Министерство образования и науки Российской Федерации

Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Казанский (Приволжский) федеральный университет"

ИНСТИТУТ МАТЕМАТИКИ И МЕХАНИКИ ИМ. Н.И. ЛОБАЧЕВСКОГО КАФЕДРА ГЕОМЕТРИИ

Направление: 010100.68 - математика

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА

(МАГИСТЕРСКАЯ ДИССЕРТАЦИЯ)

Голоморфные связности на трансверсальном расслоении второго порядка

Работа завершена:	
"" 2014 г	С. К. Кузьмина
Работа допущена к защите:	
Научный руководитель	
д. фм. н., профессор	
"" 2014 г	В.В. Шурыгин
Заведующий кафедрой	
д. фм. н., профессор	
"" 2014 г.	В.В. Шурыгин

 ${
m Kaзahb}-2014$

Содержание

1	Введение	3
2	Слоение на многообразии	4
3	Трансверсальное расслоение второго порядка слоения на многообразии	5
4	Структура многообразия над алгеброй триальных чисел на трансверсальном расслоении второго порядка	8
5	Категория трансверсальных расслоений второго порядка	12
6	Специальные автоморфизмы трансверсального расслоения второго порядка	15
7	Касательное расслоение слоеного многообразия M .	19
8	Соответствия между векторными полями на $T^2_{tr}M$ при автоморфизмах $T^2_{tr}M$ с тождественным отображением F^1	21
9	Связность в главном расслоении	26
10	Линейные связности на слоеном многообразии	29
11	\mathbb{D}^2 -линейные связности на трансверсальном расслоении второго порядка	34
12	Соответствия между \mathbb{D}^2 -гладкими линейными связностями на $T^2_{tr}M$ при автоморфизмах $T^2_{tr}M$ с тождественным отображением F^1	41

1 Введение

Целью работы является изучение трансверсальных расслоений второго порядка слоеных многообразий как гладких многообразий над алгеброй \mathbb{D}^2 триальных чисел. Трансверсальные расслоения принадлежат к общему классу полукасательных расслоений, изучавшихся В.В. Вишневским [?], [?]. Дальнейшие обобщения трансверсальных и полукасательных расслоений исследовались Л.Б. Смоляковой и В.В. Шурыгиным [?]. Геометрия трансверсальных расслоений второго порядка относится к области так называемой дифференциальной геометрии второго порядка (см. [?]). Одной из задач, возникающих в геометрии трансверсальных расслоений второго порядка является нахождение условий эквивалентности полей геометрических объектов относительно гладких преобразований над алгеброй триальных чисел. Впервые такого рода условия были найдены А.П. Широковым [?] для метрических тензоров на касательных расслоениях. Наличие структуры многообразия над \mathbb{D}^2 на трансверсальном расслоении второго порядка $T_{tr}^2 M$ позволяет определить на $T_{tr}^2 M$ \mathbb{D}^2 -гладкие векторные поля и связности. Такие поля можно получать, в частности, применяя функтор $T^2_{tr}M$, относящий морфизму слоений $M \to M'$ отображение $T_{tr}^2 M \to T_{tr}^2 M'$, к сечениям касательных расслоения слоеных многообразий.

§2 работы посвящен описанию структуры слоения на многообразии как псевдогрупповой структуры.

В §3 определяется трансверсальные расслоения второго и первого порядков на многообразия со слоением.

В §4 приводится определение алгебры триальных чисел \mathbb{D}^2 , определяются \mathbb{D}^2 -модули вида $\mathbb{D}^{2m} \oplus \mathbb{R}^n$. В предложении 1 найден общий вид \mathbb{D}^2 -линейных отображений и в предложении 2 найден общий вид \mathbb{D}^2 -гладкого отображения между открытыми подмножествами моделей вида $\mathbb{D}^{2m} \oplus \mathbb{R}^n$.

В §5 было приведено описание понятия категории общего вида и категории локально тривиальных расслоений.

§6 работы посвящен введению категории трансверсальных расслоений второго порядка, объектами которой являются трансверсальные расслоения второго порядка. А так же рассматриваются специальные автоморфизмы трансверсальных расслоений второго порядка.

В §7 показывается, что TT_{tr}^2M и T_{tr}^2TM эквивалентны и выведен вид произвольного \mathbb{D}^2 -гладкого векторного поля.

В §8 было найдено условие при котором два \mathbb{D}^2 -гладких векторных поля на $T^2_{tr}M$ эквивалентны и условие эквивалентности \mathbb{D}^2 -гладкого векторного поля и \mathbb{D}^2 -гладкого проектируемого векторного поля.

§9 посвящен введению определения связности в главном расслоении.

В §10 описываются линейные связности на слоеном многообразии. В предложении 9 был найден закон преобразования коэффициентов линейной связности в расслоении $P_{fol}^1 M$. Так же был введен класс проектируемых связностей.

В §11 описываются \mathbb{D}^2 -линейные связности на трансверсальном расслоении второго порядка. В предложении 11 был найден закон преобразования коэффициентов линейной связности в расслоении $P^1(\mathbb{D}^2)T_{tr}^2M$.

 $\S12$ посвящен соответствиям между \mathbb{D}^2 -гладкими линейными связностями на $T^2_{tr}M$ при автоморфизмах $T^2_{tr}M$, индуцирующих тождественное преобразование трансверсального расслоения первого порядка.

2 Слоение на многообразии

Структура слоения на многообразии определяется следующим образом [?]. Проекция

$$p: \mathbb{R}^{m+n} = \mathbb{R}^m \times \mathbb{R}^n \ni \{x^i, y^\alpha\} \mapsto \{x^i\} \in \mathbb{R}^m.$$

где индексы i,j,\ldots пробегают значения от 1 до m, а индексы α,β,\ldots от m+1 до m+n, определяет на пространстве \mathbb{R}^{n+m} стандартное слоение коразмерности n, представляющее \mathbb{R}^{m+n} в виде дизъюнктного объединения m-мерных плоскостей, имеющих уравнения $x^i=x_0^i=const,$ $i=1,\ldots,n$:

$$\mathbb{R}^{m+n} = \bigcup_{\{x^i\} \in \mathbb{R}^m} \{x^i\} \times \mathbb{R}^n.$$

Локальный диффеоморфизм

$$\varphi: u \ni \{x^i, y^\alpha\} \mapsto \{\varphi^j(x^i, y^\alpha), \varphi^\beta(x^i, y^\alpha)\} \in U',$$

где U и U' — открытые подмножества в \mathbb{R}^{m+n} , называется локальным автоморфизмом стандартного слоения коразмерности n на \mathbb{R}^{m+n} , если

$$\frac{\partial \varphi^j}{\partial y^\alpha} = 0,\tag{1}$$

то есть локально φ^i не зависит от y^α . Имея это в виду, будем в дальнейшем, для простоты, записывать условие $(\ref{eq:condition})$ в следующем виде: $\varphi^j = \varphi^j(x^i)$.

Множество всех локальных автоморфизмов стандартного слоения образует псевдогруппу $\Gamma_{m,n}$, и слоение \mathcal{F} коразмерности n на (m+n)-мерном многообразии M определяется максимальным атласом $\Phi_{n,m}$ на M с преобразованиями координат, принадлежащими псевдогруппе $\Gamma_{m,n}$ [?]. Карты из атласа $\Phi_{m,n}$ называются расслоенными. Многообразие со слоением обозначается следующим образом: (M,\mathcal{F}) . Слоем слоения \mathcal{F} на многообразии M, проходящим через точку x, называется максимальное связное подмногообразие $L_x \ni x$ в M, определяющееся в расслоенных картах уравнениями вида $x^i = x_0^i = const$.

Пусть (M, \mathcal{F}) и (M', \mathcal{F}') — два слоеных многообразия. Отображение $f: M \to M'$, которое в расслоенных картах задается уравнениями вида

$$x^{i'} = f^{i'}(x^i), \quad y^{\alpha'} = f^{\alpha'}(x^i, y^{\alpha}).$$
 (2)

отображает слои слоения \mathcal{F} в слои слоения \mathcal{F}' и называется морфизмом слоений или слоеным отображением.

3 Трансверсальное расслоение второго порядка слоения на многообразии

Пусть M-(m+n)-мерное слоеное многообразие, z — некоторая точка многообразия M, (U,h) — расслоенная карта на M,

$$h: U \ni z \mapsto \{x^i = h^i(z), y^\alpha = h^\alpha(z)\} \in \mathcal{U}^* \subset \mathbb{R}^{m+n},$$

такая, что $z \in U$. Рассмотрим множество K_z гладких кривых $\gamma:(a,b) \to M$ таких, что $0 \in (a,b), \gamma(0) = z \in M$, проходящих через точку z. Введем отношение эквивалентности \sim на K_z . Две кривые γ_1 и γ_2 назовем эквивалентными, если выполняется следующее условие:

$$\frac{d(h^{i} \circ \gamma_{1})}{dt}\Big|_{t=0} = \frac{d(h^{i} \circ \gamma_{2})}{dt}\Big|_{t=0}, \quad \frac{d^{2}(h^{i} \circ \gamma_{1})}{dt^{2}}\Big|_{t=0} = \frac{d^{2}(h^{i} \circ \gamma_{2})}{dt^{2}}\Big|_{t=0}, \quad i = \overline{1, m}, \tag{3}$$

где, в случае необходимости, область определения кривых предполагается уменьшенной так, чтобы композиции $h^i \circ \gamma_1$ и $h^i \circ \gamma_2$ были определены. Всякий класс эквивалентности $X = [\gamma]^2$ из фактор-множества K_z/\sim называется трансверсальным вектором второго порядка на многообразии M в точке z.

Числа

$$\frac{d(h^i\circ\gamma)}{dt}\Big|_{t=0}=\dot{x}^i,\quad \frac{d^2(h^i\circ\gamma)}{dt^2}\Big|_{t=0}=\ddot{x}^i,\quad i=\overline{1,m},$$

называются координатами трансверсального вектора второго порядка $[\gamma]^2$ в карте (U,h). При переходе от карты (U,h) к другой карте (U',h'), $h':U'\ni x\mapsto x^{i'}=h^{i'}(x)\in\mathbb{R}^{m+n}$, такой, что $U'\ni z$, координаты трансверсальных векторов второго порядка преобразуются следующим образом:

$$\dot{x}^{i'} = \frac{\partial \varphi^{i'}}{\partial x^i} \dot{x}^i, \quad \ddot{x}^{i'} = \frac{\partial \varphi^{i'}}{\partial x^i \partial x^j} \dot{x}^i \dot{x}^j + \frac{\partial \varphi^{i'}}{\partial x^i} \ddot{x}^i, \tag{4}$$

где $x^{i'} = \varphi^{i'}(x^i)$ — преобразования координат $h^{i'} \circ h^{-1}$ на пересечении $U \cap U'$ областей определения карт. Из формулы (??) так же следует, что введенное отношение эквивалентности на множестве K_z гладких кривых не зависит от выбора карты (U,h) на M такой, что $z \in U$.

Множество K_z/\sim называется трансверсальным пространством второго порядка к M в точке z. Для обозначения этого множества используется символ $T_{tr\,z}^2M$. Обозначим через T_{tr}^2M объединение всех трансверсальных пространств второго порядка $T_{tr}^2M=\bigcup_{z\in M}T_{tr\,z}^2M$ и введем отображение $\pi:T_{tr}^2M\ni [\gamma]^2\mapsto \gamma(0)\in M$. На T_{tr}^2M естественным образом вводится структура гладкого 3m+n-мерного многообразия. Каждой карте

$$h: U \ni z \mapsto \{x^i, y^\alpha\} \in U^* \subset \mathbb{R}^{m+n} \tag{5}$$

из атласа на M соответствует карта

$$h_{tr}^2: \pi^{-1}(U) \ni v_z \mapsto \{x^i, y^\alpha, \dot{x}^i, \ddot{x}^i\} \in \mathcal{U}^* \times \mathbb{R}^{m+n}$$
 (6)

на $T_{tr}^2 M$, где \dot{x}^i и \ddot{x}^i — координаты вектора v_z в карте h. При этом функциям склейки $h' \circ h^{-1}$ на M, имеющим вид $x^{i'} = \varphi^{i'}(x^i)$, на $T_{tr} M$ соответствуют функции склейки $(h_{tr}^2)' \circ (h_{tr}^2)^{-1}$, имеющие вид

$$x^{i'} = \varphi^{i'}(x^i), \ y^{\alpha'} = \varphi^{\alpha'}(x^i, y^{\alpha}), \ \dot{x}^{i'} = \frac{\partial \varphi^{i'}}{\partial x^{j'}} \dot{x}^j, \ \ddot{x}^{i'} = \frac{\partial \varphi^{i'}}{\partial x^i \partial x^j} \dot{x}^i \dot{x}^j + \frac{\partial \varphi^{i'}}{\partial x^i} \ddot{x}^i.$$

$$(7)$$

Сечения трансверсального расслоения второго порядка называются трансверсальными полями второго порядка на слоеном многообразии M.

Из уравнений (??) следует, что T_{tr}^2M несет на себе каноническое слоение, слои которого определяются в локальных картах уравнениями $x^i=x_0^i=const,\,\dot{x}^i=\dot{x}_0^i=const,\,\ddot{x}^i=\ddot{x}_0^i=const.$ Это слоение называется поднятым слоением.

Морфизм слоений $f: M \mapsto M'$ относит всякой гладкой кривой $\gamma: (a,b) \to M$ из K_z гладкую кривую $\gamma' = f \circ \gamma: (a,b) \to M'$ такую, что $\gamma'(0) = z' = f(z) \in M'$. Таким образом, возникает отображение $\tilde{f}: K_z \to K_{z'}$. При этом эквивалентные кривые переходят в эквивалентные. В результате возникает отображение

$$T_{trz}^2 f : T_{trz}^2 M \ni [\gamma]^2 \mapsto [f \circ \gamma]^2 \in T_{trz'}^2 M'.$$
 (8)

Если отображение $f: M \to M'$ в расслоенных картах $\{x^i, y^\alpha\}$ на M и $\{x^{i'}, y^{\alpha'}\}$ на M' задается уравнениями $(\ref{eq:condition})$, то отображение $(\ref{eq:condition})$ задается уравнениями

$$\dot{x}^{i'} = \frac{\partial f^{i'}}{\partial x^i} \dot{x}^i, \quad \ddot{x}^{i'} = \frac{\partial f^{i'}}{\partial x^i \partial x^j} \dot{x}^i \dot{x}^j + \frac{\partial f^{i'}}{\partial x^i} \ddot{x}^i. \tag{9}$$

Из $(\ref{eq:constraint})$ и $(\ref{eq:constra$

$$T_{tr}^2 f: T_{tr}^2 M \mapsto T_{tr}^2 M', \tag{10}$$

которое в локальных координатах определяется уравнениями

$$x^{i'} = f^{i'}(x^i), \quad y^{\alpha'} = f^{\alpha'}(x^i, y^{\alpha}),$$
$$\dot{x}^{i'} = \frac{\partial f^{i'}}{\partial x^i} \dot{x}^i, \quad \ddot{x}^{i'} = \frac{\partial f^{i'}}{\partial x^i \partial x^j} \dot{x}^i \dot{x}^j + \frac{\partial f^{i'}}{\partial x^i} \ddot{x}^i. \tag{11}$$

Отображение (??) называется *продолжением морфизма* f.

Требуя, что бы в $(\ref{eq:constraint})$, совпадали в нуле только первые производные $d(h^i \circ \gamma_1)/dt|_0 = d(h^i \circ \gamma_2)/dt|_0$, получим новое отношение эквивалентности \sim^1 на множестве кривых на M. Отношение эквивалентности \sim^1 не зависит от выбора карты (U,h) на M. Мы будем называть класс $[\gamma]$ трансверсальным вектором в точке $z \in M$.

Пусть $T_{tr}M$ - множество трансверсальных векторов к M в точке x. На множестве $T_{tr}M = \bigcup_{x \in M} T_{trx}$ всех трансверсальных векторов к M индуцируется структура гладкого (2m+n)-мерного многообразия, расслоенного над M, называемого трансверсальным расслоением многообразия

M. Эта структура задается следующим образом. Пусть $\pi: T_{tr}M \to M$ — отображение, относящее трансверсальному вектору $X \in T_{tr}M$ точку $x \in M$. Карта (U,h) из атласа на M индуцирует карту

$$h_{tr}^1: (\pi_0^1)^{-1}(U) \ni X \mapsto \{x^i, \dot{x}^i, y^\alpha\} \in U^* \times \mathbb{R}^{2m+n}$$

на $T_{tr}M$, где $\dot{x}=d(h^i\circ\gamma)/dt|_0$. Преобразование координат $h'\circ h^{-1}$ на пересечении областей определения $U\cap U'$ карт (U,h) и (U',h') на M, имеющим вид $x^{i'}=f^{i'}(x^i)$, на $T_{tr}M$ соответствуют преобразования $h^1_{tr}'\circ (h^1_{tr})^{-1}$, имеющие вид:

$$x^{i'} = f^{i'}(x^i), \quad \dot{x}^{i'} = \frac{\partial f^{i'}}{\partial x^i} \dot{x}^i, \quad y^{\alpha'} = f^{\alpha'}(x^i, y^{\alpha}).$$
 (12)

Каноническая проекция $\pi_0^1: T_{tr}M \to M$ является гладким отображением. Из уравнений (??) следует, что расслоение $T_{tr}M$ является локально тривиальным расслоением над M со стандартным слоем \mathbb{R}^m . Имеется еще одна каноническая проекция $\pi_1^2: T_{tr}^2M \to T_{tr}M$, также являющаяся гладким отображением. Проекция π_1^2 определяет локально тривиальное расслоение T_{tr}^2M над TM со стандартным слоем \mathbb{R}^m и функциями склейки (см. ??). Кроме того, расслоение $\pi_1^2: T_t^2M \to T_{tr}M$ является аффинным расслоением, то есть $\pi_1^2: T_t^2M \to T_{tr}M$ является расслоением со структурной группой — группой аффинных преобразований пространства \mathbb{R}^{n+m} . На каждом слое этого расслоения при этом возникает естественная структура аффинного пространства. Ассоциированное векторное расслоение изоморфно векторному касательному расслоению $V_1^2T_{tr}^2M$, то есть расслоению касательных векторов к слоям расслоения $\pi_1^2: T_t^2M \to T_{tr}M$

Трансверсальное расслоение $T_{tr}M$ несет на себе структуру m+n-мерного гладкого многообразия над алгеброй дуальных чисел \mathbb{D} , то есть алгеброй размерности два над \mathbb{R} , элементы которой имеют вид $a+b\varepsilon$, $a,b\in\mathbb{R}$, а умножение определяется условием $\varepsilon^2=0$.

4 Структура многообразия над алгеброй триальных чисел на трансверсальном расслоении второго порядка

Алгеброй триальных чисел называется трехмерная ассоциативная, коммутативная алгебра с единицей \mathbb{D}^2 над полем \mathbb{R} , операция умножения в которой в стандартном базисе $\{1=e_1,\varepsilon=e_2,\varepsilon^2=e_3\}$ определяется соотношением $\varepsilon^3=0$, а элементы имеют вид $a+b\varepsilon+c\varepsilon^2$, $a,b,c\in\mathbb{R}$.

Обозначим символом $(\mathbb{D}^2)^m \oplus \mathbb{R}^n$ \mathbb{D}^2 -модуль, элементами которого являются строки $\{X^i, y^\alpha\}$, состоящие из m элементов $X^i = x^i + \dot{x}^i \varepsilon + \ddot{x}^i \varepsilon^2$ алгебры \mathbb{D}^2 и n вещественных чисел y^α . Операция умножения элемента из $(\mathbb{D}^2)^m \oplus \mathbb{R}^n$ на элемент из \mathbb{D}^2 определяется следующим образом:

$$(a + b\varepsilon + c\varepsilon^2)\{X^i, y^\alpha\} = \{(a + b\varepsilon + c\varepsilon^2)X^i, ay^\alpha\}.$$

Определение 1. Линейное отображение

$$\phi: (\mathbb{D}^2)^m \oplus \mathbb{R}^n \to (\mathbb{D}^2)^{m'} \oplus \mathbb{R}^{n'} \tag{13}$$

называется \mathbb{D}^2 -линейным, если $\Phi(\varepsilon v) = \varepsilon \Phi(v)$, где $v = \{V^i, v^\alpha\}$.

