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От Редакционного Комитета 

Международный Журнал «Проблемы нелинейного анализа в инженерных системах» –
междисциплинарное двуязычное научное периодическое Издание, представляющее 
исследования по нелинейным проблемам во всем разнообразии фундаментальных и 
прикладных наук. 
Огромное значение в установлении тесной междисциплинарная связи между 
фундаментальными и прикладными областями науки в целом и между ее отдельными 
дисциплинами принадлежит, в первую очередь, Механике. Непреходящая роль 
Механики как фундаментальной базовой научной дисциплины для всех других 
дисциплин и для нашего Знания в целом является неоспоримым фактом. Механика 
снабжает нас моделями и методами, покрывающими все области теории и инженерной 
практики: 

«Ньютоновская Механика – непревзойденное достижение физики (натуральной 
философии), всей истории человеческой цивилизации. Она вечна. На ее могучем древе 
появляются новые и новые ветви. Среди них – и ветви, выросшие из привитых на это 
древо черенков-саженцев, взращенных в лоне других естественных наук» – Г.Г.Черный, 
Академик РАН (Председатель Российского Национального Комитета по теоретической и 
прикладной механике, 2011г.). 

 Механика – главный инструмент в изучении движения небесных тел и всех 
процессов в околоземном пространстве и в дальнем Космосе; 

 Механика дает мощный аппарат для описания процессов на микроуровне; для 
квантовой механики; для описания сложных процессов внутри Земли, в геодинамике; 
в исследовании процессов вулканических извержений, в динамике ураганов; в 
арктических исследованиях; 

 Модели и методы Механики являются эффективным инструментом в 
междисциплинарных инженерных приложениях – в области медицины, в 
робототехнике, в биомехатронике, в механике материалов, в нанобиотехнологиях, 
для решения сложнейших многодисциплинарных проблем конструирования в 
авиационной и аэрокосмической области; 

 Механика является «основным фундаментом» для развития всех смежных 
дисциплин, в которых изучаемые объекты – междисциплинарные системы, 
требующие знаний из различных научных областей; именно на стыке различных 
дисциплин происходит зарождение новых гипотез, обеспечивающих глубокое 
познание окружающего Мира, с пониманием происходящих процессов; 

 Без Механики, без тесных междисциплинарных связей между теоретическими и 
прикладными областями, между различными дисциплинами Науки невозможно 
углубление нашего Знания в целом. 

Более того, именно МЕХАНИКА способствует развитию «математических построений 
исключительной красоты»: теории динамических систем, теории устойчивости 
А.М.Ляпунова (125-летие которой будет отмечаться  в 2017 году),…, играя в этом 
важнейшую роль. При этом, объединяя усилия теоретиков и прикладников, она 
обеспечивает разработку и синтез методов в междисциплинарных сферах науки, 
образования и инженерной практики; в исследованиях по нелинейным проблемам во 
всем разнообразии фундаментальных и прикладных наук, включая дисциплины 
естественного и гуманитарного циклов (среди них: математика, механика, физика, 
химия; инженерные, биологические, медицинские, социальные, политические науки; 
экология, космология; экономика и финансовая математика; нанонаука и 
нанотехнология; устойчивость и поддерживающее развитие; проблемы риска и защиты 
информации; проблемы исследования операций, ...). 

Истинная теория 
 не может быть линейной 
А.Эйнштейн 

Единство – в разнообразии 
В.Лакшмикантам 
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«…Теория устойчивости и анализ динамических свойств нелинейных систем – 
роскошное дерево, обладающее классическим стволом, глубокими прочными корнями, 
уходящими в Механику, …, в важные прикладные задачи…» – В.М.Матросов, Академик 
РАН (Президент Академии нелинейных наук, 2001г.). 

В этом направлении следует подчеркнуть непреходящее значение развитой 
А.М.Ляпуновым-Н.Г.Четаевым методологии для проблем моделирования и анализа в 
механике, в инженерной практике и для расширения нашего Знания в целом; при этом  
именно теория устойчивости А.М.Ляпунова дает нам конструктивный математический 
инструмент, подтверждая: 

«математика – это эффективное «транспортное» средство, способное обеспечить 
существенный прорыв в понимании сути сложных явлений окружающего Мира, с 
глубоким проникновением ее методов, сгенерированных механикой, во все области, 
включая и нетрадиционные для нее». 

«…Я всегда верил, что объективный характер Самоорганизации и 
Необратимости должен быть основан на качественных характеристиках 
Динамики;… Вселенная – Конструкция в развитии, в котором Мы участвуем», – 
И.Пригожин, Нобелевский Лауреат. 

В этом выпуске журнала «Проблемы нелинейного анализа в инженерных системах» 
(№1(45), т.22, 2016) опубликованы статьи, аналитические исследования и авторские 
результаты, научно-информационные материалы, отражающие видение специалистов, 
выделяющие некоторые актуальные проблемы настоящего и будущего 
междисциплинарного характера. 
Среди них – статьи и обзоры по междисциплинарной тематике, порождаемой 
потребностями фундаментальной науки и инженерных приложений. Статьи 
подготовлены в развитие исследований, обсуждаемых на Международных научных 
форумах и конференциях, на Международных научных Семинарах по проблемам 
моделирования и динамики сложных междисциплинарных систем применительно к 
фундаментальным задачам теории и практики. 
Тематика, представленная в этих работах, отражает эту междисциплинарность: задачи 

оптимального управления пространственной ориентацией  для космических аппаратов; 

эффекты дисперсии и запаздывания в математических моделях механики; принцип 

Гаусса и задача о движении саней Чаплыгина на наклонной негладкой поверхности; о 

гипотетической модели развития Человечества в астрономическом сценарии эволюции 

Земли; об эффектах дисперсии при коллективном взаимодействии частиц; программная 

разработка прикладной макетной 3D модели в нефтяной отрасли; интеллектуальные 

методы для проектирования систем обработки данных и управления; Механика в 

Казанском университете за 200 лет; проблемы механики сплошной среды. 

Разрабатываемые модели, способствующие объединению усилий теоретиков и 
прикладников, направлены на развитие и синтез методов для решения проблем в 
междисциплинарных сферах науки, образования и инженерной практики. 

Выпуск подготовлен с поддержкой наших Партнеров, среди которых: Международная 
Федерация Нелинейных Аналитиков, Академия нелинейных наук, Международная 
научно-исследовательская лаборатория по нано-биотехнологиям (INT), Казанский 
(Приволжский) федеральный университет (КФУ), Московский государственный 
технический университет им.Н.Э.Баумана, Московский авиационный институт 
(национальный исследовательский университет), Институт проблем управления 
им.В.А.Трапезникова РАН; Вычислительный Центр им.А.А.Дородницына РАН, 
Концерн ЦНИИ Электроприбор, ФГУП ЦНИИМаш., Международный Центр 
вычислительных методов в конструировании (CIMNE)… 
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В заключение еще раз подчеркнем: тенденция, превалировавшая ранее, – разделенность 

между дисциплинами и углубление специализации по отраслям знаний, - в настоящее 

время  постепенно изменяется. Отчуждение и разрыв между разными дисциплинами в 

науках и искусствах неуклонно убывает. Идеалом, который уже сейчас вырисовывается 

в области возможного, является объединение продуктивно и серьезно работающих 

ученых в двух или трех разных, казалось бы, совершенно не соприкасающихся, 

дисциплинах, таких, как например, математика и антропология, политические науки и 

музыка, химия и философия, история и математика,… 

Конечно, необходимо продолжать углублять академическую специализацию, но также 

важно работать и в направлении интеграции Знания в целом. Восстановление истинно 

полного, согласованного познания как главной сути науки и образования есть быстро 

распространяющаяся идея. Следует отметить, именно стремление понять нелинейный 

мир есть доминирующее в большинстве разделов науки. При этом специфическая  роль 

принадлежит  механике в решении проблем моделирования окружающего мира, 

которая вместе с  математикой, дает нам  эффективный рабочий инструмент для 

возможности углубления в Познание, расширяя границы своего применения на все 

области Знания. 

Это - особая функция  механики, универсальной науки о моделировании явлений 

окружающего мира, которая снабжает нас  конструктивными  методами для 

расширения нашего Знания в целом, с распространением  границ своего применения на 

все области науки. Это понимание было подтверждено  на XI Всероссийском Съезде по 

фундаментальным проблемам теоретической и прикладной механики (20-24 августа 

2015г., Казань). В приветственных выступлениях на XI Съезде Проф. И.Р.Гафуров, 

Ректор КФУ; Проф. Ю.Ф.Гортышов, Президент КНИТУ-КАИ; Член-корр. РАН 

Д.А.Губайдуллин, Директор Института механики и машиноведения КНЦ РАН,… 

весьма полно высветили эту  ведущую роль механики для междисциплинарных 

исследований во всем многообразии естественно-научных и гуманитарных дисциплин. 

Не перечисляя здесь всех имен, связанных с Казанскими Школами механиков, в 

заключение (о роли и месте  Механики) отметим лишь:  

выделяют две «эпохи» в развитии Казанского университета: эпоху Н.И. Лобачевского, 

ректора университета, великого математика, который читал лекции по механике – по 

теоретической механике, гидравлике, другим разделам механики; и эпоху М.Т. 

Нужина, ректора университета, специалиста в области механики. Легендарный ректор 

Казанского университета профессор М.Т. Нужин говорил: «Механика  - это сплав 

математики со здравым смыслом». Более того, как говорил великий И.Ньютон: «вся 

трудность состоит в том, чтобы по явлениям движения распознать силы природы; а 

потом по этим силам изъяснить остальные явления», – (И.Ньютон). И именно 

Механика, фундаментальная наука  об искусстве моделирования для любой области 

Знания, позволяет овладеть этим искусством… 

 

«Теоретическая механика - фундаментальная наука; она является ключевым 

предметом в подготовке инженеров, математиков, прикладников и физиков--

теоретиков,…Для инженеров она является основой их специальных наук; для 

математиков – дорогой к современным обобщениям; для физиков - «прелюдией» к 

теории относительности, к статистической и квантовой механике»,-  
 

R.Xill,Principles of Dynamics, Oxford,1964. 



Проблемы нелинейного анализа 
в инженерных системах.  №1 (45), том 22, 2016                                                                                     Казань 

1 

О задачах оптимального управления пространственной 

ориентацией космического аппарата 

М.В. Левский  

НИИ Космических Систем  ГКНПЦ им. М.В. Хруничева,  

Россия, г. Королев Московской области, ул. Тихонравова, 27 

Аннотация. Работа является продолжением [1], где изложен универсальный подход к решению 

задач оптимального управления ориентацией космических аппаратов (КА) на основе принципа 

максимума Понтрягина и показано, что в случаях, когда критерий оптимальности не содержит 

в явном виде угловых координат (параметров положения), окончательное решение и 

оптимальное движение КА не зависят от выбора параметров, описывающих угловое положение 

КА в пространстве. Представлен канонический вид сопряженных уравнений [1], 

соответствующих кинематике вращения КА, и определены унифицированные характеристики 

(аналоги сопряженных переменных), позволяющие формализовать необходимые условия 

оптимальности безотносительно способа описания кинематики вращения КА. Опираясь на 

изложенные в [1] схемы построения оптимального управления для разных вариантов выбора 

системы кинематических параметров (направляющие косинусы, кватернионы и пр.), 

приводится решение известных задач оптимального управления движением КА разработанным 

методом и даны результаты численного моделирования оптимального разворота, 

подтверждающие эффективность сделанной замены переменных. 

Ключевые слова: оптимальное управление, пространственная ориентация, космические аппараты. 

Как и ранее [1], под управлением пространственной переориентацией понимается 

приведение связанных с корпусом космического аппарата (КА) осей ОXYZ из одного 

известного углового положения в другое известное (обычно заданное) угловое 

положение. При этом угловая ориентация правой прямоугольной системы координат 

ОXYZ (равно как ее начальное ОXstYstZst и конечное ОXfYfZf положения) определяется 

относительно выбранного опорного базиса I [2]. Рассматривается наиболее 

распространенный случай, когда опорной является инерциальная система координат 

ОXinYinZin (ИСК). В [1] продемонстрирована технология решения задач оптимального 

управления пространственной ориентацией КА с помощью единых математических 

приемов независимо от выбора кинематических параметров, задающих угловое 

положение твердого тела относительно инерциальной системы координат (опорного 

базиса), когда необходимые условия оптимальности формулируются в соответствии 

с принципом максимума [3]. 

В первой части [1] изложены вопросы унификации решения задач оптимального 

управления переориентацией КА и выработан универсальный метод формализации 

необходимых условий в форме принципа максимума независимо от типа переменных, 

описывающих угловое положение КА, и вида кинематических уравнений. Описанный 

метод [1] использует особые переменные, которые интерпретируются как сопряженные 

переменные, соответствующие позиционным фазовым координатам КА. Теоретические 

выкладки завершает конструктивная схема решения оптимизационных задач.  

Ниже (в продолжение [1]) предлагается рассмотреть пример решения задачи 

оптимального разворота, если вращательное движение КА описывается 

направляющими косинусами. Численное решение иллюстрирует теоретические выводы 

задачи оптимального управления разворотом КА и результаты математического 

моделирования динамики движения. 
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1. Уравнения движения и основные положения используемого метода 

Напомним основные соотношения и утверждения, полученные и приведенные в [1]. 

Предполагается, что управление угловым положением КА осуществляется за счет 

моментов, создаваемых относительно главных центральных осей инерции КА. 

Уравнения вращательного движения КА как твердого тела имеют вид [2, 4 ] 

    1322311 MJJJ   ,    2313122 MJJJ  ,    3211233 MJJJ    (1) 

где Ji  главные центральные моменты инерции КА, Мi  проекции главного момента 

сил М на главные центральные оси эллипсоида инерции КА,  i  проекции вектора  

абсолютной угловой скорости на оси связанного базиса E, образованного главными 

центральными осями инерции КА (i = 1, 2, 3 ). 

Движение связанного базиса Е относительно опорного базиса I обычно задается 

кватернионом  [5] или матрицей направляющих косинусов [4, 6]. Для определенности 

базис I считается инерциальным. Исследуется случай, когда критерий оптимальности, 

отражающий цель оптимизации, определяется интегральным функционалом  

 
T

gdtG

0

   (2) 

где g  неотрицательная функция времени, не зависящая явно от положения КА; Т  

время окончания приведения связанного базиса в требуемое положение (случаи, когда 

функция g зависит от угловых координат, не рассматриваются). 

Наличие интегрального показателя (2) позволяет решить задачу оптимального 

управления с помощью принципа максимума Л.С. Понтрягина [3] и выписать 

необходимые условия оптимальности в конечной форме – в виде уравнений 

(дифференциальных и алгебраических). Если относительное положение связанной и 

опорной (инерциальной) систем координат определяется матрицей направляющих 

косинусов, то справедливо следующее дифференциальное уравнение [4]:  

AA  , 

где ikаА  – матрица направляющих косинусов (i = 3,1 , k = 3,1 );  

0

0

0

12

13

23













  – матрица угловых скоростей в связанной системе координат 

(ССК);  aik  – косинус угла между i-й осью ССК и k-й осью ИСК (опорного базиса I). 

Запишем кинематические уравнения в развернутой форме 

31221311 aaa   ,  32222312 aaa   ,  33223313 aaa    

 11331121 aaa   ,  12332122 aaa   ,  13333123 aaa   (3) 

21111231 aaa   ,  22112232 aaa   ,  23113233 aaa    

(это известные уравнения Пуассона [6]). 

В соответствии с методом [1] вводятся переменные r1 , r2 , r3 и составляется функция 

Гамильтона 332211din ωωω rrrHgH  , где Hdin  динамическая часть функции 

Гамильтона [1, 5]. Для динамической задачи разворота  



О задачах оптимального управления пространственной ориентацией космического аппарата  

 

 3 






































 31

3

21

3

3
331

2

13

2

2
232

1

32

1

1
1din

J

JJ

J

M

J

JJ

J

M

J

JJ

J

М
Н  , 

где 
i  – сопряженные переменные, соответствующие переменным i (i = 3,1 ). Если 

решается кинематическая задача разворота, то 0din Н . 

Изменение вектора },,{ 321 rrrr  определяется решением системы уравнений [1] 

 32231 rrr   ,  13312 rrr   ,  21123 rrr     (4) 

или в векторной форме 

rωr   

где ri  проекции вектора r на оси связанной системы координат. Очевидно const|| r . 

Для сопряженных переменных i , соответствующих переменным i (i = 3,1 ), уравнения 

приводятся к виду 

    13322231 rnn  , 23311132 rnn  , 32211123 rnn    (5) 

где 1321 /)( JJJn   , 2132 /)( JJJn   , 3213 /)( JJJn   есть постоянные коэффициенты. 

Уравнения (5) участвуют в построении оптимального управления только тогда, когда 

решается динамическая задача разворота (если управляющие функции – моменты Мi ). 

В предыдущей работе [1] техника построения оптимального управления ориентацией 

КА, основанная на использовании универсальных переменных ri , демонстрировалась 

на примере динамической задачи разворота (когда управляющими функциями служат 

моменты сил Мi  относительно трех осей КА). Рассмотрим теперь задачу оптимального 

разворота КА, когда управляющей функцией является угловая скорость (t). 

2. Пример решения кинематической задачи разворота 

Полагаем, что относительное положение ортогональных базисов Е и I задается 

направляющими косинусами. Будем исследовать одну практически важную задачу 

максимального быстродействия, в которой минимизируется время разворота Т. Для 

определенности считаем, что управляющие переменные i  ограничены условием 

 2
0

2
33

2
22

2
11 )ω()ω()ω( HJJJ     (6) 

где 00 H   максимально допустимая величина кинетического момента КА.  

Ограничение (6) актуально для КА, управляемых инерционными устройствами – 

силовыми гироскопами (системой гиродинов) [2, 711 ]. Управление разворотом КА в 

этом случае осуществляется за счет перераспределения кинетического момента между 

системой гиродинов и корпусом КА [2]; общий кинетический момент КА как твердого 

тела с вращающимися массами оказывается равным или близким к нулю. Управление 

системой гиродинов для формирования программного движения КА путем создания 

необходимых моментов М1 , М2 , М3 – отдельная самостоятельная задача (эти вопросы 

здесь не рассматриваются). Отметим лишь, что для осуществления заданного режима 

разворота КА без привлечения других (кроме гиродинов) исполнительных органов 

(например, реактивных двигателей) необходимо, чтобы на всем интервале управления 

[0, Т ] суммарный кинетический момент гиросистемы находился внутри замкнутой 

области Q (она зависит от конструктивных характеристик), которая определяет 
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управляющие возможности гиросистемы. Обычно, при разработке, анализе, отработке 

и моделировании алгоритмов управления ориентацией КА с силовыми гироскопами 

принимается, что область Q допустимого кинетического момента системы силовых 

гироскопов ограничена сферой. Это положение используется многими авторами [811]; 

оно справедливо для большого числа (если не большинства) космических аппаратов 

[911] (таких как орбитальный комплекс «Мир», астрофизическая лаборатория 

«Гамма», международная космическая станция «Альфа» и др.). Так как использование 

силовых гироскопов в режиме разворота предполагает, чтобы суммарный 

кинетический момент гиросистемы не превышал допустимого значения, на движение 

КА накладывают ограничение, формализованное для вектора угловой скорости. 

Принимая во внимание условие 0gyr HL , где L – кинетический момент корпуса 

КА, Нgyr – кинетический момент системы силовых гироскопов, выполнение 

ограничения (6) означает, что во время движения КА эволюция вектора Нgyr 

гиросистемы будет удовлетворять условию нахождения его внутри области, 

ограниченной сферой; значит, разворот КА произойдет с использованием только 

силовых гироскопов (вектор Нgyr не выйдет за пределы области Q без дополнительного 

ввода в действие реактивных управляющих двигателей). 

Движение связанной системы координат относительно инерциальной системы 

координат (опорного базиса) зададим матрицей направляющих косинусов А(t). В этом 

случае справедливы уравнения (3). Граничные условия, конкретизирующие маневр 

разворота, имеют вид  

 stA)0(А   ,  fA)(А T   (7) 

Задачу оптимального управления сформулируем следующим образом: необходимо КА 

перевести из положения, соответствующего первому равенству (7), в положение, 

соответствующее второму равенству (7), в соответствии с уравнениями (3) при наличии 

ограничения (6) за минимальное время Т. Решение (t) ищется в классе кусочно-

непрерывных функций времени. 

В обозначенной выше задаче (3), (6), (7) функция  g  в функционале (2) равна  g = 1  и 

она явно не зависит от позиционных координат. Поэтому мы вправе воспользоваться 

предложенной в методе [1] заменой переменных и использовать введенный в [1] вектор 

r в качестве сопряженных переменных, соответствующих кинематике движения. Ранее 

было доказано [1], что использование вектора r (переменных r1 , r2 , r3 ) позволяет найти 

не только необходимые условия оптимальности и формализовать их, но и определить 

характер (ключевые свойства) оптимального управления и построить оптимальное 

движение (t), отвечающее заданному критерию оптимальности. 

Решим поставленную задачу, используя формализм принципа максимума [3] и 

необходимые условия оптимальности (4), записанные для вектора r [1]. Функция 

Гамильтона для решаемой задачи управления имеет вид 1ωωω 332211  rrrH . 

Краевая задача принципа максимума состоит в нахождении такого значения r(0), при 

котором решение системы уравнений (1), (3), (4), удовлетворяющее в каждый момент 

времени t условиям максимума функции Гамильтона Н, с начальными условиями в 

виде первого равенства (7) приводит к выполнению второго равенства (7). Для 

получения уравнений, определяющих оптимальное решение, сделаем замену 

переменных. Обозначим iii JL ω  и iii Jrq /  (i = 3,1 ). Тогда 

1332211  qLqLqLH  
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Нетрудно видеть, что при условии (6) функция Н максимальна, если векторы L = {L1 , 

L2 , L3 } и  q = { q1 , q2 , q3 } имеют одинаковое направление, и выполняются 

соотношения 

2
3

2
3

2
2

2
2

2
1

2
1

0

/// JrJrJrJ

rH
L

i

i
i


  

Оптимальное движение КА полностью определяется системой, состоящей из 

дифференциальных уравнений (4) и уравнений 

 
2
3

2
3

2
2

2
2

2
1

2
1

2

0

/// JrJrJrJ

rH

i

i
i


   (i = 1, 2, 3)   (8) 

при обеспечении равенств (7) для решения А(t) системы уравнений (3). 

Заметим, что уравнениям (4) для вектора r универсальных переменных ri удовлетворяет 

решение (с учетом (3)) 

 r = А cE ,  где  cE = const = 0
T
stA r   (9) 

( )0(0 rr  – значение вектора r в начальный момент времени t = 0 ).  

Граничные условия и условия максимума функции H (в рамках допустимых 

управлений) определяют оптимальное движение (t); начальное Ast  и конечное Af  

положения определяют решения А(t) и r(t). Вектор-функция r(t) должна удовлетворять 

равенству 0t
T
stf A)0(AA)( rrr T , где 

T
stft AAA    матрица направляющих 

косинусов осей связанной системы координат в конечный момент времени 

относительно положения связанной системы координат в начальный момент времени 

(верхний индекс Т означает, что матрица транспонированная). 

Решаемая задача оптимизации разворота – это задача оптимального управления с 

закрепленными левым и правым концами траектории движения, и для выполнения 

условий трансверсальности достаточно, чтобы 0|)0(| r  и 0|)(| Тr  [1]. Ключевым 

свойством вектора r является постоянство его величины const|| r  (в силу наличия 

необходимого условия оптимальности в виде уравнений (4)). Оптимальное решение 

задачи разворота строится при условии 0r . Так как |)0(||)(| rr Т , то оптимальное 

движение будет удовлетворять условиям трансверсальности, если 00 r . 

Покажем, что для оптимального движения справедливо равенство 

 0constωωω 332211  rrr   (10) 

Левая часть рассматриваемого равенства равна 2
3

2
3

2
2

2
2

2
1

2
10 /// JrJrJrH rω .  

Возьмем производную подкоренного выражения в правой части последнего равенства. 

В результате получим (с учетом (4) и (8))  

 2
333

2
222

2
111 /// JrrJrrJrr   

= 0/ω/ω/ω/ω/ω/ω 3
3321

3
3312

3
3312

3
2321

3
2321

3
3321  JrrJrrJrrJrrJrrJrr , 

из чего вытекает справедливость утверждения о постоянстве скалярного произведения 

векторов  и r . То, что в оптимальном решении векторы  и r  составляют острый 

угол, очевидно (это следует из неравенства 00 H ). Следовательно, сделанное выше 

утверждение (10) истинно. 
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Оптимальный разворот КА за минимальное время происходит с максимально допустимым 

кинетическим моментом. Задача построения оптимального управления сводится к 

нахождению закона изменения вектора r(t), при котором в результате движения КА 

согласно уравнениям (3), (4), (8) с начальным условием в виде первого равенства (7) было 

выполнено граничное условие, соответствующее второму равенству (7). 

Главная проблема заключается в нахождении такого значения вектора r(0), чтобы в 

результате движения КА в соответствии с уравнениями (1), (3), (4), (8) выполнились 

равенства (7). Общее решение приведенной системы уравнений построить практически 

невозможно. Сложность заключается в определении граничных значений r(0) и r(T), 

которые связаны соотношением 

)0(A)0(AA)( t
T
stf rrr T . 

В оптимальном движении (в смысле minT  при наличии (6)) конец вектора  

угловой скорости КА скользит по линии пересечения двух поверхностей 

 2
0

2
3

2
3

2
2

2
2

2
1

2
1 ωωω HJJJ    

и  const)////(||ωωω 2
3

2
3

2
2

2
2

2
1

2
1

2
0

22
3

4
3

2
2

4
2

2
1

4
1  JrJrJrHJJJ r   

которые представляют собой два эллипсоида с общим центром, но разные по форме. 

Заметим, что при ограничении (6) направление вектора r не совпадает ни с 

направлением кинетического момента L (как в случае [12]), ни с направлением угловой 

скорости (как в [5]), за исключением случаев, когда в матрице At один из диагональных 

элементов равен единице. Система (3), (4), (8) имеет аналитическое решение в 

элементарных функциях только для динамически симметричного и динамически 

сферического тел. Задача оптимального управления для сферического тела в 

аналогичной постановке была подробно рассмотрена в [5]. Для динамически 

симметричного тела J1  J2 = J3 решение r(t) может быть найдено в аналитическом виде. 

Исходим из того, что вышеупомянутые поверхности станут в этом случае 

эллипсоидами вращения с общей осью симметрии, проходящей через начало связанной 

системы координат. Линией пересечения этих эллипсоидов будет окружность, 

плоскость которой ортогональна их оси симметрии. Поэтому угловая скорость 

относительно продольной оси КА ОХ будет постоянной, а проекция вектора  угловой 

скорости на поперечную плоскость YOZ постоянна по модулю и совершает 

равномерное круговое движение (с постоянной угловой скоростью) вокруг продольной 

оси ОХ. Программные значения управляющих функций i (t ) следующие:  

 cos101
  

 )sin(sin 022  tp     (11) 

)cos(sin 033  tp      

где   угол между продольной осью КА и вектором r,    угловая скорость 

собственного вращения (вокруг продольной оси),    угловая скорость прецессии 

(вокруг вектора r ); 30200 /tg rr  ; ||/ rii rp   (i = 3,1 ).  

В случае регулярной прецессии const , const , const  и const|| ω . 

Оптимальную вектор-функцию  r(t)  представим следующим образом: 
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 101 rr  ,   sincos 30202 rrr  ,   cossin 30203 rrr      (12) 

где )0(0 rr  , 0σσ  t , 2
30

2
2010

2
3

2
21 /constα rrr  . 

Конкретное значение r0 определяется исключительно тем, чтобы в результате вращения 

КА согласно уравнениям (4), (8) с начальными условиями 

0)0( rr   ,  
2
3

2
30

2
2

2
20

2
1

2
10

2

00

///
)0(

JrJrJrJ

rH

i

i

i


  

решение уравнений (3) с начальными условиями, соответствующими первому 

равенству (7), удовлетворяло второму равенству (7). Решение системы (4), (8) 

находится в форме регулярной прецессии [4] (конического прецессирующего 

движения). Условия оптимальности параметров  ,  ,   примут вид 

2
0

222
2

22
1 sin)cos( HJJ   ,  maxcos   .  

В случае динамической симметрии КА (J2 = J3) соотношения (12) совместно с 

равенствами (11) образуют решение системы уравнений (3), (4), (8) при условии (6). 

Вектор r описывает конус вокруг продольной оси ОХ  в связанной системе координат. 

При таком типе управления осесимметричное тело движется по «конической 

траектории» [4]. Перевод КА из положения Ast  в положение Af  осуществляется 

одновременным вращением КА вокруг вектора сЕ, неподвижного относительно 

инерциального базиса I, на угол   и вокруг своей продольной оси на угол  . Время 

разворота оценивается величиной 

 0
222

2
22

1 sin)cos( HJJT      (13) 

Расчетные угловые скорости прецессии и собственного вращения таковы:  

T/ ,  T/ . 

Из (13) отчетливо видно, что минимальное время Т окончания маневра получается 

подбором таких значений углов  ,  ,  , удовлетворяющих граничным условиям 

разворота (7), при которых величина  222
2

22
1 sin)cos( JJ   минимальна (исходя 

из того, что Н0 фиксировано). 

Таким образом, кинематическая задача переориентации КА (как твердого тела) 

полностью решена. Оптимальное управление угловым положением КА реализуется по 

предложенному ранее способу [13]. Для произвольного КА ( J1  J2  J3 ) решение 

системы уравнений (3), (4), (8) находится только численными методами (например, 

методом последовательных приближений, методом прогонки [14] и т.д.). Вектор r0 

определяется путем решения краевой задачи с условиями (7) с учетом накладываемых 

на движение связей (3), (4), (8). Для динамически симметричного КА ( J1  J2 = J3 ) 

задача оптимального по времени разворота в постановке (3), (6), (7) решается до конца. 

3. Результаты математического моделирования 

Наконец, приведем численное решение задачи оптимального управления разворотом 

КА, используя направляющие косинусы для описания кинематики вращения КА вокруг 

центра масс. Прежде всего, зададим исходные данные (условия разворота): начальное 

угловое положение связанной системы координат совпадает с инерциальной системой 

координат, конечное положение соответствует матрице направляющих косинусов Аf  с 

элементами  
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а11 = 0.066142 ;  а12 = 0.985828 ;  а13 = 0.160516 ;  а21 = 0.631516 ;  а22 = 0.165908 ;  

а23 = 0.758722 ;  а31 = 0.773828 ;  а32 = 0.051134 ;  а33 = 0.632908 

массово-инерционные характеристики КА имеют значения 

J1 = 17600 кгм
2 

;  J2 = 63200 кгм
2
 ;  J3 = 60100 кгм

2
 

Задача разворота формулируется в постановке (3), (6), (7), в которой конкретное 

значение Н0 = 500 Нмс , а время разворота Т минимально.  

Учитывая, что уравнения (4) имеют известное аналитическое решение (оно 

описывается зависимостью (9)), краевая задача принципа максимума заключается в 

нахождении такого значения r0 , при котором решение уравнений (3), (8) и 

0
T
st)AA()( rr tt   

удовлетворяло граничным условиям stA)0(А  ,  fA)(А T . 

