuous-time dynamics to gate operations
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Single qubit operations

Hadamard gate | H} = { 1 _1 ‘

Rotations of Bloch sphere — R; |- = exp[—i(0’.7)0/2], A.A =1

7 = lox, 0y, 0]
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Two qubits operations

All unitary transformations on n qubits can be described with

one-qubit gates and any two-qubit entangling gate

CNOT gate generates entanglement between qubits
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Classical computation

logical gates
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Quantum computation

quantum gates: different
unitary operators measurement

outcomes
0) —O—ifo11
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initial value of

qubit register outcome of single

computation

[M.A. Nielsen & I.L. Chuang — “Quantum computation and quantum

information” (2010, 2" ed.)]




Quantum algorithms

Quantum computers hold the promise to drastically reduce the complexity
of problems that have a THEORETICAL AND PRACTICAL RELEVANCE and no

(known) efficient classical solution.

Examples:
- Deutsch-Jozsa algorithm has theoretical relevance

- Grover search algorithm has practical relevance

(quadratic speed-up)
- Shor factoring algorithm has both theoretical and

practical relevance

[D. Deutsch & R. Jozsa - Proc. Roy. Soc. A 439, 553 (1992)]

[L.K. Grover - Phys. Rev. Lett. 79, 325 (1997)]
[P.W. Shor - SIAM Review 41, 303 (1999)]




Requirements for universal QC

e Large (>103) collection of bits.

* Initialization (set all qubits to 0) should be possible.

* Single and two-qubits quantum operations.

* Sufficiently low error rate.

* Reliable output of the final result.

D. P. DiVincenzo, G. Burkard, D. Loss, E. V. Sukhorukov, cond-mat/9911245