Произвольное линейное отображение (??) можно записать в следующем матричном виде (с вещественными координатами):

$$\begin{pmatrix} w^{j'} \\ \dot{w}^{j'} \\ \ddot{w}^{j'} \\ w^{\beta'} \end{pmatrix} = \begin{pmatrix} a_i^{j'} & b_i^{j'} & c_i^{j'} & d_{\alpha}^{j'} \\ \hat{a}_i^{j'} & \hat{b}_i^{j'} & \hat{c}_i^{j'} & \hat{d}_{\alpha}^{j'} \\ \hat{a}_i^{j'} & \hat{b}_i^{j'} & \hat{c}_i^{j'} & \hat{d}_{\alpha}^{j'} \\ e_i^{\beta'} & f_i^{\beta'} & g_i^{\beta'} & h_{\alpha}^{\beta'} \end{pmatrix} \begin{pmatrix} v^i \\ \dot{v}^i \\ \ddot{v}^i \\ v^{\alpha} \end{pmatrix}$$
(14)

Это отображение будет \mathbb{D}^2 -линейным тогда и только тогда, когда выполняются следующие два пункта:

$$\varepsilon \begin{pmatrix} a_{i}^{j'} & b_{i}^{j'} & c_{i}^{j'} & d_{\alpha}^{j'} \\ \hat{a}_{i}^{j'} & \hat{b}_{i}^{j'} & \hat{c}_{i}^{j'} & \hat{d}_{\alpha}^{j'} \\ \hat{a}_{i}^{j'} & \hat{b}_{i}^{j'} & \hat{c}_{i}^{j'} & \hat{d}_{\alpha}^{j'} \\ e_{i}^{\beta'} & f_{i}^{\beta'} & g_{i}^{\beta'} & h_{\alpha}^{\beta'} \end{pmatrix} \begin{pmatrix} v^{i} \\ \dot{v}^{i} \\ \ddot{v}^{i} \\ v^{\alpha} \end{pmatrix} = \begin{pmatrix} a_{i}^{j'} & b_{i}^{j'} & c_{i}^{j'} & d_{\alpha}^{j'} \\ \hat{a}_{i}^{j'} & \hat{b}_{i}^{j'} & \hat{c}_{i}^{j'} & \hat{d}_{\alpha}^{j'} \\ \hat{a}_{i}^{j'} & \hat{b}_{i}^{j'} & \hat{c}_{i}^{j'} & \hat{d}_{\alpha}^{j'} \\ e_{i}^{\beta'} & f_{i}^{\beta'} & g_{i}^{\beta'} & h_{\alpha}^{\beta'} \end{pmatrix} \begin{pmatrix} 0 \\ v^{i} \\ \dot{v}^{i} \\ 0 \end{pmatrix}$$

или

$$\begin{pmatrix}
a_i^{j'}v^i + b_i^{j'}\dot{v}^i + c_i^{j'}\ddot{v}^i + d_{\alpha}^{j'}v^{\beta} \\
\hat{a}_i^{j'}v^i + \hat{b}_i^{j'}\dot{v}^i + \hat{c}_i^{j'}\ddot{v}^i + \hat{d}_{\alpha}^{j'}v^{\beta} \\
0
\end{pmatrix} = \begin{pmatrix}
b_i^{j'}v^i + c_i^{j'}\dot{v}^i \\
\hat{b}_i^{j'}v^i + \hat{c}_i^{j'}\dot{v}^i \\
\hat{b}_i^{j'}v^i + \hat{c}_i^{j'}\dot{v}^i \\
f_i^{\beta'}v^i + g_i^{\beta'}\dot{v}^i
\end{pmatrix} (15)$$

Условия (??) эквивалентны следующим:

$$a_{i}^{j'}v^{i} = \hat{b}_{i}^{j'}v^{i}, \quad b_{i}^{j'}\dot{v}^{i} = \hat{c}_{i}^{j'}\dot{v}^{i}, \quad \hat{a}_{i}^{j'}v^{i} = \hat{b}_{i}^{j'}v^{i}, \quad \hat{b}_{i}^{j'}\dot{v}^{i} = \hat{c}_{i}^{j'}\dot{v}^{i},$$

$$f_{i}^{\beta'}v^{i} = 0, \quad g_{i}^{\beta'}\dot{v}^{i} = 0, \quad b_{i}^{j'}v^{i} = 0, \quad c_{i}^{j'}\dot{v}^{i} = 0,$$

$$c_{i}^{j'}\ddot{v}^{i} = 0, \quad d_{\alpha}^{j'}v^{\beta} = 0, \quad \hat{c}_{i}^{j'}\ddot{v}^{i} = 0, \quad \hat{d}_{\alpha}^{j'}v^{\beta} = 0,$$

В силу того, что вектор v в последних соотношениях произволен, получаем следующие необходимые и достаточные условия $\mathbb{R}(\varepsilon)$ -линейности отображения (??):

$$a_i^{j'} = \hat{b}_i^{j'} = \hat{c}_i^{j'}, \quad \hat{a}_i^{j'} = \hat{b}_i^{j'},$$

$$f_i^{\beta'} = g_i^{\beta'} = b_i^{j'} = c_i^{j'} = d_\alpha^{j'} = \hat{c}_i^{j'} = \hat{d}_\alpha^{j'} = 0. \tag{16}$$

Из условий (??) следует, что линейный оператор \mathbb{D}^2 -линейного отображения (??) имеет вид:

$$\begin{pmatrix}
a_i^{j'} & 0 & 0 & 0 \\
\hat{b}_i^{j'} & a_i^{j'} & 0 & 0 \\
\hat{a}_i^{j'} & \hat{b}_i^{j'} & a_i^{j'} & \hat{d}_{\alpha}^{j'} \\
e_i^{\beta'} & 0 & 0 & h_{\alpha}^{\beta'}
\end{pmatrix}.$$
(17)

Для удобства записи переобозначим компоненты матрицы (??) следующим образом $\hat{b}_i^{j'}=b_i^{j'},\,\hat{d}_\alpha^{j'}=d_\alpha^{j'},\,\hat{a}_i^{j'}=c_i^{j'}.$ Тогда \mathbb{D}^2 -линейное отображение имеет вид:

$$\begin{pmatrix} w^{j'} \\ \dot{w}^{j'} \\ \ddot{w}^{j'} \\ w^{\beta'} \end{pmatrix} = \begin{pmatrix} a_i^{j'} & 0 & 0 & 0 \\ b_i^{j'} & a_i^{j'} & 0 & 0 \\ c_i^{j'} & b_i^{j'} & a_i^{j'} & d_{\alpha}^{j'} \\ e_i^{\beta'} & 0 & 0 & h_{\alpha}^{\beta'} \end{pmatrix} \begin{pmatrix} v^i \\ \dot{v}^i \\ \ddot{v}^i \\ v^{\alpha} \end{pmatrix}$$
(18)

Найдем выражения для \mathbb{D}^2 -линейного отображения $(\ref{eq:condition})$ в координатах $\{V^i,v^\alpha\}\in(\mathbb{D}^2)^n\oplus\mathbb{R}^m$ и $\{W^i,w^\alpha\}\in(\mathbb{D}^2)^{n'}\oplus\mathbb{R}^{m'}$. Имеем:

$$\begin{split} W^{i'} &= w^{i'} + \varepsilon \dot{w}^{i'} + \varepsilon^2 \ddot{w}^{i'} = \\ &= a_i^{j'} v^i + \varepsilon (b_i^{j'} v^i + a_i^{j'} \dot{v}^i) + \varepsilon^2 (c_i^{j'} v^i + b_i^{j'} \dot{v}^i + a_i^{j'} \ddot{v}^i + d_\alpha^{j'} v^\alpha) = \\ &= (a_i^{j'} + \varepsilon b_i^{j'} + \varepsilon^2 c_i^{j'}) (v^i + \varepsilon \dot{v}^i + \varepsilon^2 \ddot{v}^i) + \varepsilon^2 d_\alpha^{j'} v^\alpha = \\ &= A_i^{j'} V^i + \varepsilon^2 d_\alpha^{j'} v^\alpha, \end{split}$$

$$w^{\beta'} = e_i^{\beta'} v^i + h_{\alpha}^{\beta'} v^{\alpha}.$$

Подведем итог вышеизложенному в следующем предложении.

Предложение 1. Произвольное \mathbb{D}^2 -линейное отображение (??) имеет вид:

$$\begin{cases}
W^{i'} = A_i^{j'} V^i + \varepsilon^2 a_\alpha^{j'} v^\alpha \\
w^{\beta'} = b_i^{\beta'} v^i + b_\alpha^{\beta'} v^\alpha,
\end{cases}$$
(19)

где $(A_i^{j'})$ — матрица c элементами из \mathbb{D}^2 , а $a_{\alpha}^{j'}$, $b_i^{\beta'}$ и $b_{\alpha}^{\beta'}$ — матрицы c элементами из \mathbb{R} .

Определение 2. Пусть $U \subset (\mathbb{D}^2)^m \oplus \mathbb{R}^n$, $U' \subset (\mathbb{D}^2)^{m'} \oplus \mathbb{R}^{n'} - omкрытые подмножества. Гладкое отображение <math>F: U \to U'$ называется \mathbb{D}^2 -гладким, если касательное отображение T_zF является \mathbb{D}^2 -линейным для любой точки $z \in U$.

Матрица касательного отображения $T_z F$ для произвольного отображения $F: U \to U'$ имеет вид:

$$\begin{pmatrix} \frac{\partial x^{j'}}{\partial x^i} & \frac{\partial x^{j'}}{\partial \dot{x}^i} & \frac{\partial x^{j'}}{\partial \ddot{x}^i} & \frac{\partial x^{j'}}{\partial y^{\alpha}} \\ \frac{\partial \dot{x}^{j'}}{\partial x^i} & \frac{\partial \dot{x}^{j'}}{\partial \dot{x}^i} & \frac{\partial \dot{x}^{j'}}{\partial \ddot{x}^i} & \frac{\partial \dot{x}^{j'}}{\partial \dot{y}^{\alpha}} \\ \frac{\partial \ddot{x}^{j'}}{\partial x^i} & \frac{\partial \ddot{x}^{j'}}{\partial \dot{x}^i} & \frac{\partial \ddot{x}^{j'}}{\partial \ddot{x}^i} & \frac{\partial \ddot{x}^{j'}}{\partial \dot{y}^{\alpha}} \\ \frac{\partial y^{\beta'}}{\partial x^i} & \frac{\partial y^{\beta'}}{\partial \dot{x}^i} & \frac{\partial y^{\beta'}}{\partial \ddot{x}^i} & \frac{\partial y^{\beta'}}{\partial \dot{y}^{\alpha}} \end{pmatrix}$$

Из условий (??) тогда следует, что матрица касательного отображения $T_z F$ к \mathbb{D}^2 -гладкому отображению имеет вид:

$$\begin{pmatrix} \frac{\partial x^{j'}}{\partial x^{i}} & 0 & 0 & 0\\ \frac{\partial \dot{x}^{j'}}{\partial x^{i}} & \frac{\partial x^{j'}}{\partial x^{i}} & 0 & 0\\ \frac{\partial \ddot{x}^{j'}}{\partial x^{i}} & \frac{\partial \dot{x}^{j'}}{\partial x^{i}} & \frac{\partial x^{j'}}{\partial x^{i}} & \frac{\partial \ddot{x}^{j'}}{\partial \dot{y}^{\alpha}} \\ \frac{\partial y^{\beta'}}{\partial x^{i}} & 0 & 0 & \frac{\partial y^{\beta'}}{\partial \dot{y}^{\alpha}} \end{pmatrix}$$

Таким образом отображение $F:U\to U'$ является \mathbb{D}^2 -гладким тогда и только тогда, когда выполняются следующие условия:

$$\frac{\partial x^{j'}}{\partial x^{i}} = \frac{\partial \dot{x}^{j'}}{\partial \dot{x}^{i}} = \frac{\partial \ddot{x}^{j'}}{\partial \ddot{x}^{i}}, \quad \frac{\partial \dot{x}^{j'}}{\partial x^{i}} = \frac{\partial \ddot{x}^{j'}}{\partial \dot{x}^{i}}, \qquad (20)$$

$$\frac{\partial x^{j'}}{\partial \dot{x}^{i}} = 0, \quad \frac{\partial x^{j'}}{\partial \ddot{x}^{i}} = 0, \quad \frac{\partial x^{j'}}{\partial y^{\alpha}} = 0, \quad \frac{\partial \dot{x}^{j'}}{\partial \ddot{x}^{i}} = 0,$$

$$\frac{\partial \dot{x}^{j'}}{\partial \dot{y}^{\alpha}} = 0, \quad \frac{\partial \ddot{x}^{j'}}{\partial \dot{x}^{i}} = 0, \quad \frac{\partial \ddot{x}^{j'}}{\partial \ddot{x}^{i}} = 0.$$

Интегрируя систему дифференциальных уравнений (??), получаем следующие выражения для \mathbb{D}^2 -гладкого отображения в некоторой кубической относительно системы координат в U окрестности:

$$x^{i'} = f^{i'}(x^j), \quad \dot{x}^{i'} = \frac{\partial f^{i'}(x^j)}{\partial x^j} \dot{x}^j + G^{i'}(x^j),$$
 (21)

$$\ddot{x}^{i'} = \ddot{x}^i \frac{\partial f^{i'}}{\partial x^i} + \frac{1}{2} \dot{x}^i \dot{x}^j \frac{\partial^2 f^{i'}}{\partial x^i \partial x^j} + \dot{x}^i \frac{\partial G^{i'}}{\partial x^j} + H^{i'}(x^j, y^\alpha), \quad y^{\alpha'} = g^{\alpha'}(x^j, y^\beta).$$

Как итог проведенных рассуждений получаем следующее предложение.

Предложение 2. Всякое \mathbb{D}^2 -гладкое отображение $F: U \to U'$ между открытыми подмножествами $U \subset (\mathbb{D}^2)^m \oplus \mathbb{R}^n$ и $U' \subset (\mathbb{D}^2)^{m'} \oplus \mathbb{R}^{n'}$ локально имеет вид (??).

Каждой карте (??) на T_{tr}^2M можно сопоставить карту

$$\tilde{H}: \pi^{-1}(U) \ni [\gamma]^2 \mapsto \{X^i = x^i + \varepsilon \dot{x}^i + \varepsilon^2 \ddot{x}^i, y^\alpha, \} \in (\mathbb{D}^2)^m \oplus \mathbb{R}^n$$
 (22)

со значениями в модуле $(\mathbb{D}^2)^m \oplus \mathbb{R}^n$. При этом функции склейки $\tilde{H}' \circ \tilde{H}^{-1}$ примут вид

$$X^{i'} = \varphi^{i'}(x^i) + \varepsilon \frac{\partial \varphi^{i'}}{\partial x^{j'}} \dot{x}^j + \varepsilon^2 \left(\frac{1}{2} \frac{\partial^2 \varphi^{i'}}{\partial x^i \partial x^j} \dot{x}^i \dot{x}^j + \frac{\partial \varphi^{i'}}{\partial x^i} \ddot{x}^i \right), \ y^{\alpha'} = \varphi^{\alpha'}(x^i, y^{\alpha}).$$
(23)

Из уравнений (??) следует, что функции склейки (??) являются \mathbb{D}^2 -глад-кими, и атлас на T_{tr}^2M , состоящий из карт вида (??), задает на T_{tr}^2M структуру многообразия над алгеброй триальных чисел, моделируемого \mathbb{D}^2 -модулем $(\mathbb{D}^2)^m \oplus \mathbb{R}^n$. При этом отображение (??), определяемое в ло-кальных картах уравнениями (??), является \mathbb{D}^2 -гладким отображением.

5 Категория трансверсальных расслоений второго порядка

Приведем предварительно описание понятия категории общего вида и категории локально тривиальных расслоений.

Категория \mathcal{C} определяется следующим набором данных:

- 1. Класс (или множество) $Ob(\mathcal{C})$, элементы которого называются объектами категории.
- 2. Для каждой упорядоченной пары объектов $X,Y \in Ob(\mathcal{C})$ задано отображение множество $Mor_{\mathcal{C}}(X,Y)$, элементы которого называются морфизмами из X в Y и обозначаются $X \to Y$ или $f: X \to Y$.
- 3. Для каждой упорядоченной тройки объектов $X,Y,Z\in Ob(\mathcal{C})$ задано отображение

$$Mor_{\mathcal{C}}(X,Y) \times Mor_{\mathcal{C}}(Y,Z) \rightarrow Mor_{\mathcal{C}}(X,Z),$$

сопоставляющие паре морфизмов (f,g) морфизм gf, или $g\circ f$, называемый их композицией, или произведением.

Должны выполняться следующие условия:

- 1. Композиция морфизмов ассоциативна.
- 2. Для каждого объекта X существует тождественный морфизм $id_X \in Mor_{\mathcal{C}}(X,X)$ такой, что $f \circ id_X = f, id_X \circ f = f$ для всякого морфизма $f \in Mor_{\mathcal{C}}(X,Y)$. Нетрудно видеть, что такой морфизм единствен: если id'_X другой морфизм с тем же свойством, то $id'_X = id'_X \circ id_X = id'_X$. Морфизм $f: X \to Y$ называется изоморфизмом, если существует такой морфизм $g: Y \to X$, что $g \circ f = id_X$, $f \circ g = id_X$

 $Mor_{\mathcal{C}}$ есть несвязное объединение $\bigcup Mor_{\mathcal{C}}(X,Y)$ по всем упорядоченным парам $X,Y\in Ob(\mathcal{C})$.

Пусть \mathcal{C} и \mathcal{D} — две категории. Функтором Φ из категории \mathcal{C} в категорию \mathcal{D} называется задание двух отображений: $\Phi = \Phi_{Ob} : Ob(\mathcal{C}) \to Ob(\mathcal{D})$ и $\Phi = \Phi_{Mor} : Mor_{\mathcal{C}} \to Mor_{\mathcal{D}}$, которые удовлетворяют следующим условиям:

- 1. если $f \in Mor_C(X,Y)$,то $\Phi(f) \in Mor_{\mathcal{D}}(\Phi(X),\Phi(Y))$;
- 2. для всех X из $Ob(\mathcal{C})$ выполняется $\Phi(id_X) = id_{\Phi(X)}$;
- 3. $\Phi(g \circ f) = \Phi(f) \circ \Phi(g)$, когда определена композиция.

Слоеные многообразия образуют категорию $\mathcal{F}ol$. Объектами категории $\mathcal{F}ol$ являются слоеные многообразия, а морфизмами — морфизмы слоений $f:M\to M'$.

Локально тривиальным расслоением называется четверка вида (E,M,π,F) , где E,M,F — гладкие многообразия, называемые соответственно (тотальным) пространством расслоения, базой расслоения и стандартным слоем, а $\pi:E\to M$ — гладкое отображение пространства E на базу M такое, что для каждой точки $x\in M$ существуют окрестность $U\ni x$ и диффеоморфизм $\varphi:U\times F\to \pi^{-1}(U)$ такой, что $\pi\circ\varphi=pr_1$, где $pr_1:U\times F\to U$ — естественная проекция произведения многообразий на первый сомножитель, $pr_1(x,y)=x$. Кратко локально тривиальное расслоение обозначается следующим образом: $(E,M),\pi:E\to M$ или E. Локально тривиальные расслоения образуют категорию $\mathcal{B}un$, морфизмами из $\pi:E\to M$ в $\pi':E'\to M'$ в которой являются пары гладких отображений $(f,F),f:M\to M',F:E\to E'$ такие, что коммутативна диаграмма

$$E \xrightarrow{F} E'$$

$$\pi \downarrow \qquad \qquad \downarrow \pi'$$

$$M \xrightarrow{f} M'$$
(24)

Если $\pi'': E'' \to M''$ — третье расслоение и (f',F') — морфизм из $\pi': E' \to M'$ в $\pi'': E'' \to M''$, то композицией морфизмов (f,F) и (f',F') является пара $(f'\circ f,F'\circ F)$. Действительно, из коммутативности каждого из квадратов в диаграмме

$$E \xrightarrow{F} E' \xrightarrow{F} E''$$

$$\downarrow^{\pi'} \qquad \qquad \downarrow^{\pi''}$$

$$M \xrightarrow{f} M' \xrightarrow{f'} M''$$

следует, что

$$(f' \circ f) \circ \pi = f' \circ (f \circ \pi) = f' \circ (\pi \circ F) = (f' \circ \pi') \circ F = (\pi'' \circ F') \circ F = \pi'' \circ (F' \circ F),$$

то есть коммутативна диаграмма

$$E \xrightarrow{F' \circ F} E''$$

$$\downarrow^{\pi''}$$

$$M \xrightarrow{f' \circ f} M''$$

Ассоциативность композиции следует из диаграммы

$$E \xrightarrow{F} E' \xrightarrow{F'} E'' \xrightarrow{F''} E'''$$

$$\downarrow^{\pi'} \qquad \qquad \downarrow^{\pi''} \qquad \downarrow^{\pi'''}$$

$$M \xrightarrow{f} M' \xrightarrow{f'} M'' \xrightarrow{f''} M'''$$

Тождественным морфизмом в категории $\mathcal{B}un$ из $\pi:E\to M$ в $\pi:R\to M$ является пара $(f=id_M,F=id_E)$:

$$E \xrightarrow{id_E} E$$

$$\pi \downarrow \qquad \qquad \downarrow \pi$$

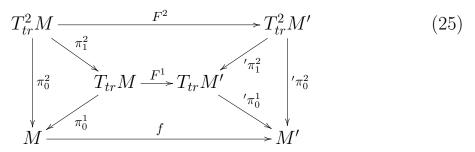
$$M \xrightarrow{id_M} M$$

Из уравнений (7) следует, что соответствие, относящее слоеному многообразию M его трансверсальное расслоение второго порядка π_0^2 :

 $T^2_{tr}M \to M$, а морфизму слоений $f: M \to M'$ гладкая пара отображений $(f, T^2_{tr}f)$, является функтором $T^2_{tr}: \mathcal{F}ol^2 \to \mathcal{B}un$ из категории слоеных многообразий в категорию локально тривиальных расслоений. Действительно, из (7) следует, что $T^2_{tr}(f'\circ f) = T^2_{tr}f'\circ T^2_{tr}f$ и $T^2_{tr}(id_M) = id_{T^2_{tr}M}$.

6 Специальные автоморфизмы трансверсального расслоения второго порядка

Введем подкатегорию $\mathcal{T}r^2 - \mathcal{B}un$ категории локально тривиальных расслоений, объектами которой являются трансверсальные расслоения второго порядка: $\pi_0^2: T_{tr}^2M \to M$ слоеных многообразий, а морфизмами \mathbb{D}^2 -гладкие отображения $F^2: T_{tr}^2M \to T_{tr}^2M'$. Из $(\ref{eq:condition})$ следует, что \mathbb{D}^2 -гладкое отображение $F^2: T_{tr}^2M \to T_{tr}^2M'$ определяет \mathbb{D} -гладкое отображение $F^1: T_{tr}M \to T_{tr}M'$ и морфизм слоений $f: M \to M'$ такие, что коммутативна диаграмма



В локальных координатах $(x^i,\dot{x}^i,\ddot{x}^i,y^\alpha)$ на $T^2_{tr}M$ и $(x^{i'},\dot{x}^{i'},\ddot{x}^{i'},y^{\beta'})$ на $T^2_{tr}M'$ морфизм $F^2:T^2_{tr}M\to T^2_{tr}M'$ в категории $\mathcal{T}r^2-\mathcal{B}un$ задается уравнениями

$$\begin{split} x^{i'} &= f^{i'}(x^j), \quad \dot{x}^{i'} &= \frac{\partial f^{i'}(x^j)}{\partial x^j} \dot{x}^j + G^{i'}(x^j), \\ \ddot{x}^{i'} &= \ddot{x}^i \frac{\partial f^{i'}}{\partial x^i} + \frac{1}{2} \dot{x}^i \dot{x}^j \frac{\partial f^{i'}}{\partial x^i \partial x^j} + \dot{x}^i \frac{\partial G^{i'}}{\partial x^j} + H^{i'}(x^j, y^\alpha), \\ y^{\alpha'} &= g^{\alpha'}(x^j, y^\beta). \end{split}$$

Корректность определения категории $\mathcal{T}r^2 - \mathcal{B}un$ следует из того, что композиция ${}'F^2 \circ F^2$ \mathbb{D}^2 -гладких отображений $F^2: T^2_{tr}M \to T^2_{tr}M'$ и ${}'F^2: T^2_{tr}M' \to T^2_{tr}M''$ является \mathbb{D}^2 -гладким отображением ${}'F^2 \circ F^2: T^2_{tr}M \to T^2_{tr}M''$.

В построенной категории трансверсальных расслоений $\mathcal{T}r^2 - \mathcal{B}un$ слоеных многообразий можно выделить специального типа автоморфизмы ${}'F^2:T^2_{tr}M\to T^2_{tr}M$.