Принятые условия разворота (комбинация матриц Аst и Аf  в равенствах (7)) 

соответствуют варианту, когда вектор конечного поворота (ось Эйлера) составляет с 

продольной осью ОХ и с плоскостью, перпендикулярной этой оси, одинаковый угол, 

т.е. отражает как бы наиболее трудный случай переориентации твердого тела, не 

обладающего сферической симметрией. После решения краевой задачи, 

соответствующей переводу КА из положения А(0) = Ast в положение A(Т) = Af (задачи 

оптимального разворота в импульсной постановке) было получено расчетное значение 

вектора  

}939.0,030.0,344.0{0 r  

Данные математического моделирования динамики движения КА при оптимальном по 

быстродействию управлении представлены на рисунках 1, 2, 3. На рис.1 изображены 

графики изменения угловых скоростей в связанной с КА системе координат 1(t), 

2(t), 3(t) по времени. Весь разворот совершается за время Т = 200 с. В результате КА 

развернулся на 150 градусов. Внутри всего интервала времени 0 < t < T угловая скорость 

 – непрерывная функция времени. На рис.2 приведена динамика изменения 

сопряженных переменных r1(t), r2(t), r3(t). И, наконец, рис.3 отражает изменение 

параметров, определяющих текущую ориентацию КА в процессе поворотного маневра. 

Вместо матрицы А направляющих косинусов индикаторами для графического 

отображения приняты косинус угла  поворота вокруг вектора конечного поворота (оси 

Эйлера) от опорного I до связанного базиса E и три составляющих орта е 

положительного направления оси Эйлера (для удобства на рис.3 обозначено  cose4
). 

Связь элементов  , е1 , е2 , е3  с элементами  аij  матрицы A направляющих косинусов 

следующая: 

1cos2 332211  aaa  ,  sine2 13223 aa ,  sine2 21331 aa ,  sine2 32112 aa , 

где е1 , е2 , е3 – проекции орта е на оси базиса Е;  – угол поворота вокруг оси Эйлера. 

В переменных cos  , е1 , е2 , е3 изображать вращательное движение твердого тела 

удобно, так как используются всего четыре параметра (также, как и при описании 

кватернионными переменными), и, кроме того, все они – нормированные функции, 

которые изменяются в диапазоне от –1 до 1 (именно это обстоятельство обуславливает 

использование тригонометрической функции, а не угловой величины). Как и ri , 

переменные  е1 , е2 , е3 , е4 – безразмерные величины. 
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Рис. 1.      Рис. 2. 
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Рис. 3. 

Расчетные значения моментов Мi  в интервале времени 0 < t < T определяются из 

условия движения КА по заданной кинематической траектории путем решения 

обратной задачи динамики. Подставляя выражения (8) в уравнения (1), получим 

)( 2
1

2
111

2
  iiiiii JJJ  ,  i = 1, 2, 3  или в векторной форме ))(( 21 ωωω JJJ    ;  

Откуда ))(()( 21 ωωωωМ JJJ   , где ),,(diag 321 JJJJ    тензор инерции КА, а 

вектор  – решение системы уравнений (4), (8). 

Переменные  , е1 , е2 , е3  и ri – гладкие функции времени. Характерно гораздо меньшее 

изменение проекции r1  по сравнению с проекциями r2 , r3 ; составляющая угловой 

скорости 1 на участке номинального вращения (в интервале времени, когда 

кинетический момент имеет постоянную величину) также меняется меньше, чем 

скорости  2 , 3 . Это свидетельствует о том, что ось ОХ  продольная. Для функций 

1 (t) и r1 (t), соответствующих продольной оси КА,  имеет место общее правило – при 

любых сочетаниях граничных значений  Ast  и  Af  эти функции всегда знакопостоянны 

и одного знака.  

В итоге получили наглядную демонстрацию практического применения разработанного 

подхода [1] к решению задач оптимального управления движением КА, повышающего 

эффективность использования принципа максимума и расширяющего его возможности. 

 i , 
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4. Заключение 

Кратко повторены ключевые соотношения, полученные при разработке 

унифицированного метода решения задач оптимального управления ориентацией КА 

[1]. Затем сформулирована и решена актуальная задача оптимального разворота КА для 

случая, когда угловое положение КА относительно фиксированной системы координат 

задается направляющими косинусами, а движение КА вокруг центра масс описывается 

кинематическими уравнениями в форме уравнений Пуассона. Оптимальная программа 

управления строится на основе принципа максимума Понтрягина.  

Используя универсальные переменные [1] и их свойство независимости от выбора 

кинематических параметров движения (и от формы представления кинематики 

вращения), получено аналитическое решение рассмотренной задачи. Детально 

раскрыты и изучены свойства оптимального движения во время разворота и выписаны 

ключевые соотношения и расчетные выражения, необходимые для построения 

программного управления. Сопряженная система уравнений, соответствующая 

кинематике вращения, и функция Гамильтона записаны в каноническом виде [1] (что 

значительно упростило решение задачи разворота). Для динамически симметричного 

КА представлено полное решение задачи оптимального управления разворотом 

в замкнутой форме, закон изменения угловой скорости в процессе поворотного маневра 

дается в аналитическом виде. 

Проделанные теоретические построения иллюстрируются конкретным примером 

численного решения задачи пространственного (трехмерного) разворота и результатами 

математического моделирования движения КА при оптимальном управлении. 
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Аннотация. Предлагается анализ математических моделей, позволяющих учесть влияние 

момента количества движения и запаздывания в механике при взаимодействии многих частиц, 

механике сплошной среды, кинетической теории. Для сплошной среды получен 

несимметричный тензор напряжений как результат действия момента. Исследуется роль 

дискретности описания среды в кинетической теории и взаимодействие дискретности и 

«сплошности» сред. Обращается внимание на запаздывание процессов, что важно при 

описании дискретных сред. Для предельных случаев больших градиентов получены 

аналитические формулы, позволяющие получить ядро уравнений Навье-Стокса. Анализируется 

общая постановка задачи в конкретной ситуации. В качестве примера выбрана задача 

взаимодействия двух параллельных потоков. 

Ключевые слова: математические модели, запаздывание, механика сплошной среды. 

Введение 

В классической механике базисными законами являются законы сохранения массы, 

количества движения и энергии. 

Закон сохранения момента количества движения выполняется опосредованно на основе 

выполнения закона равновесия сил. 

 В работе проводится анализ положений, лежащих в основе математических моделей 

механики сплошной среды и кинетической теории. В работе предлагается включить в 

модель два типа новых эффектов: нелокальные эффекты и дисперсионные, т.е. 

рассматривается влияние нелокальности во времени и в пространстве и влияние 

момента количества движения на процессы, происходящие в газе и жидкости; дается 

новая трактовка вывода закона сохранения движения, не содержащая произвола в 

выборе оси вращения элементарного объема. Каждый из эффектов рассматривается 

отдельно. Роль запаздывания наблюдается в экспериментах с ударными волнами в 

разреженном газе, в лазерах на многоатомных газах, в химических реакциях. Впервые 

этот вопрос поднят в [1]. Влияние запаздывания связано с характером определения 

производных как предела, в то время как среда дискретная. Этот вопрос о связи 

дискретности среды с ее описанием в рамках механики сплошной среды является 

важным как при обработке экспериментальных данных, так и при переходе от модели 

сплошной среды к дискретной в вычислительной механике и физике.  Роль момента 

количества движения проявляется во всех процессах, связанных с неравномерным 

распределением частиц. Представляется, что причиной турбулентности является 

именно обмен моментом количества движения. Влияние момента должно проявляться 

при закручивании концов наноматериалов, при росте трещин, в уравнениях состояния 

структурированных жидкостей (вода) и т.д. Ранее были получены модифицированные 

уравнения энергии, движения, неразрывности и момента количества движения для 

бесструктурных частиц, учитывающие эффекты изменения момента количества 

движения в элементарном объеме. Уравнения следовали из модифицированного 

уравнения Больцмана. Это уравнение следовало из модифицированного уравнения 
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Лиувилля. Для твердого тела использовалась классическая феноменологическая теория, 

но изменялась трактовка [2–7]. Другой вариант построения несимметричного тензора 

был предложен в [8].  Тензор напряжений в предложенной системе уравнений 

получался несимметричным. Была установлена необходимость использования 

уравнения для момента количества движения в явном виде. В результате в систему 

уравнений сплошной среды добавлялись слагаемые с третьей производной в уравнении 

движения и второй производной в уравнении неразрывности. Как известно, уравнения 

для макропараметров могут быть получены из уравнения Больцмана методом Чепмена-

Энскога [9-13].  Приводятся качественные и количественные оценки влияния 

использования в классическом методе Чепмена-Энскога при вычислении локально-

равновесной функции распределения макропараметров (плотности, скорости и 

температуры), вычисленных по нулевому приближению (из уравнений Эйлера), без 

дальнейшей коррекции результатов с использованием уравнений Навье-Стокса. 

На существование проблемы согласования макропараметров указывал Гильберт при 

решении уравнения Больцмана методом разложения в ряд по малому параметру. Нами 

был предложен алгоритм согласования макропараметров для локально равновесной 

функции распределения.  В классической теории полагают 

  0φ ξ ( ) ,f d fd        

где β – макропараметр, 

   
(3/2)(0) 2( , , ( , , )) / 2 exp / 2f t x f t x n m kT mc kT     , 

 2 2 2 2

1 2 3 ,c c c c u      

в  то  время  как 

2
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  
     

  
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f f c c c
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и величины определяются через полную функцию распределения. Здесь и далее, ƒ –

функция распределения, t  время, ix координаты, ju  скорости,   вязкость, 

 плотность, T температура, q тепловой поток, ijP тензор вязких давлений, 

X сила. Уравнение Больцмана инвариантно относительно выбора макропараметров.  

Следовательно, совпадение уравнений Навье-Стокса и построенных уравнений носит 

формальный характер, порядки аппроксимации и параметры, входящие в локально-

равновесную функцию распределения, различаются. Следовательно, при построении 

первого приближения в методе Чепмена-Энскога (уравнений Навье-Стокса) 

представляется необходимым уточнять значения плотности, скорости и температуры 

для согласования порядков аппроксимации.  Поэтому в уравнениях первого порядка 

появятся слагаемые, отвечающие за уточнение макропараметров. Отбрасывать их 

нельзя в силу их определений в кинетической теории. Однако после факторизации 

формальный вид функции равновесия не меняется, но макропараметры отвечают 

макропараметрам уравнения Навье-Стокса. Формальный вид уточненного значения 

вязкости не меняется. Полевое описание (механика сплошной среды) подразумевает 

переход от дискретной среды к сплошной с устремлением расстояний между атомами 

(молекулами) к нулю. В разреженном газе возникает нестандартная ситуация, когда для 
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описания производных мы применяем предел отношения приращения функции 

к приращению аргумента. Получается, что для записи производной по времени мы 

в условиях конечной длины свободного пробега (разреженный газ) учитываем только 

высокоскоростные составляющие, так как медленные столкновения не успевают 

произойти. Поэтому возникает необходимость использования второго члена ряда 

Тейлора для включения в работу остальных компонент или использовать среднее 

значение производной по времени, т.е. мы должны взять средние значения по времени 

для всех слагаемых в уравнениях, по пространству в силу вывода определяются 

средние значения. Для конечной длины пробега молекул, когда число Кнудсена 

порядка единицы, в интеграле столкновений также необходимо принимать во внимание 

«запаздывание». Актуальным становится вопрос о влиянии дискретности среды при 

рассмотрении вопросов релаксации для сложных молекул. Дополнительное слагаемое 

вычисляется, так как, учитывая порядки величин, в дополнительном интеграле можно 

использовать локально-равновесные функции распределения. Последнее означает, что 

можно найти новое ядро уравнения Навье-Стокса.  Во всех случаях в классической 

теории  рассматривается предельный случай, когда объем-точка, но материальная точка 

(частица) –простейшая физическая модель в механике — идеальное тело, размерами и 

вращением которого можно пренебречь. Можно также считать размеры тела 

бесконечно малыми по сравнению с другими размерами или расстояниями в пределах 

допущений исследуемой задачи. Вывод законов сохранения в классической механике 

базируется на интегральных законах сохранения, стягивающихся в точку. Во второй 

классической теории переход к законам сохранения осуществляется путем 

использования для плотности суммы дельта функций от разности (xi –x) [1], аналогично 

выстраиваются законы сохранения для количества движения и энергии. Элементарный 

объем может или сам вращаться вокруг оси инерции или быть вовлеченным во 

вращательное движение. В том и другом случаях поток  плотности через границу 

меняется на величину 
 

  ...


  
d u

r r
dr

 за счет поворота элементарного объема. Вклад 

остальных компонент мал, принимая во внимание малость объема и отсутствие 

вращения на оси. Таким образом, переход от дискретной среды и обратно 

осуществляется без учета объемного распределения физических величин, точка 

статическая. Аналогичная ситуация наблюдается в квантовой механике. Возможно, что 

лучшим вариантом теории сплошной среды является дискретный подход (через запись 

законов сохранения  для элементарной ячейки в интегральной форме), что требует 

дополнительного исследования. Для твердого тела запаздывание, скорее всего, связано 

с тем, что в теории пластичности работают высокоэнергетические хвосты функции 

распределения. Они и определяют как предвестники ударной волны, так и разрушение 

материалов при равновесных условиях. Высокоэнергетические молекулы всегда 

присутствуют, их может быть мало, но тогда процессы происходят медленно. Часто 

считается, что для обеспечения правильности расчетов, например, потенциалов  

взаимодействия  в твердом теле или плазме достаточно остановиться на учете 

попарного взаимодействия частиц.  Это правильно, если рассматривается потенциал 

для равновесных условий без учета температурных флуктуаций. В неравновесных 

условиях: образование трещин, возмущения в плазме, и т.д. проявляются коллективные 

эффекты взаимодействия за счет образования неравномерных распределений 

физических величин. При  механическом воздействии на кристаллические тела 

(сжатие, растяжение) перестраивается кристаллическая решетка и распределение 
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электронов внутри объема и на поверхности. На наш взгляд неточность возникает при 

расчете функции Лагранжа частиц как суммы попарно взаимодействующих частиц.  

Положение оси инерции при равновесных условиях и при неравновесных условиях 

различно, что и обуславливает наличие коллективных эффектов. Интересно, что 

эффекты влияния момента количества движения и изменения положения центра 

инерции  могут быть существенны и в квантовой механике при рассмотрении распада 

частиц на три и более частиц; при написании потенциала в уравнении Шредингера,  

при рассмотрении структуры ядра. Несимметричность тензора напряжений требует 

пересмотра некоторых положений теории упругости. Так, например, не удается найти 

главных направлений  осей для элементарного объема. Они получаются для каждой 

точки свои.  Все сказанное необходимо учитывать при больших градиентах 

параметров. Итак, в общем случае три положения важны для понимания причин 

модификации теории [1–4]: 

1. В качестве условий равновесия  необходимо брать более общее условие-условие 

равновесия моментов сил, хотя условие равновесия сил остается, но с учетом 

несимметричности  тензора напряжений. 2. Замена разложения скоростей деформаций 

около  оси элементарной ячейки разложением около оси инерции.  3. Запаздывание. 

Выполнение первого условия связано с необходимостью дополнения законов 

сохранения массы, количества движения, энергии законом сохранения  момента 

количества движения в явном виде. Современный отказ от более общего условия 

равновесия-условия равновесия моментов приводит к частной формулировке условий 

равновесия, к симметрии тензоров напряжений и нарушению «сплошности» среды. 

Предлагаемые уравнения имеют более высокий порядок и требуют дополнительных 

условий. В работе они обсуждаются. Безразмерными параметрами уравнений по-

прежнему являются числа Рейнольдса и Маха. Это связано с тем, что рассматриваемая 

постановка задачи не включает новых размерных параметров. Второе использованное 

условие выполняется, если ось, вокруг которой устанавливается разложение скорости 

элементарного объема, является осью инерции элементарного объема или осью 

инерции его вращения.  При сегодняшней трактовке каждый элементарный объем 

вращается самостоятельно по-своему, так как точка произвольная и никаких трубок 

тока быть не может. Третий неучтенный момент-дискретность среды.  При 

исследовании дискретных сред важным шагом является осреднение. При выводе 

законов сохранения в интегральной форме делается осреднение по пространству, по 

времени осреднения нет, что вносит рассогласование в точность описываемых 

эффектов. С этим связаны эффекты запаздывания, наблюдаемые в некоторых 

экспериментах. Анализ дополнен новыми результатами вычислительных 

экспериментов. 

2. Уравнения 

Представленные в предыдущих работах уравнения движения, энергии и момента 

импульса были получены ранее, но использование условия равновесия сил не требует 

расчета момента. Модифицированные уравнения 

0
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    
  

x y j j I

j

r r
p p x P M

x y x
  

Здесь t – время, xi – координаты,  –плотность, Pij – тензор напряжений, u –  скорость, q 

– тепловой поток, R – газовая постоянная. 

Последнее уравнение служит для определения степени асимметрии тензора 

напряжений. Вопрос возник при написании закона сохранения плотности. Постараемся 

получить его из феноменологических принципов. Модифицированное уравнение для 

плотности было получено из кинетической теории в форме 

0
   

   
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u u
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Из рисунка 1 видно, что  скорость u = ω× (r' – r) есть скорость по отношению к точке M 

для «квазитвердого» движения вокруг оси r без поступательной скорости. Точка М 

сама может быть вовлечена во  вращение вокруг оси инерции. Для элементарного 

объема формула u = ω× (r' – r) означает, что вращение происходит вокруг оси инерции, 

но ось вращения может лежать вне объема. Поэтому получаем для элементарного 

объема 

 

 

Рис. 1 

     
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Степень несимметричности тензора получается из закона сохранения момента (в 

проекциях) ( = ).  Обозначения стандартные 
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0
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Порядок расчета состоит в вычислении степени несимметричности тензора напряжения 

из последних уравнений и подстановки этих значений во все остальные уравнения. 

Уравнение состояния остаются прежними, так как поправки более высоких порядков. 

 Интересно, что некоторые положения теории упругости теряют силу для 

несимметричного тензора напряжений. Например, мы получаем для двух 

противоположных сторон элементарного объема свое направление главных 

напряжений 1

2
tg 2


 

 

xy

x y

, 2

2
tg 2


 

 

xy

x y

 и так как   xy yx  мы получаем разные 

результаты. Таким образом, в каждой точке существует свое главное направление 

напряжений. 

3. Эффекты запаздывания 

В кинетической теории при рассмотрении роли запаздывания следует разобраться с 

вопросом, что меряют в эксперименте: мгновенные значения или осредненные. Если 

эксперимент имеет дело со средними величинами, то важно выбрать время и масштабы 

осреднения. При согласованных временах в этом случае учитывать запаздывание не 

надо, кроме случаев соизмеримости времен релаксации и запаздывания, в противном 

случае надо иметь в виду следующее: 

Длина пробега молекул i-й группы относительно молекул j-й группы равна 

в классической механике 

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

i
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ij j ijn g
.  

Средняя длина пробега молекул 
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Средняя скорость молекул 
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 

k

i j iji j
g n n g

n
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Среднее время 


 
g
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С учетом сказанного уравнение Больцмана можно записать в виде 
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В формулах выбраны средние значения, хотя можно расчет вести для индивидуальных 

скоростей и рассматривать их сумму. Аналогично вычисляются значения со штрихом, 

так как молекула должна долететь за время свободного пробега, причем длина 

свободного пробега и время пробега молекулы до столкновения и после могут быть 

разными  , , ,      также могут отличаться значения падающих и набегающих 

молекул (с индексом один). 
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В общем случае данную формулу нужно выписывать в указанном виде, но при малых 

градиентах для простого газа можно ограничиться одним временем и одной длиной 

пробега. Однако для структурного газа, например, на высотах более 120 км время 

свободного пробега при трех числах Маха, т.е. время запаздывания 10
–8

 c и более, что 

может быть соизмеримым с временем релаксации. На самом деле выражение можно 

упростить, учитывая порядки величин. Тогда 
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Интегралы вычисляются и можно найти соответствующие ядра уравнения Навье-

Стокса. При малых и средних градиентах время свободного пробега одно и длина 

свободного пробега одна для однокомпонентного газа. Значительные отличия будут 

при рассмотрении взаимодействия газов с сильно различающимися свойствами. Так 

для некоторых органических молекул время релаксации и время запаздывания при 

средних длинах свободного пробега соизмеримы (приблизительно 10
–9

 – 10
–8

 c). 

4. Взаимодействие двух однородных потоков 

Простейший пример- взаимодействие двух однородных потоков, движущихся в одном 

направлении с разными скоростями. Классическая формулировка предложена в [15].  
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Рис. 2. Общая картина взаимодействия двух потоков 

Задача автомодельна. Две сингулярности диктуют (граничные условия заданы на 

бесконечности) нестандартный метод решения. Задавались граничные условия в нуле, 

после чего выполнялся итерационный процесс для удовлетворения граничным 

условиям. Задача решалась студентом четвертого курса  А. Г. Гараевым.  
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После обезразмеривания мы имеем 
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Таким образом  
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Здесь  *

1   U , 1 11 2  y U . 

Тогда мы имеем 

2 2 0         

С граничными условиями 

 0 0,    0 1 ,  a     0 0 ,          a . 

Аналитическое решение найти не удалось. 

Численные результаты представлены на рис. 

Заключение 

В работе предлагается уточнение уравнений сплошной среды и уравнения Больцмана с 

учетом дисперсии и запаздывания, а также положения центра инерции элементарного 

объема. Анализируется возможность описания дискретных сред в рамках механики 

сплошной среды. Устанавливается роль дисперсии и запаздывания в физико-

химических процессах релаксационного типа. Приводятся результаты численного 

решения модифицированной задачи взаимодействия двух параллельных потоков, 

двигающихся в одном направлении.  
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Принцип Гаусса и задача о движении саней Чаплыгина  

на наклонной негладкой поверхности 

Р.П. Мошкин 

МГУ им. М.В. Ломоносова,  

Россия, 119991, Москва, Ленинские Горы, д. 1  

Аннотация. Рассмотрим классическое определение принципа Гаусса и его трактовку в работах 

самого К.Ф. Гаусса, Г. Шеффлера, И.И. Рахманинова, М.В. Остроградского, Е.А. Болотова и 

Н.Г. Четаева, а также рассмотрим пример Гиббса. 

Принцип наименьшего принуждения, высказанный К.Ф. Гауссом в 1829 г. [12], является 

наиболее общим вариационным принципом механики, приложимым как к голономным, так и к 

неголономным (линейным и нелинейным) системам. Принцип Гаусса имел широкое развитие. 

Обобщение принципа Гаусса связано с работами Н.Г. Четаева [3–5], относящимися к нелиней-

ным неголономным системам. Вместе с тем это наиболее простой в приложениях принцип. 

Отыскание уравнений движения по принципу наименьшего принуждения Гаусса сводится к 

нахождению экстремума функций второй степени относительно ускорений, названной Гауссом 

принуждением (Zwang) 
2

3

1

.
n

i
i i

i i

X
Z m x

m




 
  

 
  

К.Ф. Гауссу принадлежит только словесная формулировка, а именно: “Движение системы ма-

териальных точек, связанных между собою произвольным образом и подверженным любым 

влияниям, в каждое мгновение происходит в наиболее совершенном, какое только возможно, 

согласии с тем движением, каким обладали бы эти точки, если бы все они стали свободными, 

то есть происходит с наименьшим возможным принуждением, если в качестве меры принужде-

ния, примененного в течение бесконечно малого мгновения, принять сумму произведений масс 

каждой  точки на квадрат величины ее отклонения от того положения, которое она заняла бы, 

если бы была свободной. 

Пусть ,...'',', mmm – массы точек, ,...'',', aaa – соответственно их положения, ,...'',', bbb – ме-

ста, которые заняли бы по истечении некоторого промежутка времени под влиянием действу-

ющих на них сил и скорости, приобретенной ими к началу этого промежутка. 

Приведенный выше принцип гласит, что положения ,...'',', ccc  которые эти точки займут (из 

всех положений, допускаемых наложенными на них связями), таковы что сумма 
2 2 2

' ' ' '' '' '' ...mbc m b c m b c    

является минимумом”. 

Ключевые слова: принцип наименьшего принуждения, цванг, вариационный принцип механики, 

голономные и неголономные системы 

1. Аналитическое выражение принципа Гаусса.  

Различные трактовки принципа Гаусса и этапы его развития 

Аналитическое выражение принципа обычно связывают с именем Г. Шеффлера. В 1958 

г. Г. Шеффлер дал аналитическую запись принципу наименьшего принуждения Гаусса. 

Величина Принуждения вычисляется в координатной форме. Работа Шеффлера [13] 

представляет довольно обстоятельное исследование принципа Гаусса, в котором 

получено известное аналитическое выражение для принуждения в декартовых 

прямоугольных координатах. Ход рассуждения Шеффлера сводится к следующему. 

Пусть точка a в момент t  имеет координаты zyx ,, ; она обладает скоростью, проекции 
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которой равны соответственно производным zyx  ,, от координат по времени, и 

ускорением, проекции которого равны вторым производным zyx  ,,  от координат по 

времени; проекции действующей на точку силы - ZYX ,, . Тогда перемещение точки a  

в направлении координатных осей за промежуток времени dt с точностью до членов 

второго порядка малости будут соответственно 

,
2

1 2dtxdtx   ,
2

1 2dtydty   2

2

1
dtzdtz   . 

Если бы точка a  в момент t  стала свободной, то перемещения ее в направлении 

координатных осей за тот же промежуток представились бы выражениями 

,
2

1 2dt
m

X
dtx  ,

2

1 2dt
m

Y
dty  2

2

1
dt

m

Z
dtz  . 

Поэтому вектор cb отклонения точки от свободного движения имеет проекции 

,
2

1 2dtx
m

X
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Следовательно, принуждение Z , равное по Гауссу сумме 


2

bcm , 

аналитически представляется выражением 
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Отбрасывая множитель 
4

4dt
, не влияющий на экстремум принуждения, Шеффлер под 

принуждением системы понимает величину 
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 . 

Другими словами, если на точку массой im , принадлежащую связанной системе, дей-

ствуют активные силы с проекциями iii ZYX ,, , и начальная скорость в каждой точке 

имеет проекции iii zyx  ,, , то по истечении элемента времени dt точка в свободном дви-

жении придет в положение с координатами (выпишем только одну из них): 

2

2

1
dt

m

X
dtxx

i

i
ii   , 

здесь удерживаются только члены до второго порядка малости. Координата точки по 

истечении того же времени в истинном связанном движении системы записывается в 

виде: 

2

2

1
dtxdtxx iii

  , 
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где iii zyx  ,,  – проекции ускорения точки (выписана лишь одна координата). Вычитани-

ем этих двух выражений Шеффлер получает проекцию “отклонения” точки в истинном 

движении от свободного движения в течение бесконечно малого промежутка времени 

dt . Далее он умножает квадраты этих отклонений на соответствующие массы точек, 

суммирует по точкам и координатам и получает выражение “принуждения”: 

       
2221

iiiiiiiii

i

zmZymYxmX
m

Z 
 . 

 
Рис. 1. Принцип Гаусса; 

2 min i

i

mbc , m – масса точки; ci – возмож-

ные траектории; b – если бы не было связи. 

Рис. 2. Принцип Гаусса  

у Рахманинова 

После этого принцип Гаусса выражается как условие локальной минимальности при-

нуждения по отношению ко всем кинематически возможным движениям (из тех поло-

жений с теми же начальными скоростями). Варьированию подвергаются только 

проекции ускорений точек. Формально окончательная запись принципа Гаусса-

Шеффлера выражает не только условие минимальности принуждения: 

       0
1

 iiiiiiiiiiii

i

zzmZyymYxxmX
m

Z    . 

Впервые принцип Гаусса обобщил на системы с нестационарными связями И.И. Рах-

манинов [9]. Пусть iO  – положение точки im системы в момент времени t , iA  – поло-

жение, которое заняла бы точка m  в момент dtt  под влиянием скорости  , достигну-

той к моменту t , iB  – положение, которое заняла бы точка im в момент dtt  , если бы 

на нее действовала только активная сила 
iF . По действием силы 

iF и скорости 

i свободная точка im в момент времени dtt  была бы в положении iC . Так как точка 

im  не свободна , то в действительном движении в момент dtt  она будет в положении 

iF  (см. рис. 2). 

Пусть ii ED  виртуальное перемещение, которое Рахманинов определяет в духе Остро-

градского как такое, которое в соединении с действительным дает перемещение, до-

пускаемое связями. Последнее Рахманинов называет возможным. Неравенству 

 
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
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выражающему принцип Гаусса: в любой момент движения отклонение действительного дви-

жения от свободного меньше, чем для кинематически возможного движения, Рахманинов 

дает энергетическое истолкование, представляя принуждение системы по Гауссу 




n

i

iii CEm
1

2

 

в виде 




n

i

ii pP
dt

1

2

2
, 

где iP  – величина потерянной силы, а ip - величина перемещения, которое совершила бы 

потерянная сила, если бы точка im системы была свободной, iii CEp  . Следовательно, 




n

i

ii pP
1

 

есть работа, которую произвели бы потерянные силы, если бы все материальные точки 

были свободны. Неравенство (1), таким образом, выражает предложение: ”При 

движении системы материальных точек работа, которую потерянные силы могли бы 

произвести, если бы материальные точки были совершенно свободны, имеет 

наименьшую величину; приращение этой работы от всего перемещения, которое, 

соединяясь с перемещением действительным, давало бы перемещение возможное, 

будет положительным”[9, с. 11]. 

Далее, в работе Рахманинова следует вывод уравнений движения из начала наимень-

шей потерянной работы. Наконец, устанавливается связь между принципом 

наименьшей потерянной работы и принципом виртуальных перемещений в соединении 

с принципом Даламбера для систем с нестационарными связями. 

Н.Е. Жуковский высоко оценивал труд своего воспитанника Е.А. Болотова. Самой 

значительной работой Е.А. Болотова по аналитической механике является его 

исследование  наиболее общего вариационного принципа – принципа наименьшего 

принуждения Гаусса. Е.А. Болотову принадлежит обобщение принципа наименьшего 

принуждения, которое легло в основу дальнейших исследований этого принципа 

учеными Казанской школы механики (Н.Г. Четаев). Жуковский расценивал работу 

Болотова «О принципе Гаусса» как докторскую диссертацию. Нелинейные 

неголономные системы работа Болотова не затрагивала. 

Е.А. Болотов дал обобщение принципа Гаусса, соответствующее новому взгляду на 

освобождение материальных систем. Если Гаусс рассматривал полное освобождение 

системы от всех связей, то Болотов – частичное, состоящее в освобождении системы от 

всех неудерживающих и части удерживающих связей. 

Мысль сравнивать отклонения действительного и возможного движения системы мате-

риальных точек не со свободным движением, а с движением при освобождении систе-

мы от части связей, получила у Болотова аналитическое выражение. Причем он не 

ограничился только голономными системами, но рассматривал и линейные 

неголономные системы. Обобщенный принцип Гаусса в формулировке Болотова 

состоит в том, что “отклонение действительного движения системы от действительного 

же ее движения, получающегося при отбрасывании всех неудерживающих связей и 

произвольного числа удерживающих, меньше, чем отклонение любого из возможных 

движений”[6, с.99]. В обобщенном принципе Болотов заменяет принуждение суммой 
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которая принимается за меру отклонения k-ого движения от l-ого, где kzkykx jjj ,,  и, со-

ответственно, lzlylx jjj ,,  – проекции ускорения точки im  системы на оси координат  

в k-ом и l-ом движениях в момент t , координаты же и скорости точек системы в этих 

двух движениях в момент t  одинаковы. 

Если под l-тым движением понимать движение системы, освобожденной от связей под 

действием внешних сил, а под k-тым – одно из возможных для системы движении, то 

выражение (2) совпадает с выражением для принуждения принципа Гаусса в его обыч-

ной форме. 

Основой доказательства обобщенного принципа наименьшего принуждения у Болотова 

служат принцип виртуальных перемещений в соединении с принципом Даламбера 

(принцип Даламбера–Лагранжа) и следующие два положения: 

виртуальные перемещения системы при данных связях находятся среди виртуальных 

перемещении системы, освобожденной от всех неудерживающих и произвольного 

числа удерживающих связей; 

существует виртуальное перемещение, пропорциональное разностям ускорений в 

возможном и действительном движениях. 

