
Е.К. Липачёв

ВВЕДЕНИЕ

В КОМПЬЮТЕРНЫЕ НАУКИ. ОСНОВНЫЕ

АЛГОРИТМЫ

КАЗАНЬ — 2003

 2

УДК 519.6

ББК 32.811

Л61

Печатается по решению

кафедры теории функций и приближений

Казанского государственного университета

от 03.07.03 Протокол №1

Рецензент

Кандидат физико-математических наук, доцент

С.Н. Тронин

Л61

 Липачѐв Е.К.

Введение в компьютерные науки. Основные алгоритмы: Учебно-

методическое пособие. – Казань: Казанский государственный универ-

ситет им. В.И.Ульянова-Ленина, 2003. – с.84.

 Предназначено для студентов механико-математического факультета

специальностей 010100 – «математика» и 010500 – «механика» как

вспомогательный материал на занятиях в рамках компьютерного цикла.

 УДК 519.6

ББК 32.811

 © Липачѐв Е.К., 2003

 3

Оглавление
1. Консольные приложения 5

1. Создание консольных приложений 5

2. Как русифицировать консольное приложение 5

3. Задачи 6

2. Работа с файлами 11

2.1. Общие сведения 11

2.2. Схема работы с файлами 11

2.3. Обработка исключительных ситуаций при работе с файлами 13

2.4. Чтение из текстового файла 14

2.5. Запись в текстовый файл 15

2.6. Компоненты Delphi для работы с файлами 16

2.7. Типизированные файлы 17

2.8. Задачи 19

3. Динамические массивы 20

3.1. Функции, используемые при работе с динамическими

массивами 20

3.2. Многомерные динамические массивы 20

3.3. Параметры функций в виде открытых массивов 22

3.4. Задачи 23

4. Решение уравнений 24

4.1. Метод итераций 24

4.2. Метод половинного деления 26

4.3. Метод Ньютона 27

4.4. Пример решения нелинейного уравнения 28

4.5. Решение систем линейных уравнений 32

4.5.1 Метод Гаусса 32

4.5.2 Замечания по проектированию интерфейса приложения 35

4.5.3 Объектно-ориентированный подход 45

4.6. Вычисление определителя матрицы 47

4.7. Вычисление обратной матрицы 48

4.8. Задачи 51

5. Алгоритмы сортировки данных 52

5.1. Метод ―пузырька‖ 53

5.2. Метод просеивания 54

5.3. Метод Шелла 55

5.4. Быстрая сортировка 57

5.5. Сортировка структурированных данных 59

5.6. Задачи 60

 4

6. Списки 61

6.1. Приемы работы со списками 61

6.2. Средства Delphi для поддержки списков 65

7. Вычисление с многократной точностью 69

7.1. Вычисление числа 2
n
 для большого n 69

7.2. Алгоритм вычисления 70

7.3. Организация интерфейса 71

7.4. Вычисление числа  73

7.5. Алгоритм вычисления 74

7.6. Задачи 79

8. Операции с датой и временем 79

8.1. Тип данных TdateTime 79

8.2. Задачи 81

Литература 83

 5

1. Консольные приложения

1.1. Создание консольных приложений

В тех случаях, когда при решении практической задачи не требуется

создавать графический интерфейс, а нужны, например, результаты

вычислений, можно построить консольное приложение. Примером

консольных приложений являются программы, созданные в Turbo Pascal

для DOS. Заметим, что большинство программ, написанных на языке

Паскаль, можно выполнить в среде Delphi как консольные приложения.

Большую часть учебных задач по программированию, например,

предложенных в [1], [3], целесообразно решать как консольные

приложения.

Мы будем использовать консольные приложения для описания

различных алгоритмов, — интерфейсная часть проекта в этих случаях

второстепенна.

Для создания консольного приложения выполнить команду меню

File | New | Other… . В окне диалога New выберем пиктограмму Console

Application.

В результате получим следующий шаблон приложения:

program Project1;

{$APPTYPE CONSOLE}

uses SysUtils;

begin

 {TODO -oUser-cConsole Main}

 {Запишите код здесь}

end.

Для ввода данных в консольных приложениях используются операторы

Read, Readln, а для вывода — Write, Writeln. Напомним, что

оператор Readln; (без аргументов) можем использовать для задержки

(до нажатия клавиши Enter) DOS-окна с сообщениями консольного

приложения.

1.2. Как русифицировать консольное приложение

Консольное приложение работает в режиме эмуляции DOS, поэтому

пояснительные записи на русском языке, выводимые операторами

Writeln, будут непонятны из-за несоответствия кодировок. Ситуацию

можно исправить преобразованием выводимого текста в кодировку DOS.

В следующем примере для этой цели используется функция

AnsiToOem(), переводящая текст из кодировки Windows (Win 1251) в

кодировку DOS (OEM 866).

 6

 Пример 1.2.1. Перевод из кодировки Win 1251 в кодировку OEM 866.
program OemStr;

{$APPTYPE CONSOLE}

uses SysUtils;

function AnsiToOem(s:String):String;

{Преобразование ANSI в OEM}

Var s_o:String; i:Integer;

 ch_o,ch : Char;

begin

 s_o :='';

 for i :=1 to Length(s) do

 begin

 ch:=s[i];

 Case ch of

 'а'..'п': ch_o := Chr(Ord(ch)-64);

 'р'..'я': ch_o := Chr(Ord(ch)-16);

 'ѐ': ch_o := Chr(241);

 'Ё': ch_o := Chr(240);

 'А'..'Я': ch_o := Chr(Ord(ch)-64)

 else ch_o := ch

 end;

 s_o := s_o + ch_o;

 end;

 Result:=s_o;

 end; {AnsiToOem}

Вegin

{ Вместо}

 Writeln('Консольное приложение');

{ Записываем }

 Writeln(AnsiToOem('Консольное приложение'));

 Readln; {Задержка}

End.