Специальные автоморфизмы первого типа характеризуются тем, что f является тождественным отображением:

$$T_{tr}^{2}M \xrightarrow{F^{2}} T_{tr}^{2}M$$

$$\downarrow^{\pi_{0}^{2}} T_{tr}M \xrightarrow{F^{1}} T_{tr}M \xrightarrow{\pi_{1}^{2}} \downarrow^{\pi_{0}^{2}}$$

$$M \xrightarrow{I} Id \longrightarrow M$$

$$(26)$$

В этом случае \mathbb{D} -диффеоморфизм F^2 в локальных координатах записывается следующим образом:

$$'x^{i} = x^{i}, \quad 'y^{\alpha} = y^{\alpha}, \quad '\dot{x}^{i} = \dot{x}^{i} + g^{i}(x^{j}),$$

$$'\ddot{x}^{i} = \ddot{x}^{i} + \frac{\partial g^{i}(x^{j})}{\partial x^{j}}\dot{x}^{j} + h^{i}(x^{j}, y^{\alpha}). \tag{27}$$

Выясним закон преобразования функций g^i и h^i при переходе к другой карте (U',h') на слоеном многообразии M. Если преобразование координат на $h' \circ h^{-1}$ на M имеет вид $x^{i'} = \varphi^{i'}(x^i)$, $y^{\alpha'} = \varphi^{\alpha'}(x^i,y^{\alpha})$, то соответствующее преобразование координат на $H' \circ H^{-1}$ на $T^2_{tr}M$, имеет вид (??):

$$x^{i'} = \varphi^{i'}(x^i), \ y^{\alpha'} = \varphi^{\alpha'}(x^i, y^{\alpha}), \ \dot{x}^{i'} = \frac{\partial \varphi^{i'}}{\partial x^j} \dot{x}^j, \ \ddot{x}^{i'} = \frac{1}{2} \frac{\partial^2 \varphi^{i'}}{\partial x^i \partial x^j} \dot{x}^i \dot{x}^j + \frac{\partial \varphi^{i'}}{\partial x^i} \ddot{x}^i.$$
(28)

Уравнение (??) в карте $(\pi^{-1}(U'), H')$ имеет вид

$$x''' = x^{i'}, \ y'' = y'', \ \dot{x}'' = \dot{x}^{i'} + g^{i'}(x^j), \ \ \ddot{x}^{i'} = \ddot{x}^{i'} + \frac{\partial g^{i'}(x^j)}{\partial x^{j'}} \dot{x}^{j'} + h^{i'}(x^j, y^\alpha)$$

Подставляя (??) в (??), получаем:

$$'x^{i'} = \varphi^{i'}(x^i), \quad 'y^{\alpha'} = \varphi^{\alpha'}(x^i, y^{\alpha}), \quad '\dot{x}^{i'} = \frac{\partial \varphi^{i'}}{\partial x^{j'}}(\dot{x}^j + g^i(x^k)),$$

$$'\ddot{x}^{i'} = \frac{1}{2} \frac{\partial^2 \varphi^{i'}}{\partial x^i \partial x^j}(\dot{x}^i + g^i(x^k))(\dot{x}^j + g^j(x^k)) + \frac{\partial \varphi^{i'}}{\partial x^i}(\ddot{x}^i + \frac{\partial g^i(x^i)}{\partial x^j}\dot{x}^j + h^i(x^i, y^{\alpha}))$$

Раскрывая скобки, получаем:

$$x^{i'} = \varphi^{i'}(x^i), \quad y^{\alpha'} = \varphi^{\alpha'}(x^i, y^{\alpha}),$$
$$\dot{x}^{i'} + g^{i'}(x^j) = \frac{\partial \varphi^{i'}}{\partial x^{j'}} (\dot{x}^j + g^i(x^k)) = \frac{\partial \varphi^{i'}}{\partial x^{j'}} \dot{x}^j + \frac{\partial \varphi^{i'}}{\partial x^{j'}} g^i(x^k),$$

$$\begin{split} \ddot{x}^{i'} + \frac{\partial g^{i'}(x^j)}{\partial x^{j'}} \dot{x}^{j'} + h^{i'}(x^j, y^\alpha) &= \\ &= \frac{1}{2} \frac{\partial^2 \varphi^{i'}}{\partial x^i \partial x^j} (\dot{x}^i + g^i(x^k)) (\dot{x}^j + g^j(x^k)) + \frac{\partial \varphi^{i'}}{\partial x^i} (\ddot{x}^i + \frac{\partial g^i(x^i)}{\partial x^j} \dot{x}^j + h^i(x^i, y^\alpha)) = \\ &= \frac{1}{2} \frac{\partial^2 \varphi^{i'}}{\partial x^i \partial x^j} (\dot{x}^i \dot{x}^j + \dot{x}^j g^i(x^k) + \dot{x}^i g^j(x^k) + (g^j(x^k))^2) + \\ &\quad + \frac{\partial \varphi^{i'}}{\partial x^i} \ddot{x}^i + \frac{\partial \varphi^{i'}}{\partial x^i} \frac{\partial g^i(x^i)}{\partial x^j} \dot{x}^j + \frac{\partial \varphi^{i'}}{\partial x^i} h^i(x^i, y^\alpha) = \\ &= \frac{1}{2} \frac{\partial^2 \varphi^{i'}}{\partial x^i \partial x^j} \dot{x}^i \dot{x}^j + \frac{1}{2} \frac{\partial^2 \varphi^{i'}}{\partial x^i \partial x^j} \dot{x}^j g^i(x^k) + \\ &\quad + \frac{1}{2} \frac{\partial^2 \varphi^{i'}}{\partial x^i \partial x^j} \dot{x}^i g^j(x^k) + \frac{1}{2} \frac{\partial^2 \varphi^{i'}}{\partial x^i \partial x^j} \dot{x}^j g^j(x^k) g^i(x^k) + \\ &\quad + \frac{\partial \varphi^{i'}}{\partial x^i} \ddot{x}^i + \frac{\partial \varphi^{i'}}{\partial x^i} \frac{\partial g^i(x^i)}{\partial x^j} \dot{x}^j + \frac{\partial \varphi^{i'}}{\partial x^i \partial x^j} \dot{x}^i g^j(x^k) + \\ &\quad + \frac{\partial^2 \varphi^{i'}}{\partial x^i} \ddot{x}^i + \frac{1}{2} \frac{\partial^2 \varphi^{i'}}{\partial x^i \partial x^j} \dot{x}^j g^j(x^k) + \frac{1}{2} \frac{\partial^2 \varphi^{i'}}{\partial x^i \partial x^j} \dot{x}^i g^j(x^k) + \\ &\quad + \frac{\partial^2 \varphi^{i'}}{\partial x^i} \ddot{x}^i + \frac{1}{2} \frac{\partial^2 \varphi^{i'}}{\partial x^i \partial x^j} \dot{x}^j g^j(x^k) g^i(x^k) + \frac{\partial^2 \varphi^{i'}}{\partial x^i \partial x^j} \dot{x}^i g^j(x^k) + \\ &\quad + \frac{\partial^2 \varphi^{i'}}{\partial x^i} \ddot{x}^i + \frac{1}{2} \frac{\partial^2 \varphi^{i'}}{\partial x^i \partial x^j} \dot{x}^j g^j(x^k) g^i(x^k) + \frac{\partial^2 \varphi^{i'}}{\partial x^i \partial x^j} \dot{x}^i g^j(x^k) + \\ &\quad + \frac{\partial^2 \varphi^{i'}}{\partial x^i} \ddot{x}^i + \frac{1}{2} \frac{\partial^2 \varphi^{i'}}{\partial x^i \partial x^j} \dot{x}^j g^j(x^k) g^i(x^k) + \frac{\partial^2 \varphi^{i'}}{\partial x^i \partial x^j} \dot{x}^i g^j(x^k) + \frac{\partial^2 \varphi^{i'}}{\partial x^i \partial x^j} \dot{x}^j g^j(x^k) + \frac{\partial^2 \varphi^{i'}}{\partial x^i \partial$$

Сравнивая полученные выражения, получаем

$$g^{i'} = \frac{\partial \varphi^{i'}}{\partial x^i} g^i, \quad h^{i'} = \frac{1}{2} \frac{\partial^2 \varphi^{i'}}{\partial x^i \partial x^j} g^j(x^k) g^i(x^k) + \frac{\partial \varphi^{i'}}{\partial x^i} h^i.$$
 (29)

Из уравнений (??) следует, что набор $\{g^i\}$ является набором координат некоторого проектируемого [?] сечения $g: M \to T_{tr}M$ трансверсального расслоения.

Предложение 3. Пусть $g^i: M \to T^1_{tr}M$ — сечение трансверсального расслоения $T^1_{tr}M$ слоеного многообразия M, имеющее в локальных координатах $\dot{x} = g^i(x^k)$. Тогда :

$$\dot{x} = g^i(x^k), \quad \ddot{x} = \frac{1}{2} \frac{\partial g^i}{\partial x^l} \dot{x}^l = \frac{1}{2} \frac{\partial g^i}{\partial x^l} g^l$$
 (30)

задается сечение $g^2: M \to T^2_{tr} M$ трансверсального расслоения второго порядка слоеного многообразия M.

Доказательство: Для доказательства предложения $\ref{eq:constraint}$, достаточно подставить $\ref{eq:constraint}$ в $\ref{eq:constraint}$. После чего видно, что уравнениями $\ref{eq:constraint}$ для любого $x \in M$ задается не зависящий от выбора системы координат на M элемент расслоения $T^2_{tr}M$. С другой стороны, если $x^i = \varphi^i(t)$ — траектория потока векторного поля g, то $\frac{d\varphi^i}{dt} = g^i$ и $\frac{d^2\varphi^i}{dt^2} = g^k\partial_k g^i$.

Так же в построенной категории трансверсальных расслоений $\mathcal{T}r^2 - \mathcal{B}un$ слоеных многообразий можно выделить специального типа автоморфизмы $F^2: T^2_{tr}M \to T^2_{tr}M$.

Специальные автоморфизмы второго типа характеризуются тем, что не только f является тождественным отображением, но и F^1 является тождественным отображением, тогда диаграмма (??) имеет вид:

$$T_{tr}^{2}M \xrightarrow{F^{2}} T_{tr}^{2}M$$

$$\downarrow^{\pi_{0}^{2}} T_{tr}M \xrightarrow{id} T_{tr}M \xrightarrow{\pi_{0}^{1}} \pi_{0}^{2}$$

$$\downarrow^{\pi_{0}^{1}} T_{tr}M \xrightarrow{id} T_{tr}M \xrightarrow{\pi_{0}^{1}} M$$

$$M \xrightarrow{Id} M$$

 \mathbb{D}^2 -диффеоморфизм F^2 в локальных координатах записывается следующим образом:

$$'x^{i} = x^{i}, \quad 'y^{\alpha} = y^{\alpha}, \quad '\dot{x}^{i} = \dot{x}^{i},$$
 $'\ddot{x}^{i} = \ddot{x}^{i} + h^{i}(x^{j}, y^{\alpha}).$
(32)

Найдем как преобразуются функции h^i при переходе к другой карте (U',h') на слоеном многообразии M. Если преобразование координат на $h' \circ h^{-1}$ на M имеет вид $x^{i'} = \varphi^{i'}(x^i), y^{\alpha'} = \varphi^{\alpha'}(x^i,y^{\alpha})$, то соответствующее преобразование координат на $H' \circ H^{-1}$ на $T^2_{tr}M$, имеет вид (??):

$$x^{i'} = \varphi^{i'}(x^i), \quad y^{\alpha'} = \varphi^{\alpha'}(x^i, y^{\alpha}),$$
$$\dot{x}^{i'} = \frac{\partial \varphi^{i'}}{\partial x^{j'}} \dot{x}^j, \quad \ddot{x}^{i'} = \frac{1}{2} \frac{\partial^2 \varphi^{i'}}{\partial x^i \partial x^j} \dot{x}^i \dot{x}^j + \frac{\partial \varphi^{i'}}{\partial x^i} \ddot{x}^i. \quad (33)$$

Уравнение (??) в карте $(\pi^{-1}(U'), H')$ имеет вид

$$x''' = x'', \quad y'' = y'', \quad \dot{x}'' = \dot{x}'', \quad \ddot{x}'' = \ddot{x}'' + h''(x^j, y^\alpha)$$

Подставляя (??) в (??), получаем:

$$\dot{x}^{i'} = \varphi^{i'}(x^i), \quad \dot{y}^{\alpha'} = \varphi^{\alpha'}(x^i, y^\alpha), \quad \dot{x}^{i'} = \frac{\partial \varphi^{i'}}{\partial x^{j'}} \dot{x}^j,$$

$$\ddot{x}^{i'} = \frac{1}{2} \frac{\partial^2 \varphi^{i'}}{\partial x^i \partial x^j} \dot{x}^i \dot{x}^j + \frac{\partial^2 \varphi^{i'}}{\partial x^i} (\ddot{x}^i + h^i(x^i, y^\alpha))$$

Раскрывая скобки, получаем:

$$\begin{split} x^{i'} &= \varphi^{i'}(x^i), \quad y^{\alpha'} &= \varphi^{\alpha'}(x^i, y^\alpha), \\ \dot{x}^{i'} &= \frac{\partial \varphi^{i'}}{\partial x^{j'}} \dot{x}^j, \\ \ddot{x}^{i'} &+ h^{i'}(x^j, y^\alpha) &= \frac{1}{2} \frac{\partial^2 \varphi^{i'}}{\partial x^i \partial x^j} \dot{x}^i \dot{x}^j + \frac{\partial \varphi^{i'}}{\partial x^i} (\ddot{x}^i + h^i(x^i, y^\alpha)) = \\ &= \frac{\partial^2 \varphi^{i'}}{\partial x^i \partial x^j} \dot{x}^i \dot{x}^j + \frac{\partial \varphi^{i'}}{\partial x^i} \ddot{x}^i + \frac{\partial \varphi^{i'}}{\partial x^i} h^i(x^i, y^\alpha) \end{split}$$

Сравнивая полученные выражения, имеем:

$$h^{i'} = \frac{\partial \varphi^{i'}}{\partial x^i} h^i \tag{34}$$

Из уравнений (??) следует, что набор $\{h^i\}$ является набором координат некоторого сечения $h:T^2_{tr}M\to V^2_1T^2_{tr}M$ на многообразии M.

А изоморфизм вида (??) представляет собой сдвиг слоев трансверсального расслоения второго порядка $T^2_{tr}M$ на h.

Предложение 4. Изоморфизм трансверсального расслоения второго порядка T_{tr}^2M на себя вида $(\ref{eq:total_tr})$ представляет собой послойный сдвиг T_{tr}^2M на некоторое сечение h, заданное на базовом слоеном многообразии M.

7 Касательное расслоение слоеного многообразия M.

Пусть (M, \mathcal{F}) — слоеное многообразие, а TM — касательное расслоение [?] многообразия M. Карта (??) на M индуцирует карту Th на TM, которая относит касательному вектору $v_z \in T_zM$ координаты $\{x^i, y^\alpha, v^i, v^\alpha\}$ Функции склейки касательного расслоения имеют вид

$$x^{i'} = \varphi^{i'}(x^i), \quad v^{i'} = \frac{\partial \varphi^{i'}}{\partial x^i} v^i, \quad y^{\alpha'} = \varphi^{\alpha}(x^i, y^{\alpha}), \quad v^{\alpha'} = \frac{\partial \varphi^{\alpha}}{\partial x^i} v^i + \frac{\partial \varphi^{\alpha}}{\partial y^{\beta}} v^{\beta}$$
(35)

Из (??) следует, что TM является слоеным многообразием со слоением $T\mathcal{F}$ слои которого определяются уравнениями : $x^i = const$, $v^i = const$.

Векторным полем на многообразии M называется сечение касательного расслоения, то есть отображение

$$v: M \to TM \tag{36}$$

касательного расслоения, то есть такое отображение, что $\pi \circ v = id$: $M \to M$, где $\pi: TM \ni v_z \mapsto z \in M$ — каноническая проекция. В локальных координатах векторное поле задается уравнениями

$$v^{i} = v^{i}(x^{i}, y^{\beta}), \quad v^{\alpha} = v^{\alpha}(x^{i}, y^{\beta}). \tag{37}$$

Векторное поле v на слоеном многообразии M называется слоеным или проектируемым векторным полем, если $(\ref{eq:condition})$ является морфизмом слоений. Из $(\ref{eq:condition})$ следует, что векторное поле v является слоеным тогда и только тогда, когда локально (в кубической координатной окрестности) $v^i = v^i(x^i)$ в $(\ref{eq:condition})$.

Применяя функтор T_{tr}^2 к слоеному векторному полю получаем отображение $V:T_{tr}^2M\to T_{tr}^2TM$, имеющее вид:

$$v^{i} = v^{i}(x^{i}), \ \dot{v}^{i} = \frac{\partial v^{i}}{\partial x^{k}}\dot{x}^{k}, \ \ddot{v}^{i} = \frac{\partial^{2}v^{i}}{\partial x^{i}\partial x^{j}}\dot{x}^{i}\dot{x}^{j} + \frac{\partial v^{i}}{\partial x^{i}}\ddot{x}^{i}, \ v^{\alpha} = v^{\alpha}(x^{i}, y^{\beta})$$
 (38)

Предложение 5. Уравнения (??) можно рассматривать как уравнения векторного поля на трансверсальном расслоении второго порядка, то есть как сечение

$$T_{tr}^2M \to TT_{tr}^2M$$

касательного расслоения над T_{tr}^2M .

Доказательство. Покажем, что расслоения $TT^2_{tr}M$ и $T^2_{tr}TM$ эквивалентны, а переменные v^i , \dot{v}^i , \ddot{v}^i , v^α можно рассматривать как координаты касательного вектора к $T^2_{tr}M$. Карта $(\ref{eq:condition})$ на M индуцирует карту $\{x^i, \dot{x}^i, \ddot{x}^i, y^\alpha\}$ на $T^2_{tr}M$ и карты $\{x^i, y^\alpha, v^i, v^\alpha\} \sim \{x^i, v^i, y^\alpha, v^\alpha\}$ на TM, которые индуцируют карты $\{x^i, \dot{x}^i, \ddot{x}^i, y^\alpha, v^i, \dot{v}^i, \ddot{v}^i, v^\alpha\}$ на $TT^2_{tr}M$ и $\{x^i, v^i, \dot{x}^i, \dot{v}^i, \ddot{x}^i, \ddot{v}^i, y^\alpha, v^\alpha\}$ на $T^2_{tr}TM$. Поскольку, функции склейки, отражающие зависимость $\{\dot{x}^i, \ddot{x}^i, v^i, \dot{v}^i, \ddot{v}^i, v^i, \dot{v}^i, \ddot{v}^i, \ddot{v}^i, v^\alpha\}$ у расслоений $TT^2_{tr}M$ и $T^2_{tr}TM$ одинаковые, эти расслоения эквивалентны.

Касательное расслоение $TT^2_{tr}M$ над $T^2_{tr}M$ несет на себе структуру гладкого многообразия над \mathbb{D}^2 , моделируемого \mathbb{D}^2 -модулем $\mathbb{D}^{2m}\oplus\mathbb{R}^{2n}$ с координатами

$$X^{i} = x^{i} + \varepsilon \dot{x}^{i} + \varepsilon^{2} \ddot{x}^{i}, \ y^{\alpha}, \quad V^{i} = v^{i} + \varepsilon \dot{v}^{i} + \varepsilon^{2} \ddot{v}^{i}, \ v^{\alpha}.$$
 (39)

Преобразование координат на M индуцирует следующее преобразование координат на TT_{tr}^2M :

$$\begin{cases}
V^{i'} = X_i^i V^i \\
v^{\alpha'} = y_i^{\alpha'} v^i + y_{\alpha}^{\alpha'} v^{\alpha},
\end{cases}$$
(40)

где используется отображение $X_i^i = \frac{\partial X^{i'}}{\partial X^i}, y_i^{\alpha'} = \frac{\partial y^{\alpha'}}{\partial x^i}, y_{\alpha}^{\alpha'} = \frac{\partial y^{\alpha'}}{\partial y^{\alpha}}$, такого рода обозначения в дальнейшем используются без специальных оговорок.

По отношению к этой структуре векторное поле $(\ref{eq:condition})$ является \mathbb{D}^2 -гладким векторным полем на $T^2_{tr}TM$ и задается уравнениями

$$V^{i} = v^{i} + \varepsilon \dot{v}^{i} + \varepsilon^{2} \ddot{v}^{i} = v^{i}(x^{i}) + \varepsilon \partial_{k} v^{i} \dot{x}^{k} + \varepsilon^{2} \left(\partial_{kj}^{2} v^{i} \dot{x}^{k} \dot{x}^{j} + \partial_{j} v^{i} \dot{x}^{j} \right),$$
$$v^{\alpha} = v^{\alpha}(x^{i}, y^{\beta}). \quad (41)$$

Векторное поле V на T_{tr}^2TM , заданное уравнениями (??), будем называть \mathbb{D}^2 -продолжением проектируемого векторного поля v, заданного на слоеном многообразии M и имеющего уравнения $v^i = v^i(x^i)$, $v^{\alpha} = v^{\alpha}(x^i, y^{\beta})$.