Эти два положения, сформулированные Болотовым, легли в основу последующих 

обобщений принципа Гаусса. 

Обобщенный принцип Гаусса Болотов использовал для решения сложного вопроса об 

условиях ослабления неудерживающих связей. Болотов также доказал справедливость 

обобщенного принципа Гаусса в теории удара, происходящего или от действия внеш-

них ударных импульсов, или от внезапного наложения новых связей, а также в общем – 

случае совместного действия этих двух факторов, – во всех случаях ограничиваясь го-

лономными и линейными неголономными системами. Нелинейные неголономные 

системы работа Болотова не затрагивала. 

Следующий этап в обобщении принципа Гаусса связан с работами Н.Г. Четаева, отно-

сящимися к нелинейным неголономным системам [4]. Для нелинейных неголономных 

систем, как показал Аппель и Делассю, принцип виртуальных перемещений в 

соединении с принципом Даламбера и принцип Гаусса несовместимы. При этом 

наиболее общим является принцип Гаусса, справедливый для нелинейных 

неголономных систем. Суть вопроса, как заметил Н.Г. Четаев, состоит в самом 

определении понятия виртуальных перемещений, которое совпадает с определением 

виртуальных перемещений для голономных и неголономных систем и при которых 

принципы Даламбера-Лагранжа и Гаусса оказываются совместимыми. 

Четаев также развил новую точку зрения на освобождение материальных систем. Гаусс 

рассматривал полное освобождение материальной системы, Болотов – освобождение 

системы от части связей, Четаев же рассматривал так называемое параметрическое 

освобождение материальной системы, т.е. всякое преобразование, подчиняющееся 

определенному математическому алгоритму, а именно такое, что если в 

действительном движении проекции скоростей точек системы задаются формулами 

 SSii qqtax  ,, , 

 SSii qqtby  ,, , 
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 SSii qqtcz  ,, , 

то в освобожденном движении – формулами 

   rrSSSii qtqqtax   ,,,,,  , 

   rrSSSii qtqqtby   ,,,,,  , 

   rrSSSii qtqqtcz   ,,,,,  , 

где iii  ,,  – произвольные функции указанных переменных, причем число новых 

переменных равно числу новых свобод, приобретенных системой. 

Н.Г. Четаев доказал, что при данном им аксиоматическом определении виртуальных 

перемещений и освобождения и для нелинейных неголономных систем отклонение 

действительного движения системы от действительного движения освобожденной си-

стемы меньше отклонения любого из возможных движений от того же освобожденного 

движения. 

При параметрическом освобождении по Четаеву геометрический смысл обобщенных 

координат Sq  при освобождении может меняться. 

Трактовка Четаева относится к системам с голономными и линейными неголономными 

(идеальными) связями. 

Для действительного и варьированного по Гауссу за время dt движения системы он 

строит элементарный цикл, состоящий из прямого движения в поле действующих сил 

iii ZYX ,,  и обратного движения в поле сил, достаточных для создания действительного 

движения, если бы система была свободной, т.е. в поле сил с проекциями 

ii xm  ,      ii ym  ,      ii zm   

и доказывает, используя принцип Гаусса в обычной форме, что работа на элементарном 

цикле действительного движения максимальна. 

Исследование принципа Гаусса в работах Четаева относится к системам с идеальными 

связями. 

2. Неудерживающие связи в случае саней Чаплыгина  

на наклонной вогнуто-выпуклой негладкой поверхности. Пример Гиббса 

Пусть твердое тело в форме пластинки опирается на наклонную плоскость острым по-

лукруговым лезвием, жестко соединенным с пластинкой. Предполагается, что точка 

опоры лезвия может свободно двигаться по плоскости вдоль касательной к лезвию, но 

не может передвигаться в перпендикулярном направлении; проекция центра тяжести 

плоскости пусть совпадает с точкой опоры S  лезвия. Найдем уравнения движения 

построенной механической системы, используя обобщенную функцию Лагранжа, 

линейные дифференциальные формы, структурные коэффициенты, замкнутую систему 

инфинитезимальных линейных операторов и обобщенную непотенциальную силу. 

Рассмотрен основной пример – сани Чаплыгина на наклонной плоскости [14]. Исполь-

зуются обобщенные уравнения Пуанкаре и Четаева для неголономных систем в случаях 

:0, *  s

m

rs Qconstc  

,*
**

LX
L

c
L

dt

d
s

m

r

m

rs

s















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,,...,1, lsr           km ,...,1 , 

где *L  – обобщенная функция Лагранжа, s  – линейные дифференциальные формы, m

rsc  

- структурные коэффициенты, sX  – замкнутая система инфинитезимальных линейных 

операторов, *

sQ  – обобщенная непотенциальная сила. Находится общее решение [1]: 

,sin
sin

1 





g
C          ,2 const         ,0 t          constC  , 

),2cos2(cos
4

sin
)sin(sin 0200 









gC
xx  

.
2

sin
)2sin2(sin

4

sin
)cos(cos 0200 t

ggC
yy












  

Как пример использования новой формы уравнений Пуанкаре рассмотрим теперь каче-

ние саней Чаплыгина по наклонной вогнуто-выпуклой негладкой поверхности (рис. 5). 

Допускается сложное движение саней Чаплыгина с неудерживающими связями.  Чтобы 

разобраться в сложном движении плоского твердого тела с возможными 

неудерживающими связями, обратимся к примеру Гиббса. 

Пусть дана поверхность, которая проходит через начало координат перпендикулярно к 

оси абсцисс и обращена вогнутой стороной в положительную сторону оси абсцисс. 

Движущаяся материальная точка массы m  в момент времени 0t проходит начало 

координат со скоростью  . Условие, которому удовлетворяет материальная точка 

в момент 0t , состоит в том, что она может покидать поверхность в положительном 

направлении оси абсцисс. Возможные перемещения, допускаемые этой связью, таковы, 

что 0x , а y и z произвольны (см. рис. 3). 

Из сочетания принципа виртуальных перемещений с принципом Даламбера 

       0        X mx x Y my y Z mz z   (3) 

следует 

 Yym  ,         Zzm  ,            
m

X
x   (4) 

Учитывая ограничение, которое накладывает на проекцию ускорения связь 

R
x

2
 , 

где R  – радиус кривизны сечения поверхности плоскостью, проходящей через скорость 

  и ось абсцисс, Больцман заключает, что соотношение (4), полученное из (3), опреде-

ляет ускорение, если 

Rm

X 2
 , 

и не дает ответа на вопрос, отделяется ли точка от поверхности для 

R

m
X

2
 . 
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2 mini

i

mbc  , m – масса точек 

Рис. 3. Неудерживающие связи в случае саней Чаплыгина на наклонной  

вогнуто-выпуклой негладкой поверхности. 

Приходится рассматривать движение, которое было бы в последующий момент време-

ни. Если бы точка сошла с поверхности, то в свободном движении ее ускорение x  в 

направлении оси абсцисс было бы равно 
m

X
, т.е. меньше 

R

2
, так что точка должна бы 

опять оказаться на поверхности. Следовательно, для значений  
R

m
X

2
  точка не 

может сойти с поверхности. С помощью принципа наименьшего принуждения этот 

факт усматривается непосредственно. Так как вариации y и z произвольны, то 

соотношение 

      0        X mx x Y my y Z mz z  

приводится к виду 

   0 xXxm   .   (5) 

Для x  имеем следующие условия: если 
R

x
2

 , то 0x , а если 
R

x
2

 , то x  

произвольно. Тогда принцип наименьшего принуждения, приведенный к соотношению 

(5), дает следующее: 

Пусть 0X  или 
R

m
X

2

0


 . Тогда в соотношении (5) первый сомножитель положи-

телен 

z,  y 
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0 Xxm  , 

так как 

R
x

2
 . 

Случай 
R

x
2

  исключается, так как при этом условии x , а следовательно, и левая 

часть соотношения (5) могут быть отрицательными. Значит, 
R

x
2

 , т.е. материальная 

точка остается на поверхности. 

Rm

X 2
 . Если  

R
x

2
 , то   0 Xxm  . Так как в этом случае  x  может иметь только 

положительные значения, то соотношение (4) не выполняется. Если 
R

x
2

 , то x  

может иметь положительные и отрицательные значения, и соотношение (5) только 

тогда имеет место, если 

Xxm  , 
m

X
x  . 

Следовательно, точка отрывается от поверхности и движется как свободная. 

3.   
Rm

X 2
  . Для 

R
x

2
  соотношение (5) не выполняется: вариация x может быть 

отрицательной, а 0 Xxm  . Следовательно, 
R

x
2

 . Тогда выполняется соотношение 

Xxm  , т.е. точка движется как свободная, причем траектория ее соприкасается с по-

верхностью в начале координат. Итак, если проекция X всех действующих на точку 

сил возрастает непрерывно от значений, меньших 
R

m 2
 к большим, то точка, движуща-

яся по поверхности, сходит с нее при значениях 
R

m
X

2
  с ускорением 

m

X
. 

На основании рассмотренного примера Гиббс, а затем Больцман заключают, что для 

систем с неудерживающими связями принцип Гаусса шире принципа виртуальных пе-

ремещений в соединении с принципом Даламбера [10]. Это утверждение Гиббса, 

названное Больцманом теоремой Гиббса, нельзя считать справедливым. 

Принцип виртуальных перемещений в соединении с принципом Даламбера в той фор-

ме, которую придал Остроградский (Гиббс и Больцман, очевидно, не знали работ 

Остроградского), в такой же мере позволяет решить вопрос о движении при неудержи-

вающих связях, как и принцип Гаусса, а в данном примере даже гораздо компактнее. 

Принцип виртуальных перемещений в соединении с принципом Даламбера в форме 

Остроградского записывается в виде 

       
 


n

i

n

iiiiiiiiiiii LzzmZyymYxxmX
1 1

0


  , 

где   – множители связей, а 
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  0
1




n

i

iiiiii zcybxaL           m,...,2,1  

есть условия, налагаемые в общем случае неудерживающими связями на виртуальные 

перемещения точек системы. Остроградский показал, что множители связей   в 

случае неудерживающих связей неотрицательны, и дал изящный способ для их 

определения. 

Если все множители связей во все время движения неотрицательны, то связи не ослаблены, 

если же в некоторый момент времени t0 множитель связи  обращается в нуль, а затем ста-

новится отрицательным, то начиная с момента  t0 система сходит с соответствующей связи. 

Применим алгоритм Остроградского к примеру Гиббса. Движение частицы массы 

m подчинено неудерживающей связи 

0),,( zyxf . 

Выражение для множителя связи  возьмем в форме Г.К. Суслова [11, с. 191–194]. 

2

2

gradf

fmDFgradf 
 , 

где fD2
 – совокупность членов с частными производными второго порядка в выраже-

нии для 
2

2

dt

fd
 : 

fDgradf
dt

fd
22

2

  ;       zyx  ,, . 

Если в данный момент 0t точка находится на поверхности, то 

0
2

2


dt

fd
 

и, следовательно, 

 gradffD2 . 

Тогда   представится в виде 

2
gradf

mgradfFgradf 



 . 

Если ось x направить по нормали к поверхности, то 

gradf

R

m
X

2




 . 

Теперь легко определить, при каких значениях X точка отделяется от поверхности и 

движется как свободная. Пусть проекция силы на нормаль X непрерывно возрастает от 

значений, меньших 
R

m 2
, к значениям, большим 

R

m 2
. 

В данный момент 0t  точка находится на поверхности и имеет скорость  . Если, 

R

m
X

2
 , 
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то 0 , и точка остается на поверхности. Если  
R

m
X

2
 , то 0 , но в следующий 

момент 

R

m
X

2
 и 0 . 

Следовательно, при значении 

R

m
X

2
  

точка сходит с поверхности и движется как свободная. 

Принцип Гаусса у Бухгольца 

Принцип Гаусса – локально-вариационный принцип, а не интегрально вариационный, 

так как  суммирование идет поточечное. В принципе Гаусса у Бухгольца 


2

1

2

t

t

S TdtA  –  изоэнергетический параметр, 

где tdyy   - полная изохронная вариация (см. рис. 4) 

 

Рис. 4. Принцип Гаусса у Бухгольца 

Пример М.В. Остроградского 

 

Рис. 5. Пример М.В. Остроградского 
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О гипотетической модели развития Человечества  

в астрономическом сценарии эволюции Земли 

Эмилио Спедикато  

Университет Бергамо 

Пьяцца Росате, 9, Бергамо, 24100, Италия 

Посвящается Владимиру Рубцову –  

великому ученому, исследователю падения  

Тунгусского метеорита в 1908 г.,  

чья преждевременная кончина не позволила ему 

приехать по приглашению в университет Бергамо. 

Аннотация. В Библии есть два персонажа, чье происхождение является загадкой, как и их связь 

с праотцами: Иов и Мелхиседек. В данной работе мы утверждаем, что Иов в пожилом возрасте 

известен как Мелхиседек. Он стал царем справедливости после того, как вышел из многих 

трудных ситуаций, которые в нашем понимании имели астрономическое происхождение. Это 

астрономическое событие – супервзрыв Тунгуски, когда взорвался объект, который в книге 

Иова называется бегемотом, а у греков – тифоном. Мы датируем это событие 2033 г. до н.э. 

Этим же событием мы объясняем переселение Фарры и Авраама из Ура в Ханаан (мы считаем, 

что оба этих города расположены в Кашмире). Затем мы рассматриваем переселение Авраама 

(Abraham) в Ханаан (как и Камаль Салиби, мы считаем, что он был расположен на юге Аравий-

ского полуострова), когда по пути он встретил Авраама. Наконец, в сценарии с Тифоном мы 

объясняем, почему работа над Вавилонской башней закончилась так странно. 

Ключевые слова: супервзрыв, астрономический сценарий, эволюция Земли. 

1. Отождествление Тифона с Бегемотом и Левиафаном 

Книга Иова – одна из самых интересных и таинственных книг Ветхого Завета. 

Датирование этой книги широко обсуждалось. Одни называли ее очень древней, другие 

– новой, одни – фальсификацией, другие (например, Талмуд – см. Cohen (1935)) – 

иносказанием. Обсуждение до Кумранских рукописей см. в работе Garuti (2004). 

В данной работе мы полагаем, что книга Иова подлинная, а описываемые события да-

тируем 2033 годом до н.э. В Талмуде утверждается, что Иов встретил Авраама и что он 

прожил 200 лет, что близко к продолжительности жизни Авраама (175 лет), см. Книгу 

Бытия. То, что эти два великих человека жили в одно и то же время, утверждается, 

например, в «Смерти Авраама» - еврейско-христианский апокриф, см. Rabbah Genesi 

57-14, Città Nuova, 1995. 

Иов, главное действующее лицо этой книги, не иудей, а человек, верующий в единого 

Бога, то есть он был монотеистом до Моисея, если мы не ошибаемся в своей датировке 

этих событий 2000 годом до н.э. В книге описывается трудный период жизни Иова, 

который, согласно Талмуду, продолжался 12 месяцев, см. Cohen (1935). Он потерял 

свое имущество, сыновей, тяжело заболел, но поборол болезнь, вновь разбогател и 

приобрел власть. В его разговоре с Богом упоминаются два чудовищных животных – 

Бегемот и Левиафан. Потеря скота, рабов, сыновей – всё это происходит во время 

катастрофических событий. 

Описывая основные события из Книги Иова, автор цитирует следующее издание этой 

книги в собственном переводе на английский язык: Book of Job, edition La Bibbia inter-

confessionale, Editrice Elledici, 2000. Конечно, существуют и другие варианты перевода, 
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так как проблема корректного перевода исходных библейских текстов до сих пор не 

решена. 

В земле Уц жил человек по имени Иов. Он был честным и справедливым, он не делал 

зла, потому что чтил Бога… он был самым знатным из всех живуших к востоку от 

Израиля… молния убила его скот (7000 овец и множество верблюдов, ослиц…)… его 

сыновья и дочери пировали в доме старшего сына, когда внезапно из пустыни подул 

сильный ветер. Он разрушил дом, а все, кто был внутри, погибли… будь проклят тот 

день, в который я родился… для меня не будет больше спокойствия и отдыха, а 

только мучения… жизнь человека на земле – это мучение… я покрыт паразитами и 

струпьями, моя кожа покрыта язвами… бедняки нападают на меня, заставляя меня 

убегать от них, замышляя убить меня… 

 

В процитированном тексте Бегемот и Левиафан переводятся соответственно как 

«бегемот» и «крокодил», но мы используем оригинальные термины. Между Иовом и 

Богом происходит длинный диалог – один из величайших памятников мировой 

литературы (его происхождение мы не обсуждаем). Приведем лишь его часть. 

 

Я создал Бегемота, как я создал тебя; он ест траву, как вол. Посмотри, как сильны 

его мускулы! Его хвост прямой, как кедр… только я, его создатель, могу поразить его 

своим мечом… он питается травой, растущей в горах… никто не может 

приблизиться к нему или проткнуть его нос железом, или воткнуть в его нос крюк, 

чтобы приручить его! 

Можешь ли ты поймать Левиафана на приманку или поймать его за язык и посадить 

на веревку?... могут ли рыбаки принести его на базар и могут ли торговцы разрезать 

его на куски?... ни одно животное на земле не сравнится с ним, ничем не напугать его, 

он главенствует над всеми дикими животными, он царь животных. 
 

Затем Господь внял молитвам Иова, избавил его от страданий и дал ему вдвое больше 

того, что он имел и потерял ранее… Он благословил Иова в его последние годы. Иов 

получил 14 тысяч овец, 6 тысяч верблюдов, тысячу пар волов и тысячу ослиц. Более 

того, у него родилось еще семь детей и 3 дочери (ничего не говорится о его жене или 

женах). Он прожил еще 140 лет, был счастлив в старости. 
 

В литературе существует несколько толкований слова «Бегемот», например: загадочное 

животное, огромный слон или бегемот, динозавр или даже символическое обозначение 

превосходства Бога. Варух пишет, что плоть Бегемота и Левиафана, убитых Богом, 

съедят справедливые люди на пиршестве, когда наступит конец света. 

Левиафана называют гигантским крокодилом (возможно, это имеет связь с египетским 

богом Себеком или шумерской богиней Тиамат, которую уничтожил бог Мардук. 

Информацию о Тиамат и других древних мифах в рамках нового астрономического 

сценария эволюции Солнечной системы см. в работе Spedicato (2016a)). 
 

Мы считаем (вероятно, впервые в мире), что Бегемот – это малое небесное тело 

неизвестного размера. Это тело вошло в атмосферу Земли (возможно, перед этим 

произошли еще какие-то события, связанные со взаимодействием Земли и этого тела, 

но мы пока не можем их объяснить) и взорвалось (событие масштаба супер Тунгуски) 

недалеко от той местности, где жил Иов. Мы считаем, что небесное тело, которое 

в Библии называют Бегемотом, – это Тифон из греческой мифологии и, возможно, 

Апофис из египетской мифологии. Тифон ассоциировался с землетрясениями и 
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вулканическими извержениями. Соответствующая история слишком сложная, чтобы 

приводить ее в данной работе. Вероятно, она связана с его столкновением с Юпитером 

в 6910 г. до н.э. (см. Spedicato (2016a)). Аналогичным телом (в рамках нашего 

толкования) был греческий Фаэтон, который взорвался над рекой Айдер в северной 

Гемрании, в мифе – Эридан. Этот взрыв (см. Spedicato (2014)) произошел в 1447 г. до 

н.э. и объясняет девкалионов потоп и частично Исход. Возможно, Бегемот был не 

одним телом, а состоял из нескольких частей, которые образовались при разрушении 

некого тела, сопровождавшемся выбросом газов, пыли и вещества… 
 

В Книге Иова не упоминается никаких взрывов, что можно объяснить несколькими 

версиями. Простейшая состоит в том, что Иов находился в неком изолированном месте, 

которое не затрагивали землетрясения, которые в те времена не были редкостью, но 

редко упоминались в Библии. Предварительно необходимо задать вопрос: где 

взорвался Тифон. В греческой мифологии указывается несколько мест, например, Ли-

ван, в частности, Аэтна (Aetna). Там считается, что осколки Тифона вызывают 

извержения вулкана. Однако чаще всего упоминается восточная часть дельты Нила 

вблизи Средиземноморского побережья. Утверждается, что на месте взрыва Тифона 

был построен укрепленный город Аварис, столица Древнего Египта при гиксосах, а 

позднее рядом с ним Рамзес II построил Пер-Рамсес. То, что взрыв Тифона связывается 

сразу с несколькими географическими положениями, может объясняться тем, что Ти-

фон разрушился на несколько частей, каждая из которых упала или взорвалась далеко 

от другой. Такое произошло недавно с кометой Шумейкеров-Леви, которая упала на 

Юпитер, предварительно рассыпавшись на части (около двадцати фрагментов). 

Отметим, что когда взрыв происходит в атмосфере, это не оставляет практически 

никаких следов на почве (см. книгу Рубцова (2009) о взрыве Тунгуски). Ливан, север 

дельты Нила и Аэтна лежат приблизительно на линии, проходящей с востока на запад и 

описывающей траекторию объекта (неизвестно, двигался ли он с запада на восток или с 

востока на запад). Перед взрывом Тифон и его фрагменты могли пройти над Вавилоном 

(ниже обсуждаются возможные последствия этого события, связанные с Вавилонской 

башней). Отметим, что (Boslogh et al (2008)) события масштаба Тунгуски и супер 

Тунгуски – это явления, которые встречаются чаще столкновений с телами и приводят 

к более серьезным последствиям. 

Рассмотрим взрыв Тифона над дельтой Нила. Важнейшие события, которым мы пока 

не можем дать количественную оценку: 

- мощное землетрясение, в результате которого разрушились здания в радиусе сотен км 

от взрыва. Во время взрыва, который мы датируем 2033 г. до н.э., пирамиды Гизы уже 

были построены. Пирамиды, вероятно, пострадали очень мало (возможно, был 

уничтожен только верхний слой камня), в то же время Сфинкс мог быть значительно 

поврежден. По мнению Temple (2009), у Сфинкса было тело шакала и голова бога 

Анубиса. Так как голова Анубиса имеет вытянутую форму и большие уши, то существовал 

большой риск повреждения именно этой части Сфинкса. Тело было также повреждено. 

Посередине появилась большая трещина, которую около 1930 г. зацементировал Селим 

Хасан. Это закрыло доступ в помещение под Сфинксом, которое, согласно 

археологическим исследованиям, покрыто иероглифами. Если трагические события во 

времена Иова связаны со взрывом Тифона, смерть его детей в разрушившемся здании 

можно связать с землетрясением и последовавшим за ним сильным ветром. 

- сильный горячий ветер, скорость и температура которого снижалась при удалении от 

места взрыва. Начальная температура могла достигать 1000ºС. При этом в радиусе до 
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1000 км могли начаться пожары. Большую часть территории вокруг места взрыва 

составляли моря и пустыни. В Египте основная растительность сосредоточена вокруг 

Нила и в его дельте, что исключило возможность обширных пожаров. 

Крупномасштабные пожары, занимающие миллионы квадратных километров (см. 

Spedicato (2015)), затронули Мексику, Гватемалу и южную часть нынешних США, 

когда произошел взрыв масштаба супер Тунгуски над Великими озерами, затем 

покрывшимися слоем льда толщиной 3-4 км. Раскаленный ветер после взрыва Тифона 

мог уничтожить весь скот Иова и его охранников, а его свечение люди могли принять 

за молнию. Вероятно, Иов жил в то время в Палестине (несколько сотен км от места 

взрыва). Он выжил во время взрыва (см. ниже). Дом, под руинами которого погибли 

его дети, был разрушен в результате землетрясения и ветра. Отметим, что ветер мог 

принести пыль от взорвавшегося тела, а она, в свою очередь, могла содержать 

радиоактивное вещество. Это могло послужить причиной язв на теле, о которых 

говорил Иов. 

- если взрыв произошел вблизи того места, где позднее построили Аварис, недалеко от 

Средиземноморского побережья, взрывная волна могла оттолкнуть воды Средиземного 

моря на север. Это бы вызвало наводнение на северном побережье моря (потоп 

Овигия), а затем обратное цунами в южной части, включая Палестину. Для 

наблюдателя, находящегося на возвышенности, фронт цунами выглядел бы как стена 

воды с практически вертикальным фронтом, которая быстро двигалась и имела форму 

гигантской змеи. Отсюда могла возникнуть идея о гигантском водяном монстре 

Левиафане. В Талмуде написано, что Левиафан был уничтожен Богом, а его части 

съели дикари. Разрушение на части – это разрушение фронта цунами, когда оно 

достигло побережья. Отметим, что цунами могло проникнуть достаточно далеко вглубь 

побережья, если его уровень был достаточно низким – вероятно, на сотню километров. 

Дикарями могли называться древние прибрежные племена. В «Перипле Эритрейского 

моря» эти люди описаны как живущие на берегу Индийского океана. Они не носили 

никакой одежды, питались моллюсками и выброшенной на берег рыбой, иногда 

выращивали коров и кормили их рыбой, их дома были сделаны из китовых костей. Они 

занимались торговлей, продавали собранный на берегу «серый янтарь» (изготовленный 

из кашалотов), кораллы, жемчуг… Возможно, что за две тысячи лет до Перипла, во 

времена Иова, эти люди жили и на берегу Средиземного моря. Они могли предсказать 

приближение цунами по отходящим прибрежным водам. Тогда они бы спаслись на 

возвышенности, а потом бы вернулись за рыбой и другими морепродуктами, 

принесенными гигантской волной. Такое поведение аборигенов можно было наблюдать 

во время недавнего бенгальского цунами, во время которого погибли около 

полумиллиона человек, но среди них не было ни одного аборигена Андаманских 

островов. Они спаслись на возвышенности (высота около 800 м над уровнем моря), 

покрытой джунглями, кишащими пиявками. 108 пиявок найдено на теле Генриха 

Харрера (наставника Далай Ламы во время его семилетнего пребывания на Тибете), 

который первым покорил высочайший пик Андаманских островов. Фронт цунами 

(который Иов видел сам или ему рассказали о нем выжившие) выглядел как гигантская 

змея. Цунами достигло побережья и его «куски» съели прибрежные племена. 

Цунами, которое мы связываем с Тифоном, – это древнейший потоп, который 

упоминается у греков, за исключением безымянного потопа, связанного с разрушением 

Атлантиды. Это потоп Овигия, который Solinus (см. список литературы) датирует 600 

годами до девкалионова потопа и который связан с тьмой, продолжавшейся несколько 

дней вследствие, возможно, извержения Аэтны. Девкалионов потоп (см. Spedicato 
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(2014)) произошел во времена Исхода, который датируется по Библейской хронологии 

1447 годом до н.э., около 480 лет до начала строительства храма Соломона. Тогда 

потоп Овигия должен датироваться 2050 г. до н.э. (ниже мы приводим точную дату 

2033 г. до н.э.). Опустившаяся на землю тьма была частично связана со взрывом, 

частично с вызванными им вулканическими извержениями в радиусе тысячи км от 

взрыва. 

Согласно греческим текстам, между потопами Овигия и Девкалиона произошел потоп 

Инаха (за семь поколений до девкалионова потопа, около 1630 г. до н.э., вероятно, во 

времена извержений Тиры или Санторини с обрушением кратера). По греческой 

хронологии после девкалионова потопа произошел потоп Дардана (возможно, около 8 

в. до н.э., период переселений). Этрусская миграция из Лидии в Тоскану описывалась 

Геродотом и недавно подтверждена генетическим анализом (см. Ghirotto et al (2013)). 

Другое подтверждение потопа Овигия в 2050 г. можно найти у Кенсорина (см. Vieni 

(2011)), который утверждает, что потоп Овигия произошел за 400 лет до потопа Инаха. 

Это согласуется с предыдущими оценками. 

Варро в ныне утерянной «De natura deorum» (которую цитирует Августин) утверждает, 

что во времена потопа Овигия поменялись цвет и форма планеты Венера. Это явление 

сейчас объяснить невозможно. Radlof (1823, 2006) на основе «De civitate Dei» 

Августина отмечает, что в то же время изменилась и орбита Венеры (здесь он цитирует 

Адрастуса из Кизика и Диона из Неаполя).  Более того, в то время резко похолодало и 

пошел снег. Этот эффект, конечно, можно связать с большим количеством пыли в 

атмосфере (вспомним 1840 г. без лета, когда на Яве в 1815 г. извергался вулкан 

Тамбора). 

В результате взрыва Тифона Греция сильно пострадала от цунами, пожаров и пыли. 

Вероятно, большинство жителей погибли, а численность населения восстановилась 

лишь через несколько поколений. Утверждается, что Делос стал тем местом, где стало 

вновь светло после тех событий. Вероятно, это связано с тем, что люди спаслись 

в священных пещерах (см. Исидор Севильский (2006)). Также утверждается, что город 

Яффа, один из старейших городов Палестины, в результате этих событий уцелел. 

В следующем разделе мы рассмотрим его связь с Иовом. То, что Яффа уцелел, может 

объясняться тем, что цунами не достигло города, построенного на вершине небольшого 

холма и укрепленного типичными для того времени мощными высокими стенами. 

Интересный вопрос – кто такой Овигий. Овигий (греч. Ωγυγος), по-видимому, 

обозначает «старый», но это слово может иметь негреческое происхождение. Огиа 

появляется в утерянной книге «Огиа, который победил дракона после Потопа» (Book of 

Ogia who defeated the dragon after the Flood) (см. Sacchi (1971)). Имя Огиа может быть 

связано с Овигием или Огом – рефаимом из Ханаана, который появляется во 

Второзаконии. Это имя также может относиться к гиганту из Книги Бытия – Нимруду, 

великому охотнику, ставшему царем Вавилона и других территорий. Нимруд может 

быть библейским именем Нина или царем, которого аккадские скрижали называют 

Саргоном Великим, чью великую столицу Аккад (Агаде) еще не обнаружили. 

Возможно, Овигий по многочисленным ссылкам. В греческих источниках упоминаются 

как минимум три Овигия: Титан, побежденный Зевсом, отец Элевсина, основатель Фив 

в Греции во времена потопа до Девкалиона, который вполне мог последовать за 

взрывом Тифона. Мы предполагаем, что Огиа мог быть Овигием, Нином или 

Нимрудом и что дракон в «Книге Огиа» был Бегемотом-Левиафаном. Империя Овигия 

или Саргона Великого включала в себя территории, которые не были серьезно 

повреждены взрывом, поэтому и царь, и империя, возможно, выжили в катастрофе. 
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В данной работе мы не рассматриваем другие последствия взрыва Тифона в 

Средиземном море, которые представляют интерес с археологический точки зрения 

(включая переселение племени венетов из Центральной Европы). Безусловно, самой 

пострадавшей территорией была дельта Нила. Эта местность была практически 

полностью стерта с лица земли. Волны цунами достигли, вероятно, южной части 

Гелиополя и Мемфиса – главных городов того времени, построенных в месте разлива 

Нила. Потоп Овигия лучше всего объясняет загадочное исчезновение Древней 

Македонии. Это государство после Первого переходного периода сменилось Средним 

Царством, которое многими считается величайшим периодом развития Египта, когда 

численность населения восстановилась и последствия катастрофы были забыты. 

Последствия взрыва Тифона были серьезными и вдали от места взрыва. Позднее мы 

приведем логичное объяснение появления множества языков при строительстве 

Вавилонской башни. Также кратко опишем последствия взрыва Тифона для 

цивилизации в долине Инда и Сарасвати, где вызванное взрывом цунами осушило 

русло реки Сарасвати. 

2. Кто такой Иов? 

Естественным образом возникают вопросы, связанные с Иовом. Разные ученые дают 

разные ответы на эти вопросы. Мы представляем свою версию того, кем был Иов. Эта 

версия новая с географической и хронологической точек зрения. Факты о Бегемоте и 

Левиафане из книги Иова мы объясняем взрывом Тифона и его последствиями. 