Произвольное \mathbb{D}^2 -гладкое векторное поле $V:T^2_{tr}M \to TT^2_{tr}M$ задается уравнениями вида

$$V^{i} = v^{i} + \varepsilon \dot{v}^{i} + \varepsilon^{2} \ddot{v}^{i} =$$

$$= v^{i}(x^{i}) + \varepsilon \left(\partial_{k} v^{i} \dot{x}^{k} + \hat{v}^{i}(x^{i})\right) +$$

$$\varepsilon^{2} \left(\partial_{kl}^{2} v^{i} \dot{x}^{k} \dot{x}^{l} + \partial_{k} v^{i} \ddot{x}^{k} + \partial_{k} \hat{v}^{i} \dot{x}^{k} + \hat{\hat{v}}^{i}(x^{i}, y^{\alpha})\right),$$

$$v^{\alpha} = v^{\alpha}(x^{i}, y^{\beta}). \quad (42)$$

8 Соответствия между векторными полями на $T_{tr}^2 M$ при автоморфизмах $T_{tr}^2 M$ с тождественным отображением F^1

Преобразование координат \mathbb{D}^2 -гладкого векторного поля V на пересечении областей определения двух карт на $T_{tr}^2 M$ имеет вид (см. $(\ref{eq:condition})$)

$$V^{i'} = (\partial X^{i'}/\partial X^i)V^i, \quad v^{\alpha'} = \partial_i y^{\alpha'} v^i + \partial_\alpha y^{\alpha'} v^\alpha.$$

Записывая первые соотношения подробно, получаем

$$v^{i'} + \varepsilon \left(\partial_k v^{i'} \dot{x}^k + \hat{v}^{i'} \right) + \varepsilon^2 \left(\frac{1}{2} \partial_{kl}^2 v^{i'} \dot{x}^k \dot{x}^l + \partial_k v^{i'} \ddot{x}^k + \partial_k \hat{v}^{i'} \dot{x}^k + \hat{v}^{i'} \right) =$$

$$= \left(x_i^{i'} + \varepsilon x_{ki}^{i'} \dot{x}^k + \varepsilon^2 \left(\frac{1}{2} x_{ipj}^{i'} \dot{x}^p \dot{x}^j + x_{pi}^{i'} \ddot{x}^p \right) \right) \times$$

$$\left(v^i + \varepsilon \left(\partial_k v^i \dot{x}^k + \hat{v}^i \right) + \varepsilon^2 \left(\frac{1}{2} \partial_{kl}^2 v^i \dot{x}^k \dot{x}^l + \partial_k v^i \ddot{x}^k + \partial_k \hat{v}^i \dot{x}^k + \hat{v}^i \right) \right)$$

Раскрывая скобки в правой части, получаем

$$\begin{pmatrix} x_i^{i'} + \varepsilon x_{ki}^{i'}\dot{x}^k + \varepsilon^2 \left(\frac{1}{2}x_{ipj}^{i'}\dot{x}^p\dot{x}^j + x_{pi}^{i'}\ddot{x}^p\right)\right) \cdot \\ \left(v^i + \varepsilon \left(\partial_k v^i\dot{x}^k + \hat{v}^i\right) + \varepsilon^2 \left(\frac{1}{2}\partial_{kl}^2 v^i\dot{x}^k\dot{x}^l + \partial_k v^i\ddot{x}^k + \partial_k \hat{v}^i\dot{x}^k + \hat{v}^i\right)\right) = \\ = x_i^{i'} \left(v^i + \varepsilon \left(\partial_k v^i\dot{x}^k + \hat{v}^i\right) + \varepsilon^2 \left(\frac{1}{2}\partial_{kl}^2 v^i\dot{x}^k\dot{x}^l + \partial_k v^i\ddot{x}^k + \partial_k \hat{v}^i\dot{x}^k + \hat{v}^i\right)\right) + \\ + \varepsilon x_{ki}^{i'}\dot{x}^k \left(v^i + \varepsilon \left(\partial_k v^i\dot{x}^k + \hat{v}^i\right) + \varepsilon^2 \left(\frac{1}{2}\partial_{kl}v^i\dot{x}^k\dot{x}^l + \partial_k v^i\ddot{x}^k + \partial_k \hat{v}^i\dot{x}^k + \hat{v}^i\right)\right) + \\ + \varepsilon^2 \left(\frac{1}{2}x_{ipj}^{i'}\dot{x}^p\dot{x}^j + x_{pi}^{i'}\ddot{x}^p\right) \times \\ \left(v^i + \varepsilon \left(\partial_k v^i\dot{x}^k + \hat{v}^i\right) + \varepsilon^2 \left(\frac{1}{2}\partial_{kl}^2 v^i\dot{x}^k\dot{x}^l + \partial_k v^i\ddot{x}^k + \partial_k \hat{v}^i\dot{x}^k + \hat{v}^i\right)\right) + \\ + \varepsilon^2 \left(\frac{1}{2}x_{ipj}^{i'}\partial_k^2 v^i\dot{x}^k + x_{i}^{i'}\hat{v}^i\right) + \\ + \varepsilon^2 \left(\frac{1}{2}x_{i}^{i'}\partial_k^2 v^i\dot{x}^k + x_{i}^{i'}\partial_k v^i\ddot{x}^k + \frac{1}{2}x_{i}^{i'}\partial_k \hat{v}^i\dot{x}^k + x_{i}^{i'}\hat{v}^i\right) + \\ + \varepsilon x_{ki}^{i'}\dot{x}^k v^i + \varepsilon^2 \left(\partial_k v^i x_{i}^{i'}\dot{x}^k\dot{x}^l + x_{ki}^{i'}\dot{x}^k\hat{v}^i\right) + \\ + \varepsilon^2 \left(\frac{1}{2}x_{i}^{i'}\partial_k v^i\dot{x}^k + x_{i}^{i'}\hat{v}^i + x_{ki}^{i'}v^i\dot{x}^k\right) + \\ + \varepsilon^2 \left(\frac{1}{2}x_{i}^{i'}\partial_k v^i\dot{x}^k + x_{i}^{i'}\hat{v}^i + x_{ki}^{i'}v^i\dot{x}^k\right) + \\ + \varepsilon^2 \left(\frac{1}{2}x_{i}^{i'}\partial_k v^i\dot{x}^k\dot{x}^l + x_{i}^{i'}\partial_k v^i\ddot{x}^k + \frac{1}{2}x_{ij}^{i'}\partial_k\hat{v}^i\dot{x}^k + x_{i}^{i'}\hat{v}^i\right) + \\ + \varepsilon^2 \left(\frac{1}{2}x_{i}^{i'}\partial_k v^i\dot{x}^k\dot{x}^l + x_{i}^{i'}\partial_k v^i\ddot{x}^k + \frac{1}{2}x_{ij}^{i'}\partial_k\hat{v}^i\dot{x}^k + x_{i}^{i'}\hat{v}^i\right) + \\ + \varepsilon^2 \left(\frac{1}{2}x_{i}^{i'}\partial_k v^i\dot{x}^k\dot{x}^l + x_{i}^{i'}\partial_k v^i\ddot{x}^k + \frac{1}{2}x_{ij}^{i'}\partial_k\hat{v}^i\dot{x}^k + x_{i}^{i'}\hat{v}^i\right) + \\ + \varepsilon^2 \left(\frac{1}{2}x_{i}^{i'}\partial_k v^i\dot{x}^k\dot{x}^l + x_{i}^{i'}\partial_k v^i\ddot{x}^k + \frac{1}{2}x_{ij}^{i'}\partial_k\hat{v}^i\dot{x}^k + x_{i}^{i'}\hat{v}^i\right) + \\ + \varepsilon^2 \left(\frac{1}{2}x_{i}^{i'}\partial_k v^i\dot{x}^k\dot{x}^l + x_{i}^{i'}\partial_k v^i\ddot{x}^k + \frac{1}{2}x_{ij}^{i'}\partial_k\hat{v}^i\dot{x}^k + x_{i}^{i'}\hat{v}^i\right) + \\ + \varepsilon^2 \left(\frac{1}{2}x_{i}^{i'}\partial_k v^i\dot{x}^k\dot{x}^l + x_{i}^{i'}\partial_k v^i\ddot{x}^k + \frac{1}{2}x_{ij}^{i'}\partial_k\hat{v}^i\dot{x}^k + x_{i}^{i'}\hat{v}^i\right) + \\ + \varepsilon^2 \left(\frac{1}{2}x_{i}^{i'}\partial_k v^i\dot{x}^k\dot{x}^l + x_{i}^{i'}\partial_k v^i\ddot{x}^k$$

Сравнение вещественных частей в полученных формулах дает

$$v^{i'} = x_i^{i'} v^i, \quad v^{\alpha'} = y_i^{\alpha'} v^i + y_{\alpha}^{\alpha'} v^{\alpha}.$$
 (43)

Для \mathbb{D}^2 -продолжения \widetilde{V} векторного поля v полученные выше формулы принимают вид

$$v^{i'} + \varepsilon \dot{v}^{i'} + \varepsilon^2 \ddot{v}^{i'} = v^{i'} + \varepsilon \left(\partial_k v^{i'} \dot{x}^k\right) + \varepsilon^2 \left(\frac{1}{2} \partial_{kl}^2 v^{i'} \dot{x}^k \dot{x}^l + \partial_k v^{i'} \ddot{x}^k\right) =$$

$$= \left(x_i^{i'} + \varepsilon x_{ki}^{i'}\dot{x}^k + \varepsilon^2 \left(\frac{1}{2}x_{ipj}^{i'}\dot{x}^p\dot{x}^j + x_{pi}^{i'}\ddot{x}^p\right)\right) \cdot \left(v^i + \varepsilon \left(\partial_k v^i \dot{x}^k\right) + \varepsilon^2 \left(\frac{1}{2}\partial_{kl}^2 v^i \dot{x}^k \dot{x}^l + \partial_k v^i \ddot{x}^k\right)\right)$$

$$= x_i^{i'} v^i + \varepsilon \left(x_i^{i'} \partial_k v^i \dot{x}^k + x_{ki}^{i'} \dot{x}^k v^i \right)$$

$$+ \varepsilon^2 \left(\frac{1}{2} x_i^{i'} \partial_{kl}^2 v^i \dot{x}^k \dot{x}^l + x_i^{i'} \partial_k v^i \ddot{x}^k + x_{ki}^{i'} \dot{x}^k \partial_k v^i \dot{x}^k \right) +$$

$$+ \varepsilon^2 \left(\frac{1}{2} x_{ipj}^{i'} \dot{x}^p \dot{x}^j v^i + x_{pi}^{i'} \ddot{x}^p v^i \right).$$

Сравнивая с формулами преобразования координат произвольного \mathbb{D}^2 -гладкого векторного поля, получаем преобразование компонент $\hat{v}^{i'}$ и $\hat{\hat{v}}^{i'}$. Эти преобразования имеют вид

$$\hat{v}^{i'} = x_i^{i'} \hat{v}^i, \quad \hat{v}^{i'} = \frac{1}{2} x_i^{i'} \partial_k \hat{v}^i \dot{x}^k + x_i^{i'} \hat{v}^i. \tag{44}$$

Полученный результат можно сформулировать следующим предложением.

Предложение 6. Пусть на T_{tr}^2M задано \mathbb{D}^2 -гладкое векторное поле V уравнениями (??). Тогда наборы функций $\{v^i(x^j)\}$ и $\{\hat{v}^i(x^j)\}$ определяют проектируемые сечения трансверсального расслоения, а набор функций $\{v^i(x^j), v^\alpha(x^i, y^\alpha)\}$ является набором координат некоторого векторного поля v на M.

Следуя работе [?] можно поставить вопрос, при каких условиях одно \mathbb{D}^2 -гладкое векторное поле на T_{tr}^2M может быть переведено в другое \mathbb{D}^2 -гладкое векторное поле специальным автоморфизмом. В настоящей работе мы ограничимся рассмотрением специальных автоморфизмов второго типа.

Определение 3. Будем называть два векторных поля V и V' на трансверсальном расслоении $T_{tr}M$ эквивалентными, если одно из них может быть переведено в другое автоморфизмом вида (??).

Отметим, что вышеуказанное определение вводит отношение эквивалентности на множестве гладких векторных полей на T_{tr}^2M , поскольку композиция изоморфизмов вида (??) и обратный изоморфизм к изоморфизму вида (??) снова является изоморфизмом вида (??).

Касательное отображение TF^2 к отображению $F^2: T_{tr}^2M \to T_{tr}^2M$, заданному уравнениями

$$\dot{x}^{i} = x^{i}, \quad \dot{x}^{i} = \dot{x}^{i}, \quad \dot{x}^{i} = \ddot{x}^{i} + h^{i}(x^{k}, y^{\alpha}), \quad \dot{y}^{\alpha} = y^{\alpha},$$
 (45)

имеет вид

Обратное отображение $(F^2)^{-1}: T^2_{tr}M \to T^2_{tr}M$ имеет следующий вид:

$$x^{i} = 'x^{i}, \quad \dot{x}^{i} = '\dot{x}^{i}, \quad \ddot{x}^{i} = '\ddot{x}^{i} - h^{i}(x^{k}, y^{\alpha}), \quad y^{\alpha} = 'y^{\alpha}.$$
 (47)

Применяя касательное отображение (??) к векторам (произвольного) векторного поля (??), получим векторное поле

$$V^{i} = v^{i} + \varepsilon \dot{v}^{i} + \varepsilon^{2} \left(\partial_{kl}^{2} v^{i} \dot{x}^{k} \dot{x}^{l} + \partial_{k} v^{i} \ddot{x}^{k} + \partial_{k} \hat{v}^{i} \dot{x}^{k} + \hat{v}^{i} + \partial_{k} h^{i} v^{k} + \partial_{\alpha} h^{i} v^{\alpha} \right),$$

$$v^{\alpha} = v^{\alpha}$$

$$(48)$$

Уравнения (??) задают координаты векторного поля V в точке $X = F^2(X)$ как функции координат X^i , y^α точки X. Для получения выражений координат поля V в точке X как функций координат X^i , Y^α , подставим в (??) формулы (??). Поскольку X— это произвольная точка многообразия $T^2_{tr}M$, то штрихи у координат точек в окончательной записи результата убираем.

Итак, векторное поле V, представляющее собой результат применения диффеоморфизма $(\ref{eq:condition})$ к векторному полю $(\ref{eq:condition})$, имеет следующие уравнения:

Отсюда получаем соответствие между компонентами $\hat{v}^i(x^k)$ и $\hat{v}^i(x^k)$, а также между компонентами $\hat{v}^i(x^k, y^\beta)$ и $\hat{v}^i(x^k, y^\beta)$:

$$'\hat{v}^{i}(x^{k}, y^{\beta}) = \hat{v}^{i}(x^{k}, y^{\beta}) - \partial_{k}v^{i}h^{k} + (\partial_{k}h^{i}v^{k} + \partial_{\alpha}h^{i}v^{\alpha})$$

$$'\hat{v}^{i}(x^{k}) = \hat{v}^{i}(x^{k}).$$

$$(49)$$

Вычисления подведенные выше показывают, что два \mathbb{D}^2 -гладких векторных поля 'V и V на расслоении T_{tr}^2M эквивалентны тогда и только тогда, когда разность этих векторных полей 'V-V=W является векторным полем следующего вида:

$$W^{i} = \varepsilon^{2} \left((\partial_{k} v^{i}) h^{k} - (\partial_{k} h^{i}) v^{k} - (\partial_{\alpha} h^{i}) v^{\alpha} \right), \quad w^{\alpha} = 0.$$
 (50)

Покажем, что векторное поле (??), является производной Ли \mathbb{D}^2 -гладкого векторного поля V в направлении некоторого вертикального векторного поля u, с координатами $\{u^i=0,u^\alpha=0,\dot{u}^i=0,\ddot{u}^i=h^i\}$, то есть принимающего значения в $V_1^2TT_{tr}^2M$.

Вычислим компоненты производной Ли \mathcal{L}_uV . Обозначим для удобства $\mathcal{L}_uV^i=a^i+\varepsilon\dot{a}^i+\varepsilon^2\ddot{a}^i$ и $\mathcal{L}_uv^\alpha=a^\alpha$. Имеем

$$\begin{split} a^i &= u^k \frac{\partial v^i}{\partial x^k} + u^\beta \frac{\partial v^i}{\partial y^\beta} + \dot{u}^k \frac{\partial v^i}{\partial \dot{x}^k} + \ddot{u}^k \frac{\partial v^i}{\partial \ddot{x}^k} - \\ &\quad - v^k \frac{\partial u^i}{\partial x^k} - v^\beta \frac{\partial u^i}{\partial y^\beta} - \dot{v}^k \frac{\partial u^i}{\partial \dot{x}^k} - \ddot{v}^k \frac{\partial u^i}{\partial \dot{x}^k} = 0, \end{split}$$

$$\begin{split} \dot{a}^i &= u^k \frac{\partial \dot{v}^i}{\partial x^k} + u^\beta \frac{\partial \dot{v}^i}{\partial y^\beta} + \dot{u}^k \frac{\partial \dot{v}^i}{\partial \dot{x}^k} + \ddot{u}^k \frac{\partial \dot{v}^i}{\partial \ddot{x}^k} - \\ &- v^k \frac{\partial \dot{u}^i}{\partial x^k} - v^\beta \frac{\partial \dot{u}^i}{\partial y^\beta} - \dot{v}^k \frac{\partial \dot{u}^i}{\partial \dot{x}^k} - \ddot{v}^k \frac{\partial \dot{u}^i}{\partial \dot{x}^k} = 0, \end{split}$$

$$\ddot{a}^{i} = u^{k} \frac{\partial \ddot{v}^{i}}{\partial x^{k}} + u^{\beta} \frac{\partial \ddot{v}^{i}}{\partial y^{\beta}} + \dot{u}^{k} \frac{\partial \ddot{v}^{i}}{\partial \dot{x}^{k}} \ddot{u}^{k} \frac{\partial \ddot{v}^{i}}{\partial \ddot{x}^{k}} - v^{k} \frac{\partial \ddot{u}^{i}}{\partial x^{k}} - v^{\beta} \frac{\partial \ddot{u}^{i}}{\partial y^{\beta}} - \dot{v}^{k} \frac{\partial \ddot{u}^{i}}{\partial \dot{x}^{k}} =$$

$$= \ddot{u}^{k} \frac{\partial v^{i}}{\partial x^{k}} - \left(v^{k} \frac{\partial \ddot{u}^{i}}{\partial x^{k}} + v^{\beta} \frac{\partial \ddot{u}^{i}}{\partial y^{\beta}} \right).$$

$$\begin{split} a^{\alpha} &= u^{k} \frac{\partial v^{\alpha}}{\partial x^{k}} + u^{\beta} \frac{\partial v^{\alpha}}{\partial y^{\beta}} + \dot{u}^{k} \frac{\partial v^{\alpha}}{\partial \dot{x}^{k}} + \ddot{u}^{k} \frac{\partial v^{\alpha}}{\partial \ddot{x}^{k}} - \\ &- v^{k} \frac{\partial u^{\alpha}}{\partial x^{k}} - v^{\beta} \frac{\partial u^{\alpha}}{\partial y^{\beta}} - \dot{v}^{k} \frac{\partial u^{\alpha}}{\partial \dot{x}^{k}} - \ddot{v}^{k} \frac{\partial u^{\alpha}}{\partial \dot{x}^{k}} = 0, \end{split}$$

Подведем итог проведенным рассуждениям.

Предложение 7. Два \mathbb{D}^2 -гладких векторных поля 'V и V на расслоении $T^2_{tr}M$ эквивалентны тогда и только тогда, когда разность этих векторных полей равна производной Ли векторного поля V в направлении некоторого векторного поля u, принимающего значения в $V_1^2TT^2_{tr}M$.

Как следствие предложения ??, получаем следующее предложение.

Предложение 8. \mathbb{D}^2 -гладкое векторное поле (??) на расслоении T_{tr}^2M эквивалентно \mathbb{D}^2 -продолжению проектируемого векторного поля $v^i(x^j)$, $v^{\alpha}(x^j,y^{\beta})$, заданного на M, тогда и только тогда, когда

$$\hat{v}^i = 0, \quad \hat{\hat{v}}^i = (\partial_k v^i) h^k - (\partial_k h^i) v^k - (\partial_\alpha h^i) v^\alpha.$$

9 Связность в главном расслоении

Пусть (P, M, G, π) — локально тривиальное расслоение, где стандартный слой G является группой Ли, и пусть Σ — правое действие G на R, то есть:

$$\Sigma: G \times P \ni (a, X) \mapsto Xa = R_a(X) \in P.$$

Определение 4. Набор (P, M, G, π, Σ) называется главным расслоением над M со структурной группой G, если выполняется следующие условия:

- (i) Σ свободное действие, то есть Xa=X хотя бы для одного $X\in P$ влечет a=e.
 - $(ii) \Sigma$ послойное действие, то есть $\pi \circ R_a = \pi$.
- (iii) Для любого $x \in M$ существует открытое множество $x \in U$ такое, что $\pi^{-1}(U)$ диффеоморфно $U \times G$ и существует эквивариантный послойный диффеоморфизм $\varphi : \pi^{-1} \to U \times G$, то есть такой что для любого $a \in G$ коммутативна диаграмма:

$$\pi^{-1}(U) \xrightarrow{\varphi} U \times G \qquad X \xrightarrow{\varphi} (x,b)$$

$$R_a \downarrow \qquad \downarrow R_a \qquad R_a \downarrow \qquad \downarrow R_a$$

$$\pi^{-1}(U) \xrightarrow{\varphi} U \times G \qquad Xa \xrightarrow{\varphi} (x,ba)$$

$$(51)$$

где G действие на $U \times G$ справа умножением на второй элемент пары $R_a(x,b) = (x,ba)$. Иными словами, $\varphi(x) = (x,b)$ влечет $\varphi(x_a) = (x,ba)$

Атлас главного расслоения задается отображениями $\varphi_{\alpha}: \pi^{-1}(U_{\alpha}) \to U \times G$, для некоторого покрытия $\{U_{\alpha}\}$ многообразия M.

Пусть M является n-мерным многообразием. Обозначим через $P_x^1=P_x^1(M)$ множество базисов $\{e_a\}_x$ в T_xM и $P^1=P^1(M)=\bigcup_{x\in M}P_x^1$. Определим проекцию $\pi:P^1M\ni\pi\{e_a\}_x\mapsto x\in M.$ (U,h)— карта на M, такая что $h:U\to U^*\subset\mathbb{R}^n$, тогда в T_xM возникает натуральный базис $\partial_i=\partial/\partial x^i$. Определим на $\pi^{-1}(U)$ карту $h^P:\pi^{-1}(U)\to U^*\times G_n^1\subset\mathbb{R}^{n^2}$,

где $G_n^1 = GL(n,\mathbb{R})$ — множество невырожденных $n \times n$ матриц. Эта карта определяется следующим образом:

$$h^P: \{\overline{e}_a\}_x \mapsto \{x^i, x_a^i\},\tag{52}$$

где $\overline{e}_a = x_a^i \partial_i$. Для (U,h) и (U',h') с $U \cap U' \neq \emptyset$ на $\pi^{-1}(U) \cap \pi^{-1}(U')$ функции склейки имеют следующий вид:

$$x^{i'} = f^{i'}(x^i), \quad x_a^{i'} = \frac{\partial f^i}{\partial x^i} x_a^i. \tag{53}$$

Можно заметить, что h^P переносит базу топологии с $U^* \times G_n^1$ на $\pi^{-1}(U)$. Функции $(\ref{thm:property})$ гарантируют, что объединение таких баз, взятое по всем (U,h) из некоторого атласа дает базу топологии на P^1 . Тогда $(\ref{thm:property})$ задает на P^1 структуру гладкого многообразия. (P^1,M,G_n^1,π) — локально тривиальное расслоение, где G_n^1 естественное правое действие на многообразии P^1M , имеющее вид:

$$P^{1}M \times G_{n}^{1} : (\{e_{a}\}_{x}, A_{c}^{b}) \mapsto \{e_{b}A_{f}^{b}\} \in P^{1}M,$$
 (54)

а гомоморфизмы тривиализации имеют вид:

$$\varphi: \pi^{-1}(U) \ni \{e_a\}_x \mapsto \{x, x_a^i\} \in U \times G_n^1,$$

и очевидно, являющийся эквивариантным относительно действия G_n^1 . Репер $\{e_a\} \in T_x M$ определяет отображение (обозначим его тем же самым символом, что и репер)

$$\{e_a\}_x: \mathbb{R}^n \to T_xM,$$

относящее набору $\{v^a\} \in \mathbb{R}^n$ вектор $v^a e_a \in T_x M$, поскольку e_a является образом точки (0...1...0) (где единица стоит на a-ом месте) при отображении $\{e_a\}_x$. Поэтому расслоение реперов $P^1 M$ можно эквивалентным образом определить как множество линейных изоморфизмов из \mathbb{R}^n в касательное пространство к M.

Определение 5. Связностью в главном расслоении (P, M, G, π) [?] называется горизонтальное распределение на P, инвариантное относительно правых сдвигов на P, то есть такое распределение $\{H_X\}$, что $TR_a(H_X) = H_{Xa}$ и $T_X\pi\Big|_{H_X}$: $H_X \to T_xM$ — изоморфизм, где $x = \pi(X)$.

Рассмотрим базис $\{e_i, e_i^a\}$, где $\{e_i^a\}$ совпадает с векторами натурального базиса ∂_i^a , а e_i лежит в горизонтальной площадке и проектируется в вектор ∂_i на M. Такой базис имеет вид:

$$\begin{cases} e_i = \partial_i - \Gamma_{ia}^k \partial_k^a, \\ e_i^a = \partial_i^a. \end{cases}$$

Рассмотрим сопряженный к нему базис $\{e^i, e^i_b\}$. Имеем:

$$\begin{cases}
e^{i} = \mu_{l}^{i} dx^{i} + \lambda_{l}^{ib} dx_{b}^{l}, \\
e^{i}_{b} = \gamma_{bl}^{i} dx^{l} + \gamma_{bl}^{ic} dx_{c}^{l}.
\end{cases}$$
(55)

Учитывая то, что

$$e^{i}(e_{k}) = \delta_{k}^{i}, \quad e_{b}^{i}(e_{k}) = 0,$$

 $e^{i}(\partial_{i}^{j}) = 0, \quad e_{b}^{i}(\partial^{j}) = \delta_{b}^{a}\delta_{i}^{i}$

находим коэффициенты в формуле (??). Имеем:

$$e^{i}(e_{i}) = \mu_{l}^{i} dx^{i} (\partial_{k} - \Gamma_{ak}^{j} \partial_{j}^{a}) + \lambda_{l}^{ib} dx_{b}^{l} (\partial_{k} - \Gamma_{ak}^{j} \partial_{j}^{a}) =$$

$$= \mu_{l}^{i} \delta_{k}^{l} - \lambda_{l}^{ib} \Gamma_{ak}^{j} \delta_{j}^{l} \delta_{b}^{a} = \mu_{k}^{i} - \lambda_{l}^{ib} \Gamma_{bk}^{l} = \delta_{k}^{i},$$

$$e^{i} (\partial a_{j}) = \mu_{l}^{i} dx^{i} (\partial a_{j}) + \lambda_{l}^{ib} dx_{b}^{l} (\partial a_{j}) = \lambda_{l}^{ib} \delta_{j}^{l} \delta_{b}^{a} = \lambda_{j}^{ia} = 0.$$

Откуда следует, что $\mu_k^i=1$ и $\lambda_l^{ib}=0.$

$$e_b^i(e_k) = \gamma_{bl}^i dx^l (\partial_k - \Gamma_{ak}^j \partial_j^a) + \lambda_{bl}^{ic} dx_c^l (\partial_k - \Gamma_{ak}^j \partial_j^a) =$$

$$= \gamma_{bl}^i \delta_k^l - \gamma_{bl}^{ic} \Gamma_{ak}^j \delta_j^l \delta_b^a = \gamma_{bk}^i - \gamma_{bj}^{ic} \Gamma_{ck}^j = 0,$$

$$e^i (\partial a_i) = \gamma_{bl}^i dx^l (\partial a_i) + \gamma_{bl}^{ic} dx_c^l (\partial a_i) = \gamma_{bl}^{ic} \delta_i^l \delta_c^a = \gamma_{bi}^{ia} = \delta_b^a \delta_i^i.$$

Таким образом,

$$\begin{cases} e^i = dx^i, \\ e^a_i = dx^i_a + \Gamma^i_{ka} dx^k. \end{cases}$$

Горизонтальная площадка в точке X с координатами (x^i, x_b^a) задается уравнениями следующего вида:

$$dx_{\alpha}^{i} + \Gamma_{\alpha i}^{i}(x^{k}, x_{\gamma}^{k})dx^{j} = 0. \tag{56}$$

В частности, в точке $X_0=(x^k,\delta_\gamma^k)$, принадлежащей натуральному сечению

$$dx_{\alpha}^{i} + \Gamma_{\alpha j}^{i}(x^{k}, \delta_{m}^{k})dx^{j} = 0.$$

Обозначим $\Gamma^i_{\alpha j}(x^k, \delta^k_m)$ через $\Gamma^i_{\alpha j}(x^k)$, тогда уравнение (??) записывается следующим образом:

$$dx_{\alpha}^{i} + \Gamma_{mj}^{i}(x^{k})dx^{j} = 0.$$

Действуем на элемент dx^i_{β} правым действием A^{α}_{β} :

$$dx^{i}_{\beta} = (dx^{i}_{\alpha})A^{\alpha}_{\beta} = (-\Gamma^{i}_{\alpha j}(x^{k})dx^{j})A^{\alpha}_{\beta} = -\Gamma^{i}_{mj}dx^{j}x^{m}_{\beta}.$$

Откуда получаем уравнение горизонтальной площадки после правого сдвига:

$$dx^i_{\beta} + \Gamma^i_{mi}(x^k)x^m_{\beta}dx^j = 0. (57)$$

10 Линейные связности на слоеном многообразии

Пусть $(M, \mathcal{F}) - (m+n)$ -мерное многообразие со слоением \mathcal{F} коразмерности m и (U,h) — карта слоения на M, где

$$h: U \ni z \mapsto \{x^i = h^i(z), y^\alpha = h^\alpha(z)\} \in U^* \subset \mathbb{R}^{m+n}, \tag{58}$$

Для $z \in U$ обозначим через VT_zM подпространство в касательном пространстве T_zM , состоящее из касательных векторов к слою слоения, проходящему через z. В терминах карты $(\ref{equ:topology:eq$

$$h^P: \pi^{-1}(U) \ni \{e_j, e_\beta\}_z \mapsto \{x^i, y^\alpha, x^i_j, y^\alpha_i, y^\alpha_\beta\} \in U^* \times G^1_{m,n},$$
 (59)

где $x^i = h^i(z), y^\alpha = h^\alpha(z), (e_j, e_\beta) = (x^i_j \partial_i + y^\alpha_j \partial_\alpha, y^\alpha_\beta \partial_\alpha),$ а G^1_{mn} — множество невырожденных $(n+m) \times (n+m)$ матриц следующего вида

$$\begin{pmatrix} a_j^i & 0 \\ a_j^\alpha & a_\beta^\alpha \end{pmatrix}.$$
(60)

Операция умножения элементов группы G_{mn}^1 имеет вид:

$$\begin{pmatrix} a^i_j & 0 \\ a^{\alpha}_j & a^{\alpha}_{\alpha} \end{pmatrix} \begin{pmatrix} a^j_{j'} & 0 \\ a^{\alpha}_{j'} & a^{\alpha}_{\alpha'} \end{pmatrix} = \begin{pmatrix} a^i_j a^j_{j'} & 0 \\ a^{\alpha}_j a^j_{j'} + a^{\alpha}_{\alpha} a^{\alpha}_{j'} & a^{\alpha}_{\alpha} a^{\alpha}_{\alpha'} \end{pmatrix}.$$

Если (U,h) и (U',h') — две слоеные карты на M, такие что $U\cap U'\neq\varnothing$, то $\partial_i=\frac{\partial x^{i'}}{\partial x^i}\partial_{i'}+\frac{\partial y^{\alpha'}}{\partial y^\alpha}\partial_{\alpha'},$ $\partial_\alpha=\frac{\partial y^{\alpha'}}{\partial y^\alpha}\partial_{\alpha'}.$ Откуда следует, что координаты $(\ref{eq:condition})$ на $\pi^{-1}(U)\cap\pi^{-1}(U')$ преобразуются следующим образом:

$$x^{i'} = x^{i'}(x^{i}(x^{j})), \quad y^{\alpha'} = y^{\alpha'}(y^{\alpha}(x^{j}, y^{\beta})),$$

$$x_{j}^{i'} = \frac{\partial x^{i'}}{\partial x^{i}} x_{j}^{i}, \quad y_{j}^{\alpha'} = \frac{\partial y^{\alpha'}}{\partial y^{\alpha}} y_{j}^{\alpha} + \frac{\partial y^{\alpha'}}{\partial x^{i}} x_{j}^{i}, \quad y_{\beta}^{\alpha'} = \frac{\partial y^{\alpha'}}{\partial y^{\alpha}} y_{\beta}^{\alpha}.$$
(61)

Откуда следует, что набор карт $\{(\pi^{-1}(U), h^P)\}$ при (U, h), пробегающими атлас слоения на (M, F), задает атлас гладкого многообразия на $P^1_{fol}M$.

 $(P_{fol}^1M, M, G_{mn}^1, \pi)$ — локально тривиальное расслоение. G_{mn}^1 группа матриц вида $(\ref{eq:constraint})$, определяющее правое действие на множестве P_{fol}^1M , имеющее вид:

$$P_{fol}^1 M \times G_{m,n}^1 : (\{e_j, e_\beta\}_z, A) \mapsto (\{e_j, e_\beta\}_A) \in P_{fol}^1 M,$$
 (62)

где
$$A = \begin{pmatrix} a_j^i & 0 \\ a_j^{\alpha} & a_{\beta}^{\alpha} \end{pmatrix}$$
.

Правый сдвиг имеет вид

$$\begin{pmatrix} 'x_j^i & 0 \\ 'y_j^{\alpha} & 'y_{\beta}^{\alpha} \end{pmatrix} = \begin{pmatrix} x_j^i & 0 \\ y_j^{\alpha} & y_{\alpha}^{\alpha} \end{pmatrix} \begin{pmatrix} a_{j'}^j & 0 \\ a_{j'}^{\alpha} & a_{\beta'}^{\alpha} \end{pmatrix} = \begin{pmatrix} x_j^i a_{j'}^j & 0 \\ y_j^{\alpha} a_{j'}^j + y_{\alpha}^{\alpha} a_{\beta'}^{\alpha} & y_{\alpha}^{\alpha} a_{\beta'}^{\alpha} \end{pmatrix}.$$

Что эквивалентно:

$$\begin{cases} 'x_j^i = x_j^i a_{j'}^j, \\ 'y_j^\alpha = y_j^\alpha a_{j'}^j + y_\beta^\alpha a_{j'}^\beta, \\ 'y_\alpha^\alpha = y_\alpha^\alpha a_{\beta'}^\alpha. \end{cases}$$

Действие правого сдвига на касательных пространствах имеет вид

$$\begin{split} d'x^i_{j'} &= (dx^i_j)a^j_{j'} = -(\Gamma^i_{jp}dx^p + \Gamma^i_{j\beta}dy^\beta)a^j_{j'}, \\ d'y^\alpha_{j'} &= dy^\alpha_j a^j_{j'} + dy^\alpha_\beta a^\beta_{j'} = -(\Gamma^\alpha_{jp}dx^p + \Gamma^\alpha_{j\beta}dy^\beta)a^j_{j'} - (\Gamma^\alpha_{\beta p}dx^p + \Gamma^\alpha_{\beta\gamma}dy^\gamma)a^\beta_{j'}, \\ d'y^\alpha_{\beta'} &= dy^\alpha_\beta a^\beta_{\beta'} = dy^\alpha_\beta y^\beta_{\beta'} = -(\Gamma^\alpha_{\beta p}dx^p + \Gamma^\alpha_{\beta\gamma}dy^\gamma)a^\beta_{\beta'}. \end{split}$$

Рассматриваем случай применения правого сдвига к натуральному реперу:

$$\begin{pmatrix} {}'x^i_j & 0 \\ {}'y^\alpha_j & {}'y^\alpha_\beta \end{pmatrix} = \begin{pmatrix} \delta^i_j & 0 \\ 0 & \delta^\alpha_\beta \end{pmatrix} \begin{pmatrix} a^j_{j'} & 0 \\ a^\beta_{j'} & a^\beta_{\beta'} \end{pmatrix} = \begin{pmatrix} \delta^i_j a^j_{j'} & 0 \\ \delta^\alpha_\beta a^\beta_{j'} & \delta^\alpha_\beta a^\beta_{\beta'} \end{pmatrix} = \begin{pmatrix} a^i_{j'} & 0 \\ a^\alpha_{j'} & a^\alpha_{\beta'} \end{pmatrix}.$$

что эквивалентно:

$$\begin{cases} 'x_j^i = a_{j'}^i, \\ 'y_j^\alpha = a_{j'}^\alpha, \\ 'y_\beta^\alpha = a_{j'}^\alpha. \end{cases}$$

Откуда получаем:

$$\begin{split} d'x^i_{j'} &= -(\Gamma^i_{jp}dx^p + \Gamma^i_{j\gamma}dy^\gamma)x^j_{j'}, \\ d'y^\alpha_{j'} &= -(\Gamma^\alpha_{jp}dx^p + \Gamma^\alpha_{j\gamma}dy^\gamma)x^j_{j'} - (\Gamma^\alpha_{\beta p}dx^p + \Gamma^\alpha_{\beta\gamma}dy^\gamma)y^\beta_{j'}, \\ d'y^\alpha_{\beta'} &= -(\Gamma^\alpha_{\beta p}dx^p + \Gamma^\alpha_{\beta\gamma}dy^\gamma)y^\beta_{\beta'}, \end{split}$$

где $\Gamma^A_{BC} = \Gamma^A_{BC}(x^i, y^\alpha).$

Связность в расслоении $P^1_{fol}M$ имеет уравнения:

$$\begin{cases} dx_j^i + \Gamma_{kp}^i x_j^k dx^p + \Gamma_{k\gamma}^i x_j^k dy^\gamma = 0, \\ dy_j^\alpha + \Gamma_{kp}^\alpha x_j^k dx^p + \Gamma_{k\gamma}^\alpha x_j^k dy^\gamma + \Gamma_{\gamma p}^\alpha y_j^\gamma dx^p + \Gamma_{\gamma \beta}^\alpha y_j^\gamma dy^\beta = 0, \\ dy_\beta^\alpha + \Gamma_{\gamma j}^\alpha y_\beta^\gamma dx^j + \Gamma_{\gamma \sigma}^\alpha y_\beta^\gamma dy^\sigma = 0. \end{cases}$$

Найдем преобразование коэффициентов линейной связности при замене карты слоения на многообразии.

Рассмотрим первое уравнение:

$$dx_j^{i'} + \Gamma_{j'k'}^{i'} x_j^{j'} dx^{k'} + \Gamma_{j'\beta'}^{i'} x_j^{j'} dy^{\beta'} = 0.$$

Подставляя $x_j^{i'} = x_i^{i'} x_j^i$, получаем (напомним, что в наших обозначениях $x_i^{i'}$ — элементы матрицы Якоби преобразования координат, а $x_j^{i'}$ и x_j^i — координаты репера по отношению к двум системам координат)

$$d(x_i^{i'}x_j^i) + \Gamma_{j'k'}^{i'}x_j^{j'}x_j^j dx^k x_k^{k'} + \Gamma_{j'\beta'}^{i'}x_j^{j'}x_j^j (dy^\beta y_\beta^{\beta'} + dx^k y_k^{\beta'}) = 0,$$

откуда

$$x_{ik}^{i'}dx^k x_j^i + x_i^{i'}dx_j^i + \Gamma_{k'j'}^{i'} x_j^{j'} x_j^j dx^k x_k^{k'} + \Gamma_{k'\beta'}^{i'} x_j^{j'} x_j^j (dy^\beta y_\beta^{\beta'} + dx^k y_k^{\beta'}) = 0$$

Свертывая с $x_i^{i'}$ и переобозначая индексы, получаем

$$dx_{j}^{i} + (x_{pk}^{i'}x_{i'}^{i} + \Gamma_{k'j'}^{i'}x_{i'}^{i}x_{p}^{j'}x_{k}^{k'} + \Gamma_{k'\beta'}^{i'}x_{i'}^{i}x_{p}^{j'}y_{k}^{\beta'})x_{j}^{p}dx^{k} + (\Gamma_{k'\beta'}^{i'}x_{i'}^{i}x_{p}^{j'}y_{\beta}^{\beta'})x_{j}^{p}dy^{\beta} = 0$$

Рассмотрим следующее уравнение:

$$dy_{j}^{\alpha'} + \Gamma_{j'k'}^{\alpha'} x_{j}^{j'} dx^{k'} + \Gamma_{j'\beta'}^{\alpha'} x_{j}^{j'} dy^{\beta'} + \Gamma_{\gamma'k'}^{\alpha'} y_{j}^{\gamma'} dx^{k'} + \Gamma_{\gamma'\beta'}^{\alpha'} y_{j}^{\gamma'} dy^{\beta'} = 0$$

Подставляя $y_j^{\alpha'}=y_\alpha^{\alpha'}y_j^\alpha+y_i^{\alpha'}x_j^i$, получаем (напомним, что в наших обозначениях $y_\alpha^{\alpha'}$ — элементы матрицы Якоби преобразования координат, а $y_j^{\alpha'}$ и y_j^α — координаты репера по отношению к двум системам координат)

$$\begin{split} &d(y^{\alpha'}_{\alpha}y^{\alpha}_{j} + y^{\alpha'}_{i}x^{i}_{j}) + \Gamma^{\alpha'}_{j'k'}x^{j'}_{p}x^{p}_{j}dx^{k}x^{k'}_{k} + \Gamma^{\alpha'}_{j'\beta'}x^{j'}_{p}x^{p}_{j}(dy^{\beta}y^{\beta'}_{\beta} + dx^{k}y^{\beta'}_{k}) + \\ &+ \Gamma^{\alpha'}_{\gamma'k'}(y^{\gamma'}_{\gamma}y^{\gamma}_{j} + y^{\gamma'}_{i}x^{i}_{j})dx^{j}x^{j'}_{j} + \Gamma^{\alpha'}_{\gamma'\beta'}(y^{\gamma'}_{\gamma}y^{\gamma}_{j} + y^{\gamma'}_{i}x^{i}_{j})(dy^{\beta}y^{\beta'}_{\beta} + dx^{k}y^{\beta'}_{k}) = 0. \end{split}$$

Откуда

$$\begin{split} y^{\alpha'}_{\alpha k} y^{\alpha}_{j} dx^{k} + y^{\alpha'}_{\alpha \beta} y^{\alpha}_{j} dy^{\beta} + y^{\alpha'}_{\alpha} dy^{\alpha}_{j} + y^{\alpha'}_{ik} x^{i}_{j} dx^{k} + y^{\alpha'}_{i\beta} x^{i}_{j} dy^{\beta} + y^{\alpha'}_{i} dx^{i}_{j} + \\ &+ \Gamma^{\alpha'}_{j'k'} x^{j'}_{p} x^{p}_{j} dx^{k} x^{k'}_{k} + \Gamma^{\alpha'}_{j'\beta'} x^{j'}_{p} x^{p}_{j} dy^{\beta} y^{\beta'}_{\beta} + \Gamma^{\alpha'}_{j'\beta'} x^{j'}_{p} x^{j}_{p} dx^{k} y^{\beta'}_{k} + \Gamma^{\alpha'}_{\gamma'k'} y^{\gamma'}_{\gamma} y^{\gamma}_{j} dx^{p} x^{j'}_{j} + \\ &+ \Gamma^{\alpha'}_{\gamma'k'} y^{\gamma'}_{i} x^{i}_{p} dx^{p} x^{j'}_{j} + \Gamma^{\alpha'}_{\gamma'\beta'} y^{\gamma'}_{\gamma} y^{\gamma}_{j} dy^{\beta} y^{\beta'}_{\beta} + \Gamma^{\alpha'}_{\gamma'\beta'} y^{\gamma'}_{i} x^{i}_{j} dy^{\beta} y^{\beta'}_{\beta} + \Gamma^{\alpha'}_{\gamma'\beta'} y^{\gamma'}_{\gamma} y^{\gamma}_{j} dx^{k} y^{\beta'}_{k} + \\ &+ \Gamma^{\alpha'}_{\gamma'\beta'} y^{\gamma'}_{i} x^{i}_{j} dx^{k} y^{\beta'}_{k} = 0. \end{split}$$

Свертывая с $y_{\alpha'}^{\alpha}$ и переобозначая индексы, получаем

$$\begin{split} dy_j^\alpha + & (y_i^{\alpha'}y_{\alpha'}^\alpha\Gamma_{k'j'}^{i'}x_{i'}^ix_p^j'x_k^{k'} + y_i^{\alpha'}y_{\alpha'}^\alpha\Gamma_{k'\beta'}^{i'}x_{i'}^ix_p^j'y_k^{\beta'} + \\ & + y_{ik}^{\alpha'}y_{\alpha'}^\alpha + \Gamma_{j'\beta'}^{\alpha'}y_{\alpha'}^\alpha x_p^{j'}y_k^{\beta'} + \Gamma_{\gamma'\beta'}^{\alpha'}y_{\alpha'}^\alpha y_i^{\gamma'}y_k^{\beta'} + \Gamma_{\gamma'k'}^{\alpha'}y_{\alpha'}^\alpha y_i^{\gamma'}x_j^{j'} + \Gamma_{j'k'}^{\alpha'}y_{\alpha'}^\alpha x_j^{j'}x_k^{k'})x_j^idx^k + \\ & + (y_{i\beta}^{\alpha'}y_{\alpha'}^\alpha + \Gamma_{j'\beta'}^{\alpha'}y_{\alpha'}^\alpha x_p^{j'}y_\beta^{\beta'} + \Gamma_{\gamma'\beta'}^{\alpha'}y_{\alpha'}^\alpha y_i^{\gamma'}y_\beta^{\beta'} + y_i^{\alpha'}y_{\alpha'}^\alpha Y_{\gamma'}^{i'}x_j^{i'}x_p^{j'}y_\beta^{\beta'})x_j^idy^\beta + \\ & + (y_{\alpha k}^{\alpha'}y_{\alpha'}^\alpha + \Gamma_{\gamma'\beta'}^{\alpha'}y_{\alpha'}^\alpha y_\gamma^{\gamma'}y_k^{\beta'} + \Gamma_{\gamma'k'}^{\alpha'}y_{\alpha'}^\alpha y_\gamma^{\gamma'}x_j^{j'})y_j^\alpha dx^k + \\ & + (y_{\alpha\beta}^{\alpha'}y_{\alpha'}^\alpha + \Gamma_{\gamma'\beta'}^{\alpha'}y_{\alpha'}^\alpha y_\gamma^{\gamma'}y_\beta^{\beta'})y_j^\gamma dy^\beta = 0. \end{split}$$

Рассмотрим третье уравнение системы:

$$dy_{\sigma}^{\alpha'} + \Gamma_{\gamma'k'}^{\alpha'} y_{\sigma}^{\gamma'} dx^{k'} + \Gamma_{\gamma'\beta'}^{\alpha'} y_{\sigma}^{\gamma'} dy^{\beta'} = 0$$

Подставляя $y_{\sigma}^{\alpha'} = y_{\alpha}^{\alpha'} y_{\sigma}^{\alpha}$, получаем (напомним, что в наших обозначениях $y_{\alpha}^{\alpha'}$ — элементы матрицы Якоби преобразования координат, а y_{σ}^{α} и $y_{\sigma}^{\alpha'}$ — координаты репера по отношению к двум системам координат)

$$d(y_{\alpha}^{\alpha'}y_{\sigma}^{\alpha}) + \Gamma_{\gamma'k'}^{\alpha'}y_{\gamma}^{\gamma'}y_{\sigma}^{\gamma}dx^{j}x_{j}^{j'} + \Gamma_{\gamma'\beta'}^{\alpha'}y_{\gamma}^{\gamma'}y_{\sigma}^{\gamma}(dy^{\beta}y_{\beta}^{\beta'} + dx^{k}y_{k}^{\beta'}) = 0.$$