Начнем с родины Иова. Отметим, что во время рассматриваемых здесь событий Иову 

было около 60 лет. После этого он прожил еще 140 лет (около четырех поколений, см. 

Ceronetti (1997)). По версии Библии, Иов родился в земле Уц. То же указывается и в 

«Септуагинте». В масоретских текстах Иов происходит из земли Гус. По нашему 

мнению, оба названия указывают на турецкий народ, который раньше был разделен на 

12 племен. Турки называли себя «гуз» (см. Koestler (1980)). Имеются свидетельства 

того, что Евангельские волхвы пришли из священной для турок области, например, 

Алтайских гор между Сибирью и Монголией (см. Spedicato (2015)). Три царя (согласно 

апокрифам) отправились поклониться Христу в сопровождении 12 волхвов и 12000 

человек, вероятно, вождей турецких кланов. 

Турецкие слова, в особенности фамилии, часто включают в себя слово «гуз». 

В качестве примера приведем фамилию геоморфолога Эрола Оргуза (Eröl Orghuz), ко-

торый по спутниковой съемке определил, что пустыня Такла-Макан на севере от Ти-

бетского нагорья, площадь которой превышает площадь Франции, раньше была запол-

нена водой, вероятно, даже пресной. Вода поступала туда с Тибетского нагорья, 

Памира, Тянь-Шаня и других окружающих гор, когда таяли ледники в конце 

Ледникового периода (около 9450 г. до н.э.) – время исчезновения Атлантиды. Часть 

талой воды не попала в океаны, так как из глубинных районов Азии нет выхода в океан. 

Эти районы в шумерских записях, возможно, назывались «абзу» (с персидсткого «аб» - 

«вода», с санскрита «зу» – пресный»). Еще одно значение слова «абисс» следует из того 

факта, что огромный пресный водоем как будто находился на дне между окружающими 

его горами Куньлунь, Тянь-Шань и др. О территории происхождения шумеров на 

севере от Тибета см. Spedicato (2001a,b, 2004). 

Интересно, что «гус» – это название блюда, которое до сих пор готовят в коммуне 

Кортено-Гольджи (где родился лауреат Нобелевской премии по медицине Гольджи) 

один раз в месяц. Кортено располагается в Центральных Альпах, к востоку от перевала 
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Априка между Камоникой (территория великой древней цивилизации камунов, 

зародившейся, вероятно, во времена Атлантиды) и Вальтеллиной – долиной, в которой 

растет множество фруктов, травы, зерновых, расположенной по дороге из Италии в 

Германию. Блюдо гус очень вкусное. Оно готовится на протяжении всей ночи из 

баранины, без воды и каких-либо трав. Обычно это блюдо готовилось в степи, а огонь 

для него разводился на навозе. Это позволяет сделать вывод, что часть турок, спасаясь 

от наступления войск Чингисхана, попала в Альпы. Монголы не стали их преследовать, 

но не из-за большого расстояния, а из-за того, что они никогда не входили в лес или 

болотистые местности. Согласно Koestler (1980), спасшиеся от Чингисхана турки 

основали около двух сотен деревень в Каринтии, они также дошли до итальянских 

Альп, по крайней мере, до Кортено-Гольджи. Турки были монотеистами. Они считали, 

что бог создал все, но ему были неинтересны дела людей, поэтому турки поклонялись 

духам и своим предкам. Турки жили на территории, занимающей более десяти 

миллионов квадратных километров, между Россией, Монголией, Тибетом, Сибирью. С 

севера (одним из самых священных мест для них был Алтай) они пришли в степи 

нынешнего Казахстана, Таджикистана, Туркменистана и Узбекистана (отметим связь 

со словом «Уц»). Как и туранцы (слово, возможно, санскритского происхождения, 

обозначающее «сильные»), они жили между двумя великими реками Сырдарья (река 

льва) и Амударья (река Адама? Также называется Oxus, Джейхун…). В восточной 

части Турана были большие города: Бухара, Самарканд. Они находились рядом с 

Памиром и Тянь-Шанем. В южной части жили туркмены. Они грабили деревни и 

города на Иранском нагорье (см. Vambery (2004)). 

Все это подтверждает наше мнение, что Иов имел турецкое происхождение. Кроме 

того, отметим: 

- в Бухаре, с которой связана средневековая слава исламской цивилизации, в связи с 

изобилием воды, вплоть до Второй мировой войны стоял Мавзолей Чашма-Аюб с так 

называемым источником Иова (см. Maillart (2002)). Если такая традиция имела 

исторические корни, то Иов провел часть своей жизни (вероятно, молодость) в Туране. 

Сейчас в Туране пересекаются два основных «шелковых пути»: трудный северо-

восточный, через Джунгарию, и легкий юго-восточный, через Кашгар. Южный 

Шелковый путь проходит через нынешний город Мазари-Шариф и расходится в 

сторону Кашмира и Пенджаба, то есть в долины Инда и Ганга и далее. 2000 г. до н.э. – 

время великих цивилизаций в Китае и Индии. Таким образом, Иов, который, 

безусловно, принадлежал к элите земли Гус, мог находиться в Туране по нескольким 

причинам. Во-первых, он мог иметь торговые отношения с Китаем, особенно это 

касается дорогого шелка. Во-вторых, он мог поддерживать связи с их религиозными 

лидерами, например, посещая собрания шаманов (которые, вероятно, происходили 

регулярно). Отметим, что до недавних пор остров на озере Байкал был местом 

регулярных встреч шаманов большей части территорий северной и центральной 

Азии… На одной из таких встреч он мог познакомиться с Авраамом, Фаррой. Сам 

Фарра мог интересоваться такими собраниями. Он мог привести туда и Авраама, 

одного из трех своих сыновей. Таким образом, Авраам мог встретиться с Иовом и 

перенять от него монотеистические убеждения. Возможно, здесь кроется причина его 

разрыва с отцом и переезда в Ханаан. 

- турки являются монотеистами, они верят в то, что всё создано одним Богом, которого 

они называют Тенгри (возможно, «Тен» связано с китайским «тиен», что значит 

«небо»). Такое представление о боге свойственно и многим другим народам, например 

монголам (это обсуждается в книге Гильома де Рубрука, который посещал императора 
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Монгу через некоторое время после смерти Чингисхана). Для Гильома де Рубрука 

представление Монгу о Боге несравнимо с отцами церкви. Более того, 

монотеистические представления встречаются и у многих так называемых 

примитивных народов (см. например племя мурия в центральной Индии (см. Elwin 

(1963)) или калаши из Гиндукуша (Cacopardo (2010)). Для них Бог – это всевышнее 

существо, создатель вселенной и разумных существ …, однако он не принимает 

никакого участия в их дальнейшей жизни. Это заставляет их поклоняться и молиться 

другим созданным Богом существам, более могущественным, чем люди, - ангелам, 

демонам, душам умерших людей. Согласно книге апокрифов Великого Афанасия (см. 

Tourniac (2012)), Мелхиседек (по нашему мнению, это Иов в преклонном возрасте) 

узнал Бога, когда смотрел на звездное небо. Отсюда следует и связь между Богом, 

которого турки называют Тенгри, и небом. Звездное небо над Турцией обычно 

выглядит глубже, и звезд на нем видно гораздо больше, чем над европейскими и 

средиземноморскими территориями. 

 

Вышеприведенные рассуждения свидетельствуют о том, что Иов был монотеистом 

задолго до Моисея. Он мог быть шаманом, чье могущество возросло после 

случившихся с ним событий. То, что он был хранителем очень древних знаний (что 

обычно было характерно для связанных с религией людей) можно прочесть в книге 

Иова 25.5 или в Псалме 72.5. Там Иову приписывается интересное заявление, а именно: 

Иов говорит, что Бога почитали еще до появления Луны, до того как она стала 

светить на небе, много поколений назад. Обычно это утверждение считается 

поэтическим высказыванием, но в нашем новом астрономическом сценарии развития 

Солнечной системы с приблизительно 10500 г. до н.э. это соответствует захвату Землей 

спутника, который стал Луной, у другой планеты, проходящей мимо Земли (Метида в 

греческой мифологии), приблизительно в 9500 г. до н.э., см. Spedicato (2013, 2014, 

2016a). Перед захватом Луны спутником Земли был Марс. Он перестал быть спутником 

в 6910 г. до н.э., когда Метида столкнулась с Юпитером, и Марс потерял 

гравитационную связь с Землей после столкновения с веществом Юпитера, что помимо 

прочего привело к образованию впадины на одном его полушарии и возвышенности на 

другом. 

Мы говорим, что Иов имел турецкие корни и некоторое время жил в Бухаре. После 

взрыва Тифона и после разговора Иова с Богом Иов переехал на Средиземноморское 

побережье, скорее всего, в Палестину. Там он стал состоятельным и влиятельным 

человеком. Мы пришли к такому выводу на основании следующего: 

- в Иерусалиме есть так называемый Источник Иова (см. Schalom ben Chorim (1997)); 

- согласно Исидору Севильскому (2006), в Идумее существовал источник, который 

называли Источником Иова (Идумея находится к юго-востоку от Палестины, на месте 

нынешней Иордании). Если это правда, то это означает, что Иов руководил огромной 

территорией. Отметим, однако, что вплоть до недавнего времени на Тибете и в 

Монголии для пастухов считалось нормальным перегонять свои стада на тысячи 

километров. Жители Идумеи происходили от Исава, брата Иакова, сына Исаака. Это 

была труднопроходимая местность. Для ее защиты было достаточно небольшой армии. 

Римляне завоевали ее после ста лет безуспешных попыток. В нашей книге, 

посвященной Исходу (Spedicato (2014)) мы утверждаем, что Моисей, спасшись от 

фараона в окрестности нынешней Нувейбы на востоке Синая, привел свой народ в 

Идумею, чтобы спастись от еще более серьезной опасности. Смерть фараона в Нувейбе 

- событие, которое имело важнейшее значение для Египта, сравнимое с опустошитель-
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ными последствиями потопа Овигия, набегами туранцев, племени аму, амалекитян, 

гиксосов. Эти племена насчитывали 400 тысяч воинов. Это было слишком много для 

Моисея. Он справился с тысячей, но дальше принял мудрое решение подождать 

несколько лет (вероятно, известные 40 лет) в хорошо защищенной Идумее. Признаки 

его присутствия в Идумее можно встретить в Вади-Муса, Айн-Муса, Джебель Харуне 

(родник Моисея, долина Моисея, гора Аарона, брата Моисея). Айн-Муса, 

существовавший во времена Моисея, – это, вероятно источник Иова, который затем 

переименовали в честь Моисея. Моисей оплачивал свое пребывание в этом регионе 

золотом, которое он забрал из храма Баал-Зефона, посвященного Шиве. 
 

- древнейший город Яффа, из которого корабли отправлялись в Египет, мог 

представлять интерес для Иова по нескольким причинам. Если раньше он жил в Бухаре, 

то он понимал, что шелк можно продавать в Египет. Продлить Шелковый путь в 

Палестину было нетрудно. Несомненно, торговый путь между Бухарой и Египтом уже 

существовал. По нему шла активная торговля лазуритом, который в Египте ценился как 

священный камень и входил в состав лекарств. По тому же пути торговали золотом, 

изумрудами, другими драгоценными камнями, мускусом. Возможно, по нему торговали 

и ценными животными: ферганскими лошадьми, верблюдами, ястребами. Наконец, 

отметим, что название Яффа могло происходить от древнего имени Joppe. 
 

- в книге апокрифов Великого Афанасия (см. Tourniac (2012)) утверждается, что Иов 

семь лет жил на горе Фавор в Палестине. Укрепленные сооружения венетов 

встречаются не только в центральной Европе, но и вдоль восточного побережья 

Атлантики (Вандея во Франции) и вдоль Средиземноморского побережья (см. Tomasiz 

et al (2007)). На их языке Фавор означает «фортификация». Остается открытым вопрос, 

жил ли Иов на горе Фавор в Палестине. Гора Фавор известна христианам в связи с 

Преображением Господнем, когда Бог предстал перед Петром и Иоанном с пророками 

Моисеем и Илией. Венеты были умелыми мореплавателями. Они путешествовали по 

европейским рекам, морям и Атлантическому океану. Они могли использовать 

укрепленные сооружения на горе Фавор в торговых целях. Неизвестно, встречался ли с 

ними Иов. 
 

- в соответствии с процитированными апокрифами Иов оставил Фавор после того, как 

его семья погибла в катастрофе. Вероятно, при этом погибли его родители (это не 

упоминается в Библии), это может объяснять, почему его называли человеком без отца 

и матери. Мы предположили, что Иов был шаманом, обладал знаниями и умениями, 

которые обычно передаются от отца к сыну. В Библии ничего не говорится о таких 

способностях Иова. Это может объясняться тем, что книга прошла своего рода цензуру 

во времена классического Моисеева монотеизма. 
 

Если наша версия, что Иова в преклонном возрасте называли Мелхиседеком, верна, то 

он мог находиться на вершине горы Фавор, когда случилась катастрофа с Тифоном-

Бегемотом-Левиафаном. Неясно, видел ли Иов Тифона, который проходил 

приблизительно над Фавором, перед его взрывом над дельтой Нила, или его описание 

Бегемота относится только к его разговору с Богом. Иов не был непосредственным 

свидетелем смерти своих сыновей и гибели своего скота. Сейчас гора Фавор высотой 

около 600 м возвышается над пролегающей внизу равниной приблизительно на 400 м. 

Эта равнина берет начало к северу от нынешней Хайфы и тянется на 70 км с 

небольшим уклоном от побережья. Это значит, что обратное цунами не могло 

добраться до Иова. Он мог видеть фронт цунами, движущийся со скоростью более 100 
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км/ч (в открытом море скорость цунами может превышать 500 км/ч). Волна, возможно, 

достигла подножия горы Фавор и поднялась немного выше. Аналогичным образом мы 

предполагаем, что Девкалион (см. Spedicato (2014)) наблюдал за цунами из Дельф (600 

м по южной стороне Парнаса). Воспоминания царя Девкалиона послужили основанием 

для греческой легенды о самом последнем потопе, описанном Плутоном (самый 

первый – потоп, связанный с Атлантидой). 

Наконец, приведем предположительное объяснение имени Иов. Мы предполагаем, что 

оно связано с этимоном слов Jovis (устаревшее) и Jupiter (латинское), которые 

обозначают великую планету и бога. Этим именам никогда не давали исчерпывающего 

объяснения, как утверждает филолог Луиджи Ленус. Логичное объяснение можно дать 

в рамках астрономического сценария ВАС (см. Spedicato (2016a)), который продолжает 

идеи Великовского и Джона Акермана. ВАС объясняет греческий миф об Афине, 

рожденной из головы Юпитера, таким образом: некая планета (в мифологии – богиня 

Метида, жена Юпитера) столкнулась с Юпитером (в месте соударения на Юпитере 

образовалось Большое красное пятно); в результате столкновения часть вещества 

Юпитера была выброшена в космос; большая часть этого вещества образовала Афину – 

планету Венеру; оставшееся вещество, которое частично состояло из воды 

(космической воды), достигло Земли и вызвало цунами, наводнения, проливные дожди. 

В данном контексте имена Jovis и Jupiter можно считать составными: JU – из 

китайского «дождь», VIS – из латинского «сила», PATER~PITER – из латинского и 

санскрита «отец». Отметим, что латины (часть арийского народа), скорее всего, пришли 

из северной Азии. Там они жили недалеко от основоположников империи Хань или 

китайской цивилизации, которые в древние времена находились в верховьях и средней 

части долины реки Хуанхэ. Похожие составные названия встречаются в Гималаях 

(например, Gorishanta – так называли Эверест до того, как британцы дали этой горе 

название в честь руководителя их геодезической службы). Слово «Горишанта» 

происходит от GORI – «одетая в белое дама» на санскрите и языке урду, SHAN – по-

китайски «гора», TA – «великая». Составные названия из турецкого и китайского 

языков также часто встречаются на Тянь-Шане (см. например Maillart (1934)). Имя Иов 

можно расшифровать так: JOB = JO – B = JO – AB = JU – AB. Слово JU раньше на 

китайском языке обозначало «дождь», АВ – «вода» на персидском (А – «вода» на 

шумерском). Это название может обозначать космическую воду, которая попала на 

Землю в 6910 г. до н.э. после событий на Юпитере, в том числе, она попала и в 

пустыни, где до этого дождей практически не было. 

В заключение данного раздела обобщим предыдущие аргументы: 

- Иов родился в одном из турецких племен, изначально живших между Сибирью, 

Монголией, Тибетом, Уралом и имевших доступ в Иранские и Афганские горы через 

Туран. Эти племена, по сути, были монотеистами, но фактически поклонялись духам и 

душам предков. Вероятно, он родился в состоятельной семье, которая обладала 

древними знаниями, был шаманом, то есть язычником по градации Шалома Бен-

Хорина. Вероятно, он жил несколько лет в Бухаре, затем переехал в Палестину, где, 

возможно, жил в укреплениях на горе Фавор. Он занимался торговлей (возможно, 

торговал шелком) и выращивал скот. Возможно, он жил на горе Фавор по религиозным 

причинам, так как вершины гор часто считаются хорошим местом для совершения 

молитв. Вершина Фавора также могла служить безопасным хранилищем его товаров. 

- взрыв Тифона над дельтой Нила привел к катастрофическим последствиям для 

египетской и индо-сарасватской цивилизаций, а также для Палестины. Помимо 

прочего, в результате взрыва произошло очень сильное землетрясение, и подул 
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сильнейший раскаленный ветер, вызванный взрывной волной. Дом, в котором погибли 

дети Иова, пострадал и от того, и от другого. Скот и слуги сгорели на раскаленном 

ветру. Иов выжил, но на его коже, вероятно, появились язвы, которые могли быть 

вызваны тем, что взорвавшееся небесное тело содержало опасные вещества. Это 

причинило ему сильнейшие страдания, на которые он стал жаловаться Богу. 

- разговор Иова с Богом – один из ярчайших моментов в религиозной литературе. Мы 

не будем его комментировать. Отметим лишь, что Иов (если он имел турецкие корни и 

происходил из семьи шаманов) мог обращаться к Богу или некому всевышнему 

существу различными способами, а не только в непосредственном диалоге, как это 

делал Моисей. Мы считаем, что разговор Иова был реальным, а не метафорическим 

или символическим событием. 

- в Книге Иова описываются события, произошедшие, когда Иов находился в зрелом 

возрасте, пусть около 2050 г. до н.э. Согласно этой книге, Иов прожил еще 140 лет. Он 

опять обрел власть и достаток, у него родились другие сыновья, он прославился тем, 

что пережил такие страдания и разговаривал с Богом. Он стал известен как Мелхиседек 

(см. ниже) – «Царь справедливости» – этот дар он получил от Бога. Под этим именем 

он принимал Авраама. Имя Мелхиседек появляется в апокрифическом тексте 

«Славянская книга Еноха» в связи с событиями до Ноева потопа (см. Sacchi (2015)). В 

нашей следующей статье обсудим, передавалось ли это имя другим – вплоть до Иисуса, 

как это предполагается в «Послании св. апостола Павла». 

- Ceronetti (1997) упоминает, что Иов находился в тюрьме, откуда его освободил Бог. В 

древности тюрьмами часто служили глубокие пустые колодцы. Иосиф, сын Иакова, 

провел в таком колодце три года, а затем фараон сделал его министром. Даже в 

недавнем прошлом бывший китайский президент Лю Шаоци был помещен в такой 

колодец, в результате чего и скончался от холода и голода. Если Иова сажали в такой 

колодец, то он вполне мог уцелеть, когда подул раскаленный ветер, так как ветер 

просто не достал до дна колодца. Один из четырех выживших во время извержения 

вулкана Мон-Пеле на карибском острове Мартиники в 1902 г. – заключенный, который 

отбывал свой срок в подземной тюрьме. Всю оставшуюся жизнь он провел, работая в 

цирке Барнум как «живое чудо».  

3. Кто ты, Мелхиседек? 

Мелхиседек – один из самых загадочных библейских персонажей. Он появляется в 

Книге Бытия, принимая Авраама, который отдает ему одну десятую часть добычи со 

сраженных им врагов, и благословляя его. Существует мнение, что, наоборот, 

Мелхиседек одаривает Авраама. Затем он появляется в Послании св. апостола Павла, 

где указывается на подобие Мелхиседека Иисусу Христу. В эфиопских текстах, 

включая уже упоминавшуюся книгу Еноха, Мафусаил, сын Еноха, оказывается первым 

Первосвященником Бога. Он передает это свое положение, по разным источникам, 

либо десятилетнему Ною, либо младшему брату Ноя Ниру. В соответствии с 

арамейским переводом Библии, первым Мелхиседеком был сын Адама Сим (см. Tour-

niaq (2012)). 

Мы не будем рассматривать, кем изначально был Мелхиседек и как этот титул 

передавался вплоть до Иисуса. Приведем лишь следующую цитату из библейских 

текстов о Мелхиседеке, которую мы относим к Иову: 

Победив Кедорлаомера и других бывших с ним царей, Авраам отправился назад [из 

Кобы, север Дамаска, после освобождения своего племянника Лота]… 



О гипотетической модели развития Человечества в астрономическом сценарии эволюции Земли 

 

 
95 

Мелхиседек, царь Салима, пришел с хлебом и вином. Он был священником Всевышнего 

Бога. Он благословил Авраама со следующими словами: Всевышний Бог, Создатель 

неба и земли, пусть он благословит тебя, Авраам! И пусть благословен будет Бог, 

даровавший тебе победу над врагами. Затем Авраам дал ему десятую часть от всего, 

чем он владел. 

Эта цитата и Послание Павла свидетельствуют, что Мелхиседек занимал очень высокое 

положение в смысле монотеизма. То, что он благословил Авраама и получил от него в 

дар десятую часть того, чем он владел, показывает, что Мелхиседек занимал более 

влиятельное положение, чем Авраам. Их встреча свидетельствует о том, что они друг 

друга знали. 

В данном разделе мы развивает гипотезу о том, что Мелхиседек, или Малек Садок, 

Царь справедливости, – это имя, которое было дано Иову после того, как он пережил 

все случившиеся с ним несчастья, опять стал влиятельным и богатым и стал 

разговаривать с Богом. Он мог получить это имя как прозвище, хотя более вероятно, 

что это произошло после обряда помазания как нового Мелхиседека, как это было в 

свое время с помазанием Ноя. Этот титул Иов мог делить с каким-то другим человеком, 

о котором мы ничего из рассматриваемых документов не знаем. Вероятность того, что 

два человека одновременно могли называться Мелхиседеком, подтверждается тем, что 

Мафусаил и Ной жили в одно и то же время, и тем (на момент написания этой статьи), 

что в Католической церкви одновременно есть два Папы. Мы не знаем, кто выполнял 

обряд помазания Иова. Это мог быть великий шаман турецких племен, который 

встретился с Иовом, преодолев тысячи километров. 

Отметим, что Авраам встретился с Иовом-Мелхиседеком (по нашему сценарию) спустя 

несколько лет после взрыва Тифона. 14 лет Авраам провел в Аране, 12 лет в Дамаске, 

некоторое время он затратил на дорогу. Таким образом, это была встреча двоих 

мужчин зрелого возраста, но задолго до их смерти. Покинув Аран в возрасте 75 лет, 

Авраам встретился с Мелхоседеком в возрасте не менее 87 лет. При этом Мелхиседек 

был, вероятно, приблизительно того же возраста. 

Мы уже обсуждали происхождение Иова (Мелхиседека). Подтверждение того, что Иов 

мог быть Мелхиседеком, найдем в «Пасхальной хронике», где говорится, что 

Мелхиседек был выходцем из народа Хама, на ближней стороне Эдемского сада. В 

работе Spedicato (2004) Эдемский сад отождествляется с долиной реки Хунза в 

северном Пакистане между Гиндукушем и Каракорумом. С точки зрения палестинцев 

Туран должен как раз находиться «на этой стороне». Если народ Хама был 

темнокожим, то это было характерно не только для африканцев, но и для дравидов, 

живущих в Индии, Иране и других территориях. 

Дополнительная информация из работ Tourniaq: 

- Мелхиседек не проходил обряд обрезания, как говорил Авраам. Обрезание 

существовало еще до Моисея на большей части территории Африки по неизвестным 

причинам. Оно не практиковалось в Азии, что согласуется с нашим предположением о 

том, то Иов родился в турецком племени. В следующей статье мы опишем наше 

предположение о связи обряда обрезания (а также женского обрезания) с особым 

астрономическим явлением, когда орбита Марса приближалась к Земле каждые 54 года 

вплоть до приблизительно 800 г. до н.э. 

- Ревекка, дочь Нахора, брата Авраама, и жена Исаака, сына Авраама и Сары, 

встречалась с Мелхиседеком (согласно книге «The Cave of Treasures»), что могло 

произойти, если Иов-Мелхиседек прожил 200 лет (это было на 25 лет дольше Авраама, 

они умерли приблизительно в одно время). Ревекка могла встретить Мелхиседека по 
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пути из дома Нахора (скорее всего, из Кашмира – см. ниже) в землю Ханаан, где жили 

Авраам и Исаак. 

- Марта Эммерих (19 век), известная своими видениями, утверждала, что Мелхиседек 

владел замком, который позднее посещал Иоанн Креститель. Мелхиседек носил белые 

одежды, как священники Индии и Египта, друиды, ессеи, христианские священники… 

- В книге “Enoch of Hebrews” у Мелхиседека есть мать, но отца нет, как и у Иисуса 

Христа 

- в письме «Паломничество Этерии» встреча Авраама и Мелхиседека происходит в 

Салимее, Самария. Вероятно, существовало несколько Салимов, один из которых 

находился вблизи реки Иордан. Упоминающийся Сихем находился вблизи нынешнего 

Наблуса и горы Гаризим, которая была священной для самаритян. 

4. Авраам, откуда ты пришел и где ты поселился? 

Авраам, как и Адам, Енох, Ной, Моисей, Иосиф и Соломон, – один из библейских 

персонажей, чрезвычайно интересных для автора. Мы не рассматриваем религиозный и 

политический аспекты его жизни, а исследуем, где он жил изначально и где окончил 

свой длинный жизненный путь (175 лет согласно Книге Бытия). 

Из библейских цитат будем опираться не те строки, которые, будучи 

проанализированы с географической точки зрения, приведут к выводу, отличному от 

традиционного. Отметим, что Авраама на самом деле называют Аврам. Это его 

настоящее имя, которое позднее поменял Бог. 
 

Фарра взял с собой своего сына Авраама, Лота, сына своего брата Арана, Сарру, жену 

Авраама и ушел из Ура Халдейского, стремясь в землю Ханаан. Но когда они попали в 

город Карран, они поселились там. Именно там, в возрасте 205 лет, Фарра скончался. 

Затем Бог сказал Авраму: оставь свою землю, свой народ, семью своего отца и иди в 

ту землю, которую Я покажу тебе. От тебя произойдет множество людей  … через 

тебя я благословлю всех людей на Земле. Авраам ушел из Каррана, следуя указанию 

Бога. 

Они пришли в Ханаан, прошли через эту землю до Сихема и остановились у 

Мамврийского дуба. 
 

Спустя некоторое время Авраам отправился в Египет, так как наступил голод. Он 

встретился с фараоном (что свидетельствует о том, что он был известным человеком), 

которому он предложил свою жену, выдав ее за свою сестру. Можно сказать, что она 

фактически была его сестрой, так как была дочерью второй жены Фарры. Она была 

очень красива. Особую привлекательность ей, вероятно, добавляли светлые или рыжие 

волосы, которые унаследовал ее племянник Исав. Интересно, что Моисей запрещал 

браки между такими близкими родственниками, это каралось смертной казнью! 

Рассмотрим географию и мотивацию такого путешествия Авраама, что не нашло 

четкого отражения в Книге Бытия. Там мы читаем, что он ушел из Ура Халдейского; в 

Пятикнижии (см. Éditions du cerf, 1994) он ушел из земли Халдейской – существует 

множество различных вариантов в Пятикнижии и масоретских текстах. Когда в 19 веке 

был открыт шумерский город Ур (в южном Ираке), археологи заявили, что это Ур из 

Книги Бытия. Они предполагали, что халдеями назывались живущие на той территории 

люди, несмотря на то, что, согласно «Анабасису» Кира, они жили в восточной 

Анатолии, хотя и много веков спустя. Халдеи славились искусностью в магии, 

предсказаниях и астрономии. Вспомним, что Павел в своем городе Тарсус бросил 
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вызов и победил магов из Анатолии. Затем он собрал и сжег их книги. В Книге Бытия 

не объясняется, почему Фарра ушел из Ура. Харран обычно отождествляется с 

одноименным городом, расположенным в южной Турции рядом с очень древним 

городом Шанлыурфа (Эдесса у Александра), который теперь называется Urfa Sanlury. 

Харран в прошлом был посвящен аккадскому богу Сину – богу Луны, а его население 

состояло из сабеев, занимавшихся магией. Мы считаем, что название сабеи и имя 

царицы Савской (легендарной правительницы аравийского царства Саба), 

встречавшейся с Соломоном, связано с Шивой, что указывает на индийское 

происхождение обоих. 

Теперь дадим новое объяснение тому, почему и откуда Фарра ушел вместе с Авраамом. 

Также обсудим маршрут, по которому Авраам мог пойти в землю Ханаан. Этот наш 

сценарий находится в тесной корреляции со сценарием, связанным с Иовом. 

Рассмотрим снова взрыв Тифона над дельтой Нила (ниже приводится дата этого 

события 2033 г. до н.э.). Этот взрыв привел к опустошительным последствиям для 

Египта, положил конец Древнему Царству, дал начало малоизвестному Первому 

переходному периоду. Он также повлиял и на Ближний Восток, хотя и не так сильно, 

как на Египет, т.к. раскаленный ветер затронул в основном пустынную местность, а 

средиземноморское цунами остановилось на холмах и горах Сирии, Ливана и 

Палестины. Мы считаем, что взрыв произошел во времена великой ассирийской 

империи Саргона Великого, которого мы также называем Нином или библейским 

Нимрудом, см. ниже. Другой великой цивилизацией того времени была цивилизация в 

долине Инда и Сарасвати, в западной Индии, в основном в Пенджабе и Кашмире. Были 

найдены руины сотен городов, в особенности вблизи ныне сухого русла реки Сарасвати 

(см. Kak et al (1995)). Конец этой цивилизации наступил внезапно, скорее всего, в 

результате катастрофических событий. Некоторые авторы даже пишут об атомной 

войне с участием внеземных сил. Последствием катастрофы было осушение русла 

Сарасвати, оно заполнилось песком. Kak датирует это событие 1900 г. до н.э., но оно, 

конечно, могло случиться и раньше. Также отметим, что так называемая Бактрийско-

Маргианская цивилизация процветала в Туранском регионе, однако исследование руин 

ее многочисленных городов еще только начинается. 
 

Гибель Индо-Сарасватской цивилизации и иссушение бассейна реки Сарасвати можно 

объяснить взрывом Тифона. Сначала отметим, что южный берег Пакистана, в 

особенности Мекран на юге восточной области Белуджистан, богат залежами гидратов 

метана. Это один из трех прибрежных регионов с самыми богатыми залежами этих 

гидратов (два других региона – это побережье Китайского моря и северное побережье 

Карибского моря). В этих регионах песок содержит гидрат метана (он начал 

исследоваться сравнительно недавно). Согласно оценкам, там содержатся самые 

большие залежи гидрата метана. Гидраты метана существуют и на других планетах (в 

частности, на Юпитере) в виде неустойчивого соединения метана и воды. Связь между 

двумя молекулами может внезапно разорваться при изменении температуры или 

колебаниях при землетрясении. В работе Spedicato (2014) внезапное исчезновение 

великой цивилизации в Теннесси и Огайо связывается с гигантским цунами с 

Карибского моря, которое затронуло территорию до 2000 км вглубь континента. Оно 

датируется 1447 г. до н.э. и вызвано взрывом Фаэтона над северной Германием. Автор 

делает этот вывод на основе анализа спутниковой съемки (этот вопрос обсуждался в 

частном порядке со Стюартом Харрисом). 
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Если аналогичное цунами возникло на побережье Мекрана и Синда, то большая часть 

низин вокруг реки Инд была затоплена, а воды цунами достигли гор Кашмира. Большая 

часть населения Индо-Сарасватской цивилизации погибла в результате потопа и 

землетрясения. Река Сарасвати пересохла, т.к. ее русло заполнилось песком, что 

усугубилось в результате брадисизма. В нижней части Кашмира также могли 

произойти разрушения. В целом, разрушения были, конечно, не такие драматические, 

как в дельте Нила, но, тем не менее, весьма значительные. Бактрийско-Маргианская 

цивилизация сильно пострадала в результате землетрясения (обнаружены руины сотен 

городов). 

Из Талмуда нам известно, что Фарра делал статуи идолов. Скорее всего, статуи были 

изготовлены не из камня, а из древесины гималайского кедра – священного дерева, 

которое является единственным деревом, из которого в Азии можно делать статуи 

богов и храмы. Древесина гималайского кедра имеет красный оттенок, ее не трогают 

насекомые. Более того, она выдерживает воздействие воды до 300 лет. Он произрастает 

в основном в Кашмире на высоте 1500-3000 м над уровнем моря, но также и в других 

местах, например в Гималаях и Тибете, где высокие деревья встречаются на высоте до 

4500 м. Заметим, что вплоть до 19 в. в Кашмире рос кедр (см. Pithawalla (1953)), 

который, вероятно, остался единственным деревом на месте прежнего кедрового леса, 

выращиваемого на продажу или для религиозных целей. Стволы этих деревьев могли 

спускать по реке Джелам (самой полноводной из пяти рек, питающих Инд) и торговать 

древесиной даже с территориями, расположенными за морем. 
 

Здесь мы предполагаем, что Фарра был, помимо прочего, строителем священных 

объектов, статуй и т.д., которые он изготавливал из священной древесины 

гималайского кедра. Возможно, он также продавал ее строителям. Вероятно, он также 

занимался изготовлением ювелирных изделий и продавал их. Таким образом, он был не 

пастухом, как обычно считается, а состоятельным человеком со связями за рубежом. 

Отметим, что Иосиф, отец Иисуса, был также богатым человеком, хорошо 

разбирающимся в строительстве больших зданий и, вероятно, специалистом по 

ювелирной технике зерни (см. Spedicato (2016b)). 
 

Вполне логично думать, что Фарра ушел из Ура после цунами, вызванного 

землетрясениями от взрыва Тифона. В Септуагинте (но не в масоретской версии Книги 

Бытия) говорится, что он ушел после того, как его сын Арран погиб на его глазах (см. 

редакцию Sacchi (2012)), что может свидетельствовать о произошедшей катастрофе. 

Причиной ухода Фарры из Ура могли послужить как серьезные разрушения в городе, 

так и то, что в результате катастрофы исчез рынок продукции, которой он занимался. 

Могло случиться и так, что выжившие в катастрофе поняли, что изготовленные Фаррой 

статуи идолов не защитили их от трагических событий (похожая реакция народа 

наблюдалась в Египте во время Первого переходного периода, когда были уничтожены 

религиозные здания и статуи богов и фараонов). 

Кашмирский Ур занимал важное положение с точки зрения торговых путей – в южной 

части Кашмира на главном пути из Пенджаба, из Равалпинди в Сринагар, затем через 

высокогорный каракорумский перевал в нынешний Восточный Туркестан. По этому 

пути прошел британский военный врач и путешественник Белью. Белью (2013) 

отмечает, что слово Ур (на персидском языке Ури) на санскрите означает «вода», 

причем это особая вода (даже космического происхождения). Более распространенное 

название – «пани». Ур мог получить свое название в связи с тем, что находился рядом с 

рекой Джелам – самой полноводной из пяти рек, протекающих по Пенджабу и 
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впадающих в Инд. Кашмир богат реками, озерами, лесами. Он считается «раем на 

Земле». Кашмир связан с ведической цивилизацией четвертого тысячелетия до н.э. и 

сохранившейся до наших дней цивилизации бон, известной своими магическими 

ритуалами и знаниями. Кашмир также славится красотой своих женщин. Вероятно, в 

Кашмире родилась царица Савская, встречавшаяся с Соломоном. Возможно, спустя 

некоторое время Соломон также посещал ее во время своих поездок, когда отвозил 

своих многочисленных жен в их семьи (см. Spedicato (2008)). Ур находится на пути 

между Пенджабом и Сринагаром, столицей Кашмира, и расположен в очень 

живописном месте. В Сринагаре находится один из самых знаменитых азиатских Тахт-

е Солейман – «тронов Соломона». Рядом с этим объектом расположен Роза-бал – 

мавзолей мусульманского святого Юз Асафа, который некоторыми отождествляется с 

Иисусом Христом. 

Ур Халдейский (или Земля халдейская, как в Септуагинте) может быть связан не с 

названием местного населения, а с племенем магов, которые в большом количестве 

жили в той земле или городе и во многих древних землях. Кашмир всегда был известен 

как земля магов. Более того, он был связан с царством Жанг Жунг (Zhang Zhung), кото-

рое до распространения буддизма по Тибету, контролировало юго-западную часть Ти-

бета и части Кашмира, соединяющиеся с Тибетом через Балтистан – область, над кото-

рой возвышается гора К2). До принятия буддизма в данной области была 

распространена религия бон. Она до сих пор встречается на Тибете. Эта религия 

известна тем, что практикует белую и черную магию (см. David Neel (2006)). Таким 

образом, упоминание халдейцев могло обозначать магов, которых в Кашмире и Тибете 

было, вероятно, больше, чем в Месопотамии или Анатолии. 
 

В Книге Бытия указывается, что Фарра вышел из Ура в Харран, который обычно отож-

дествляется с одноименным городом, расположенным сейчас на юге Турции вблизи 

Шанлыурфы (Urfa Sanluri). Но в Кашмире, между Уром и Сринагаром, расположен 

один из важнейших городов Кашмира – Харан (находится на высоте около 1600 м, 

широта около 34 градуса). В Харане во втором веке н.э. состоялось встреча около 500 

буддийских монахов, которых собрал император Канишка для обсуждения толкований 

учения Будды (единого толкования выработано так и не было, и буддизм раскололся). 

Можно считать, что Фарра остановился в Харане Кашмирском и остался там на всю 

оставшуюся жизнь. Он умер в возрасте 205 лет (по Септуагинте). Вероятно, он стал 

вновь заниматься изготовлением идолов, используя при этом местную древесину 

гималайского кедра. Спрос на его изделия должен был быть достаточно большим в 

связи с очень высоким уровнем рождаемости в то время. То, что в Харане жил такой 

великий человек, может служить объяснением того, почему буддисты выбрали это 

место для своего собрания. Подробнее см. Matlock (2000). 
 

В Книге Юбилеев (см. Sacchi (2011)) говорится, что Авраам оставался в Харане 14 лет. 

Он ушел оттуда в возрасте 75 лет, а его отцу было 145. Значит, он пришел из Ура в 

возрасте 61 года. Это интересная цифра, т.к., если мы правильно предположили, что он 

родился в 2094 г. до н.э., и если он ушел из Ура сразу после катастрофы Тифона-

Овигия, то эту катастрофу можно датировать 2033 г. до н.э. Если это на самом деле так, 

то интересен следующий ряд: 

- дата распада государства Древней Македонии – 2033 г. до н.э.; 

- дата распада Индо-Сарасватской цивилизации – 2033 г. до н.э.; 

- трагические события с Иовом произошли в 2033 г. до н.э.; 
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- строительство Вавилонской башни странным образом прекратилось в 2033 г. до н.э. 

(см. ниже); 

- другие важные события произошли около 2033 г. до н.э. 
 

Согласно Талмуду, Авраам ушел после ссоры с отцом, уничтожив его идолов. Авраам 

получил от Бога приказ (нам неизвестно, как и когда это было) идти в землю Ханаан. 

Всегда считалось, что эта земля соответствует нынешней Палестине, что не согласуется 

с Мелхиседеком (Иовом). Мы согласны с Камалем Салиби (1996), что земля Ханаан 

была в области Асир на Аравийском полуострове. Там, вероятно, с четвертого 

тысячелетия до н.э. (времени ведической цивилизации, связанной с эпосами «Рамаяна» 

и «Махабхарата») существовали индийские поселения. 
 

Вероятно, Авраам знал историю Иова (то, что он спасся в катастрофе с Тифоном, что 

он общается с Богом, что он опять разбогател и обрел власть). Он знал, что его 

почитают как Мелхиседека. Поэтому Авраам был заинтересован во встрече с ним и 

получении его благословения. Если Иов провел некоторое время в Бухаре, как мы 

предположили, то они могли познакомиться, когда Фарра со своим сыном посещали 

религиозные собрания, торговали идолами и другими товарами с соседними странами. 

Дойти пешком до Бухары можно за несколько недель, она находилась на пути от Индии 

до Турана. В древности люди много путешествовали, но в основном это было связано с 

торговлей и религией. 
 

Было бы чрезвычайно интересно узнать, что обсуждали Авраам и Мелхиседек, 

разговаривая либо на санскрите, либо на языке Жанг Жунг, либо… но мы не знаем 

даже содержания длинного ночного диалога между Иисусом и Никодимом, если только 

он не был частично записан в каких-то гностических евангелиях. 

От Мелхиседека Авраам пошел в землю Ханаан. Он был в хороших отношениях с 

местным правителем Авимелехом. Место, где он поселился, Мамврийский дуб, 

находился, вероятно, в Вади Джалил – Галилее. Во времена Ирода Великого там жило 

множество евреев, включая семью Иисуса (см. Салиби (2007)). Галилея находится на 

расстоянии около сотни километров от Мекки. Рядом с Меккой есть два небольших 

холма Сафа и Марва. Согласно Корану, именно там Авраам собирался принести в 

жертву своего сына Исмаила (Исаака в Книге Бытия). Авраам дошел до этого места за 

три дня (см. также Козьму Индикоплова (1992)), что соответствует расстоянию около 

сотни километров. Отметим, что названия Сафа и Мерва напоминают индийское имя 

Шива и пик Меру (Кайлас в Тибете), на вершине которого Шива сидит, обнимая одну 

из своих жен, обычно Парвати. Это географическая связь между Меккой и Индией. 
 

Мы не знаем, по какому маршруту шел Авраам из Харана к Мелхиседеку. Мы 

предполагаем следующее: 

- сначала в западном Кашмире он дошел до города Гиндукуш, который теперь 

называется Гилгит. Из Гилгита он пошел на север по маршруту, который до недавнего 

времени считался самым трудным в мире, – сто километров вдоль отвесных стен 

каньона, глубина которого местами достигала 3000 метров. Так он добрался до долины 

реки Хунза, где, согласно Spedicato (2004), располагался Эдемский сад. Если Авраам 

знал, что этот сад находился именно там, то он мог постараться попасть туда. По 

сценарию Spedicato (2001a,b) до Эдемского сада добирался и Гильгамеш, но, вероятно, 

в более раннем возрасте и при помощи Энкиду, который знал об этой долине. Отметим, 

что Гилгит раньше назывался Саргин. Название Саргин могло произойти от имени 

ассирийского царя Саргона Великого, Диодорского Нина  и библейского Нимруда, 
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империя которого, скорее всего, включала эту территорию. Нимруд был великим 

охотником, а окрестности Гилгита были полны потенциальной добычи: дикие ослы, 

быки, медведи, горные бараны Марко Поло, способные забираться по непроходимым 

отвесным горам. Дикие ослы были желанной добычей из-за своего вкусного мяса, 

именно на них чаще всего охотился великий персидский охотник Рустам, персонаж 

«Шахнаме», «Книги царей», который упал со своего коня во время охоты. 

- из Гилгита Авраам, вероятно, добрался до Бухары, где он раньше мог встречаться с 

Иовом; он спрашивал про Иова и, вероятно, купил шелк из Китая. По дороге туда он 

проходил долину реки Пишон. Затем он, видимо, проходил мимо афганского города 

Мазари-Шариф. Возможно, этот город посещали и волхвы на пути из Алтая в 

Иерусалим (см. Spedicato (2015)). Там может находиться могила Заратустры, которую 

позднее приписали Али (см. Vambery (1994)). До сих пор не решен вопрос о 

датировании событий, связанных с Заратустрой, т.к. это не имя, принадлежащее 

одному человеку, а титул наподобие Мелхиседека. 

- из окрестностей Бухары Авраам дошел до Дамаска через Персию, где он провел 12 

лет. Затем после сражения и победы над некими врагами он встретился с 

Мелхиседеком. 
 

Приведем без обсуждения некоторую дополнительную информацию об Аврааме (лишь 

малую часть того, что можно найти в древних текстах). 
 

- Cristoforetti (2006) исследовал 360 идолов, которые были расположены вокруг Каабы 

рядом с Меккой до того, как их разрушил Мухаммед (который не разрушил другие 360 

идолов в храме-двойнике из белого камня рядом с Асиром, позднее он был разрушен 

Мухаммад ибн Саудом). Он вспоминает местное предание, что Кааба построена 

Авраамом; 

- могила Авраама находилась в пещере рядом с Мамврийским дубом. Туда тело 

Авраама отнесли его сыновья Измаил (родившийся, когда Аврааму было 86 лет, через 

11 лет после его ухода из Харана, откуда может следовать, что Авраам пробыл в 

Дамаске меньше 12 лет(?)) и Исаак (родившийся, когда Аврааму было 99 лет, Сарре 90 

лет). После смерти Сарры в возрасте 140 лет Авраам, которому в то время было 150 

лет, взял в жены наложницу Хеттуру, которая родила ему семерых детей; 

- в книге «Myths of the Hebrew» (Graves, Ratai (1998)), которая во многом цитирует 

Талмуд, говорится, что Нимруд хотел убить Авраама. Авраам прятался в пещере в 

течение 13 лет (возможно, большую часть из тех 14 лет, которые он провел в Харане), и 

Нимруд не нашел его. Общение Нимруда с Фаррой можно понять в рамках 

традиционного сценария, связанного с Саргоном Великим (также известным как Нин и 

Нимруд) – завоевателем и императором земель, лежащих между Средиземноморьем и 

Индией. Он мог завоевать и Гиндукуш, построив там Саргин, который позднее стал 

Гилгитом. Он мог пытаться завоевать Кашмир или Пенджаб. Эти его попытки могли 

быть остановлены взрывом Тифона; 

- тот факт, что Исав, внук Авраама, имел рыжие волосы, предполагает, что либо 

Авраам, либо (более вероятно) его жена Сарра были либо рыжеволосые, либо 

светловолосые. Если это была именно Сарра, то такой цвет волос считался бы 

признаком необычайной красоты, выделявшей ее из всех остальных женщин, имевших 

черные волосы. Этим может объясняться тот факт, что Авраам считал, что и фараон, и 

Авимелех  считают Сарру очень привлекательной. В Кашмире жили люди разной расо-

вой принадлежности, включая темнокожих дравидов и многочисленных белокожих 

арийцев. Thus Barbiero (1988), вероятно, справедливо считает Авраама арийцем; 
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- вспомним утверждение Клеарха из Сол, что евреи произошли от индийских мудрецов. 

Мудрецами в Индии называли брахманов (по ведической религии). Многие ученые (см. 

например Tilak (1994)) утверждают, что они произошли от арийцев из северной Азии. В 

пустынях к северу от Тибета найдены мумии тохаров, одного из арийских племен, 

которые были известны своим большим ростом, голубыми глазами и светлыми или 

рыжими волосами; 

- наконец, отметим, что имя Авраам – это имя, данное Авраму Богом после того, как он 

вышел из Харана. Можно составить имя Авраам следующим образом: АВ = вода, река 

на персидском языке, РАМ = Рама – великий царь из «Рамаяны». Таким образом, 

имеется ссылка на реку Джелам рядом с Уром, где родился Авраам, - самую 

полноводную во всей империи Рамы. Если Фарра и не был брахманом, то был близок к 

индуистской религии и хорошо знал древние индийские традиции; 

- из этого следует, что родным языком Авраама, скорее всего, был санскрит или 

пехлеви – смесь санскрита, персидского, турецкого и дравидского. Значит, он и его по-

томки выучили иврит (семитский язык) за столетия, проведенные на Аравийском полу-

острове, в Асире. 

5. Тифон и конец строительства Вавилонской башни 

В предыдущих разделах мы привели объяснения фактов об Иове и Аврааме с учетом 

Тифона. Безусловно, взрыв Тифона затронул не только Египет, империю Саргона 

Великого, Индо-Сарасватскую цивилизацию, но, вероятно, и Китайскую цивилизацию, 

Бактрийско-Маргианскую цивилизацию, цивилизацию венетов, которые не только 

контролировали Европу с ее большими залежами железа и соли, но были и умелыми 

моряками, добираясь до своих колоний в отдаленных местностях. 
 

Теперь рассмотрим особое событие в империи Саргона Великого (библейского 

Нимруда). По легенде Нимруд был гигантом, первым охотником, а затем стал царем 

империи, лежащей между Египтом и Индией. Столица его империи Аккад (Агаде) до 

сих пор не найдена. Отметим, что во время войны с Саддамом Хусейном взрыв 

американской бомбы вскрыл дощечки с надписями, теперь уже проданные на 

международных рынках антиквариата. Известен портрет Саргона, выполненный 

техникой зерни (эту технику использовали также этруски) и вновь обнаруженный 

Марио Пинчерле. Мелкие гранулы золота получают, выливая расплавленное золото в 

воду, затем они клеятся миррой на золотую пластину. Золото, мирра и ладан – это 

дары, принесенные волхвами Иисусу. 

Саргон – это, опять же, не имя, а титул, который означает «господин, которого 

невозможно уничтожить». Мы приводим далее аргументы в пользу того, что его нужно 

отождествлять с ассирийскими царями, известными под другими именами: 

- Диодор Сицилийский говорит о великом царе Ассирии Нине, жену которого звали 

Семирамида. Нин создал великую империю, которой после его смерти стала править 

Семирамида. Эта империя простиралась от Египта до Индии. Диодор построил великие 

города Вавилон и Ниневию (размер этих городов после их реконструкции в два раза 

уменьшен). Диодор утверждает, что Нин жил за 1300 лет до Сарданапала, известного 

также как Ашшурбанапал (его знаменитая библиотека была найдена почти 

нетронутой). Ашшурбанапал в соответствии с общепринятой хронологией жил между 

668 и 631 г. до н.э., откуда следует, что Нин жил около 2000 г. до н.э., что согласуется с 

нашим сценарием; 
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- согласно Талмуду, Нимруд, который не смог убить Авраама, был убит Исавом, сыном 

Исаака, сына Авраама, возможно, как месть за его попытку убить Авраама; 

- Евсевий Кесарийский (2001) утверждает, что Нимруд построил Эдессу и пытался 

построить самую высокую башню в мире рядом с Вавилоном. Ниже обсудим неудачу, 

которой окончился этот проект. 
 

Рассмотрим Вавилонскую башню, которая обычно также имеет символическое 

значение. Здесь мы называем царя Нимродом. Заметим, что Египет не входил в 

империю Нимрода. Древние цари часто путешествовали, например, когда выдавали 

своих дочерей замуж за царей соседних земель. Поэтому Нимрод, скорее всего, бывал в 

Египте и восхищался пирамидами Гиза. В то время они уже существовали, т.к. дата их 

постройки (по неопубликованным данным радиоуглеродного анализа ETH Laboratory, 

данным квантово-оптическому анализу камней Иоанниса Лиритциса (см. Temple 

(2011)), обнаруженному Giancarlo Duranti (2003) взаимному расположению четырех 

звезд и согласно нескольким средневековым арабским записям, которые утверждают, 

что они были построены за 300 лет до Ноева потопа) – приблизительно 3440 г. до н.э. 

Ноев Потоп можно датировать 3161 г. до н.э. Нимрод, ставший из охотника одним из 

величайших царей своего времени, вероятно, с завистью смотрел на эти великие 

сооружения Египетского царства и решил построить еще более высокое и красивое 

сооружение. 

Автору неизвестно, насколько высокой была башня, которую он запланировал и начал 

строить рядом с Вавилоном, однако по некоторым признакам можно предположить, 

что высота составляла 360 кубитов. Кубит (около 52 см) был общепринятой западной 

мерой длины в древности, геометрически связанной с ременом (remen) и мегалитиче-

ским ярдом. Число 360 имело большое значение в древних культурах, будучи 

связанным с числом дней в году перед Потопом. Это число встречается во многих 

сооружениях Индии, это число статуй богов вокруг Каабы и ее храма-двойника в Асире 

(см. ритуальные числа и их астрономическое происхождение в работе Spedicato 

(2016b)). Башня Нимрода высотой 360 кубитов была бы на 20 метров выше пирамиды 

Хеопса. Диодор утверждает, что строительством башни занимались 700 тысяч рабочих. 

Это огромная цифра, но она все же меньше числа рабочих, которые спустя 2000 лет 

участвовали в строительстве Великой Стены в Китае. Стена была построена за 

несколько лет и имела протяженность более 2000 км. Рабочие, скорее всего, 

заключенные, носили камни с восточных гор, за 200 километров, т.к. в окрестности 

Вавилона почва состоит только из глины и песка. 

В Книге Бытия говорится, что строительство башни оборвалось из-за того, что рабочие 

стали говорить на разных языках и  перестали понимать приказы. Этот факт видится 

как чудо, сотворенное Богом в наказание самонадеянному Нимроду. 

Это действительно было бы чудом, если бы множество языков действительно 

появилось при строительстве башни. В нашем сценарии есть другое логичное 

объяснение. 

Перед взрывом в дельте Нила Тифон попал на спиральную орбиту вокруг Земли, что 

позднее случилось и с Фаэтоном. Каждый раз он проходил над новой территорией на 

Земле (что объясняется несколькими причинами, включая его разрушение). Т.к. Тифон 

и его фрагменты взорвались, по крайней мере, в трех известных местах (Ливан, дельта 

Нила и Аэтна), мы предположили траекторию его движения по орбите (с запада на 

восток или с востока на запад). Вавилон находится приблизительно на этой траектории. 
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Можно предположить, что фрагмент Тифона прошел в атмосфере Земли достаточно 

близко к башне. Это могло привести к двум последствиям: 

- сжатие воздуха, повреждение барабанных перепонок у людей, находящихся не в 

зданиях. Ясно, что если объект заметили заранее, то в укрытие могли попасть только 

руководители строительства, надсмотрщики, но не рабы-строители; 

- очень сильный звук мог вызвать у людей повреждение или гибель около двух тысяч 

волосковых клеток – рецепторов слуховой системы. 

Вследствие этого рабочие бы просто оглохли и не могли выполнять приказы. То есть не 

было никакого чуда, не было появления различных языков, просто была потеря слуха у 

строителей. 

6. Выводы 

В данной работе мы приводим свидетельства в пользу следующего толкования фактов 

из Книги Бытия: 

- древнейшая из катастроф, о которой сохранились свидетельства у греков (взрыв 

Тифона и последовавшее наводнение Овигия), объясняет не только некие переломные 

моменты в истории Египта и Индии, но и особые события, связанные с Иовом, 

Авраамом и Вавилонской башней; 

- взрыв Тифона произошел в 2033 г. до н.э. Эта же дата соответствует концу Древнего 

Царства Египта и Индо-Сарасватской цивилизации, соответствует трагическим 

событиям в жизни Иова, уходу Фарры и Авраама из Ура в Ханаан и концу 

строительства Вавилонской башни; 

- Иова в преклонном возрасте называли Мелхиседеком. Авраам, родившийся в Уре, в 

Кашмире, в семье, занимающей далеко не последнее положение с экономической и 

религиозной точек зрения, ушел из Харана, Кашмир, в землю Ханаан на Аравийском 

полуострове, как утверждает ливанский историк Камаль Салиби. Таким образом, евреи, 

потомки Авраама, – это именно те, о ком Клеарх из Сол писал как о потомках 

индийских мудрецов. Таким образом, они являются потомками арийцев, а не семитов. 

- История с Вавилонской башней может быть реальной, но миф о появлении множества 

языков был связан с потерей слуха строителями башни. 
 

Наши выводы гипотетические. Дальнейшие детали предложенного нами сценария 

могут следовать из геологических свидетельств о взрыве, произошедшем над дельтой 

Нила, и цунами, опустошившем Средиземноморское побережье и низину Инда 

приблизительно в 2000 г. до н.э. 

Другой вопрос, связанный с тем, что Иов стал Мелхиседеком, заключается в том, что 

он должен был пройти обряд помазания. Этот обряд должен был исполнять какой-то 

влиятельный человек. Здесь возникает и другой вопрос: был ли Иисус также помазан 

по такому же обряду, как утверждает Павел. Этот вопрос рассматривается в другой 

статье Spedicato (2016c). 
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Аннотация. Рассмотрено влияние момента количества движения и запаздывания в механике: 

при взаимодействии многих частиц, механике сплошной среды, кинетической теории, при 

распаде частиц. Для сплошной среды получен несимметричный тензор напряжений как 

результат действия момента. Обращается внимание на запаздывание процессов, что важно при 

описании дискретных сред. Для предельных случаев больших градиентов получены 

аналитические формулы, позволяющие получить ядро уравнений Навье-Стокса.  

Анализируется общая постановка задачи в конкретной ситуации. Обсуждается роль момента в 

некоторых аналогичных задачах квантовой механики. Предложен способ учета коллективных 

эффектов в функции Лагранжа. Продолжено исследование задачи Фолкнера–Скан при 

постоянной завихренности на внешней границе пограничного слоя и изменяющейся 

завихренности. Выявлено появление «полосчатых» структур при определенных режимах 

течения на внешней границе. 

Ключевые слова: момент количества движения, законы сохранения, несимметричный тензор 

напряжений, распад частиц, потенциалы, пограничный слой, задача Фолкнера-Скан. 

1. Введение 

Важным направлением современных исследований является изучение влияния момента 

количества движения и запаздывания во всей механике, включая квантовую механику. 

Изменение момента связано с появлением дополнительной силы, которая может играть 

роль малого возмущения, влияющего на устойчивость структуры. Полученные 

эффекты могут сказаться  при критических и около критических режимах  работы 

самолетов, ракет, различных  устройств, строительных конструкций, а также  при 

некоторых естественных  процессах. Величина дополнительной силы определяется 

значением градиента физических величин (плотности, скорости, количества движения).  

Действие момента количества движения, т.е. момента  сил существенно зависит от 

положения оси инерции (центра инерции). Момент величина векторная. Для 

элементарного объема важно как вращение его относительно своего центра инерции, 

так и вовлеченность во вращение большего объема. Представление о сумме 

дивергентной и вихревой скоростей при разложении скорости относительно 

произвольной точки внутри элементарного объема является неверным, так как вихревая 

часть есть составляющая этой скорости относительно оси инерции элементарного 

объема.  В экспериментах часто наблюдаются не только вихри большего размера, но и 

рябь. В механике принято одинаково рассматривать функцию Лагранжа для 

невзаимодействующих и для коллективно взаимодействующих частиц, что вызывает 

сомнение, особенно при металлических и ионных связях. В классической механике 

сплошной среды сложилось мнение о малом влиянии моментов относительно вклада 

поверхностных сил, так как их действие имеет объемный характер. Однако для 

длинных тел и при больших градиентах параметров вклад значителен и может быть 

причиной неустойчивостей, приводящих к изменению структуры течения или 

разрушению тела. Второй важный эффект-запаздывание. Запаздывание в механике 
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играет существенную роль при соизмеримости времен релаксации и запаздывания. 

Новым предлагаемым вариантом учета запаздывания является рассмотрение разности 

между производной по времени как предела и конечным значением длины свободного 

пробега в разреженном газе и времени между столкновениями.  Данная ситуация 

типична для дискретных сред, переход от дискретной среды к непрерывной является 

ключевым вопросом механики и вычислительной математики. Для бесструктурных 

частиц обычно рассматривается центральное взаимодействие, т.е. вариант, где момент 

не может играть какую-либо роль. Для остальных случаев предлагаются 

полуэмпирические теории [1-4]. Сложившиеся представления связаны скорее всего с 

рассмотрением элементарного объема как замкнутого.  В работах [5-8] исследовалось 

влияние момента количества движения на уравнения механики сплошной среды. 

Предлагался теоретический способ учета момента количества движения без 

привлечения новых эмпирических постоянных, основывающийся на факте отсутствия 

новых размерностей для момента количества движения относительно координат и 

импульса, входящих в уравнения в классическом варианте. Другой способ был 

предложен в [9].  Порядок уравнений с учетом момента выше, что требует пересмотра 

граничных условий. Общий учет всех эффектов приводит к громоздкой системе 

уравнений и поэтому требуется выделение главных эффектов в конкретной ситуации. 

Были приведены примеры, демонстрирующие вклад несимметричной части тензора 

напряжений в простейших задачах теории упругости и пограничного слоя. Вывод 

модифицированных уравнений для газа базировался на кинетической теории, для 

которой было предложено включить момент в качестве дополнительной переменной; 

использовать более точное асимптотическое приближение с разрешением парадокса Д. 

Гильберта. Как уже говорилось, элементарный объем может или сам вращаться вокруг 

оси инерции или быть вовлеченным во вращательное движение. В том и другом 

случаях поток плотности через границу меняется на величину 
 

  ...
d u

R r
dr


   за счет 

поворота элементарного объема. Вклад остальных компонент мал, принимая во 

внимание малость объема и отсутствие вращения на оси.  В данной работе проведен 

анализ используемых  классических предположений, результатом которых явился 

вывод  о возможности пренебрежения  моментом количества движения; продолжено 

исследование эффектов, связанных с действием момента количества движения 

в модифицированной задаче Фолкнера-Скан. Часто считается, что для обеспечения 

правильности расчетов, например, потенциалов  взаимодействия  в твердом теле или 

плазме достаточно остановиться на учете попарного взаимодействия частиц. Это 

правильно, если рассматривается потенциал для равновесных условий. В 

неравновесных условиях: образование трещин, возмущения в плазме, и т.д. 

проявляются коллективные эффекты взаимодействия за счет образования 

неравномерных распределений физических величин. При механическом воздействии на 

кристаллические тела (сжатие, растяжение) перестраивается кристаллическая решетка 

и распределение электронов внутри объема и на поверхности. На наш взгляд 

неточность возникает при расчете функции Лагранжа частиц как суммы попарно 

взаимодействующих частиц.  Положение оси инерции при равновесных условиях и при 

неравновесных условиях различно, что и обуславливает наличие коллективных 

эффектов. Интересно, что эффекты влияния момента количества движения и изменения 

положения центра инерции могут быть существенны и в квантовой механике при 

рассмотрении распада частиц на три и более частиц; при написании потенциала в 
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уравнении Шредингера. Ранее полученные результаты для задачи Фолкнера-Скан 

дополнены новыми исследованиями. Сравниваются результаты расчетов при 

различных граничных условиях на внешней границе пограничного слоя.  

2. Уравнения 

Из модифицированной кинетической теории получается уравнение, предлагаемое 

теорией упругости.  Момент имеет Лагранжево описание. Представляется возможным 

потребовать полного выполнения закона сохранения момента количества движения, 

что приведет к предлагаемой теории. Основные модифицированные уравнения с 

включением момента количества движения [5-8 ].  Для газа   

0
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Здесь t – time, x, y, z – координаты,  –плотность, Pij – тензор напряжений, u –  скорость, 

q – тепловой поток, R – газовая постоянная или 
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          
        

xy yz yxxx zxzz
zx xzx z

x y z x y z
. 