Откуда

$$y_{\alpha k}^{\alpha'} y_{\sigma}^{\alpha} dx^{k} + y_{\alpha \beta}^{\alpha'} y_{\sigma}^{\alpha} dy^{\beta} + y_{\alpha}^{\alpha'} dy_{\sigma}^{\alpha} + \Gamma_{\gamma' k'}^{\alpha'} y_{\gamma}^{\gamma'} y_{\sigma}^{\gamma} dx^{j} x_{j}^{j'} + \Gamma_{\gamma' \beta'}^{\alpha'} y_{\gamma}^{\gamma'} y_{\sigma}^{\gamma} dy^{\beta} y_{\beta}^{\beta'} + \Gamma_{\gamma' \beta'}^{\alpha'} y_{\gamma}^{\gamma'} y_{\sigma}^{\gamma} dx^{k} y_{k}^{\beta'} = 0.$$

Свертывая с $y^{\alpha}_{\alpha'}$ и переобозначая индексы, получаем

$$dy^{\alpha}_{\sigma} + (\Gamma^{\alpha'}_{\gamma'\beta'}y^{\alpha}_{\alpha'}y^{\gamma'}_{\gamma}y^{\beta'}_{k} + y^{\alpha'}_{\alpha k}y^{\alpha}_{\alpha'} + \Gamma^{\alpha'}_{\gamma'k'}y^{\alpha}_{\alpha'}y^{\gamma'}_{\gamma}x^{j'}_{j})y^{\gamma}_{\sigma}dx^{j} + + (y^{\alpha'}_{\gamma\beta}y^{\alpha}_{\alpha'} + \Gamma^{\alpha'}_{\gamma'\beta'}y^{\alpha}_{\alpha'}y^{\gamma'}_{\gamma}y^{\beta'}_{\beta})y^{\gamma}_{\sigma}dy^{\beta} = 0$$

Предложение 9. Коэффициенты связности в расслоении P_{fol}^1M , соответствующие двум разным слоеным картам (U,h) и (U',h') на (M,\mathcal{F}) на пересечении областей определения $U \cap U'$ преобразуются следующим образом:

$$\Gamma^{i}_{jk} = x^{i}_{i'} x^{i'}_{jk} + \Gamma^{i'}_{j'k'} x^{i}_{i'} x^{j'}_{j} x^{k'}_{k} + \Gamma^{i'}_{j'\beta'} x^{i}_{i'} x^{j'}_{j} y^{\beta'}_{k}, \tag{63}$$

$$\Gamma^{i}_{j\beta} = x^{i}_{i'} \Gamma^{i'}_{j'\beta'} x^{j'}_{j} y^{\beta'}_{\beta}, \tag{64}$$

$$\Gamma_{jk}^{\alpha} = y_{\alpha'}^{\alpha} y_{jk}^{\alpha'} + \Gamma_{j'k'}^{i'} y_{i'}^{\alpha} x_{j}^{j'} x_{k}^{k'} + \Gamma_{j'\beta'}^{i'} y_{i'}^{\alpha} x_{j}^{j'} y_{k}^{\beta'} +
+ \Gamma_{j'k'}^{\alpha'} y_{\alpha'}^{\alpha} x_{j}^{j'} x_{k}^{k'} + \Gamma_{j'\beta'}^{\alpha'} y_{\alpha'}^{\alpha} x_{j}^{j'} y_{k}^{\beta'} + \Gamma_{\alpha'k'}^{\alpha'} y_{\alpha'}^{\alpha} y_{j}^{\alpha'} x_{k}^{k'} + \Gamma_{\alpha'\beta'}^{\alpha'} y_{\alpha'}^{\alpha} y_{j}^{\beta'}, (65)$$

$$\Gamma^{\alpha}_{\beta k} = y^{\alpha}_{\alpha'} y^{\alpha'}_{\beta k} + y^{\alpha}_{i'} \Gamma^{i'}_{\alpha'k'} y^{\alpha'}_{\beta} x^{k'}_{k} + \Gamma^{\alpha'}_{\alpha'k'} y^{\alpha}_{\alpha'} y^{\alpha'}_{\beta} x^{k'}_{k} + \Gamma^{\alpha'}_{\alpha'\beta'} y^{\alpha}_{\alpha'} y^{\alpha'}_{\beta} y^{\beta'}_{k}, \quad (66)$$

$$\Gamma^{\alpha}_{j\gamma} = y^{\alpha}_{\alpha'}y^{\alpha'}_{j\gamma} + y^{\alpha}_{i'}\Gamma^{i'}_{j'\beta'}x^{j'}_{j}y^{\beta'}_{\gamma} + \Gamma^{\alpha'}_{j'\beta'}y^{\alpha}_{\alpha'}x^{j'}_{j}y^{\beta'}_{\gamma} + \Gamma^{\alpha'}_{\alpha'\beta'}y^{\alpha}_{\alpha'}y^{\alpha'}_{j}y^{\beta'}_{\gamma}, \quad (67)$$

$$\Gamma^{\alpha}_{\beta\gamma} = y^{\alpha}_{\alpha'} y^{\alpha'}_{\beta\gamma} + y^{\alpha}_{\alpha'} \Gamma^{\alpha'}_{\alpha'\beta'} y^{\alpha'}_{\beta} y^{\beta'}_{\gamma}. \tag{68}$$

В силу того, что компоненты $(\ref{eq:constraint})$ преобразуются независимо от других компонент и по линейному закону, то обращение их в нуль носит инвариантный характер. Это позволяет выделить некоторый класс связностей в расслоении $P^1_{fol}M$. В локальных координатах связности указанного класса задаются функциями

$$\Gamma^{i}_{jk}(x^{\ell}), \quad \Gamma^{\alpha}_{\beta k}(x^{\ell}, y^{\sigma}), \quad \Gamma^{\alpha}_{j\gamma}(x^{\ell}, y^{\sigma}), \quad \Gamma^{\alpha}_{\beta\gamma}(x^{\ell}, y^{\sigma}), \quad \Gamma^{\alpha}_{jk}(x^{\ell}, y^{\sigma}).$$
 (69)

Связности такого типа называются проектируемыми [?], поскольку коэффициенты $\Gamma^i_{jk}(x^\ell)$ определяют связность на локальном фактормногообразии с координатами x^i .

Предложение 10. Коэффициенты проектируемой связности в расслоении P_{fol}^1M , соответствующие двум разным слоеным картам (U,h) и (U',h') на (M,F) на пересечении областей определения $U \cap U'$ преобразуются следующим образом:

$$\Gamma^{i}_{jk} = x^{i}_{i'} x^{i'}_{jk} + \Gamma^{i'}_{j'k'} x^{i}_{i'} x^{j'}_{j} x^{k'}_{k} \tag{70}$$

$$\Gamma_{jk}^{\alpha} = y_{\alpha'}^{\alpha} y_{jk}^{\alpha'} + \Gamma_{j'k'}^{i'} y_{i'}^{\alpha} x_{j}^{j'} x_{k}^{k'} + \Gamma_{j'k'}^{\alpha'} y_{\alpha'}^{\alpha} x_{j}^{j'} x_{k}^{k'} + \Gamma_{j'\beta'}^{\alpha'} y_{\alpha'}^{\alpha} x_{j}^{j'} y_{k}^{\beta'} + \Gamma_{\alpha'k'}^{\alpha'} y_{\alpha'}^{\alpha} y_{j}^{\alpha'} x_{k}^{k'} + \Gamma_{\alpha'\beta'}^{\alpha'} y_{\alpha'}^{\alpha} y_{j}^{\beta'}, \quad (71)$$

$$\Gamma^{\alpha}_{\beta k} = y^{\alpha}_{\alpha'} y^{\alpha'}_{\beta k} + y^{\alpha}_{i'} \Gamma^{i'}_{\alpha' k'} y^{\alpha'}_{\beta} x^{k'}_k + \Gamma^{\alpha'}_{\alpha' k'} y^{\alpha}_{\alpha'} y^{\alpha'}_{\beta} x^{k'}_k + \Gamma^{\alpha'}_{\alpha' \beta'} y^{\alpha}_{\alpha'} y^{\alpha'}_{\beta} y^{\beta'}_k, \tag{72}$$

$$\Gamma^{\alpha}_{j\gamma} = y^{\alpha}_{\alpha'} y^{\alpha'}_{j\gamma} + \Gamma^{\alpha'}_{j'\beta'} y^{\alpha}_{\alpha'} x^{j'}_{j} y^{\beta'}_{\gamma} + \Gamma^{\alpha'}_{\alpha'\beta'} y^{\alpha}_{\alpha'} y^{\beta'}_{j} y^{\beta'}_{\gamma}, \tag{73}$$

$$\Gamma^{\alpha}_{\beta\gamma} = y^{\alpha}_{\alpha'} y^{\alpha'}_{\beta\gamma} + y^{\alpha}_{\alpha'} \Gamma^{\alpha'}_{\alpha'\beta'} y^{\alpha'}_{\beta} y^{\beta'}_{\gamma}. \tag{74}$$

Формулы (??)-(??) могут рассматриваться как функции склейки локально тривиального расслоения LM над M, если коэффициенты связности рассматривать как элементы из некоторого пространства \mathbb{R}^N , образующего стандартный слой этого расслоения. Тотальное пространство этого расслоения LM несет на себе слоение \mathcal{F}^L , базовыми координатами которого являются x^i и Γ^i_{jk} . Это расслоение называется расслоением объекта слоеной линейной связности на (M,\mathcal{F}) .

Проектируемые связности в расслоении $P^1_{fol}M$ находятся во взаимнооднозначном соответствии с сечениями $\Gamma: M \to LM$, являющимися морфизмами слоений.

11 \mathbb{D}^2 -линейные связности на трансверсальном расслоении второго порядка

Рассмотрим два модуля L_1 и L_2 вида $(\mathbb{D}^2)^m \oplus \mathbb{R}^n$. \mathbb{D}^2 -линейное отображение $f: L_1 \to L_2$ имеет вид (см. ??):

$$\begin{cases}
W^{i} = X_{j}^{i}V^{j} + \varepsilon^{2}x_{\beta}^{i}v^{\beta}, \\
w^{\alpha} = y_{i}^{\alpha}v^{i} + y_{\beta}^{\alpha}v^{\beta}.
\end{cases}$$
(75)

Множество $Hom(L_1, L_2)$ \mathbb{D}^2 -линейных отображений из L_1 в L_2 является векторным пространством и образует \mathbb{D}^2 -модуль относительно следующим образом определенной операции умножения элемента $V \in Hom(L_1, L_2)$ на элемент алгебры $\alpha \in \mathbb{D}^2$:

$$(\alpha \cdot f)(V) = \alpha \cdot f(V). \tag{76}$$

Для выполнения условия (??) для всех $\alpha \in \mathbb{D}^2$ достаточно, чтобы оно выполнялось для $\alpha = \varepsilon$:

$$(\varepsilon f)(V) = \varepsilon f(V). \tag{77}$$

Условие (??) в координатах записывается следующим образом:

$$\varepsilon(X_i^i, x_\beta^i, y_i^\alpha, y_\beta^\alpha) = (\varepsilon X_i^i, 0, 0, 0),$$

то есть

$$\begin{cases} W^i = \varepsilon X_j^i V^j, \\ w^\alpha = 0, \end{cases}$$

где координаты $X_j^i \in \mathbb{D}^2$, а $x_\beta^i, y_i^\alpha, y_\beta^\alpha \in \mathbb{R}^m$. Таким образом можно заметить, что модуль $Hom(L_1, L_2)$ имеет такой же вид, что и модули L_1 и L_2 , а именно $(\mathbb{D}^2)^M \oplus \mathbb{R}^N$, где M = mm' и N = nm' + n'm + nn'.

 \mathbb{D}^2 -линейное отображения вида $\Gamma:A \to Hom(A,B)$ имеет следующие уравнения:

$$\begin{cases}
X_{j}^{i} = \Gamma_{jk}^{i} V^{k} + \varepsilon^{2} \Gamma_{j\beta}^{i} v^{\beta}, \\
x_{\beta}^{i} = \Gamma_{\beta k}^{i} v^{k} + \Gamma_{\beta \sigma}^{i} v^{\sigma}, \\
y_{i}^{\alpha} = \Gamma_{ik}^{\alpha} v^{k} + \Gamma_{i\sigma}^{\alpha} v^{\sigma}, \\
y_{\beta}^{\alpha} = \Gamma_{\beta k}^{\alpha} v^{k} + \Gamma_{\beta \sigma}^{\alpha} v^{\sigma}.
\end{cases} (78)$$

Рассмотрим касательное пространство $T_X T_{tr}^2 M$.

Определение 6. \mathbb{D}^2 -линейным репером в точке $X \in T^2_{tr}M$ будем называть \mathbb{D}^2 -линейный изоморфизм $Z:(\mathbb{D}^2)^m \oplus \mathbb{R}^n \to T_X T^2_{tr}M$.

Множество всех \mathbb{D}^2 -линейных реперов на $T^2_{tr}M$ образует расслоение $\pi:P^1(\mathbb{D}^2)T^2_{tr}M\to T^2_{tr}M$ \mathbb{D}^2 -линейных реперов. Карта слоения на (M,\mathcal{F}) индуцирует на $P^1(\mathbb{D}^2)T^2_{tr}M$ координаты

$$\{X^i, y^\alpha, X^i_j, x^i_\beta, y^\alpha_i, y^\alpha_\beta\}.$$

В дальнейшем будем рассматривать \mathbb{D}^2 -линейные связности. Определим \mathbb{D}^2 -линейную связность $P^1(\mathbb{D}^2)T^2_{tr}M$. Элементом связности в точке $Z\in P^1(\mathbb{D}^2)T^2_{tr}M$ будем называть \mathbb{D}^2 -линейное отображение $\Gamma:T_XT^2_{tr}M\to T_ZP^1(\mathbb{D}^2)T^2_{tr}M$, где $\pi(Z)=X$ (см. диаграмму ниже).

$$T_{X}T_{tr}^{2}M \xrightarrow{\Gamma} T_{Z}P^{1}(\mathbb{D}^{2})T_{tr}^{2}M \qquad (79)$$

$$\downarrow^{T\pi}$$

$$T_{X}T_{tr}^{2}M$$

Автоморфизмы модуля $(\mathbb{D}^2)^m \oplus \mathbb{R}^n$ образуют группу $G^1_{m,n}(\mathbb{D}^2)$. Выведем формулы для композиции элементов в этой группе. Пусть $g_1, g_2 \in G^1_{m,n}(\mathbb{D}^2)$ и g_3 — их композиция,

$$G_{m,n}^{1}(\mathbb{D}^{2})$$

$$G_{m,n}^{1}(\mathbb{D}^{2}) \xrightarrow{g_{3}=g_{2}\circ g_{1}} G_{m,n}^{1}(\mathbb{D}^{2})$$

$$(80)$$

Если g_1 задается уравнениями

$$\begin{cases}
W^{i} = A_{1}^{i} V^{j} + \varepsilon^{2} a_{\beta}^{i} v^{\beta}, \\
u^{\alpha} = b_{1}^{\alpha} v^{j} + b_{\beta}^{\alpha} v^{\beta},
\end{cases}$$
(81)

а g_2 уравнениями

$$\begin{cases}
U^k = A_i^k W^i + \varepsilon^2 a_\alpha^k v^\alpha, \\
u^\sigma = b_i^\sigma w^i + b_i^\sigma v^\alpha,
\end{cases}$$
(82)

то g_3 определится уравнениями

$$\begin{cases}
U^k = A_j^k V^j + \varepsilon^2 a_\beta^k v^\beta, \\
u^\sigma = b_j^\sigma v^j + b_j^\sigma v^\beta,
\end{cases}$$
(83)

где:

$$\begin{cases}
A_{j}^{k} = A_{i}^{k} A_{j}^{i} + \varepsilon^{2} a_{2}^{k} b_{j}^{\alpha}, \\
a_{j}^{k} = a_{i}^{k} a_{j}^{i} + a_{2}^{k} b_{\beta}^{\alpha}, \\
a_{j}^{k} = b_{i}^{\sigma} a_{j}^{i} + b_{2}^{\sigma} b_{\beta}^{\alpha}, \\
b_{j}^{\sigma} = b_{i}^{\sigma} a_{j}^{i} + b_{2}^{\sigma} b_{j}^{\alpha}, \\
b_{\beta}^{\sigma} = b_{2}^{\sigma} b_{\beta}^{\alpha}.
\end{cases} (84)$$

Закон преобразования координат (??) на M индуцирует закон преобразования координат на $T_{tr}^2 M$:

$$X^{i'} = X^{i'}(X^{i}(x^{j})), \quad y^{\alpha'} = y^{\alpha'}(y^{\alpha}(x^{j}, y^{\beta})),$$

$$X^{i'}_{j} = \frac{\partial X^{i'}}{\partial X^{i}}X^{i}_{j}, \quad x^{i'}_{\beta} = \frac{\partial x^{i'}}{\partial x^{i}}x^{i}_{\beta}, \quad y^{\alpha'}_{j} = \frac{\partial y^{\alpha'}}{\partial y^{\alpha}}y^{\alpha}_{j} + \frac{\partial y^{\alpha'}}{\partial x^{i}}x^{i}_{j}, \quad y^{\alpha'}_{\beta} = \frac{\partial y^{\alpha'}}{\partial y^{\alpha}}y^{\alpha}_{\beta}.$$
(85)

Правый сдвиг имеет вид:

Дифференцируем систему (??), проводим подсчет и получаем запись действия правого сдвига на касательных пространствах:

$$\begin{split} d'X_j^k &= dX_i^k A_j^i + \varepsilon^2 dx_\alpha^k b_j^\alpha = \\ &= - (\Gamma_{ip}^k dx^p + \varepsilon^2 \Gamma_{i\gamma}^k dy^\gamma) A_j^i - \varepsilon^2 (\Gamma_{\alpha p}^k dx^p + \Gamma_{\alpha \gamma}^k dy^\gamma) b_j^\alpha, \end{split}$$

$$d'x_{\beta}^{k} = dx_{i}^{k}a_{\beta}^{i} + dx_{\alpha}^{k}b_{\beta}^{\alpha} =$$

$$= -(\Gamma_{ip}^{k}dx^{p} + \Gamma_{i\gamma}^{k}dy^{\gamma})a_{\beta}^{i} - (\Gamma_{\alpha p}^{k}dx^{p} + \Gamma_{\alpha\gamma}^{k}dy^{\gamma})b_{\beta}^{\alpha},$$

$$\begin{split} d'y_j^{\sigma} &= dy_i^{\sigma} A_j^i + dy_{\alpha}^{\sigma} b_j^{\alpha} = \\ &= - (\Gamma_{ip}^{\sigma} dx^p + \Gamma_{i\gamma}^{\sigma} dy^{\gamma}) a_j^i - (\Gamma_{\alpha p}^{\sigma} dx^p + \Gamma_{\alpha \gamma}^{\sigma} dy^{\gamma}) b_j^{\alpha}, \end{split}$$

$$d'y^{\sigma}_{\beta} = dx^{\sigma}_{\alpha}b^{\alpha}_{\beta} = -(\Gamma^{\sigma}_{\alpha p}dx^{p} + \Gamma^{\sigma}_{\alpha \gamma}dy^{\gamma})b^{\alpha}_{\beta}.$$

Рассмотрим случай применения правого сдвига к натуральному реперу:

Подставляем полученный результат (??) в правый сдвиг касательных

пространств, получаем уравнения горизонтальной площадки:

$$\begin{cases} dX_{j}^{k} + \Gamma_{ip}^{k} dX^{p} X_{j}^{i} + \varepsilon^{2} \Gamma_{i\gamma}^{k} dy^{\gamma} x_{j}^{i} + \varepsilon^{2} \Gamma_{\alpha p}^{k} dx^{p} y_{j}^{\alpha} + \varepsilon^{2} \Gamma_{\alpha \gamma}^{k} dy^{\gamma} y_{j}^{\alpha} = 0, \\ dx_{\beta}^{k} + \Gamma_{ip}^{k} dx^{p} x_{\beta}^{i} + \Gamma_{i\gamma}^{k} dy^{\gamma} x_{\beta}^{i} + \Gamma_{\alpha p}^{k} dx^{p} y_{\beta}^{\alpha} + \Gamma_{\alpha \gamma}^{k} dy^{\gamma} y_{\beta}^{\alpha} = 0, \\ dy_{j}^{\sigma} + \Gamma_{ip}^{\sigma} dx^{p} x_{j}^{i} + \Gamma_{i\gamma}^{\sigma} dy^{\gamma} x_{j}^{i} + \Gamma_{\alpha p}^{\sigma} dx^{p} y_{j}^{\alpha} + \Gamma_{\alpha \gamma}^{\sigma} dy^{\gamma} y_{j}^{\alpha} = 0, \\ dy_{\beta}^{\sigma} + \Gamma_{\alpha p}^{\sigma} dx^{p} y_{\beta}^{\alpha} + \Gamma_{\alpha \gamma}^{\sigma} dy^{\gamma} y_{\beta}^{\alpha} = 0, \end{cases}$$

$$(88)$$

где Γ^{0}_{ip} — вещественные части \mathbb{D}^{2} -значных коэффициентов Γ^{k}_{ip} .

Найдем преобразование коэффициентов \mathbb{D}^2 -линейной связности при замене координат на M.

Рассмотрим первое уравнение системы (??)

$$dX_j^{k'} + \Gamma_{i'p'}^{k'}dX^{p'}X_j^{i'} + \varepsilon^2\Gamma_{i'\gamma'}^{k'}dy^{\gamma'}x_j^{i'} + \varepsilon^2\Gamma_{\alpha'p'}^{k'}dx^{p'}y_j^{\alpha'} + \varepsilon^2\Gamma_{\alpha'\gamma'}^{k'}dy^{\gamma'}y_j^{\alpha'} = 0$$

Подставляя (??), получаем (напомним, что в наших обозначениях $X_i^{i'}$ и $y_{\alpha}^{\alpha'}$ — элементы матрицы Якоби преобразования координат, а $X_j^{i'}, X_j^i, x_{\beta}^{i'}, x_{\beta}^i, y_{\beta}^{\alpha'}, y_{\beta}^{\alpha}, y_{\beta}^{\alpha'}$ и y_j^{α} — координаты репера по отношению к двум системам координат)

$$d(X_i^{k'}X_j^i)+\Gamma_{i'p'}^{k'}dX^pX_p^{p'}X_i^{i'}X_j^i+\varepsilon^2\Gamma_{i'\gamma'}^{k'}(dy^\gamma y_\gamma^{\gamma'}+dx^py_p^{\gamma'})x_i^{i'}x_j^i+\\+\varepsilon^2\Gamma_{\alpha'p'}^{k'}dx^px_p^{p'}(y_\alpha^{\alpha'}y_j^\alpha+y_i^{\alpha'}x_j^i)+\varepsilon^2\Gamma_{\alpha'\gamma'}^{k'}(dy^\gamma y_\gamma^{\gamma'}+dx^py_p^{\gamma'})(y_\alpha^{\alpha'}y_j^\alpha+y_p^{\alpha'}x_j^p)=0$$
 Откуда

$$\begin{split} X^{k'}_{ip}dX^pX^i_j + X^{k'}_kdX^k_j + \Gamma^{k'}_{i'p'}dX^pX^{p'}_pX^{i'}_iX^i_j + \\ &+ \varepsilon^2\Gamma^{k'}_{i'\gamma'}dy^\gamma y^{\gamma'}_\gamma x^{i'}_ix^i_j + \varepsilon^2\Gamma^{k'}_{i'\gamma'}dx^py^{\gamma'}_p x^{i'}_ix^i_j + \varepsilon^2\Gamma^{k'}_{\alpha'p'}dx^px^{p'}_py^{\alpha'}_\alpha y^\alpha_j + \\ &+ \varepsilon^2\Gamma^{k'}_{\alpha'p'}dx^px^{p'}_py^{\alpha'}_ix^i_j + \varepsilon^2\Gamma^{k'}_{\alpha'\gamma'}dy^\gamma y^{\gamma'}_\gamma y^{\alpha'}_\alpha y^\alpha_j + \varepsilon^2\Gamma^{k'}_{\alpha'\gamma'}dx^py^{\gamma'}_py^{\alpha'}_\alpha y^\alpha_j + \\ &+ \varepsilon^2\Gamma^{k'}_{\alpha'\gamma'}dy^\gamma y^{\gamma'}_\gamma y^{\alpha'}_ix^i_j + \varepsilon^2\Gamma^{k'}_{\alpha'\gamma'}dx^py^{\gamma'}_py^{\alpha'}_ix^i_j = 0 \end{split}$$

Свертывая с $X_{k'}^k$ и переобозначая индексы, получаем

$$\begin{split} dX_j^k + (X_{ip}^{k'}X_{k'}^k + \Gamma_{i'p'}^{k'}X_{k'}^kX_p^{p'}X_i^{i'} + \varepsilon^2\Gamma_{i'\gamma'}^{k'}X_{k'}^ky_p^{\gamma'}x_i^{i'} + \\ + \varepsilon^2\Gamma_{\alpha'p'}^{k'}X_{k'}^kx_p^{p'}y_i^{\alpha'}x_j^{i}dx^p + \varepsilon^2\Gamma_{\alpha'\gamma'}^{k'}X_{k'}^ky_p^{\gamma'}y_i^{\alpha'})X_j^{i}dx^p + \\ + \varepsilon^2(\Gamma_{i'\gamma'}^{k'}X_{k'}^ky_\gamma^{\gamma'}x_i^{i'} + +\Gamma_{\alpha'\gamma'}^{k'}X_{k'}^ky_\gamma^{\gamma'}y_i^{\alpha'})x_j^{i}dy^\gamma + \\ + \varepsilon^2(\Gamma_{\alpha'\gamma'}^{k'}X_{k'}^ky_p^{\gamma'}y_\alpha^{\alpha'} + \Gamma_{\alpha'p'}^{k'}X_{k'}^kx_p^{p'}y_\alpha^{\alpha'})y_j^\alpha dx^p + \\ + \varepsilon^2(\Gamma_{\alpha'\gamma'}^{k'}X_{k'}^ky_p^{\gamma'}y_\alpha^{\alpha'})y_j^\alpha dy^\gamma = 0. \end{split}$$

Рассмотрим вторые уравнения системы (??)

$$dx_{\beta}^{k'} + \Gamma_{i'p'}^{k'} dx^{p'} x_{\beta}^{i'} + \Gamma_{i'\gamma'}^{k'} dy^{\gamma'} x_{\beta}^{i'} + \Gamma_{\alpha'p'}^{k'} dx^{p'} y_{\beta}^{\alpha'} + \Gamma_{\alpha'\gamma'}^{k'} dy^{\gamma'} y_{\beta}^{\alpha'} = 0.$$

Подставляем закон преобразования координат (??)

$$\begin{split} d(x_{i}^{k'}x_{\beta}^{i}) + & \Gamma_{i'p'}^{0k'}dx^{p}x_{p}^{p'}x_{i}^{i'}x_{\beta}^{i} + \\ & + \Gamma_{i'\gamma'}^{k'}dy^{\gamma}y_{\gamma}^{\gamma'}(x_{i}^{i'}x_{\beta}^{i} + x_{\gamma}^{i'}y_{\beta}^{\gamma}) + \Gamma_{\alpha'p'}^{k'}dx^{p}x_{p}^{p'}(y_{\alpha}^{\alpha'}y_{\beta}^{\alpha} + y_{p}^{\alpha'}x_{\beta}^{p}) + \\ & + \Gamma_{\alpha'\gamma'}^{k'}(dy^{\gamma}y_{\gamma}^{\gamma'} + dx^{p}y_{p}^{\gamma'})(y_{\alpha}^{\alpha'}y_{\beta}^{\alpha} + y_{p}^{\alpha'}x_{\beta}^{p}) = 0. \end{split}$$

Откуда

$$dx_{\beta}^{k}+$$

$$+ x_{ip}^{k'} x_{k'}^k x_{\beta}^i dx^p + \Gamma_{i'p'}^{k'} x_{k'}^k x_p^{p'} x_i^{i'} x_{\beta}^i dx^p + \Gamma_{i'\gamma'}^{k'} x_{k'}^k y_{\gamma}^{\gamma'} x_i^{i'} x_{\beta}^i dy^{\gamma} + \Gamma_{i'\gamma'}^{k'} x_{k'}^k y_p^{\gamma'} x_i^{i'} x_{\beta}^i dx^p + \Gamma_{\alpha'p'}^{k'} x_{k'}^k x_p^{p'} y_{\alpha}^{\alpha'} y_{\beta}^{\alpha} dx^p + \Gamma_{\alpha'p'}^{k'} x_{k'}^k x_p^{p'} y_i^{\alpha'} x_{\beta}^i dx^p + \Gamma_{\alpha'\gamma'}^{k'} x_{k'}^k y_{\gamma}^{\gamma'} y_{\alpha}^{\alpha'} y_{\beta}^{\alpha} dy^{\gamma} + \Gamma_{\alpha'\gamma'}^{k'} x_{k'}^k y_{\gamma}^{\gamma'} y_i^{\alpha'} x_{\beta}^i dy^{\gamma} + \Gamma_{\alpha'\gamma'}^{k'} x_{k'}^k y_p^{\gamma'} y_{\alpha}^{\alpha'} y_{\beta}^{\alpha} dx^p + \Gamma_{\alpha'\gamma'}^{k'} x_{k'}^k y_p^{\gamma'} y_i^{\alpha'} x_{\beta}^i dx^p = 0.$$

Свертывая с $x_{k'}^k$ и переобозначая индексы, получаем

$$\begin{split} dx_{\beta}^{k} + (x_{ip}^{k'}x_{k'}^{k} + \overset{0}{\Gamma}_{i'p'}^{k'}x_{k'}^{k}x_{p}^{p'}x_{i}^{i'} + \\ & + \Gamma_{\alpha'\gamma'}^{k'}x_{k'}^{k}y_{p}^{\gamma'}y_{i}^{\alpha'} + \Gamma_{\alpha'p'}^{k'}x_{k'}^{k}x_{p}^{p'}y_{i}^{\alpha'} + \Gamma_{i'\gamma'}^{k'}x_{k'}^{k}y_{p}^{\gamma'}x_{i}^{i'})x_{\beta}^{i}dx^{p} + \\ & + (\Gamma_{i'\gamma'}^{k'}x_{k'}^{k}y_{\gamma}^{\gamma'}x_{i}^{i'} + \Gamma_{\alpha'\gamma'}^{k'}x_{k'}^{k}y_{\gamma}^{\gamma'}y_{i}^{\alpha'})x_{\beta}^{i}dy^{\gamma} + (\Gamma_{\alpha'p'}^{k'}x_{k'}^{k}x_{p}^{p'}y_{\alpha}^{\alpha'} + \Gamma_{\alpha'\gamma'}^{k'}x_{k'}^{k}y_{p}^{\gamma'}y_{\alpha}^{\alpha'})y_{\beta}^{\alpha}dx^{p} + \\ & + (\Gamma_{\alpha'\gamma'}^{k'}x_{k'}^{k}y_{\gamma}^{\gamma'}y_{\alpha}^{\alpha'})y_{\beta}^{\alpha}dy^{\gamma} = 0 \end{split}$$

Рассмотрим следующие уравнения системы (??)

$$dy_j^{\sigma'} + \Gamma_{i'p'}^{\sigma'} dx^{p'} x_j^{i'} + \Gamma_{i'\gamma'}^{\sigma'} dy^{\gamma'} x_j^{i'} + \Gamma_{\alpha'p'}^{\sigma'} dx^{p'} y_j^{\alpha'} + \Gamma_{\alpha'\gamma'}^{\sigma'} dy^{\gamma'} y_j^{\alpha'} = 0$$

Подставляем (??), имеем

$$\begin{split} d(y^{\sigma'}_{\alpha}y^{\alpha}_{j} + y^{\sigma'}_{i}x^{i}_{j}) + \Gamma^{\sigma'}_{i'p'}dx^{p}x^{p'}_{p}x^{i'}_{i}x^{i}_{j} + \\ + \Gamma^{\sigma'}_{i'\gamma'}(dy^{\gamma}y^{\gamma'}_{\gamma} + dx^{p}y^{\gamma'}_{p})x^{i'}_{i}x^{i}_{j} + \Gamma^{\sigma'}_{\alpha'p'}dx^{p}x^{p'}_{p}(y^{\alpha'}_{\alpha}y^{\alpha}_{j} + y^{\alpha'}_{i}x^{i}_{j}) + \\ + \Gamma^{\sigma'}_{\alpha'\gamma'}(y^{\alpha'}_{\alpha}y^{\alpha}_{j} + y^{\alpha'}_{i}x^{i}_{j})(dy^{\gamma}y^{\gamma'}_{\gamma} + dx^{p}y^{\gamma'}_{p}) = 0 \end{split}$$

Откуда

$$\begin{split} dy_j^{\sigma} + y_k^{\sigma'} y_{\sigma'}^{\sigma} \Gamma_{ip}^{0k} x_j^i dx^p + y_{\sigma p}^{\sigma'} y_{\sigma'}^{\sigma} y_j^{\sigma} dx^p + y_{\sigma \gamma}^{\sigma'} y_{\sigma'}^{\sigma} y_j^{\sigma} dy^{\gamma} + \\ & + y_{ip}^{\sigma'} y_{\sigma'}^{\sigma} x_j^i dx^p + y_{i\gamma}^{\sigma'} y_{\sigma'}^{\sigma} x_j^i dy^{\gamma} + \\ & + \Gamma_{i'p'}^{\sigma'} y_{\sigma'}^{\sigma} x_p^{p'} x_i^{i'} x_j^i dx^p + \Gamma_{i'\gamma'}^{\sigma'} y_{\sigma'}^{\sigma} y_{\gamma}^{\gamma'} x_i^{i'} x_j^i dy^{\gamma} + \\ & + \Gamma_{i'\gamma'}^{\sigma'} y_{\sigma'}^{\sigma} y_p^{\gamma'} x_i^{i'} x_j^i dx^p + \Gamma_{\alpha'p'}^{\sigma'} y_{\sigma'}^{\sigma} x_p^{p'} y_{\alpha}^{\alpha'} y_j^{\alpha} dx^p + \Gamma_{\alpha'p'}^{\sigma'} y_{\sigma'}^{\sigma} x_p^{p'} y_i^{\alpha'} x_j^i dx^p + \\ & + \Gamma_{\alpha'\gamma'}^{\sigma'} y_{\sigma'}^{\sigma} y_{\gamma}^{\alpha'} y_{\gamma}^{\gamma'} y_j^{\alpha} dy^{\gamma} + \Gamma_{\alpha'\gamma'}^{\sigma'} y_{\sigma'}^{\sigma} y_i^{\alpha'} y_{\gamma}^{\gamma'} x_j^i dy^{\gamma} + \Gamma_{\alpha'\gamma'}^{\sigma'} y_{\sigma'}^{\sigma} y_i^{\alpha'} y_p^{\gamma'} y_j^{\alpha} dx^p + \\ & + \Gamma_{\alpha'\gamma'}^{\sigma'} y_{\sigma'}^{\sigma} y_i^{\alpha'} y_j^{\gamma'} x_j^i dx^p = 0. \end{split}$$

Свертывая с $y_{\sigma'}^{\sigma}$ и переобозначая индексы, получаем

$$\begin{split} dy_{j}^{\sigma} + & (y_{ip}^{\sigma'}y_{\sigma'}^{\sigma} + y_{k}^{\sigma'}y_{\sigma'}^{\sigma}\Gamma_{ip}^{k} + \Gamma_{i'p'}^{\sigma'}y_{\sigma'}^{\sigma}x_{p}^{p'}x_{i}^{i'} + \\ & + \Gamma_{i'\gamma'}^{\sigma'}y_{\sigma'}^{\sigma}y_{p}^{\gamma'}x_{i}^{i'} + \Gamma_{\alpha'p'}^{\sigma'}y_{\sigma'}^{\sigma}x_{p}^{p'}y_{i}^{\alpha'} + \Gamma_{\alpha'\gamma'}^{\sigma'}y_{\sigma'}^{\sigma}y_{i}^{\alpha'}y_{p}^{\gamma'})x_{j}^{i}dx^{p} + \\ & + (y_{i\gamma}^{\sigma'}y_{\sigma'}^{\sigma} + \Gamma_{i'\gamma'}^{\sigma'}y_{\sigma'}^{\sigma}y_{\gamma}^{\gamma'}x_{i}^{i'} + \Gamma_{\alpha'\gamma'}^{\sigma'}y_{\sigma'}^{\sigma}y_{i}^{\alpha'}y_{\gamma}^{\gamma'})x_{j}^{i}dy^{\gamma} + \\ & + (y_{\sigma p}^{\sigma'}y_{\sigma'}^{\sigma} + \Gamma_{\alpha'p'}^{\sigma'}y_{\sigma'}^{\sigma}x_{p}^{p'}y_{\alpha}^{\alpha'} + \Gamma_{\alpha'\gamma'}^{\sigma'}y_{\sigma'}^{\alpha'}y_{\gamma}^{\alpha'}y_{\gamma}^{\gamma'})y_{j}^{\sigma}dx^{p} + \\ & + (y_{\sigma\gamma}^{\sigma'}y_{\sigma'}^{\sigma} + \Gamma_{\alpha'\gamma'}^{\sigma'}y_{\sigma'}^{\sigma}y_{\gamma}^{\alpha'}y_{\gamma}^{\gamma'})y_{j}^{\alpha}dy^{\gamma} = 0. \end{split}$$

Рассмотрим последние уравнения системы (??)

$$dy_{\beta}^{\sigma'} + \Gamma_{\alpha'p'}^{\sigma'} dx^{p'} y_{\beta}^{\alpha'} + \Gamma_{\alpha'\gamma'}^{\sigma'} dy^{\gamma'} y_{\beta}^{\alpha'} = 0.$$

Подставим преобразования координат (??)

$$d(y^{\sigma}_{\sigma'}y^{\sigma'}_{\beta}) + \Gamma^{\sigma'}_{\alpha'p'}dx^px^p_p'y^{\alpha'}_{\alpha}y^{\alpha}_{\beta} + \Gamma^{\sigma'}_{\alpha'\gamma'}(dy^{\gamma}y^{\gamma'}_{\gamma} + dx^py^{\gamma'}_p)y^{\alpha'}_{\alpha}y^{\alpha}_{\beta} + = 0.$$
 Откуда

$$\begin{split} y^{\sigma'}_{\alpha k} y^{\alpha}_{\beta} dx^{k} + y^{\sigma'}_{\alpha \gamma} y^{\alpha}_{\beta} dy^{\gamma} + y^{\sigma'}_{\sigma} dy^{\sigma}_{\beta} + \\ & + \Gamma^{\sigma'}_{\alpha' p'} dx^{p} x^{p'}_{p} y^{\alpha'}_{\alpha} y^{\alpha}_{\beta} + \Gamma^{\sigma'}_{\alpha' \gamma'} dy^{\gamma} y^{\gamma'}_{\gamma} y^{\alpha'}_{\alpha} y^{\alpha}_{\beta} + \\ & + \Gamma^{\sigma'}_{\alpha' \gamma'} dx^{p} y^{\gamma'}_{p} y^{\alpha'}_{\alpha} y^{\alpha}_{\beta} = 0. \end{split}$$

Свертывая с $y_{\sigma'}^{\sigma}$ и переобозначая индексы, получаем

$$dy^{\sigma}_{\beta} + (y^{\sigma'}_{i}y^{\sigma}_{\sigma'})dx^{i}_{\beta} +$$

$$+ (y^{\sigma'}_{\alpha p}y^{\sigma}_{\sigma'} + \Gamma^{\sigma'}_{\alpha'\gamma'}y^{\sigma}_{\sigma'}y^{\gamma'}_{p}y^{\alpha'}_{\alpha} + \Gamma^{\sigma'}_{\alpha'p'}y^{\sigma}_{\sigma'}x^{p'}_{p}y^{\alpha'}_{\alpha})y^{\alpha}_{\beta}dx^{p} +$$

$$+ (y^{\sigma'}_{\alpha\gamma}y^{\sigma}_{\sigma'} + \Gamma^{\sigma'}_{\alpha'\gamma'}y^{\sigma}_{\gamma'}y^{\gamma'}_{\gamma}y^{\alpha'}_{\alpha})y^{\alpha}_{\beta}dy^{\gamma} = 0.$$

Сопоставляя (??) с полученными соотношениями, имеем следующее предложение.

Предложение 11. Коэффициенты связности в расслоении \mathbb{D}^2 -линейных реперов $P^1(\mathbb{D}^2)T_{tr}^2M$, соответствующие двум разным слоеным картам (U,h) и (U',h') на (M,F), на пересечении областей определения $U \cap U'$ преобразуются следующим образом:

$$\Gamma_{ip}^{k} = X_{ip}^{k'} X_{k'}^{k} + \Gamma_{i'p'}^{k'} X_{k'}^{k} X_{p}^{p'} X_{i}^{i'} + \varepsilon^{2} \Gamma_{i'\gamma'}^{k'} X_{k'}^{k} y_{p}^{\gamma'} x_{i}^{i'} + \varepsilon^{2} \Gamma_{\alpha'p'}^{k'} X_{k'}^{k} x_{p}^{p'} y_{i}^{\alpha'} x_{j}^{i} dx^{p} + \varepsilon^{2} \Gamma_{\alpha'\gamma'}^{k'} X_{k'}^{k} y_{p}^{\gamma'}, y_{i}^{\alpha'},$$
(89)

$$\Gamma_{i\gamma}^{k} = \Gamma_{i'\gamma'}^{k'} x_{k'}^{k} y_{\gamma}^{\gamma'} x_{i}^{i'} + \Gamma_{\alpha'\gamma'}^{k'} x_{k'}^{k} y_{\gamma}^{\gamma'} y_{i}^{\alpha'}, \tag{90}$$

$$\Gamma^{k}_{\alpha p} = \Gamma^{k'}_{\alpha'\gamma'} x^{k}_{k'} y^{\gamma'}_{p} y^{\alpha'}_{\alpha} + \Gamma^{k'}_{\alpha'p'} x^{k}_{k'} x^{p'}_{p} y^{\alpha'}_{\alpha}, \tag{91}$$

$$\Gamma^{k}_{\alpha\gamma} = \Gamma^{k'}_{\alpha'\gamma'} x^{k}_{k'} y^{\gamma'}_{\gamma} y^{\alpha'}_{\alpha}, \tag{92}$$

$$\Gamma_{ip}^{\sigma} = y_{ip}^{\sigma'} y_{\sigma'}^{\sigma} + \Gamma_{i'p'}^{0} y_{k'}^{\sigma} x_{i}^{i'} x_{p}^{p'} + \Gamma_{i'\beta'}^{k'} y_{k'}^{\sigma} y_{k'}^{\beta'} x_{i}^{i'} + \Gamma_{i'p'}^{\sigma'} y_{\sigma'}^{\sigma} x_{p}^{p'} x_{i}^{i'} + \Gamma_{\alpha'\gamma'}^{\sigma'} y_{\sigma'}^{\sigma} y_{i}^{\alpha'} + \Gamma_{\alpha'\gamma'}^{\sigma'} y_{\sigma'}^{\sigma} y_{i}^{\alpha'} + \Gamma_{\alpha'\gamma'}^{\sigma'} y_{\sigma'}^{\sigma} y_{i}^{\alpha'} y_{p}^{\gamma'},$$
(93)

$$\Gamma_{i\gamma}^{\sigma} = y_{i\gamma}^{\sigma'} y_{\sigma'}^{\sigma} + \Gamma_{i'\gamma'}^{\sigma'} y_{\sigma'}^{\sigma} y_{\gamma}^{\gamma'} x_i^{i'} + \Gamma_{\alpha'\gamma'}^{\sigma'} y_{\sigma'}^{\sigma} y_i^{\alpha'} y_{\gamma}^{\gamma'}, \tag{94}$$

$$\Gamma^{\sigma}_{\alpha p} = y^{\sigma'}_{\sigma p} y^{\sigma}_{\sigma'} + \Gamma^{\sigma'}_{\alpha' p'} y^{\sigma}_{\sigma'} x^{p'}_{p} y^{\alpha'}_{\alpha} + \Gamma^{\sigma'}_{\alpha' \gamma'} y^{\sigma}_{\sigma'} y^{\alpha'}_{\alpha} y^{\gamma'}_{p}, \tag{95}$$

$$\Gamma^{\sigma}_{\alpha\gamma} = y^{\sigma'}_{\sigma\gamma} y^{\sigma}_{\sigma'} + \Gamma^{\sigma'}_{\alpha'\gamma'} y^{\sigma}_{\sigma'} y^{\alpha'}_{\alpha} y^{\gamma'}_{\gamma}. \tag{96}$$

Из формул (??)–(??) следует, что обращение в нуль коэффициентов $\Gamma_{i\gamma}^k$, $\Gamma_{\gamma i}^k$ и $\Gamma_{\alpha\gamma}^k$ носит инвариантный характер и выделяет специальный класс связностей. К этому классу принадлежат \mathbb{D}^2 -продолжения проектируемых связностей в расслоении P_{fol}^1M , которые определяются коэффициентами следующего вида:

$$\Gamma_{ip}^{k} = \Gamma_{ip}^{k} X^{j} + \varepsilon \dot{x}^{l} \partial_{l} \Gamma_{ip}^{k} + \varepsilon^{2} \left(\frac{1}{2} \dot{x}^{l} \dot{x}^{s} \partial_{ls} \Gamma_{ip}^{k} + \ddot{x}^{l} \partial_{l} \Gamma_{ip}^{k} \right), \tag{97}$$

$$\Gamma^{\sigma}_{ip} = \Gamma^{\sigma}_{ip}(x^j, y^\eta), \ \Gamma^{\sigma}_{i\gamma} = \Gamma^{\sigma}_{i\gamma}(x^j, y^\eta), \ \Gamma^{\sigma}_{\alpha p} = \Gamma^{\sigma}_{\alpha p}(x^j, y^\eta), \ \Gamma^{\sigma}_{\alpha \gamma} = \Gamma^{\sigma}_{\alpha \gamma}(x^j, y^\eta),$$

где $\Gamma^0_{ip} = \Gamma^0_{ip}(x^j)$, $\Gamma^\sigma_{ip} = \Gamma^\sigma_{ip}(x^j,y^\eta)$, $\Gamma^\sigma_{i\gamma} = \Gamma^\sigma_{i\gamma}(x^j,y^\eta)$, $\Gamma^\sigma_{\alpha p} = \Gamma^\sigma_{\alpha p}(x^j,y^\eta)$, $\Gamma^\sigma_{\alpha \gamma} = \Gamma^\sigma_{\alpha \gamma}(x^j,y^\eta)$ — коэффициенты проектируемой линейной связности Γ , заданной на многообразии M.