В теории упругости применяются последние три уравнения. Связь между тензором 

напряжений и скоростями деформации (уравнение состояния) остается старой, так как 

добавки получаются более высокого порядка. Безразмерными параметрами уравнений 

по-прежнему являются числа Рейнольдса и Маха. Это связано с тем, что 

рассматриваемая  постановка задачи не включает новых размерных параметров. Здесь 
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хотелось бы остановиться на некоторых вопросах теоретической механики. В 

теоретической механике рассматривается функция Лагранжа вида  [10,11] 

 
2

1 2, ,...
2

  a i

i

m v
L U r r . 

Всегда неявно предполагается, что  1 2, ,...U r r  – полный потенциал взаимодействия 

всех частиц, но на практике, как правило, известны потенциалы взаимодействия двух 

частиц и используют их сумму. При равновесии или при малых деформациях все 

нормально, но термодинамические эффекты и неравновесные возмущения приводят к 

неравномерному распределению физических параметров и повышению роли 

коллективных эффектов, что определяется ростом влияния момента количества 

движения. Кроме того, при указанных деформациях изменяется положение центра 

инерции элементарного объема, что существенно при больших деформациях (пока без 

вклада момента), сила  

 
 

 
 

     
       

        
 i i i ii i

i i i i

dL L L L L
q q q a q a

dt q q q a q a
, 

 i i

i
i

m r
a

m
,  для электрического взаимодействия  i i

i
i

e r
a

e
. 

С учетом момента нами предлагается учитывать силу по формуле 

 0

 
    

 

U
F F R a

R
, 

R – текущий радиус. Эта формула превращается с учетом перестановочности 

производных и направлений сил в формулу  

 0

U 
    

 
F F R a

R
. 

Обычно же, например, Гамильтониан системы двух взаимодействующих молекул после 

выделения движения центра масс представляют в виде суммы гамильтонианов 

изолированных молекул 0  A BH H H  и оператора их электростатического 

взаимодействия [12–15] 0 H H V  

1 1 1 1 1 1 1 1

1

       

       
A B B B A B A Bn N n N N N n n

a b a b

a j b j i j a baj bj ij ab

Z Z Z Z
V

r r r R
  

где индексы A, B нумеруют ядра, индексы i, j – электроны молекул A, B соответственно, 

единицы атомные. 

3. Модифицированная задача Фолкнера-Скан 

В качестве примера рассмотрим результаты дополнительного численного 

исследования, Рассматривалось решение задачи Фолкнера-Скан с традиционным 

уравнением неразрывности, с заданным трением, но с дополнительным вихрем на 

внешней границе   m

eU cx . Эта задача содержит в себе как частный случай решение 

для пластины с однородным внешним потоком и интересно как пример ускоренного  

(m > 0) или замедленного (m <0) движения во внешнем потоке.   
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2

2

       
       

         

e
e

Uu u u u
u v U y

x y x y y y y
, 

0
 

 
 

u v

x x
 

или   

0
   

  
   

u v v
y

x x y y
 

с граничными  условиями 

0u , 0v , 


   


w

u
a

y
, 0y ,  eu U , y , x > 0, 

  
   

  
e

u v
u U

y x
, x = 0, 

 m

eU cx ; a, m = const. 

При решении задачи с традиционными граничными условиями автомодельность задачи 

сохраняется, так как нет новых размерностей [16]. Результаты представлены на фиг.1  

   mu cx , 
 1 /2

 


mc
yx , 

   1 /2
  

m
v cx V  

  
(а) m = –0.05; w = 0.2202      (b) m = 0.33; w = 0.7575   

Рис. 1 

Результаты с вихревыми  постоянными граничными условиями на внешней границе 

пограничного слоя.  
Профиль горизонтальной составляющей скорости: 

m = –0.04; w = 0.5 

Профиль вертикальной составляющей скорости:  

m = –0.04; w = 0.5 

   
Рис. 2 

Профили скорости для переменной вихревой скорости на внешней границе, 

сформированной умножением числа  на значение вихря на предыдущем слое. 
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Профиль v вертикальной составляющей скорости: 

m = –0.04; w = 0.5 

Профиль v горизонтальной составляющей 

скорости: m = –0.04; w = 0.5 

   
Рис. 3 

Профиль u горизонтальной составляющей 

скорости: m = 0.04; w = 0.5 

Профиль u вертикальной составляющей скорости:  

m = 0.04; w = 0.5 

   
Рис. 4 

Профиль v горизонтальной составляющей 

скорости: m = 0; w = 0.5 

Профиль u вертикальной составляющей скорости:  

m = 0; w = 0.5 

 
Рис. 5 

Профиль u горизонтальной составляющей 

скорости: m = –0.07; w = 0.5 

Профиль v вертикальной составляющей скорости:  

m = –0.07; w = 0.5 

  
Рис. 6 
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Рис. 7. Функция тока для последнего слоя 

Представление течения на внешней границе в данном виде моделирует влияние 

вихревой компоненты относительно третьей координаты. Роль этой составляющей 

значительна, даже при малом значении. Возможно формирование обратного 

локального течения внутри пограничного слоя. Результаты говорят о важности 

вертикальной компоненты скорости и более быстрому отрыву потока при 

отрицательных градиентах скорости. Таким образом, при определенных условиях 

внутри пограничного слоя может возникнуть полосчатая структура, которая 

наблюдается в экспериментах [17].  

4. Некоторые другие задачи 

а) Задачи кинетической теории. Газ, находящийся в стационарном поле сил, 

обладающим потенциалом  (аналог задачи из [18] ):  

 
1

,
    

    
    

i i i

i i i i i

f f f
x J f f

x x x m x
. 

i – фазовая скорость относительно координат x, y, z; f – функция распределения,   

 ,J f f – интеграл столкновений. Классическое распределение     2 


B x
f A x e . В этом 

случае мы имеем старый результат, B = const. Для A(x) мы имеем уравнение 

2 0
 

  


i

i i i

dA d dA A B
x

dx dx dx m x
 

Тогда 
2

3/2

2
0

2

m

kT kT
m

f n e e
kT


   

  
 

. 

Общее распределение Максвелла имеет вид  

3/2

2exp
2 2

m m
f n c

kT kT

   
   

   
, c u    

Модифицированное уравнение Больцмана  ,i i i i

i i i i

f f f
x g J f f

x x x

   
    
   

,  
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/g X m  – ускорение молекул. 

Применим к решению уравнения старый алгоритм 2

0 4ln i if         . 

Тогда мы получим старое уравнение и новое   

0 0i ig
t


  


 

2

0 0 0 0
4 2

1
2 0

2

i
i i i

i i i i i

g x x
t x x x x x

    
      

     
, 

 

 

04 1 1 1 1

2 2 2 2

1 1
0

2 2

j j ji i i
ij i j

j i j i j i i

j ji i
i j

i j i i j i

x x
t x x x x x x x

x x
x x x x x x

          
                               

       
                      

 

Прежде 4 0
ix





, T = const. 

Таким образом, получено точное решение модифицированного уравнения Больцмана.   

б) Распад частиц. При рассмотрении распада используются два закона: массы и 

энергии, не рассматривается изменение положения центра инерции и момент 

количества движения. 

Момент количества движения может привести к вращению частиц, что  диктуется 

наличием момента относительно движущегося центра инерции двух частиц и 

равенством нулю общего момента замкнутой системы. Суммарный момент при этом  

будет сохраняться. Для наглядности повторим классическое решение: 10 20M     ,  

сообщаемая энергия  1 2m m M  , импульс 10 20 0p p  , отсюда 2 2

10 20p p  или 

2 2 2 2

10 1 20 2m m     . 

Рассматривая обе частицы вместе как одну сложную систему, мы найдем скорость ее 

движения как целого. 

1

1 2

pp
V

m
 
  

. 

Особенно интересен случай распада частицы на три частицы. Теоретически возможны 

различные ситуации.  

5.  Заключение 

Обсуждается влияние запаздывания в дискретной среде при переходе к непрерывному 

(полевому) описанию для течений в разреженном и переходном режимах. Предлагается 

модификация уравнений слабо разреженного газа с целью вычисления ядра уравнения 

Навье-Стокса.  Исследуется влияние  момента количества движения  и, как следствие, 

несимметричность тензора напряжений в элементарном объеме. Предлагается модель 

учета коллективных эффектов в функции Лагранжа. Прослеживается влияние данных 

эффектов в механике сплошной среды и в квантовой механике. Приводятся результаты 

расчета нового варианта граничных условий в задаче Фолкнера-Скан. 



Эффекты дисперсии при коллективном взаимодействии частиц 

 

 
115 

Литература 

1. Методы расчета турбулентных течений. Пер. с анг. / Под.ред. Кольмана.  М.: Мир, 

1984, 464с. 

2.  Г.Шлихтинг.  Теория пограничного слоя.  М.: Мир, 1974, 712 с. 

3 . К. Н. Волков, В.Н. Емельянов. Вихревые течения. Ижевск. 2007  

4. Joung Ho Lee and Hyung Jin Sung. Structures in Turbulent layers subjected to adverse 

pressure gradients. J. Fluid Mech. Vol. 639, 2009, pp. 101-139  

5. Evelina V. Prozorova. Influence of the Delay and Dispersion In mechanics. 

Journal of Modern Physics, 2014, 5, 1796-1805 

6. Э.В. Прозорова. О моделях механики сплошной среды. Международный научный 

журнал "Проблемы нелинейного анализа в инженерных системах", №2(42), т.20, 2014, 

С. 69–77. 

7. Э.В. Прозорова. "Влияние дисперсии в неравновесных задачах механики сплошной 

среды", МГУ, Электронный журнал "Физико-химическая кинетика в газовой динамике.  

2012. Том 13,URL: http://www.chemphys.edu.ru/pdf/2012-10-30-001.pdf 

8. Evelina V. Prozorova, Aleksandr Shadrin. Influence dispersion in gas and solid for moving 

body. 5th European Conference for Aeronautics and Space Sciences 1-5 July 2013/ Holiday 

Inn Munich City Centre, Munich, Germany 

9. Э.А. Буланов. Моментные напряжения в механике твердого, сыпучего и жидкого 

тела. М.: Вузовская книга. 2012. 140с. 

10. Л.Д. Ландау, Е.М. Лифшиц. Механика. М.: Наука, 1965. 204 с. 

11. Л.Д. Ландау, Е.М. Лифшиц. Теория поля. М.: Наука, 1967.400 с. 

12. И.Г. Каплан. Введение в теорию межмолекулярных взаимодействий. М.: Наука. 

1982. 312с. 

13. С.Н. Андреев, В.Н. Очкин, С.Ю. Савинов, С.Н. Цхай. О передаче момента при 

возбуждении электронных состояний молекул электронами разных энергий. Краткие 

сообщения по физике. ФИАН, N.12, 2014, с 19-25 

14. A. Campa, T. Dauxois, D. Fanelli, S. Ruffo. Physics long-Range Interacting Systemm. 

Oxford 2013 

!5. Ivan Lazić. Atomic scale simulation of oxide and metal film growth. Chapter 3.General  

Performance Testing, Chapter 4. An improved molecular dynamics potential for studying 

aluminum oxidation. Part1-Parameter optimization for the electrostatic part of the potential. 

College voor Promoties.  14 december 2009 

16. V.A.Kononenko, E.V. Prozorova, A.V. Shishkin. Influence dispersion for gas mechanics 

with great gradients. 27-th international symposium on Shock waves. St. Peterburg. pp. 406–

407, 2009. 

17. М.М. Катасонов, В.В. Козлов, Н.В. Никитин, Д.С. Сбоев. Возникновение и развитие 

локализованных возмущений в круглой трубе и пограничном слое: Учеб. пособие / 

Новосиб. Гос. Ун-т. Новосибирск, 2015. 

18. М.Н. Коган. Динамика разреженного газа.  М.: Наука. 1967, 440 с. 

 

Олег Юрьевич Галаев, выпускник СПбГУ (факультет мат-мех, 2014); специальность: 

Математическое обеспечение и администрирование информационных систем; 

квалификация: математик-программист; в настоящее время инженер-программист (Dell 

Software). Область профессиональных интересов: проблемы механики и 

информационные технологии. 



О.Ю. Галаев, Э.В. Прозорова 

 

 
116 

Эвелина Владимировна Прозорова, д.ф.-м. наук, проф. (Санкт-Пербургский 

государственный университет); окончила физико-механический факультет (1967 г.) 

Ленинградского Политехнического института; аспирантуру Физико-технического 

института им. А.Ф. Иоффе. Область научных интересов: механика жидкости и газа, 

проблемы моделирования приповерхностных явлений. 

E-mail: e.prozorova@ spbu.ru 



Проблемы нелинейного анализа 
в инженерных системах.  №1 (45), том 22, 2016                                                                                     Казань 
 

126 

Программная разработка прикладной макетной 3D модели 

в нефтяной отрасли 

А.Р. Бакиров, В.О. Георгиев, А.Р. Набиев 

Казанский (Приволжский) Федеральный Университет  

Россия, 420008, Казань, ул. Кремлевская, 18 

Аннотация. Одной из проблем современной науки в сфере информационных технологий 

является разработка имитационных моделей при проектировании промышленных 

информационных систем. 

В докладе представляется разработанный в ходе практических работ по учебному курсу 

“Объектно-ориентированный анализ и проектирование”, учебно-демонстрационный вариант 

прикладной макетной 3D модели в нефтяной отрасли. 

Макетная модель представляет собой визуальное представление работы станка-качалки, сам 

процесс нефтедобычи, объемное представление пласта в разрезе, ход производственного 

процесса по добычи нефти, что позволяет получать информацию по составным частям модели 

в динамике. 

При проектировании программной реализации модели использовались передовые методы, 

инструментальные средства и технологии программной инженерии. 

Программная разработка макетной модели состоит из двух частей: 

1.  Обучающая часть – наглядная визуализация процесса нефтедобычи. 

2. Информационная часть – дающая возможность познакомиться с описанием процессов и 

частей модели. 

Отдельная часть уделена визуальной составляющей: В приложении присутствует 3D модель 

станка-качалки и анимированный процесс нефтедобычи в пласте земли. 

Реализация системы выполнена с инструментальных средств визуального 3D движка Unity3D и 

языка C#. 

Модель может быть использована в учебном процессе подготовки специалистов, как в области 

нефтедобычи, так и в области подготовки специалистов компьютерной графики. 

Ключевые слова: Макетная модель, визуальное представление, станок-качалка, процесс 

нефтедобычи 

1. Введение 

В наше время нефтедобыча занимает ключевую позицию в сфере экономики и 

энергетики.  Так она является важным фактором развития России.  В стране можно 

выделить несколько регионов нефтедобычи: Ханты-Мансийский автономный округ, 

Ямало-Ненецкий автономный округ, Республика Татарстан, Оренбургская область и 

т.д. Нефтедобыча состоит из нескольких процессов, включающих в себя 

геологоразведку, бурение, строительство скважин,  очистку нефти. 

Поэтому необходимости  иметь и обучать высококвалифицированных специалистов в 

данной области, осуществление подготовки, переподготовки, повышения 

квалификации рабочих кадров нефтедобывающей и перерабатывающей отрасли 

являются как никогда актуальными задачами. 

При подготовке специалистов нефтяной отрасли особое внимание должно  уделяться  

формированию практических навыков в работе с нефтепромысловым оборудованием. 

Это такие умения, как обнаружить дефекты и неисправность нефтепромыслового 

оборудования, производить технический осмотр и устранять неисправности, 
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производить смазочные работы, уметь включать и отключать оборудование, иметь 

навыки руководителя, вести техническую документацию. 

Нефтегазодобывающие предприятия постоянно оснащаются новой техникой, меняются 

технологические и трудовые процессы, внедряются передовые методы труда. В связи с этим 

необходимо постоянно обучать специалистов умению обращаться с новым производственным 

оборудованием, правильно и безопасно вести новые технологические процессы. 

Например, для оператора добычи нефти и газа необходимо ознакомиться с устройством добычи. 

При эксплуатации техники могут возникать  нештатные ситуации, которые он должен 

видеть на приборах и адекватно реагировать на них, если возникают неисправности или 

аварийные ситуации  уметь короткие сроки оперативно их устранять. 

Одним из методов решения поставленных актуальных задач является макетное 3D 

моделирование использующее передовые разработки компьютерной IT – индустрии. 

Такая макетная модель позволяет  наглядно отобразить собой визуальное 

представление работы станка-качалки, сам процесс нефтедобычи, объемное 

представление пласта в разрезе, ход производственного процесса по добычи нефти. 

Программная реализация модели позволяет получать информацию по составным 

частям станка в динамике, использовать ее в учебном процессе подготовки 

специалистов не прибегая на начальном этапе к натурным испытаниям. 

2. Основные понятия, используемые при реализации модели 

В качестве исходных данных, используемых нами при разработке модели, применялись 

такие понятия, как способы извлечения нефти, установка штангового скважинного 

насоса ШСН (ее наземное и подземное оборудование), раскроем их:  

1. Способы извлечения нефти. 

Из способов извлечения скважиной жидкости можно выделить методы: 

Фонтан (выход флюида за счет разности давления в пласте и на устье скважины) 

Насосно-компрессорная добыча с использованием различных видов насосов: 

Установка электроцентробежного насоса (УЭЦН) 

Установка электро-винтового насоса (УЭВН) 

Установка штангового скважинного насоса (ШСН) 

2. Установка штангового скважинного насоса (ШСН). 

В качестве объекта макетного моделирования нами была выбрана установка 

штангового скважинного насоса (ШСН) (См. рис. 1, рис. 2). Среди причин выбора 

можно выделить их широкое использование в области нефтедобычи, а также ряд 

особенностей перечисленных ниже. 

Среди основных достоинств ШСН выделим следующие свойства:  

1. Простота конструкции. 

2. Высокие показатели надежности. 

3. Малая собственная масса. 

4. Высокий КПД. 

5. Простота обслуживания и ремонта в промысловых условиях. 

6. Удобство регулировки. 

7. Возможность обслуживания установки работниками низкой квалификации. 

8. Возможность эксплуатации скважин малых диаметров. 

В качестве составных частей ШСНУ выделим: 
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а) наземное оборудование — станок-качалка (СК), оборудование устья, блок 

управления; 

б) подземное оборудование — насосно-компрессорные трубы (НКТ), штанги насосные 

(ШН), штанговый скважинный насос (ШСН) и различные защитные устройства, 

улучшающие работу установки в осложненных условиях. 

3. Наземное оборудование 

Станок-качалка устанавливается на специально подготовленном фундаменте (обычно 

бетонном), на котором устанавливаются: платформа, стойка и станция управления 

(рисунок 1). 

После первичного монтажа на стойку помещается балансир, который уравновешивают 

так называемой головкой балансира (рисунки 1,2). 

На платформу устанавливается редуктор и электродвигатель. Иногда электродвигатель 

расположен под платформой. Последний вариант имеет повышенную опасность, 

поэтому встречается редко. Электродвигатель соединяется с маслонаполненным 

понижающим редуктором через клиноременную передачу. Редуктор же, в свою 

очередь, соединяется с балансиром через кривошипно-шатунный механизм. Этот 

механизм преобразует вращательное движение вала редуктора в возвратно-

поступательное движение балансира. 

 

 
Рис. 1. Модель станка-качалки сбоку: 1 – головка балансира; 2 – балансир; 

3 – опора балансира;4 – противовесы и кривошип; 5 – станция управления; 

6 – устьевой шток;7 – фундамент качалки;8 – электродвигатель 

 

Рис. 2. Модель станка-качалки сверху 
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4. Подземное оборудование 

ШСН в подземной части состоит из плунжера, движущегося вверх-вниз по хорошо 

подогнанному цилиндру (рисунок 3). Плунжер снабжен обратным клапаном, который 

позволяет жидкости течь вверх, но не вниз. Обратный клапан, называемый также 

нагнетательным, в современных насосах обычно представляет собой клапан типа шар-седло. 

Второй клапан, всасывающий (рисунок 4), – это шаровой клапан, расположенный внизу 

цилиндра, и, подобно обратному клапану, позволяет жидкости течь вверх, но не вниз. 
 

                           
Рис. 3. Схема штангового скважинного 

насоса с наземным оборудованием 

Рис. 4. Принципиальная схема 

штангового скважинного насоса 

5. Принцип действия скважинного насоса 

Раскроем основные принципы действия ШСН. Ход его функционирования заключается в 

следующем. Вначале плунжер находится в стационарном состоянии в нижней точке хода 

(рисунок 5). В этот момент и всасывающий, и нагнетательный клапаны закрыты. Столб 

жидкости в насосно-компрессорной колонне создает гидростатическое давление над 

всасывающим клапаном. Нагрузкой на сальниковый шток (верхний шток из колонны 

насосных штанг) является только вес колонны насосных штанг. При движении плунжера 

вверх обратный клапан остается закрытым, и колонна насосных штанг принимает на себя 

вес жидкости в насосно-компрессорной колонне – вес колонны насосных штанг и вес 

столба жидкости. При минимальной утечке между плунжером и насосным цилиндром 

давление между нагнетательным и всасывающим клапанами уменьшается, так что 

всасывающий клапан открывается, и жидкость из ствола скважины поступает в цилиндр 

насоса. В верхней точке рабочего хода плунжер останавливается, и оба клапана снова 

закрываются, при этом вес жидкости снова приходится на плунжер и нагнетательный 

клапан. Предположим, что теперь цилиндр насоса заполнился жидкостью и жидкость 

несжимаема. При начале движения плунжер вниз выкидной клапан откроется. Вес столба 
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жидкости в насосно-компрессорной колонне перенесется на всасывающий клапан и 

рабочую колонну, а нагрузка на сальниковый шток и насосный узел опять будет состоять 

только из веса штанг. Дальнейшее движение плунжера вниз заставит жидкость перетечь 

из цилиндра в плунжер через обратный клапан. Возвращение плунжера в нижнюю точку 

рабочего хода закончит цикл. 
 

 

Рис. 5.  Принцип работы штангового скважинного насоса 

6. Учебно-демонстрационный вариант прикладной макетной 3D модели 

Используя исходные данные, представленные во второй части статьи, была 

программно реализована прикладная виртуальная макетная ШСН. 

Макетная модель представляет собой визуальное представление работы станка-

качалки, сам процесс нефтедобычи, объемное представление пласта в разрезе, ход 

производственного процесса по добычи нефти, что позволяет получать информацию по 

составным частям модели станка в динамике. 

Программная разработка макетной модели состоит из двух частей:  

- Обучающая часть: 

1. По наглядным схемам были реализованы модели и их анимация (рисунок 6). 
 

 

Рис. 6.  Общая модель 
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2. Смоделирован принцип работы штангового скважинного насоса (рисунок 7). 
 

 

Рис. 7. Модель в разрезе 

3. Реализовано оповещение о возможном возникновении аварии при малых или 

слишком больших нагрузках (рисунок 8). 
 

 
Рис. 8.  Аварийные ситуации 

4. Описание составных частей модели (рисунок 9). 

 
Рис. 9.  Общее описание 



А.Р. Бакиров, В.О. Георгиев, А.Р. Набиев 

 

 
132 

Информационная часть модели предоставляет возможность ознакомления с описанием 

процессов и частей модели, реализована также возможность расширения заметок в 

последующих сборках приложения и возможность их удобного увеличения и чтения. 

7. Управление моделью 

Для управления процессом визуализации и моделирования ситуаций используются 

основные функциональные возможности стандартных компьютерных устройств, а 

также возможности сенсорного экрана планшетных устройств. 

Среди основных возможностей выделим: 

- Левая кнопка мыши – действие (внутри области). 

- (двойной клик) Левая кнопка мыши – приближение камеры к объекту. 

- Правая кнопка мыши/Средняя кнопка мыши  – вращение камерой/выход из 

приближения. 

- Колесо мыши – отдаление/приближение камеры. 

- Создание аварийной ситуации, вводя значение в поля, находящиеся на экране слева сверху. 

Примечание: 

- Если камера опускается ниже уровня земли, земля отображается в разрезе. 

- Зеленая кнопка рядом с моделью отвечает за остановку/запуск станка. 

- Счетчики, показывающие примерную добычу нефти и другие данные. 

8. Основные инструментальные средства 

Приложение собрано под Windows, Android, браузер(WebGL). 

Инструменты: 

Unity – это инструмент для разработки двух- и трёхмерных приложений и игр, 

работающий под операционными системами Windows, OS X. Созданные с помощью 

Unity приложения работают под операционными системами Windows, OS X, Windows 

Phone, Android, Apple iOS, Linux
[1]

, а также на игровых приставках Wii, PlayStation 3, 

PlayStation 4, Xbox 360, Xbox One. Есть возможность создавать приложения для запуска 

в браузерах с помощью специального подключаемого модуля Unity (Unity Web Player), 

а также с помощью реализации технологии WebGL. 

Blender – свободный, профессиональный пакет для создания трёхмерной 

компьютерной графики, включающий в себя средства моделирования, анимации, 

рендеринга, постобработки и монтажа видео со звуком, компоновки с помощью 

«узлов» (Node Compositing), а также для создания интерактивных игр. 

Программный код на языке C#. 

9. Выводы 

В работе показана важность применения макетного 3D моделирования в процессе 

обучения специалистов нефтедобывающей отрасли, так как данные модели позволяют 

наглядно отобразить все этапы работы станка-качалки, а также возможные аварийные 

ситуации. Позволяет получать информацию по составным частям производственного 

комплекса в динамике, использовать ее в учебном процессе подготовки специалистов 

не прибегая на начальном этапе к натурным испытаниям.  

10. Заключение 

В данной работе приведена программная реализация модели станка качалки и ее 

визуальное представление, позволяющее проводить обучение специалистов 
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нефтедобывающей отрасли на отдельных примерах производственных процессов, в том 

числе и аварийных ситуациях. 
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Аннотация. В статье рассматривается разработка и применение экспертных систем для реше-

ния задач проектирования систем и освоение новых информационных технологий примени-

тельно к системам обработки данных и управления. Описана инструментальная система ExPRO 

4 для разработки экспертных систем. 

Ключевые слова: информационные технологии, интеллектуальные методы. 

Применение интеллектуальных методов является важным направлением 

совершенствования информационных технологий, которые широко используются в 

производстве летательных аппаратов, авиации и космонавтике. 

Для решения трудно-формализуемых задач используются экспертные системы (ЭС), 

основанные на знаниях квалифицированных специалистов и применении методов 

искусственного интеллекта. 

Экспертные системы позволяют систематизировать и накапливать знания специалистов 

предметных областей.  

Подготовка специалистов, владеющих знаниями по созданию и применению ЭС, 

является важным направлением в образовательной деятельности. 

Любая экспертная система имеет следующие типовые компоненты: 

1. Подсистема приобретения знаний (редактор базы знаний). 

2. Подсистема поиска решений. 

3. Подсистема объяснения решения. 

С целью сокращения затрат на разработку экспертных систем используются 

инструментальные системы. Решение задач с применением таких систем требует только 

создания базы знаний. Обработка знаний выполняется средствами, включенными в 

инструментальную систему. Примерами инструментальных систем являются: CLIPS [1], 

ExSys Corvid, G2 [3]] и другие. Системы, разработанные зарубежными фирмами, имеют 

высокую стоимость и сложны в адаптации к условиям российских потребителей. 

Поэтому возникает проблема импортозамещения таких систем. 

Специалистами отраслевого НИИ КНИАТ (г. Казань) проводились исследования по 

созданию экспертных систем для технологической подготовки производства 

летательных аппаратов. 

В дальнейшем работы продолжались с привлечением специалистов КФУ и КНИТУ-КАИ, 

в результате чего была создана инструментальная экспертная система (ИЭС) ExPRO [2-5]. 

Эта система позволяет решать сложные задачи в следующих предметных областях:  

1. Проектирование систем и процессов. 

2. Диагностика неисправностей технических систем. 

3. Обучение и контроль знаний. 

На рис. 1 приведена структура системы ExPRO 4. 
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Рис. 1. Структура системы ExPRO 4 

Управление системой осуществляется с помощью интерфейса системы, который позво-

ляет организовать работу в двух режимах: создание базы знаний и решение задач пред-

метной области. Для создания базы знаний используется специализированный 

редактор.  

Подсистема поиска решения формирует порядок выполнения правил, проверяет истин-

ность условий и выполняет действия, предусмотренные правилами базы знаний, 

с использованием прямого и обратного вывода. 

Модуль объяснения формирует дерево объяснений, используя протокол выполнения 

правил. В протоколе приводится порядок выполнения правил, имена определяемых 

переменных и их значения. Модуль объяснения используется для отладки базы знаний. 

Представление знаний в системе ExPRO выполняется с помощью продукционных правил 

и объектно-ориентированного подхода. Структура базы знаний представлена на рис. 2. 

 
Рис. 2. Структура базы знаний системы ExPRO 4 
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В системе ExPRO объектное представление позволяет создавать классы для определе-

ния групп сущностей со схожими параметрами и объекты для описания конкретной 

сущности с определенными значениями свойств. 

В рамках класса можно описывать как декларативные знания, так и процедурные. 

Декларативные знания описываются как свойства класса (определение атрибутов, ко-

торые будет иметь объект). Каждое свойство может иметь ряд параметров, среди кото-

рых наименование, область видимости (доступно только в рамках действий внутри 

объекта или в любых действиях), комментарий. 

Процедурные знания представлены в виде внутренних продукционных правил. Данные 

правила работают только со свойствами своего объекта и необходимо для описания 

внутреннего функционирования объекта. 

Библиотека встроенных функций включает следующие группы:  Ввод и вывод данных; 

Файловый ввод и вывод; Управление процессом решения; Вычислительные функции; 

Работа со строками и списками; Работа с таблицами; Графические функции; Работа с 

искусственной нейронной сетью; Работа с формулами; Работа с формами. 

Преимуществами ИЭС ExPRO является: 

1. Интеграция с другими программными средствами. Для уже существующей системы 

реализуется отдельный модуль на ExPRO. В системе ExPRO интеграция может быть 

реализована через: интернет (http - запросы), базы данных (mdb), файлы, таблицы и т.д; 

2. Интеграция между предметными областями. Полнота экспертной системы всецело 

зависит от заполнения базы знаний. При этом нет ограничений на предметные области. 

Таким образом, системы, реализованные на ExPRO, могут заменять группы систем, 

включая всю их функциональность и правила их взаимодействия; 

3. Структурированность. Базы знаний, созданные с использованием инструментальных 

средств, структурируются на модули. Каждый модуль является отдельной базой знаний 

и может быть использован автономно или в составе другой базы знаний. 

Использование продукционного подхода предполагает задание связей и действий через 

правила, что не требует знания алгоритма и предоставляет возможность удобного 

расширения (добавить новые правила) и понимание базы знаний; 

4. Встроенная возможность документирования конечных и промежуточных 

результатов. В системе ExPRO предоставлен редактор шаблонов и функции 

формирования документа. При разработке и редактировании базы знаний, все 

документы находятся в одном месте и могут быть легко проинспектированы; 

5. Интеграция с другими методами искусственного интеллекта. В системе ExPRO 

предусмотрена возможность работы с искусственными нейронными сетями 

(составление архитектуры, обучение, использование). Если знания не могут быть 

формализованы в виде правила, но есть некая статистика, то они могут быть 

формализованы в виде ИНС, которая будет вызвана в одном из правил. При получении 

новой информации ИНС может быть автоматически обучена на новых данных. 

Инструментальная экспертная система ExPRO 4 используется в образовательной 

деятельности КНИТУ-КАИ для подготовки специалистов и проведения научно-

исследовательских работ. Накоплен практический опыт решения следующих задач: 

1. Технологическое проектирование: проектирование технологических операций, 

режущего инструмента и технологической документации; 

2. Оценка качества продукции; 

3. Разработка систем обучения по основам искусственного интеллекта; 

4. Тестирование знаний по "Основам взаимозаменяемости в машиностроении"; 

5. Математическое моделирование течения жидкости. 
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В базе знаний моделирования течения жидкости реализуется математическая модель с 

использованием нескольких методов расчет величин для случаев течения жидкости 

вдоль параллельных пластин и клина. Для каждого случая движения жидкости для 

заданных параметров определяются линии тока, скорости перемещения частиц и 

изменение давления по направлению движения. 

Структура базы знаний моделирования течения жидкости приведена на рис. 3. 

 

 
Рис. 3. Структура базы знаний по моделированию течения жидкости 

Формулы расчета параметров по методу Г.В. Дружинина, используемые на момент со-

здания базы знаний, приведены ниже. 
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Примеры правил расчетов величин представлены в таблице 1. 
 

Таблица 1. Примеры правил из базы знаний моделирования течения жидкости 

Наименование правила Если То 

Расчет параметров через 

модель Дружинина для 

параллельных пластин 

форма = 

"параллельные 

пластины" 

Параметры = МатМодельДружи-

нин ("Параметры", {x=x, y=y, 

A0=A0, A1=A1,) 

A2=A2}) 

Расчет параметров через 

модель Шлихтинга для 

клина 

Форма = "клин" Параметры = МатМодель 

Шлихтинга ("Параметры", {x=x1, 

y=y1}) 

Сечение скоростей по 

верхней пластине 

видСеченияСкорос

тей="верхняя" 

сечениеСкоростей=h 
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В результате работы системы строятся графики выбранных величин. Один из таких 

графиков приведен на рис. 4. 

 

 
Рис. 4. График давления при течение между подвижным ползуном и опорной по-

верхностью (Ш = 35454.33, h1 = 454.55, h2 = 100) 

 

База знаний тестирования по "основам взаимозаменяемости" работает по следующей 

схеме:  

1. регистрация пользователя (ФИО, группа); 

2. выбор тестового задания (25 заданий);  

3. тестирование (каждое задание содержит 4 вопроса по 4 разделам); 

4. вывод результата (документ с итоговой бальной оценкой). 

База знаний содержит следующие категории правил: опрос пользователя; проверка 

правильности ответа; рисование изображений; расчет оценки за тестовое задание; 

правила для проверки хода и решения сгенерированных задач (определение знания 

допуска, определение степени точности и т.д.). 

База знаний интегрируется с базой данных системы Access, куда заносятся типовые 

вопросы (выбор одного из 4 ответов и т.д.). Более сложные задания и методы их 

решения заносятся непосредственно в базу знаний. 

Преимуществом использования баз знаний, созданных в системе ExPRO, для 

тестирования являются: 

1. Формализация подходов различных преподавателей без необходимости разработки 

общего подхода. В итоге ЭС делает выводы, на основании комбинированных знаний, 

которые не сделал бы ни один преподаватель по отдельности; 

2. Генерация задач в зависимости от изучаемого метода решения. В системе 

закладываются правила решения задачи разными методами, что позволяет производить 

проверку решения задачи нужным методом и создавать модули генерации задач; 

3. Проверка хода решения практической задачи при тестировании.  Это достигается за 

счет правил БЗ решения задачи различными методами, что позволяет системе 

проверять множество подходов к решению, а также их комбинацию. 

БЗ проектирования режущего инструмента позволяет спроектировать сверло на 

основании обрабатываемого материала, диаметра отверстия и глубины обработки. 

Проект инструмента содержит: материал сверла и список других допустимых 

материалов, длина режущей части, тип хвостовика и список других допустимых типов, 

длина шейки, длина рабочей части, диаметр сверла, ширина ленточки, диаметр 

сердцевины. База знаний содержит: объектную модель предметной области; правила 

выбора материалов; правила расчета размеров элементов инструмента; правила 

составления проекта и его вывода в виде документа. 

Объектная модель предметной области приведена на рис. 5. 
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Рис. 5. Объектная модель задачи проектирования режущего инструмента (сверла) 

 

Примеры правил приведены в Таблице 2. 

Таблица 2. Примеры правил из базы знаний проектирования режущего инстру-

мента 

Наименовани

е правила 

Если То 

Определение 

материала 

сверла 1 

поверхность.отверстие.глубина 

>10*поверхность.отверстие.диам

етр 

поверхность.материал = 

"Углеродистая и легированная 

сталь" 

сверло.материал 

=["Т5К12","ВК8","Т15К6"] 

Определение 

диаметра 

сверла 

 сверло.конструкция.диаметрСвер

ла 

=0.9*поверхность.отверстие.диам

етр 

Определение 

диаметра 

сердцевины 1 

сверло.конструкция.диаметрСве

рла <1.25 

сверло.конструкция 

.диаметрСердцевины =(1-( 

сверло.конструкция.диаметрСвер

ла-0.25))*0.08+0.2 

 

Система ExPRO используется в учебном процессе кафедры АСОИУ по освоению 

дисциплины "Средства взаимодействия человека с информационной системой". Сту-

денты осваивают возможности системы путем выполнения лабораторных работ, кото-

рые предусматривают приобретение навыков формализации знаний с использованием 

языка представления знаний ExPRO и разработки баз знаний. С помощью ИЭC студен-

ты моделируют и создают интеллектуальный интерфейс человеко-машинного взаимо-

действия. 
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Заключение 

Применение интеллектуальных методов позволяет повысить качество проектирования и обучения. 

ЭС позволяют: подойти к индивидуализации обучения (предоставление материала в 

наиболее доступном для конкретного студента виде); решать задачи получения практиче-

ских навыков (поэтапное объяснение решения задачи, подсказки о ходе дальнейшего ре-

шения, выявление ошибок в решении); расширить возможности контроля знаний (исполь-

зование слабо формализованных ответов, проверка хода решения практической задачи). 

Экспертные системы обеспечивают накопление опыта и знаний специалистов и 

преподавателей. Это обеспечивает преемственность опыта и возможность решения более 

сложных задач за счет комбинации заложенных методов подсистемой поиска решений. 

Экспертные системы эффективны для проведения научных исследований. ЭС 

позволяет формализовать теорию или модель и проверить ее поведение. 

С целью сокращения затрат на создание ЭС рекомендуется использовать 

инструментальную систему ExPRO 4, которая позволит накапливать и 

систематизировать знания преподавателей, а также автоматизировать выполнение 

научно-исследовательских работ. 
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Аннотация. Приведен краткий обзор истории развития механики в Казанском университете, 

включая основные направления фундаментальных научных исследований в теоретических и 

прикладных областях. 
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1. Зарождение исследований и преподавания механики 

Зарождение исследований и преподавания механики, создание кафедры механики в 

Казанском Императорском университете связано с именем Н.И.Лобачевского – 

студента, профессора, ректора. 

«Н.И.Лобачевский, вероятно, самый крупный человек, выдвинутый почти 

двухсотлетней славной историей российских университетов. Если бы он не написал ни 

одной строчки самостоятельных научных исследований, мы, тем не менее, должны 

были бы с благодарностью вспомнить о нём как о замечательнейшем нашем 

университетском деятеле, как о человеке, который высоким званиям профессора и 

ректора университета дал такую полноту содержания, которой им не придавал никто 

другой из лиц, носивших эти звания до него, в его время или после его смерти. Но 

Н.И.Лобачевский, кроме того, был ещё и гениальным учёным, и не будь он таковым, не 

имей он, наряду со всеми своими прочими дарованиями, ещё и первоклассного 

творческого дара, и творческого опыта, он и в области университетского преподавания, 

и университетского руководства, и самой своей воспитательной деятельности не мог 

бы быть тем, кем он в действительности был». 

На систему преподавания в университете, в том числе и механики, большое влияние 

оказали выпускники Московского университета Г.И.Карташевский (1779 – 1840), 

И.И.Запольский (1773 – 1810), Г.Н.Никольский (1785 – 1844), а также приглашенные 

профессора К.Ф.Реннер (1780 – 1816), М.Ф.Бартельс (1769 – 1836). Григорий Иванович 

Карташевский после окончания Московского университета был определен учителем в 

Казанскую гимназию. В 1805 году он стал первым адъюнктом высшей математики в 

университете. Иван Ипатьевич Запольский – адъюнкт прикладной математики и 

физики. Оба они были учителями Н.И.Лобачевского и И.М.Симонова. Иоганн Мартин 

Христиан Бартельс  работал в Казани с 1808 по 1820 годы. В юности он жил в городе 

Брауншвейге по соседству с Карлом Гауссом и помогал ему овладевать математикой.  

Бартельс был приглашен в Казань С.Я.Румовским (1734 – 1812), одним из первых 

русских академиков, астрономом и математиком, который был учеником 

М.В.Ломоносова и Л.Эйлера. Он был назначен попечителем Казанского учебного 

округа и руководил созданием Казанского университета. 

С октября 1811 года Бартельс занимался с Лобачевским, в том числе изучал «Небесную 

механику» Лапласа. В 1811 году Лобачевский представил работу «Теория 

эллиптического движения небесных тел». В отзыве Бартельса было отмечено: « …идеи, 

предложенные популярнейшим Лапласом, господа магистры (Лобачевский и Симонов) 
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не только с особым усердием проходили, но во многих случаях находили им 

наилучшее применение». 

2. Механика в Казанском университете в 19-м веке 

Н.И.Лобачевский (1792 – 1856) проявил кроме математики интерес к механике, физике 

и астрономии, его «радовали эти науки, как радует порядок и жизнь, разлитые в 

природе, человека, одаренного вкусом к разумному и прекрасному» (А.Ф.Попов). С 

1825 по 1833 годы  Н.И. Лобачевский читал лекции по механике, в т. ч. по гидростатике 

и гидравлике, выполнил ряд исследований по механике. В 1828 году в Казанском 

вестнике было опубликовано сочинение Лобачевского «О резонансе или взаимном 

колебании воздушных столбов». В 1835 году в Ученых записках Московского 

университета он опубликовал работу «Условные уравнения для достижения и 

положения главных осей обращения в твердых системах». В первой части этой работы  

Н.И.Лобачевский вывел уравнения  для движения сплошной среды (позже их вывел 

Лагранж), рассмотрел теорию главных осей инерции. 

Лобачевский внимательно относился к важным вопросам механики. Об этом 

свидетельствуют тетради его лекций по механике (1825 г. – статика и динамика, 

1826 г. – статика и механика твердых и жидких тел по Лагранжу и Пуассону, 1827 г. –

 гидростатика и гидравлика по Лагранжу, теория равновесия и движения газа по 

Лапласу). Позднее по конспектам его лекций преподавание механики вели 

Н.Д.Брашман (1796 – 1866) и П.И.Котельников (1809 – 1879). 

В 1845 году Н.И.Лобачевский осуществил подробный разбор докторской диссертации 

магистра А.Ф.Попова «Об интегрировании дифференциальных уравнений 

гидродинамики, приведенных к линейному виду» и получил многие самостоятельные 

выводы. 

Александр Федорович Попов – ученик  Лобачевского. Окончил Казанский университет 

в 1835 г.; в 1846 г. был приглашен в университет и по представлению Лобачевского 

заменил его на кафедре чистой математики. Двадцать лет продолжалась педагогическая 

деятель А.Ф.Попова, отличавшаяся, по воспоминаниям его учеников, ясностью и 

увлекательностью изложения. Его научная деятельность была посвящена 

преимущественно, гидродинамике, теории волн, теории упругости, теории звука. После 

защиты (25 августа 1845 г.)  докторской диссертации «Об интегрировании 

дифференциальных уравнений гидродинамики, приведенных к линейному виду» 

А.Ф.Попов был утвержден в степени доктора математики и механики. Труды 

А.Ф.Попова принесли ему заслуженное уважение и авторитет в научном мире. В 1866 

г. он был избран членом-корреспондентом Петербургской АН и почетным членом 

Казанского университета. 

Прекрасным преподавателем и лектором был соратник Н.И.Лобачевского Петр 

Иванович Котельников. Один из его учеников – Ф.М.Суворов – в бытность свою 

студентом слушал его лекции и впоследствии описал, с какой любовью к делу 

преподавания относился Петр Иванович: «если бы эти лекции были бы 

стенографированы и напечатаны, то они составили бы краткий, но в то же время 

всеобъемлющий курс механики, причем внешняя отделка его лекций была, можно 

сказать, изумительною...» 

В конце 19-го века на физико-математическом факультете Казанского университета 

работало 11 кафедр, читались лекции по теоретической и прикладной механике. Здесь 

наиболее известными были профессора Федор Матвеевич Суворов (1845 – 1911), 
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Ипполит Степанович Громека (1851 – 1889), Александр Петрович Котельников (1865 –

 1944). 

В 1880-е годы в Казанском университете существенное развитие получила 

гидромеханика, что связано, прежде всего, с деятельностью воспитанника Московского 

университета Ипполита Степановича Громеки, заложившего основы современной 

математической теории капиллярности. 

Яркую характеристику его научной деятельности дал Н.Е.Жуковский: «Работы 

профессора Казанского университета И.С.Громеки, к сожалению, мало известны, а 

между тем в них разрешаются многие вопросы гидромеханики. Он дал оригинальное 

изложение теории капиллярных явлений, исследовал движение вихрей на сфере, 

исследовал движение капель, движение вязкой жидкости в трубах...».К столетию со дня 

рождения И.С.Громеки АН СССР издала собрание его трудов. Книга вышла в свет в 

1952 г. До настоящего времени Громека является одним из самых цитируемых 

механиков Казанского университета. Он мог бы сделать для науки гораздо больше, но 

его сердце остановилось, когда ему было всего 38 лет. 

Среди талантливых учеников И.С.Громеки и А.В.Васильева был Александр Петрович 

Котельников, работавший в области проективной теории векторов. Он преподавал в 

университете с 1888 по 1914 гг. В своих магистерской диссертации «Винтовое 

счисление» (Ученые записки Казан. Ун-та, Казань, 1895) и докторской диссертации 

«Проективная теория векторов» (Известия Казанского физико-математического 

общества, 1899) он заложил основы для построения векторного исчисления и механики 

в неевклидовых пространствах, а также исследовал связи геометрии Лобачевского с 

теорией относительности. 

Заметная роль в преподавании механики и изучении вопросов гидромеханики с 1879 по 

1893 гг. принадлежит Георгию Николаевичу Шебуеву (1850 – 1900). После смерти 

И.С. Громеки он вел все обязательные курсы по кафедре прикладной математики, в том 

числе теоретическую механику. Как вспоминал впоследствии  Е.А.Болотов, «эрудиция 

Георгия Николаевича поражала всех его знавших своей обширностью и глубиной и 

позволяла читать курсы по всевозможным отделам математической физики и 

теоретической механики». 

Научные результаты Г.Н.Шебуева лежат в области исследования течения жидкости 

с учетом взаимодействия с тепловым полем. Два автора, И.С.Громека и Г.Н.Шебуев, 

отличались большими научными публикациями в изданиях Казанского университета 

периода их одновременной работы. В многочисленной справочной литературе указаны 

неверные сведения, что Г.Н.Шебуев окончил Московский университет; 

в действительности он выпускник Казанского университета. 

3. Механика в Казанском университете в 1900 – 1930 гг. 

Большое влияние на развитие казанских школ математики и механики оказал 

известный ученый и замечательный педагог Николай Николаевич Парфентьев (1877 –

 1943). Он блестяще окончил Казанский университет и с 1904 года начал здесь же 

преподавательскую деятельность. После возвращения из заграничной командировки 

(Геттинген, Мюнхен, Бордо) Парфентьев защитил богатую идеями диссертацию по 

математическому анализу, но в дальнейшем его исследования больше склонялись к 

вопросам механики. Он исследовал историю механики, создал первую в Казани 

лабораторию по оптическим методам анализа напряжений. Профессор В.Я. Булыгин 

вспоминал: «Николай Николаевич читал лекции по пяти предметам. Самым 
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интересным был курс по истории механики. Он бывал за границей … «Последний раз я 

видел Пуанкаре в Цюрихе – сообщалось на лекции – глубокий старик … ему было 54 

года … к этому его привела интенсивная работа. Я бывал в местах, где сидел 

Аристотель …». Многообразие научных интересов Н.Н.Парфентьева и его эрудиция 

способствовали подготовке им учеников, разнообразных по профилю исследований 

(П.А.Широков, Б.М.Гагаев, В.А.Яблоков, К.П.Персидский, К.З.Галимов). 

Большую роль в развитии образования и подготовке механиков сыграл Дмитрий 

Николаевич Зейлигер (1864 – 1936). С 1895 г. он был профессором кафедры механики. 

Еще в 1910 году, будучи зав. кафедрой механики, он организовал в Казанском 

университете воздухоплавательный кружок, а в 1927 г. по его же инициативе началась 

специализация студентов-механиков университета по аэродинамике. Основным 

направлением научной деятельности Д.Н.Зейлигера была теория движения 

подобноизменяемого тела. Он создал статику, кинематику и динамику такого тела. 

По рекомендациям профессоров А.П.Котельникова, Д.И.Дубяго, Д.А.Гольдгаммера, а 

также Н.Н. Парфентьева в университет был приглашен Евгений Александрович 

Болотов (1870 – 1922). Ученик Г.Н.Шебуева, Е.А.Болотов начал научно-

педагогическую деятельность в 1890-х годах в московских средних и высших учебных 

заведениях, в том числе на кафедре теоретической механики, возглавляемой Н.Е. 

Жуковским. В 1914 г. по его рекомендации был приглашен в Казанский университет на 

должность ординарного профессора, а затем по 1921 год руководил кафедрой 

механики. Самой значительной работой Болотова явилось исследование по 

аналитической механике с обобщением принципа наименьшего принуждения Гаусса на 

случай частичного освобождения, с учетом части неудерживающих и части 

удерживающих связей. Эта работа была высоко оценена Н.Е.Жуковским. Дальнейшее 

развитие принцип Гаусса получил в работах Н.Г.Четаева, Н.Е.Кочина, М.Ш.Аминова и 

В.В.Румянцева. Е.А.Болотов с 1918 по 1921 годы был ректором университета. 

Рекомендации в его поддержку дали Н.Е. Жуковский и С.А.  Чаплыгин, который назвал 

Е.А.Болотова выдающимся русским механиком. 

В 1920-30-е годы в университете работал один из учеников Д.Н.Зейлигера – 

выдающийся ученый в области механики, член-корр. АН СССР Николай Гурьевич 

Четаев. В 1929 г. он был командирован в Геттинген к Прандтлю, а в 1930 г. назначен в 

университете доцентом и зав. каф. механики (после отъезда из Казани Д.Н.Зейлигера). 

Организовал в университете аэродинамическое отделение, в первом выпуске которого 

были будущие профессора Г.В.Каменков (1908 – 1966) и С.Г.Нужин (1902 – 1953). 

Находясь в аспирантуре, а затем в заграничной командировке в Геттингене, занялся 

вопросами устойчивости движения. По возвращении в Казань организовал научный 

семинар, который в течение 1930-х годов работал очень эффективно. На нем 

обсуждались и получали решение многие сложные проблемы теории устойчивости. 

Созданное Н.Г.Четаевым и его учениками и участниками семинара научное 

направление, известное под названием «Казанская или Четаевская школа теории 

устойчивости», получило широкое признание. Им была разработана программа 

исследований по теории устойчивости движения, которая известна как «казанская 

программа Четаева». Большое значение имели работы ученого для развития 

авиационной промышленности. В начале 1930-х годов Н.Г.Четаев одновременно 

занимался активной организационной деятельностью по созданию на базе основанного 

им на физмате университета аэродинамического отделения Казанского авиационного 

института. В 1940г. Н.Г.Четаев переехал в Москву, где до самой смерти работал 
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заместителем директора, а затем директором Института механики АН СССР и 

заведовал кафедрой теоретической механики в МГУ. 

Хамид Музафарович Муштари (1900 – 1981) создал научную школу нелинейной теории 

оболочек, яркими представителями которой являются его ученики доктора наук 

Н.С.Ганеев, М.С. Ганеева, М.А.Ильгамов, М.С.Корнишин, А.В.Саченков, 

И.В.Свирский, И.Г.Терегулов. Х.М.Муштари, как и выпускнику Казанского 

коммерческого училища, сыну профессора университета Михаилу Алексеевичу 

Лаврентьеву, удалось попасть в первый послереволюционный набор в Казанский 

университет. Затем он обучался в аспирантуре в Московском университете 

у С.А.Чаплыгина. В работах, выполненных в 1934 – 1938 гг., Х.М.Муштари заложил 

основы нелинейной теории тонких оболочек. Наиболее полно эти результаты 

представлены в его известной докторской диссертации «Некоторые обобщения теории 

тонких оболочек с приложениями к задаче устойчивости упругого равновесия» 

(опубликованной в Изв. физ.-мат. общества. Сер. 3. 1938. Т. 11. С. 71-150) и успешно 

защищенной в 1938 г. в Московском университете. Х.М.Муштари долгое время 

возглавлял Казанский физико-технический институт КФАН СССР (с 1946 по 1972 гг.), 

преподавал механику в вузах Казани. М.А. Лаврентьев после 4-го курса перевелся 

в МГУ, т. к. его отец по приглашению Н.Н.Лузина перешел работать профессором 

математики Московского университета. 

Студентом Казанского университета был и Алексей Антонович Ильюшин. Его 

происхождение не было рабоче-крестьянским, поэтому для поступления в университет 

ему пришлось поработать токарем на судоремонтном заводе в Аракчинском затоне в 

пригороде Казани. А.А.Ильюшин учился в университете один семестр, а затем 

перевелся в МГУ, так как московские родственники согласились приютить его в своей 

квартире. М.А.Лаврентьев и А.А.Ильюшин — два выдающихся математика и механика 

XX века не работали в Казанском университете, но были его студентами, поэтому они 

упомянуты здесь. 

Курбан Закирович Галимов (1909 – 1986) так же, как Х.М.Муштари, является 

создателем нелинейной теории оболочек и пластин. Среди его учеников – профессора 

Ю.П.Жигалко (1937 – 2002) и Н.Г.Гурьянов. К.З.Галимов был вдохновителем и 

организатором издания сб. науч. трудов «Исследования по теории пластин и оболочек», 

(издавался с начала 1960-х г. более 30 лет). Авторитет сборника был настолько высок, 

что публиковаться в нем считали за честь ведущие ученые страны. Сборник 

реферировался в Европе и США. В списке для рассылки было около полутора тысяч 

адресов. К.З.Галимов говорил сотрудникам: «Лучшие статьи публикуйте в нашем 

сборнике. Остальные можете отсылать в научные журналы». 

4. Организация НИИ математики и механики (НИИММ) 

НИИММ – один из старейших вузовских институтов страны – организован 1 сентября 

1934 года. Идея организации НИИММ в Казани, как наследника и продолжателя 

традиций Физико-математического общества при университете, стала выявляться в 

1920-е годы и получила значительную поддержку вскоре после приезда в 1927 году в 

Казань известного алгебраиста Н.Г.Чеботарева. Большое влияние на развитие 

математики и механики в Казани в эти годы оказали Д.Н.Зейлигер и Н.Н.Парфентьев. К 

этому времени их ученики П.А.Широков, Б.М.Гагаев, К.П.Персидский, Н.Г.Четаев, 

И.Г.Малкин, Б.А.Фукс и другие провели важные оригинальные исследования и 

заложили новые самостоятельные научные направления в математике и механике. 
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Н.Г. Чеботарев поставил вопрос об организации Института на II Всесоюзном 

математическом съезде (Ленинград, 24 – 30 июня 1934 г.) и получил поддержку. 

Научная проблематика, развиваемая в Институте, носила теоретический характер, 

относилась к новым современным областям математики и механики. В НИИММ 

работали такие выдающиеся ученые, как Н.Г.Чеботарев, Н.Г.Четаев, П.А.Широков, 

Н.Н.Парфентьев, И.Д.Адо, Н.Н.Мейман, Б.М.Гагаев, М.И.Альмухамедов, В.В.Морозов, 

Б.Л.Лаптев, Г.Х.Максудов, Ф.Д.Гахов, К.П.Персидский, В.А.Яблоков, И.Г.Малкин, 

Л.И.Гаврилов, Г.Г.Тумашев, М.Т.Нужин, А.П.Норден, С.Н.Андрианов, А.3.Петров, 

П.И.Петров, С.Ф.Сайкин и многие другие. Созданные ими научные школы развиваются 

и в настоящее время. Имя Н.Г.Чеботарева было присвоено НИИММ в 1947 году. 

5. Механика в Казанском университете в 1940-1990-х гг. 

В 1941 г. специализация обучения механике была прекращена, почти все 

преподаватели и студенты ушли на фронт. В 1943 г. скончался Н.Н.Парфентьев , 

заведовавший последние годы жизни кафедрой механики. На ней работал лишь 

К.З.Галимов. В 1944 г. на кафедру механики в качестве заведующего был приглашен из 

Авиационного института Гумер Галеевич Тумашев (1910 – 1984), который принес с 

собой актуальную тематику аэродинамического проектирования крыловых профилей. 

Его большим достижением явился метод решения так называемых обратных краевых 

задач аэрогидродинамики. Учениками Г.Г.Тумашева, ставшими докторами наук, были 

В.Я.Булыгин, Р.С.Галеев, Г.В.Голубев,П.Г.Данилаев, А.В.Кузнецов, О.М.Киселев, 

А.В.Костерин, Л.М.Котляр, Ю.М.Молокович, М.Т.Нужин, С.Ф.Сайкин, С.И.Филиппов, 

В.М.Фомин, Е.Г.Шешуков. 

В 1951 году Правительство Республики Татарстан обратилось к ученым Казани 

с просьбой о помощи молодой нефтяной промышленности Татарии. Для изучения этих 

проблем был организован научный семинар, из которого выросла известная Казанская 

школа подземной гидромеханики. 

В 1954 году защитил докторскую диссертацию Михаил Тихонович Нужин (1914 –

1983). Разработанный им подход к решению обратных краевых задач оказался столь 

общим, что послужил основой формирования нового раздела математической физики. 

М.Т.Нужин был научным руководителем Р.Б.Салимова, Н.Б.Ильинского, В.В.Клокова, 

ставших впоследствии докторами физико-математических наук. 

В 1954 году кафедра механики разделилась на две: аэрогидромеханики под 

руководством Г.Г.Тумашева и теоретической механики под руководством М.Т.Нужина, 

декана механико-математического факультета, а затем и ректора университета (с 1954 

по 1979 годы). В Казанском университете считают, что были два наиболее 

плодотворных периода в развитии университета: период Лобачевского – период 

становления (19 лет) и период Нужина – период послевоенного развития (25 лет). 

Поблизости от главного здания университета находятся памятник Н.И.Лобачевскому на 

улице Лобачевского и памятник М.Т.Нужину на улице Нужина. 

Большим событием в механике оболочек стал выход в свет фундаментальной 

монографии Х.М.Муштари и К.З.Галимова «Нелинейная теория тонких упругих 

оболочек» – первой в мире в этой области механики. Позже по инициативе NACA она 

была издана на английском языке. В Китае она вышла в свет и на китайском языке. 

Высокую оценку монографии дали ведущие в мире зарубежные специалисты по теории 

оболочек. Вот что писал в предисловии к английскому переводу этой книги профессор 

В.Т.Койтер: «Этот перевод исчерпывающей русской монографии является первой 
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книгой по нелинейной теории оболочек, которая появилась в западном мире». Эта 

монография стала настольной книгой для исследователей и инженеров, создававших 

новую технику. 

В 1979 г. кафедру теоретической механики возглавил А.В.Саченков (1928 – 1988). Его 

труды были посвящены теории упругости, теории пластичности, устойчивости и 

колебаниям однослойных и слоистых оболочек, теоретико-экспериментальному методу 

расчета оболочек. А.В.Саченков был увлечен наукой, был блестящим лектором, 

прекрасно знал историю, поэзию, обладал чувством юмора, и не удивительно, что 

многие студенты мечтали стать его аспирантами. Он воспитал 40 кандидатов физ.-мат. 

наук, из них стали докторами наук Ю.П.Артюхин, Ю.Г.Коноплев, В.И.Митряйкин, 

А.К.Шалабанов (1944-2013), А.И. Голованов(1956 – 2010), В.А. Костин. 

С 1988 года кафедрой теоретической механики заведует профессор Ю.Г.Коноплев, 

научные интересы которого лежат в области решения нелинейных задач механики 

деформируемых тел, теоретико-экспериментальных методов исследования 

напряженно-деформированного состояния, устойчивости и колебаний неоднородных 

оболочек, биомеханики. Он был ректором университета с 1990 по 2001 гг. – в годы, 

трудные для науки и образования. 

После Г.Г.Тумашева кафедрой аэрогидромеханики заведовали профессора 

Ю.М.Молокович (1932 – 2007), В.В.Клоков (1937 – 2009), А.В.Костерин. В настоящее 

время кафедрой заведует профессор А.Г.Егоров. 

6. Основные направления исследований по механике во второй половине 20-го  

и начале 21-го веков 

В научных исследованиях, которые были проведены в высших учебных заведениях и 

научных учреждениях Казани, получили развитие важные направления по механике. 

Перечислим только те из них, которые были выполнены в Казанском университете и 

НИИММ (в скобках указаны профессора и доктора наук – лидеры этих исследований). 