12 Соответствия между \mathbb{D}^2 -гладкими линейными связностями на $T^2_{tr}M$ при автоморфизмах $T^2_{tr}M$ с тождественным отображением F^1

Формулы (??), (??)-(??) могут рассматриваться как функции склейки некоторого локально тривиального расслоения LT_{tr}^2M над T_{tr}^2M , если коэффициенты связности рассматривать как элементы из некоторого пространства $(\mathbb{D}^2)^M \oplus \mathbb{R}^N$, образующего стандартный слой этого расслоения (числа M и N легко вычисляются). Тотальное пространство этого расслоения LT_{tr}^2M несет на себе структуру \mathbb{D}^2 -гладкого многообразия, моделируемого \mathbb{D}^2 -модулем $(\mathbb{D}^2)^M \oplus \mathbb{R}^N$.

Определение 7. \mathbb{D}^2 -линейная связность Γ на $T^2_{tr}M$ называется \mathbb{D}^2 -гладкой, если сечение $\Gamma: T^2_{tr}M \to LT^2_{tr}M$ является \mathbb{D}^2 -гладким отображением.

 \mathbb{D}^2 -гладкой связностью является \mathbb{D}^2 -продолжение $(\ref{eq:constraint})$ проектируемой связности.

Коэффициенты произвольной \mathbb{D}^2 -гладкой \mathbb{D}^2 -линейной связности на трансверсальном расслоении второго порядка $T^2_{tr}M$ задаются уравнениями вида:

$$\Gamma_{ip}^{k} = \Gamma_{ip}^{k} X^{j} + \varepsilon (\dot{x}^{l} \partial_{l} \Gamma_{ip}^{k} + G_{ip}^{k}(x^{j}) + \varepsilon^{2} \left(\frac{1}{2} \dot{x}^{l} \dot{x}^{s} \partial_{ls} \Gamma_{ip}^{k} + \ddot{x}^{l} \partial_{l} \Gamma_{ip}^{k} + \dot{x}^{l} \partial_{l} G_{ip}^{k} + H_{ip}^{k}(x^{j}, y^{\eta}) \right),
\Gamma_{ip}^{\sigma} = \Gamma_{ip}^{\sigma}(x^{j}, y^{\eta}), \quad \Gamma_{i\gamma}^{\sigma} = \Gamma_{i\gamma}^{\sigma}(x^{j}, y^{\eta}),
\Gamma_{\alpha p}^{\sigma} = \Gamma_{\alpha p}^{\sigma}(x^{j}, y^{\eta}), \quad \Gamma_{\alpha \gamma}^{\sigma} = \Gamma_{\alpha \gamma}^{\sigma}(x^{j}, y^{\eta}). \quad (98)$$

Предложение 12. Пусть на трансверсальном расслоении второго порядка $T_{tr}^2 M$ задана \mathbb{D}^2 -гладкая \mathbb{D}^2 -линейная связность Γ с коэффициентами (??). Тогда функции $\Gamma_{ip}^k(x^j)$, $\Gamma_{ip}^\sigma(x^j,y^\eta)$, $\Gamma_{i\gamma}^\sigma(x^j,y^\eta)$, $\Gamma_{\alpha p}^\sigma(x^j,y^\eta)$, $\Gamma_{\alpha \gamma}^\sigma(x^j,y^\eta)$, являются коэффициентами некоторой линейной связности Γ на M, а функции $G_{ip}^k(x^j)$, задают некоторые тензорные поля G типа (1,2) на многообразии M.

Доказательства предложения ?? достаточно подставить (??) и (??) в формулы преобразования коэффициентов \mathbb{D}^2 -линейной связности (??)–(??) и сравнить вещественные части выражений в левой и правой частях полученных равенств.

Пусть на трансверсальном расслоении второго порядка $T_{tr}^2 M$ задана произвольная \mathbb{D}^2 -линейная связность Γ с коэффициентами (??). Рассмотрим преобразование этой связности при автоморфизме $T_{tr}^2 M$ вида $(\ref{eq:continuous}).$ Имеем:

$$\begin{split} {}^{\prime}\Gamma^{k}_{ip} &= \left(-\varepsilon^{2} \frac{\partial^{2}h^{k'}}{\partial x^{i}\partial x^{p}}\right) \left(\delta^{k}_{k'} + \varepsilon^{2} \frac{\partial h^{k}}{\partial x^{k'}}\right) + \\ &+ \Gamma^{k'}_{i'p'} \left(\delta^{k}_{k'} + \varepsilon^{2} \frac{\partial h^{k}}{\partial x^{k'}}\right) \left(\delta^{p'}_{p} + \varepsilon^{2} \frac{\partial h^{p'}}{\partial x^{p}}\right) \left(\delta^{i'}_{i} + \varepsilon^{2} \frac{\partial h^{i'}}{\partial x^{i'}}\right) + \\ &+ \varepsilon^{2}\Gamma^{k'}_{i'\gamma'} \left(\delta^{k}_{k'} + \varepsilon^{2} \frac{\partial h^{k}}{\partial x^{k'}}\right) \delta^{\gamma'}_{p} \delta^{i'}_{i} + \varepsilon^{2}\Gamma^{k'}_{\alpha'p'} \left(\delta^{k}_{k'} + \varepsilon^{2} \frac{\partial h^{k}}{\partial x^{k'}}\right) \delta^{p'}_{p} \delta^{\alpha'}_{i} + \\ &+ \varepsilon^{2}\Gamma^{k'}_{\alpha'\gamma'} \left(\delta^{k}_{k'} + \varepsilon^{2} \frac{\partial h^{k}}{\partial x^{k'}}\right) \delta^{\gamma'}_{p} \delta^{\alpha'}_{i}, \\ {}^{\prime}\Gamma^{k}_{i\gamma} &= \Gamma^{k'}_{i'\gamma'} \delta^{k}_{k'} \delta^{\gamma'}_{\gamma} \delta^{i'}_{i} + \Gamma^{k'}_{\alpha'\gamma'} \delta^{k}_{k'} \delta^{\gamma'}_{\gamma} \delta^{\alpha'}_{i}, \quad {}^{\prime}\Gamma^{k}_{\alpha p} &= \Gamma^{k'}_{\alpha'\gamma'} \delta^{k}_{k'} \delta^{\gamma'}_{p} \delta^{\alpha'}_{\alpha} + \Gamma^{k'}_{\alpha'p'} \delta^{k}_{k'} \delta^{p'}_{p} \delta^{\alpha'}_{\alpha}, \\ {}^{\prime}\Gamma^{\kappa}_{\alpha\gamma} &= \Gamma^{k'}_{\alpha'\gamma'} \delta^{k}_{k'} \delta^{\gamma'}_{\gamma} \delta^{\alpha'}_{\alpha}, \qquad {}^{\prime}\Gamma^{\sigma}_{i\gamma} &= \Gamma^{\sigma'}_{i'\gamma'} \delta^{\sigma}_{\sigma} \delta^{\gamma'}_{\gamma} \delta^{i'}_{i} + \Gamma^{\sigma'}_{\alpha'\gamma'} \delta^{\sigma}_{\sigma} \delta^{\alpha'}_{i} \delta^{\gamma'}_{\gamma}, \\ {}^{\prime}\Gamma^{\sigma}_{ip} &= \delta^{\sigma'}_{k} \delta^{\sigma}_{\sigma'} \Gamma^{0}_{ip} + \Gamma^{\sigma'}_{i'p'} \delta^{\sigma}_{\sigma'} \delta^{p'}_{p} \delta^{i'}_{i} + \\ {}^{\prime}\Gamma^{\sigma}_{i\gamma} &= \Gamma^{\sigma'}_{i'\gamma'} \delta^{\sigma}_{\sigma'} \delta^{\gamma'}_{\gamma} \delta^{i'}_{i} + \Gamma^{\sigma'}_{i'p'} \delta^{\sigma}_{\sigma'} \delta^{p'}_{p} \delta^{i'}_{i} + \\ {}^{\prime}\Gamma^{\sigma}_{ip} &= \delta^{\sigma'}_{k} \delta^{\sigma}_{\sigma'} \Gamma^{0}_{ip} + \Gamma^{\sigma'}_{i'p'} \delta^{\sigma}_{\sigma'} \delta^{p'}_{p} \delta^{i'}_{i} + \\ {}^{\prime}\Gamma^{\sigma}_{i\gamma} &= \Gamma^{\sigma'}_{i'\gamma'} \delta^{\sigma}_{\sigma'} \delta^{\sigma}_{p} \delta^{\sigma'}_{i} \delta^{i'}_{i} + \Gamma^{\sigma'}_{i'p'} \delta^{\sigma}_{\sigma'} \delta^{\rho'}_{p} \delta^{i'}_{i} + \\ {}^{\prime}\Gamma^{\sigma}_{i\gamma} &= \Gamma^{\sigma'}_{i'\gamma'} \delta^{\sigma}_{\sigma'} \delta^{\sigma}_{p} \delta^{\sigma'}_{p} \delta^{\sigma'}_{p} \delta^{i'}_{p} + \\ {}^{\prime}\Gamma^{\sigma}_{i\gamma} &= \Gamma^{\sigma'}_{i'\gamma'} \delta^{\sigma}_{\sigma'} \delta^{\sigma}_{p} \delta^{\sigma'}_{p} \delta^{i'}_{p} + \\ {}^{\prime}\Gamma^{\sigma}_{i\gamma} &= \Gamma^{\sigma'}_{i'\gamma'} \delta^{\sigma}_{\sigma'} \delta^{\sigma}_{p} \delta^{\sigma'}_{p} \delta^{i'}_{p} \delta^{i'}_{p} + \\ {}^{\prime}\Gamma^{\sigma}_{i\gamma} &= \Gamma^{\sigma'}_{i'\gamma'} \delta^{\sigma}_{\sigma'} \delta^{\sigma}_{p} \delta^{\sigma'}_{p} \delta^{i'}_{p} + \\ {}^{\prime}\Gamma^{\sigma}_{i\gamma} &= \Gamma^{\sigma'}_{i\gamma'} \delta^{\sigma}_{\sigma'} \delta^{\sigma}_{p} \delta^{\sigma'}_{p} \delta^{\sigma'}_{p} \delta^{\sigma'}_{p} \delta^{i'}_{p} \delta^{i'}_{p} \delta^{\sigma'}_{p} \delta^{\sigma'}_{p}$$

$$'\Gamma_{ip}^{\sigma} = \delta_{k}^{\sigma'}\delta_{\sigma'}^{\sigma}\Gamma_{ip}^{k} + \Gamma_{i'p'}^{\sigma'}\delta_{\sigma'}^{\sigma}\delta_{p}^{p'}\delta_{i}^{i'} + \Gamma_{i'p'}^{\sigma'}\delta_{\sigma'}^{\sigma}\delta_{p}^{p'}\delta_{i}^{i'} + \Gamma_{\alpha'p'}^{\sigma'}\delta_{\sigma'}^{\sigma}\delta_{p}^{p'}\delta_{i}^{\alpha'} + \Gamma_{\alpha'\gamma'}^{\sigma'}\delta_{\sigma'}^{\sigma}\delta_{i}^{\alpha'}\delta_{p}^{\gamma'},$$

$${}^{\prime}\Gamma^{\sigma}_{\alpha p} = \Gamma^{\sigma'}_{\alpha' p'} \delta^{\sigma}_{\sigma'} \delta^{p'}_{p} \delta^{\alpha'}_{\alpha} + \Gamma^{\sigma'}_{\alpha' \gamma'} \delta^{\sigma}_{\sigma'} \delta^{\alpha'}_{\alpha} \delta^{\gamma'}_{p}, \quad {}^{\prime}\Gamma^{\sigma}_{\alpha \gamma} = \Gamma^{\sigma'}_{\alpha' \gamma'} \delta^{\sigma}_{\sigma'} \delta^{\alpha'}_{\alpha} \delta^{\gamma'}_{\gamma}.$$

После преобразований уравнения принимают вид:

$$'\Gamma_{ip}^{k} = \left(-\varepsilon^{2} \frac{\partial^{2} h^{i'}}{\partial x^{i} \partial x^{p}}\right) \left(\delta_{k'}^{k} + \varepsilon^{2} \frac{\partial h^{k}}{\partial x^{k}}\right) + \\
+ \Gamma_{i'p'}^{k'} \left(\delta_{k'}^{k} + \varepsilon^{2} \frac{\partial h^{k}}{\partial x^{k}}\right) \left(\delta_{p'}^{p'} + \varepsilon^{2} \frac{\partial h^{p'}}{\partial x^{p}}\right) \left(\delta_{i'}^{i'} + \varepsilon^{2} \frac{\partial h^{i'}}{\partial x^{i}}\right), \\
'\Gamma_{i\gamma}^{k} = \Gamma_{i'\gamma'}^{k'} \delta_{k'}^{k} \delta_{\gamma'}^{\gamma'} \delta_{i'}^{i'}, \quad '\Gamma_{\alpha p}^{k} = \Gamma_{\alpha' p'}^{k'} \delta_{k'}^{k} \delta_{p'}^{p'} \delta_{\alpha'}^{\alpha'}, \quad '\Gamma_{\alpha \gamma}^{k} = \Gamma_{\alpha' \gamma'}^{k'} \delta_{k'}^{k} \delta_{\gamma'}^{\gamma'} \delta_{\alpha'}^{\alpha'}, \\
'\Gamma_{ip}^{\sigma} = \Gamma_{i'p'}^{\sigma'} \delta_{\sigma'}^{\sigma} \delta_{p}^{p'} \delta_{i'}^{i'}, \quad '\Gamma_{i\gamma}^{\sigma} = \Gamma_{i'\gamma'}^{\sigma'} \delta_{\sigma'}^{\sigma} \delta_{\gamma'}^{\gamma'} \delta_{i'}^{i'}, \quad '\Gamma_{\alpha p}^{\sigma} = \Gamma_{\alpha' p'}^{\sigma'} \delta_{\sigma'}^{\sigma} \delta_{p}^{p'} \delta_{\alpha'}^{\alpha'}, \\
'\Gamma_{\alpha \gamma}^{\sigma} = \Gamma_{\alpha' \gamma'}^{\sigma'} \delta_{\sigma'}^{\sigma} \delta_{\alpha'}^{\rho'} \delta_{\gamma'}^{\gamma'} \quad (99)$$

Определение 8. Будем называть две связности Γ и Γ на трансверсальном расслоении второго порядка $T^2_{tr}M$ эквивалентными, если одна из них может быть переведена в другую автоморфизмом $T^2_{tr} M$ вида (??).

Аналогично случаю векторных полей на T_{tr}^2M , вышеуказанное определения вводит класс эквивалентности на множестве \mathbb{D}^2 -линейных связностей на T_{tr}^2M .

Если связность Γ в уравнениях (??) является \mathbb{D}^2 -гладкой и, следовательно, имеет вид (??), то связность Γ также является \mathbb{D}^2 -гладкой имеет вид:

$$\Gamma_{ip}^{k} = \Gamma_{jk}^{i} + \varepsilon^{2} \left(\Gamma_{ip}^{k'} \frac{\partial h^{k}}{\partial x^{k'}} - \Gamma_{ip'}^{k} \frac{\partial h^{p'}}{\partial x^{p}} - \Gamma_{i'p}^{k} \frac{\partial h^{i'}}{\partial x^{i}} - \frac{\partial^{2} h^{k}}{\partial x^{i} \partial x^{p}} \right) + \\
+ \varepsilon^{2} \left(\dot{x}^{l} \partial_{l} \Gamma_{ip}^{0} + G_{ip}^{k}(x^{j}) \right) + \\
+ \varepsilon^{2} \left(\frac{1}{2} \dot{x}^{l} \dot{x}^{s} \partial_{ls} \Gamma_{ip}^{0} + \ddot{x}^{l} \partial_{l} \Gamma_{ip}^{k} + h^{l} \partial_{l} \Gamma_{ip}^{0} + \dot{x}^{l} \partial_{l} G_{ip}^{k} + H_{ip}^{k}(x^{j}, y^{\eta}) \right), \\
\Gamma_{ip}^{\sigma} = \Gamma_{ip}^{\sigma}, \quad \Gamma_{i\gamma}^{\sigma} = \Gamma_{i\gamma}^{\sigma}, \quad \Gamma_{\alpha p}^{\sigma} = \Gamma_{\alpha p}^{\sigma}, \quad \Gamma_{\alpha \gamma}^{\sigma} = \Gamma_{\alpha \gamma}^{\sigma}. \quad (100)$$

Уравнения (??) задают коэффициенты линейной связности T в точке $X = F^2(X)$ как функции координат X^i , y^α точки X. Для получения выражений коэффициентов связности T в точке X как функций координат X^i , Y^i , Y^i , подставим в Y^i формулы Y^i . Поскольку Y^i это произвольная точка многообразия Y^i , то штрихи у координат точек в окончательной записи результата убираем. В результате получаем следующее соответствие между компонентами Y^i , и Y^i , и Y^i , а также между компонентами Y^i , и Y^i , и

$$'H_{ip}^{i} = H_{ip}^{i} + \varepsilon^{2} \left(\Gamma_{ip}^{k'} \frac{\partial h^{k}}{\partial x^{k'}} + h^{l} \partial_{l} \Gamma_{ip}^{k} - \Gamma_{ip'}^{k} \frac{\partial h^{p'}}{\partial x^{p}} - \Gamma_{i'p}^{k} \frac{\partial h^{i'}}{\partial x^{i}} - \frac{\partial^{2} h^{k}}{\partial x^{i} \partial x^{p}} \right),$$

$$'G_{ip}^{k}(x^{k}) = G_{ip}^{i}(x^{k}).$$

$$(101)$$

Вычисления подведенные выше показывают, что две \mathbb{D}^2 -гладкие линейные связности Γ и Γ на расслоении T_{tr}^2M эквивалентны тогда и только тогда, когда тензор деформации Γ Γ Γ Γ имеет следующий вид:

$$T_{ip}^{k} = \varepsilon^{2} \left(h^{l} \partial_{l} \Gamma_{ip}^{k} + \Gamma_{ip}^{k'} \frac{\partial h^{k}}{\partial x^{k'}} - \Gamma_{ip'}^{k} \frac{\partial h^{p'}}{\partial x^{p}} - \Gamma_{i'p}^{k} \frac{\partial h^{i'}}{\partial x^{i}} - \frac{\partial^{2} h^{k}}{\partial x^{i} \partial x^{p}} \right), \quad (102)$$

$$T_{i\gamma}^k = 0, \ T_{\alpha p}^k = 0, \ T_{\alpha \gamma}^k = 0, \ T_{ip}^{\sigma} = 0, \ T_{i\gamma}^{\sigma} = 0, \ T_{\alpha p}^{\sigma} = 0, \ T_{\alpha \gamma}^{\sigma} = 0.$$

Формулами (??) определяется производная Ли \mathbb{D}^2 -гладкой линейной связности Γ в направлении векторного поля v с координатами $\{v^i=0,v^\alpha=0,\dot{v}^i=0,\ddot{v}^i=h^i\}$, то есть принимающего значения в $V_1^2TT_{tr}^2M$.

Таким образом, имеют место следующие предложения.

Предложение 13. Две \mathbb{D}^2 -гладкие связности Γ и Γ на расслоении $T_{tr}^2 M$ эквивалентны тогда и только тогда, когда тензор деформации является производной Ли $\mathcal{L}_u \Gamma$ в направлении некоторого вертикального векторного поля v, то есть векторного поля, значения которого принадлежат $V_1^2 T T_{tr}^2 M$.

Предложение 14. \mathbb{D}^2 -гладкая связность Γ на расслоении $T_{tr}^2 M$ эквивалентна \mathbb{D}^2 -продолжению некоторой проектируемой связности, заданной на M тогда и только тогда, когда

$$G_{ip}^{k}(x^{k}) = 0,$$

$$H_{ip}^{i} = \Gamma_{ip}^{q} \frac{\partial h^{k}}{\partial x^{q}} + h^{l} \partial_{l} \Gamma_{ip}^{k} - \Gamma_{iq}^{0} \frac{\partial h^{q}}{\partial x^{p}} - \Gamma_{qp}^{0} \frac{\partial h^{q}}{\partial x^{i}} - \frac{\partial^{2} h^{k}}{\partial x^{i} \partial x^{p}}.$$

Список литературы

- [1] Атанасиу Г., Балан В., Брынзей Н., Рахула М., Дифференциальная геометрия второго порядка и приложения: Теория Мирона-Атанасиу, Либроком, М., 2010.
- [2] Вишневский В.В. *Многообразия над плюральными числами и полука-сательные структуры*. Проблемы геометрии (Итоги науки и техники ВИНИТИ), т. 20. М. 1988, с. 35–75.
- [3] Вишневский В.В. Интегрируемые аффинные структуры и их плюральные интерпретации. Современная математика и ее приложения (Итоги науки и техники ВИНИТИ), т. 73. М. 2002, с. 5–64.
- [4] Гайнуллин Ф.Р., Шурыгин В.В. Голоморфные тензорные поля и линейные связности на касательном расслоении второго порядка. Ученые записки Казанского Государственного Университета. Казань. 2009. 36–50 с.
- [5] Кобаяси Ш., Номидзу К. Основы дифференциальной геометрии Т.1 М.:Наука, 1981.
- [6] Норден А.П. Пространства аффинной связности. М.:Наука, 1976.
- [7] Смолякова Л.Б., Шурыгин В.В., Лифты геометрических объектов на расслоении Вейля $T^{\mu}M$ слоеного многообразия, определяемое эпиморфизмом μ алгебр Вейля, Изв. вузов. Математика, 2007, №10, 76—89.
- [8] Фомин В.Е., Шурыгин В.В., *Очерк научной и педагогической деятельности Ф. П. Широкова*, Ученые записки Казанск. ун-та. Сер. Физ.-мат. науки, 150, №1, 2008, 130–152
- [9] Широков А.П., Геометрия касательных расслоений и пространства над алгебрами, Итоги науки и техн. Сер. Пробл. геом. Тр. геом. сем., 12, 1981, 61–95
- [10] Шурыгин В.В. *Многообразия над алгебрами и расслоения Вейля*. Казанский университет. Казань. 2002. 80 с.
- [11] Molino P. Riemannian foliations. Birkhäuser, 1988.— 339 p.