Теория устойчивости движения и теоретическая механика: 

устойчивость движения и работы по аналитической механике (Н.Г.Четаев); 

устойчивость движения в смысле Ляпунова и метод малого параметра (И.Г.Малкин); 

теория вероятностей, дифференциальные уравнения и устойчивость движения 

(К.П.Персидский); 

аэродинамика и механика тел переменной массы (М.Ш.Аминов); 

устойчивость движения и колебания нелинейных систем (Г.В.Каменков); 

Исследования по механике деформируемого твердого тела: 

нелинейная теория упругих оболочек (Х.М.Муштари, К.З.Галимов); 

теория упругости, теория пластичности, теория устойчивости и колебаний 

однослойных и слоистых оболочек, математические аналогии в механике, теоретико-

экспериментальные методы расчета оболочек (А.В.Саченков); 

математическое и физическое моделирование нелинейного деформирования 

оболочек и пластин неоднородной структуры, развитие теоретико-

экспериментальных методов решения задач устойчивости оболочек при нелинейном 

докритическом состоянии, колебания элементов конструкций при неклассических 

граничных условиях, биомеханика суставов человека (Ю.Г.Коноплев); 
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построение точных решений задач теории упругости, деформирования пластин и 

оболочек при локализованных воздействиях (Н.Г.Гурьянов); 

теория слоистых ортотропных оболочек при локальных силовых и температурных 

воздействиях, контактные задачи для тонкостенных элементов конструкций, 

численно-аналитические методы расчета пластин и оболочек сложной геометрии 

(Ю.П.Артюхин); 

метод конечных элементов в задачах механики нелинейного деформирования 

твердых тел; вариационные и численные методы в нелинейной механике 

тонкостенных элементов и конструкций (А.И.Голованов); 

деформирование гладких и оребренных оболочек при локализованных воздействиях, 

колебания оболочек с присоединенными массами и демпферами,  взаимодействие 

оболочек с локальными потоками лучистой энергии (Ю.П.Жигалко); 

голографические методы исследования деформаций (А.К.Шалабанов); 

Обратные краевые задачи (ОКЗ): 

определение формы границ потока жидкости по заданному распределению скорости 

или давления, метод решения обратной краевой задачи аэрогидродинамики (ОКЗА) 

(Г.Г.Тумашев); 

ОКЗ и их приложения (Г.Г.Тумашев, М.Т.Нужин); 

методы построения подземных контуров гидротехнических сооружений 

(М.Т.Нужин, Н.Б.Ильинский); 

основные задачи об изменении контуров теории аналитических функций и их 

приложение к механике жидкостей (Р.Б.Салимов); 

краевые задачи теории взрыва (Н.Б.Ильинский, А.В.Поташев); 

регуляризация и оптимизация решений ОКЗ, квазирешения обратных краевых задач 

(А.М.Елизаров); 

квазирешения ОКЗА (А.М.Елизаров, Н.Б.Ильинский, А.В.Поташев); 

аэродинамическое проектирование и оптимизация формы профилей крыльев и 

гидродинамических решеток методами ОКЗ (А.В.Поташев, Д.А.Фокин, 

Д.Ф.Абзалилов); 

аналитический метод построения гидропрофилей по заданной кавитационной 

диаграмме (Ф.Г.Авхадиев, Д.В.Маклаков); 

гидродинамическая аналогия в теории размерного электрохимического 

формообразования (В.В.Клоков); 

Подземная гидромеханика, теория фильтрации и тепломассоперенос: 

задача о стягивании контура нефтеносности; определение поля давлений в кусочно-

однородных пластах (Г.Г.Тумашев); 

линейное и нелинейное программирование в теории рациональной разработки 

нефтяных месторождений, тепло- и массоперенос в пористых средах 

(М.А.Пудовкин); 

гидромеханика нефтяного пласта; фильтрация нефти при взаимодействии 

химических реагентов (В.Я.Булыгин); 

плоские стационарные задачи фильтрации с начальным градиентом, фильтрация с 

предельным градиентом (Л.М.Котляр, Э.В.Скворцов); 
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стационарная и нестационарная нелинейная и линейная релаксационная фильтрация 

(Ю.М.Молокович); 

моделирование продвижения водонефтяного контакта (С.Ф.Сайкин); 

вариационные теоремы для задач с кривыми депрессии (Н.Д.Якимов); 

фильтрация в неоднородных пластах (А.Н.Чекалин); 

модели нелинейной фильтрации жидкости (Е.Г.Шешуков); 

механика и термодинамика массопереноса в средах (В.А.Чугунов); 

фильтрационная консолидация и массоперенос, фильтрация жидкости в 

деформируемых нефтяных пластах; консолидация и акустические волны в 

насыщенных пористых средах; релаксационные процессы влагопереноса в 

ненасыщенных пористых средах (А.Г.Егоров, А.В.Костерин, Э.В.Скворцов); 

математические модели с памятью для процессов массопереноса в пористых средах; 

исследование механизмов «пальцеобразования» при инфильтрации жидкости в 

пористую среду (Р.З.Даутов, А.Г.Егоров); 

некорректные задачи теории фильтрации (П.Г.Данилаев); 

механика неньютоновских сред (В.Ф.Шарафутдинов); 

миграция разноплотностных жидкостей в водоносных пластах сложной структуры 

(В.М. Конюхов, А.Н.Чекалин, М.Г.Храмченков); 

Струйные и кавитационные течения: 

нелинейные задачи струйного и кавитационного обтекания препятствий, движение 

тела под поверхностью жидкости, погружение тела в жидкость с образованием 

каверны, двухслойные и многослойные течения жидкостей с учетом влияния 

весомости жидкостей и поверхностного натяжения, неустановившиеся течения со 

свободными границами (А.В.Кузнецов); 

методы решения задач теории струй при учете сил тяжести и капиллярности, задачи 

о плоских и осесимметричных дозвуковых течениях сжимаемой жидкости 

(О.М.Киселев); 

нелинейные задачи струйных течений тяжелой жидкости (О.М.Киселев, 

Л.М.Котляр); 

схемы кавитационного обтекания препятствий (А.Г.Терентьев); 

исследование нелинейных задач теории струйных, кавитационных и волновых 

течений, экстремальные задачи теории струй, разработка методов решения задач 

нелинейной теории волн вблизи границ раздела сред (Д.В.Маклаков); 

численно-аналитический метод проектирования и оптимизации профиля крыла над 

экраном; капиллярно-гравитационные волны при циркуляционном обтекании 

подводного цилиндра в канале конечной глубины (С.И.Филиппов); 

Физическая газовая динамика: 

математическое моделирование газодинамических и газоразрядных CO2-лазеров 

(Р.С.Галеев); 

динамика двухфазных парогазокапельных сред (Д.А.Губайдуллин); 

механика аэрозолей, математическое моделирование осаждения аэрозольных частиц 

(Ш.Х.Зарипов). 
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Математическое моделирование, численный анализ и задачи оптимизации формы: 

постановка и исследование нелинейных задач теории фильтрации неньютоновских 

жидкостей в физической плоскости (А.Д.Ляшко); 

математические модели механики сплошной среды; смешанные схемы конечных 

элементов для геометрически и физически нелинейных задач теории оболочек, 

оценки точности, построение и исследование итерационных методов их численной 

реализации (М.М.Карчевский); 

математические модели механики сплошной среды; исследование интегральных 

уравнений, возникающих при математическом моделировании отрывного обтекания 

твердых тел с образованием вихревой пелены; исследование разрешимости 

стационарных задач теории мягких оболочек в условиях возникновения зон 

одноосного напряженно-деформированного состояния (Р.Р.Шагидуллин); 

математическое моделирование и численный анализ задач со свободными границами 

и нелинейных задач фильтрации (А.В.Лапин); 

математическое моделирование в инженерной механике и физике, механика 

многофазных сред, процессы тепло- и массопереноса, динамика и физика ледников, 

палеоклиматическая интерпретация данных анализа ледяных кернов 

(А.Н.Саламатин); 

механика и термодинамика массопереноса в средах, прикладные модели 

термогидродинамики многофазных и сложных сред, групповые свойства 

дифференциальных операторов применительно к моделям гляциомеханики; 

разработка численных и аналитических методов, реализующих математические 

модели, основанные на уравнениях «мелкой воды» (В.А.Чугунов); 

задачи оптимизации формы в аэрогидродинамике (А.М.Елизаров, А.Р.Касимов, 

Д.В.Маклаков); 

моделирование процессов горячей обработки металлов; развитие методов анализа 

стационарной системы уравнений Навье – Стокса и решения нелинейных задач 

тепломассообмена с фазовыми переходами в каналах и пористых средах (А.Б.Мазо); 

Вычислительная механика: 

решение задач вычислительной гидродинамики с применением технологии NVIDIA 

CUDA (А.Г.Егоров); 

разработка и обоснование приближенных методов и алгоритмов решения задач 

дифракции упругих (сейсмических) волн в слоистых средах; построение и 

исследование численных методов решения спектральных задач теории 

диэлектрических волноводов (Н.Б.Плещинский, Р.З.Даутов, Е.М.Карчевский); 

методы решения задач многофазного массопереноса для моделирования образования 

и лизиса тромбов в кровеносных сосудах; набухание глин и фильтрация растворов в 

глинах; геоэкологические аспекты загрязнения глин (М.Г.Храмченков); 

исследование нелинейных задач фильтрации неньютоновских жидкостей с 

предельным градиентом сдвига в анизотропных и многослойных пластах при 

наличии точечных источников (И.Б.Бадриев); 

исследование разрешимости задач равновесия мягких сетчатых оболочек при 

наличии точечных нагрузок (О.А.Задворнов); 
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математические модели и численные алгоритмы решения задач расчета 

газодинамических и гидродинамических подшипников и уплотнений, тепловых 

полей спиральных компрессоров (Р.З.Даутов, М.М.Карчевский, Е.М.Федотов); 

За последние годы на кафедрах механики Казанского университета работали 

профессора Ю.П.Артюхин, В.Я.Булыгин (?), А.И.Голованов (1956 – 2010), А.П.Грибов 

(1947 – 2007), Д.А.Губайдуллин, Н.Г.Гурьянов, А.М.Елизаров, Ю.П.Жигалко (1937 - 

2002), Н.Б.Ильинский (1932-2015), Р.А.Каюмов, В.В.Клоков (1937 – 2009), 

Ю.Г.Коноплёв, А.В.Костерин, А.В.Кузнецов (1928– 2012), А.Б.Мазо, Д.В.Маклаков, 

Ю.М.Молокович (1932 – 2007). Подготовка студентов ведется по направлениям 

«механика и математическое моделирование», «прикладная механика». Работают 

аспирантура, докторантура и докторский совет по специальностям 01.02.04 – механика 

твердого деформируемого тела и 01.02.05 – механика жидкости, газа и плазмы. 

Признанием крупных достижений ученых Республики Татарстан в области механики 

явилось регулярное проведение в Казани таких международных форумов и 

конференций как «Лаврентьевские чтения по математике, механике и физике», «Теория 

функций, ее приложения и смежные вопросы», Четаевские конференции 

«Аналитическая механика, устойчивость и управление движением», Школы по 

моделям механики сплошных сред, «Модели механики сплошной среды, 

вычислительные технологии и автоматизированное проектирование в авиа- и 

машиностроении», «Проблемы тепломассообмена и гидродинамики в 

энергомашиностроении», «Актуальные проблемы механики оболочек», «Нелинейные 

проблемы механики твердого деформируемого тела» и др. 

 

Александр Михайлович Елизаров, профессор, докт. наук; лауреат премии им. Х. 

Муштари Академии наук Татарстана за лучшую научную работу в области математики 

(1998 г.); заместитель главного редактора международного электронного 

математического журнала «Lobatchevskii Journal of Mathematics», член редколлегий 

журналов "Ученые записки Казанского университета (серия физико-математическая)", 

"Электронные библиотеки", "Информационное общество". член Американского 

математического общества (AMS), Немецкого общества математиков и механиков 

(GAMM) и Международного общества по индустриальной и прикладной математике 

(SIAM). Область научных интересов: комплексный анализ и математическое 

моделирование. 

Юрий Геннадьевич Коноплёв — советский и российский учёный в области 

механики. Академик АН РТ (1991), доктор физико-математических наук, профессор. 

Заслуженный деятель науки РФ и РТ. Заведующий кафедрой теоретической 

механики КГУ, главный научный сотрудник НИИ математики и механики 

им. Н. Г. Чеботарева. Ректор Казанского университета (1990—2001). Область научных 

интересов: Экспериментальные методы исследования напряжений; теория 

деформируемых систем; теоретико-экспериментальные методы в механике. 
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Проблемы механики сплошной среды 
Научный семинар и Итоговая научная конференция 2015 года 

(Казань, 2015 – 2016 гг.) 

Д.А. Губайдуллин 

Институт механики и машиностроения КазНЦ РАН 

Россия, 420111, Казань, ул. Лобачевского, 2/31 

Аннотация. В статье представлен краткий обзор основных направлений, развиваемых в 

Казанском Научном Центре в области проблем механики сплошной среды. 

Ключевые слова: фундаментальные и прикладные проблемы, механика сплошной среды. 

В Федеральном государственном бюджетном учреждении науки Институте механики и 

машиностроения Казанского научного центра Российской академии наук работает 

научный семинар «Проблемы механики сплошной среды». Председатель семинара - 

директор Института чл.-корр. РАН Д.А. Губайдуллин. На семинаре заслушиваются и 

обсуждаются проблемные доклады и диссертационные работы сотрудников Института 

и ученых из других организаций. 

Секция «Механика и машиностроение» Итоговой научной конференции 2015 года 

академических институтов, подведомственных ФАНО России, была посвящена 70-

летию академической механики в Казани и 25-летию ИММ КазНЦ РАН. На секции 

были представлены доклады, отражающие достижения в области нелинейной механики 

тонкостенных конструкций, гидроаэроупругих и волновых систем; динамики 

многофазных многокомпонентных сред в пористых структурах и технологических 

установках; нелинейной теории устойчивости систем управления с изменяющейся 

структурой. На семинаре были представлены кандидатские диссертации по механике 

жидкости, газа и плазмы. 

Ниже представлены аннотации докладов. 

Доклады на Итоговой конференции 

10 февраля 2016 г. 

 

Д.А. Губайдуллин, А.А. Никифоров (ИММ КазНЦ РАН) 

Акустические волны в воде, содержащей слои с полидисперсными пузырьками.  

Теоретически изучена динамика акустического сигнала в пятислойной среде, 

содержащей два слоя жидкости с полидисперсными пузырьками газа. Проведены 

расчеты по взаимодействию импульсного возмущения давления малой амплитуды с 

многослойным образцом, содержащим два слоя промышленного геля с 

полидисперсными пузырьками воздуха. Показано, что небольшое количество 

пузырьков воздуха (около 0.1% по объему) в тонком слое геля существенно понижает 

амплитуду акустических волн с частотами, близкими к резонансным частотам 

собственных колебаний пузырьков в 10 и более раз. При этом имеются диапазоны 

частот, где влияние пузырькового слоя не значительно. 

 

Д.А. Губайдуллин, П.П. Осипов, Р.Р. Насыров (ИММ КазНЦ РАН) 

Влияние коэффициента увлечения на динамику концентрации дисперсных частиц в 

акустическом резонаторе. 
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Численно исследуется плоская задача о дрейфе группы частиц в стоячей волне 

прямоугольного резонатора, индуцируемой гармоническими колебаниями левой 

границы на первой резонансной частоте. Исследовано влияние коэффициента 

увлечения частиц на динамику и распределение частиц в резонаторе. При 

определенных коэффициентах увлечения обнаружены области акустического захвата 

частиц, где собственный дрейф частицы  уравновешивает ее перенос акустическим 

течением. Показано, что частицы имеют общую тенденцию дрейфа к неподвижным 

стенкам резонатора. 

 

И.М. Альмакаев, П.П. Осипов. (ИММ КазНЦ РАН) 

Моделирование динамики частицы в акустическом резонаторе с помощью пакета 

Fluent. 

Изучена динамика сферической несжимаемой частицы в волновом поле закрытого 

резонатора при наличии периодической ударной волны с помощью пакета Fluent. На 

левой границе резонатора скорость меняется по гармоническому закону при первой 

резонансной частоте. Через определенное количество периодов образуется 

периодическая ударная волна. Рассчитаны траектории частицы  с учетом силы вязкого 

сопротивления  для различных коэффициентов увлечения и для различной амплитуды 

скорости поршня. Показано, что при увеличении амплитуды  частица имеет большую 

скорость дрейфа и эта скорость сильно зависит от коэффициента увлечения частицы. 

 

Д.А. Губайдуллин, Ю.В. Федоров (ИММ КазНЦ РАН) 

Особенности отражения и прохождения звуковой волны через пузырьковый слой. 

Рассмотрена задача об отражении звуковой волны от двухслойной среды, содержащей 

слой пузырьковой жидкости. Для смеси вода – вода с пузырьками воздуха – воздух 

рассчитан коэффициент отражения волны и представлено сопоставление 

с экспериментальными данными. 

 

Д.А. Губайдуллин, Р.Н. Гафиятов (ИММ КазНЦ РАН) 

Акустика волн в многофракционных пузырьковых жидкостях. 

Изучено распространение акустических волн в многофракционных смесях жидкости с 

парогазовыми и газовыми пузырьками различных размеров и разного состава с учетом 

геометрии процесса. Представлена система дифференциальных уравнений движения 

смеси, выведено дисперсионное соотношение. Исследовано влияние параметров 

дисперсной фазы, концентрации пара в пузырьках на дисперсионные кривые. 

Выполнены численные расчеты эволюции слабых импульсных возмущений давления в 

данной смеси. 

 

Д.А. Губайдуллин, Р.Г. Зарипов, Л.А. Ткаченко (ИММ КазНЦ РАН), 

Л.Р. Шайдуллин (КФУ) 

Нелинейные колебания газа в трубах при переходе к ударно-волновому режиму. 

Экспериментально изучены особенности нелинейных колебаний газа в закрытой трубе 

при переходе к ударно-волновому режиму колебаний вблизи резонанса. Вдали от 

резонанса эпюры давления газа имеют непрерывный характер и деформируются с 

приближением к резонансу. В резонансе амплитуда колебаний давления газа 

увеличивается в 4 раза, и форма его эпюры становится близка к разрывной: крутизна 

переднего фронта больше заднего. На резонансной частоте увеличение амплитуды 
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хождения поршня приводит к увеличению размаха колебаний давления газа, отличному 

от наблюдаемого в режиме формирования ударных волн. 

 

Д.А. Губайдуллин, Д.А. Тукмаков (ИММ КазНЦ РАН) 

Влияние свойств дисперсной фазы на ударноволновые процессы в газовзвеси. 

Получена вычислительная модель динамики полидисперсной газовзвеси,  в которой 

твердая фаза имеет многофракционный состав. Моделировались различные задачи 

волновой динамики газовзвесей. Определено влияние объемного содержания твердой 

фазы,  размера частиц  и  их физической плотности  на характеристики  ударной волны.  

Изучался процесс движения ударной волны по периодически распределенной 

газовзвеси.  Выявлено, что  при прохождении ударной волны по газовзвеси средняя 

плотность, которой распределена по периодическому закону, происходит 

формирование периодической структуры давления и температуры несущей среды.  

 

А.А. Аганин, Д.Ю. Топорков (ИММ КазНЦ РАН) 

Сильное сжатие пара в кавитационных пузырьках в воде и ацетоне. 

Рассматриваются особенности сильного сжатия пара в кавитационных пузырьках в 

воде и ацетоне при их коллапсе в зависимости от давления жидкости в диапазоне от 1 

до 15 бар (температура жидкости 20 С). В пузырьке в ацетоне в данном диапазоне 

последовательно реализуются три сценария сжатия. В первом сценарии сжатие 

происходит близким к однородному, во втором – с радиальным схождением простых 

волн, в третьем – с радиальным схождением ударных волн. Ударно-волновой сценарий 

устанавливается, начиная с давления 3 бар. В случае пузырька в воде реализуется лишь 

сжатие, близкое к однородному.  
 

А.А. Аганин, Т.С. Гусева (ИММ КазНЦ РАН) 

Удар скоростной струи по тонкому слою жидкости на стенке. 

Изучается импульсное воздействие скоростной струи на жесткую стенку при наличии 

на ней тонкой прослойки жидкости. Используется численная методика на основе 

прямого численного моделирования с применением метода CIP-CUP на адаптивной 

сетке. Показано, что при наличии на стенке прослойки толщиной меньше 0.03 радиуса 

струи распределение давления на стенке существенно неоднородно, как и в случае без 

прослойки. При этом максимум давления на стенке также реализуется на периферии 

области импульсного воздействия и превышает давление гидроудара. 
 

А.А. Аганин, Н.А. Хисматуллина (ИММ КазНЦ РАН) 

Деформация поверхности упругопластического тела при ударе струи жидкости. 

Представлено сравнение деформаций поверхности тел из трех металлических сплавов 

(алюминиевого, монеля и стали) при ударе струи воды с полусферическим концом. 

Нагрузка рассчитана по модели динамики сжимаемой жидкости без учета деформаций 

тела. Приведены результаты исследования влияния механических характеристик 

материала (модуля Юнга, плотности и предела текучести) на деформации поверхности 

тел из алюминиевого сплава в сравнении с телами из стали и монеля. 

  

Л.А. Косолапова, В.Г. Малахов (ИММ КазНЦ РАН) 

Динамика кавитационного пузырька у твердой стенки с переходом в тороидальную 

фазу движения. 
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Представлена численная методика для исследования динамики кавитационного 

пузырька в идеальной несжимаемой жидкости вблизи твердой стенки. Методика 

основана на методе граничных элементов и включает способ расчета динамических и 

кинематических величин на тороидальной фазе движения пузырька. Приведено 

сравнение получаемых результатов с известными теоретическими решениями и 

экспериментальными данными. 
 

А.И. Давлетшин (ИММ КазНЦ РАН) 

Математическая модель пространственного взаимодействия слабонесферических 

газовых пузырьков в жидкости. 

Представлена математическая модель пространственного гидродинамического 

взаимодействия газовых пузырьков в жидкости в акустическом поле с учетом малых 

деформаций их поверхностей, эффектов вязкости и сжимаемости жидкости. 

Работоспособность модели проиллюстрирована сравнением результатов ее применения 

с данными, полученными по осесимметричной (двумерной) модели, в которой 

предполагается, что центры пузырьков находятся на одной прямой. 

 

М.С. Ганеева, В.Е. Моисеева, З.В. Скворцова (ИММ КазНЦ РАН) 

Нелинейный изгиб разрывных сферических предохранительных мембран под действием 

давления жидкости и температуры.  

Численно исследовано напряженно-деформированное состояние тонких сферических 

сегментов, находящихся под действием давления нагретой или охлажденной жидкости 

(рабочей среды взрывоопасного аппарата) на вогнутую поверхность сегментов, с 

позиций применения их в качестве разрывных предохранительных мембран. Получены 

результаты численного расчета в зависимости от уровня температуры действующей 

среды, характеристик материала и высоты разрывающего штока над полюсом 

недеформированной мембраны.    

 

А.И.Маликов (ИММ КазНЦ РАН) 

Способы синтеза наблюдателей состояния и неизвестных входов для некоторых 

классов нелинейных систем управления.  

На основе метода матричных систем сравнения и техники дифференциальных 

линейных матричных неравенств предлагаются способы синтеза наблюдателей для 

оценивания одновременно состояния и неизвестных входных воздействий системы с 

нелинейностями и неопределенными возмущениями. Оценки неизвестных входов 

используются для функционального диагностирования элементов систем управления, а 

оценки состояния – для реализации закона управления в виде обратной связи по 

состоянию. Даются приложения к синтезу управления в виде обратной связи по выходу 

для робота манипулятора с двигателем постоянного тока. 
 

11 февраля 2016 г. 
 

М.Х. Хайруллин, М.Н. Шамсиев, Е.Р. Бадертдинова (ИММ КазНЦ РАН) 

Термогидродинамические методы исследования слоистых пластов. 

Построена математическая модель для описания термогидродинамических процессов в 

системе «вертикальная скважина - многопластовая залежь». Предлагается метод для 

определения фильтрационных и теплофизических параметров залежи и дебитов 

пропластков. В качестве исходной информации используются кривые изменения 

забойной температуры в стволе вертикальной скважины, снятые после ее пуска. 
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П.Е. Морозов (ИММ КазНЦ РАН)  

Моделирование притока жидкости к лучевой системе горизонтальных скважин. 
 

А.В. Елесин, А.Ш. Кадырова (ИММ КазНЦ РАН) 

Методы Левенберга-Марквардта в задачах идентификации параметров пласта при 

однофазной и двухфазной фильтрации жидкости. 

Рассматриваются задачи идентификации коэффициента фильтрации в условиях 

однофазной фильтрации и коэффициента абсолютной проницаемости в условиях 

двухфазной фильтрации жидкости. Эти задачи сводятся к минимизации функции 

невязки. Минимизация проводится методом Левенберга-Марквардта и его 

двухшаговыми модификациями. На примере решения модельных задач идентификации 

показано, что по вычислительным затратам более эффективны двухшаговые варианты 

метода Левенберга-Марквардта. 
 

А.В. Цепаев (ИММ КазНЦ РАН)  

Методы решения задач многофазных трехмерных течений в пористых средах.  

Разработаны численные методы с декомпозицией для решения трехмерной задачи 

многофазной фильтрации жидкости. Эти методы сводят решение задачи к 

независимому решению задач в подобластях на сгущающихся участках сетки и 

решению задачи на последовательности более грубых сеток, покрывающих всю 

область решения. В основу численной аппроксимации задачи положен метод 

контрольных объемов. Показана их эффективность при решении задачи на 

гетерогенных вычислительных системах. 
 

А.И. Никифоров, Р.В. Садовников (ИММ КазНЦ РАН)  

Волны разной геометрии в пористой среде, насыщенной двумя несмешивающимися 

жидкостями. 

Рассмотрено распространение волн разной геометрии (плоских, цилиндрических, 

сферических) в пористой среде, насыщенной двумя несмешивающимися жидкостями 

при различных отношениях вязкостей фаз, с учетом каппилярной разности давления в 

фазах. На основе единого дисперсионного соотношения, полученного с помощью 

разложения Гельмгольца поля перемещений, исследовано влияние низких частот 

колебаний в диапазоне 1-50 Гц на фазовые скорости волн разной геометрии. 

 

Б.А. Снигерев (ИММ КазНЦ РАН)  

Численное моделирование гидродинамики двухфазных потоков в колонных аппаратах 

химической технологии.  

Представлены результаты численного моделирования структуры течения 

газожидкостной пузырьковой смеси в вертикальном восходящем потоке в колонном 

аппарате. Математическая модель основана на использовании эйлерова описания 

сохранения массы, количества движения для жидкой и газовой фаз, записанные в 

рамках теории взаимодействующих континуумов. Сравнение результатов 

моделирования с экспериментальными данными показало, что предложенный подход 

позволяет моделировать пузырьковые полидисперсные течения в широком диапазоне 

значений газосодержания. 

 

И.В. Моренко (ИММ КазНЦ РАН) 

Численный расчет гидродинамического сопротивления осциллирующего цилиндра в 

потоке вязкой жидкости. 
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Проведено численное исследование обтекания вязкой жидкостью цилиндра, 

совершающего вращательные колебания. Установлено, что вращательные осцилляции 

существенно модифицируют структуру следа за круговым цилиндром и, следовательно, 

значения коэффициента сопротивления. Выполнено сравнение численных расчетов и 

экспериментальных данных других авторов. 

 

Н.М. Якупов (ИММ КазНЦ РАН) 

Механика «лечения» тонкостенных конструкций. 

Рассматриваются вопросы диагностики и «лечения» тонкостенных конструкций, 

подверженных коррозионному износу и испытывающих воздействие физических 

полей, а также конструкций с локальными поверхностными дефектами. Разработаны 

для диагностики: экспериментально-теоретический метод определения механических 

свойств образцов с распределенными дефектами и сплайновый вариант метода 

конечных элементов в двумерной и трехмерной постановках. Для «лечения» 

предложены способы защиты от коррозии и созданы устройства для снижения уровня 

концентрации напряжений в дефектных областях. Разработки награждены медалями на 

Международных Салонах и Выставках. 

 

С.Н. Якупов, Н.К. Галимов, Н.М. Якупов (ИММ КазНЦ РАН) 

Экспериментально-теоретический метод исследования жесткостных характеристик 

тонких структур. 

Тонкостенные структуры (тонкостенные элементы, мембраны и пленки), сочетающих 

легкость с высокой прочностью, находят широкое применение во всех отраслях 

производства и жизнедеятельности. Невозможно исследовать известными одноосным 

способом и инденторным методами композиции, имеющие сложную структуру. 

Разработан экспериментально-теоретический метод определения механических свойств 

плоских и неплоских (сферических и цилиндрических) тонкостенных образцов 

сложной структуры и распределенными дефектами. Приведена оценка точности 

получаемых результатов. Рассмотрен пример сферической оболочки с отверстиями. 

 

С.Н. Якупов (ИММ КазНЦ РАН), Х.Х. Валиев (ИПРИМ РАН), Е.О. Филиппова (ТПУ)  

Исследование механических свойств полимерных пористых пленок. 

Создание новых пленок и мембран с заданными свойствами – одно из перспективных 

направлений развития. Необходимые качества обеспечиваются путем варьирования 

структурой и составления композиций сложной структуры – «материал - конструкции». 

На базе экспериментально-теоретического метода исследованы капроновые пористые 

мембраны толщиной 0,2 мм со средним диаметром микропор 0,2 мкм (фирма 

«ХИМИФИЛ»), используемые для переноса биологически активных соединений и 

пористые трековые мембраны из ПЭТФ толщиной пленки 7-8мкм с диаметром пор 0,4 

мкм с различной степенью стерилизации. Приведены выводы. 

 

С.Н. Якупов, Л.У. Харисламова, Р.Г. Нуруллин (ИММ КазНЦ РАН) 

Экспериментальный способ исследования биологических оболочек. 

В природных конструкциях широко распространены биологические мембраны, в 

частности, экзокарпии – внешние оболочки и кожура различных плодов. Совершенство 

природных конструкций является наглядным примером при создании рукотворных 

конструкций. Выполнен обзор по методам исследований биологических структур. 

Развит экспериментально-теоретический метод исследования для оценки жесткостных 
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характеристик экзокарпии яблок. Предложена экспериментальная установка для 

исследования биологических оболочек растительного происхождения. Рассмотрены 

примеры. 

 

Н.М. Якупов, Р.Р. Гиниятуллин (ИММ КазНЦ РАН) 

Исследование влияния ионной имплантации на коррозионный износ. 

Представляет интерес изменение свойств металлических материалов при 

поверхностной модификации, например, методом ионной имплантации. Выполнены 

экспериментальные исследования коррозионного износа металлических образцов, на 

поверхность которых были имплантированы ионы углерода. Отмечено, что жесткость 

на растяжение имплантированных тонкостенных образцов снижается медленнее, чем 

не имплантированных образцов. С увеличением времени выдерживания в агрессивной 

среде эффект падает, что вызвано износом защитного имплантированного слоя. Ионная 

имплантация – эффективный путь защиты от коррозии. 
 

Н.М. Якупов (ИММ КазНЦ РАН), И.М. Тамеев (Газпром), А.А. Абдюшев, 

Х.Г. Киямов, Л.У. Султанов (ИММ КазНЦ РАН) 

Исследование концентрации напряжений в цилиндрических оболочках с дефектами. 

В процессе эксплуатации конструкций, в частности, трубопроводов возникают 

дефекты: коррозионные «язвы», трещины, царапины и др. Наличие дефектов снижает 

ресурс и может привести к техногенным авариям. Для оценки степени концентрации 

напряжений определяется коэффициент концентрации напряжений на базе численных 

исследований, используя трехмерные конечные элементы (сплайновый вариант МКЭ и 

учебный вариант ANSYS). Рассмотрены цилиндрические оболочки с внутренним и 

наружным дефектами. Исследовано влияние параметров углубления на величину 

концентрации напряжений и сделаны выводы. 
 

С.Н. Якупов, Т.Р. Насибуллин  (ИММ КазНЦ РАН)  

Влияние типа материала на концентрацию напряжений в панели с локальным 

углублением. 

На базе учебного варианта ANSYS разработана численная модель и выполнены 

исследования напряженно-деформированного состояния панели с локальным 

углублением, изготовленного из упругого (модель Гука) и неупругого материала 

(модель Нео-Гука, предложенная RonaldRivlin в 1948 г.). Исследована сходимость 

решения в зависимости от разбиения на трехмерные конечные элементы. Установлено, 

что с увеличением глубины дефекта, а также толщины панели, увеличиваются 

максимальные интенсивности напряжений, причем для панели по модели Нео-Гука 

рост значительно ниже, чем для панели по модели Гука. 

Доклады на Семинаре 

2 апреля 2015 г.  

В.В. Сарапулова (Бирский филиал БашГУ, Бирск) 

Особенности отражения и преломления звука на границе раздела однофазной и 

двухфазной систем. По материалам диссертации на соискание ученой степени к.ф.-м.н. 

по специальности 01.02.05 – механика жидкости, газа и плазмы. Научный руководитель 

д.ф.-м.н. В.Ш. Шагапов. Рецензент к.ф.-м.н. А.А. Никифоров. 

Проведены исследования отражения и преломления акустических волн на границе 

раздела однофазной и двухфазной систем, рассмотрены эффекты полного внутреннего 
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отражения и полного прохождения волн. Представлен метод локализации пены в 

межтрубном пространстве посредством акустического зондирования. 
  

6 апреля 2016 г.  

И.М. Утяшев (Институт механики им. Р.Р. Мавлютова УНЦ РАН, Уфа) 

Идентификация параметров математических моделей динамики упругих объектов в 

одномерной постановке. По материалам диссертации на соискание ученой степени 

к.ф.-м.н. по специальности 05.13.18 – Математическое моделирование, численные 

методы и комплексы программ. Научный руководитель д.ф.-м.н. А.М. Ахтямов. 

Рецензент д.ф.-м.н. П.П. Осипов. 

В диссертационной работе рассмотрены задачи идентификации параметров 

механических систем, описываемых дифференциальными уравнениями второго 

порядка. Предложена математическая модель краевых условий в виде матрицы, 

определяемой с точностью до линейных преобразований строк. На основе 

предложенной модели решена задача идентификации закреплений струн (с точностью 

до перестановок местами ее концов) по собственным частотам колебаний, которая 

отличается от ранее решенных задач тем, что идентифицируются не только параметры, 

но и вид краевых условий. Для струны, колебания которой происходят под действием 

переменной силы натяжения, получен метод идентификации этой силы по изменению 

амплитуды или длин волн. Кроме того, решена обратная задача смешанного типа, в 

которой определяется момент времени удара, длина стержня, масса груза и скорость по 

данным датчика, который снимает значения деформации сечения стержня в одном из 

его сечений. 
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