1.3. Задачи

1.3.1. Вводится целое положительное число n. Переставить первую и

последнюю цифру числа n.

1.3.2. Преобразовать введенное двоичное число в десятичное.

1.3.3. Преобразовать введенное шестнадцатеричное число в десятичное.

1.3.4. Преобразовать введенное десятичное число в шестнадцатеричное.

1.3.5. Получить таблицу температур по Цельсию от 40 до 40 и их

эквивалентов по шкале Фаренгейта, используя формулу пересчета

1.8 32F Ct t  .

1.3.6. Вводится целое положительное число n. Вычислить an, где

0 11, 1/ , 1,2, .k ka a ka k k   

 7

1.3.7. Вводится целое положительное число n. Вычислить Fn, где

 0 1 1 20, 1, , 2,3, .k k kF F F F F k     

1.3.8. Вводится целое положительное число n. Вычислить

последовательность F1, …, Fn, где
2 2

1 1 5 1 5

2 25

k k

kF

           
     

, k=1,2, …. .

Замечание. Числа, рассмотренные в задачах 1.3.7 и 1.3.8, носят название

чисел Фибоначчи (см., напр., [8], [11], [16]).

1.3.9. Вводится целое положительное число n. Вычислить

последовательность r1, …, rn, где

1 11, (125) mod 8192.k kr r r 

Это пример генератора псевдослучайных чисел (подробности см. в [12,

гл. 3], [16, стр. 210]).

1.3.10. (Алгоритм Евклида). Составить программу нахождения

наибольшего общего делителя целых чисел , (0)A B A B  . В алгоритме

Евклида, начиная с 1 0,r A r B   , производятся последовательные деления

2ir на 1ir , в результате чего вычисляется ir как остаток от деления, т.е.

2 1 , 1,2, , .i i i ir d r r i k   

Деления выполняются до получения остатка 1 0kr   . Тогда kr —

наибольший общий делитель чисел A и B .

1.3.11. (Расширенный алгоритм Евклида). Вводятся целые числа

, (0)A B A B  . Составить программу вычисления натуральных чисел

x и y , таких что (,),Ax B y НОД A B  где через (,)НОД A B обозначен

наибольший общий делитель чисел A и B .

Вычисления проводятся как в алгоритме Евклида, но дополнительно

вычисляются две последовательности

1 1 0 0

2 1 2 1,

1, 0, 0, 1,

, 0,i i i i i i i i

x y x y

x x d x y y d y i

 

   

   

    

где через id , как и в задаче 1.3.10, обозначено частное от деления 2ir на

1ir . Значения kx и ky , при которых (,)kr НОД A B , будут искомыми.

1.3.12. Для вычисления наибольшего общего делителя целых чисел

, (0)A B A B  можно использовать также следующий алгоритм

(подробности см. [4]). Установить начальные значения Ar A и Br B .

Циклически, пока выполнено условие A Br r , изменять значения этих

переменных: если A Br r , заменить Ar на A Br r , иначе заменить Br на

B Ar r . После завершения цикла  , A BНОД A B r r  .

 8

1.3.13. Вводится массив целых чисел. Подсчитать сколько различных

чисел в этом массиве.

1.3.14. Вводится массив попарно различных целых чисел. Напечатать все

перестановки этих чисел.

Замечание. Задача сводится к нахождению всех перестановок чисел

1,2, , .n Перестановки можно порождать следующим образом

(подробности см., напр., [15], [19]). Начиная с перестановки  1,2, ,n ,

строим из  1 2, , , n    следующую путем просмотра  справа

налево в поисках самой правой позиции, в которой 1.i i   Найдя такую

позицию i , ищем j как наименьший элемент, расположенный справа от

i и больший его. Затем выполняем перестановку элементов j и ,i а

отрезок 1, ,i n  записываем в обратном порядке. Алгоритм заканчивает

работу, когда 0i  , что происходит, если 1 2 n     (это последняя в

лексикографическом порядке перестановка).

1.3.15. Вводится массив целых чисел. Найти число, повторяющееся

максимальное количество раз. Если таких чисел несколько, вывести одно

из них.

1.3.16. Вводится массив целых чисел. Найти длину самой длинной

последовательности подряд идущих элементов массива, равных нулю.

1.3.17. Составить программу вычисления цепной дроби (см., напр., [9])

1 2 3 1
0 0

21 2 3
1

3
2

3

, , , ,
b b b b

a a
ba a a

a
b

a
a

 
  

  




,

где 0 1, , , ,na a a 1 2, , , nb b b — заданные действительные числа.

1.3.18. Вычислить сумму ряда

1

(1)

!

i

i i








с ошибкой, не превышающей E>0 (напр., E= 610). Будем считать, что

требуемая точность достигается, если частная сумма ряда отличается от

предшествующей частной суммы менее, чем на E.

1.3.19. Вычислить сумму ряда
1

1

(1)

(1)(2)

i

i i i i







 


с ошибкой, не превышающей E>0 (напр., E= 610).

 9

1.3.20. Вычислить сумму ряда

0

(1)

2 1

k

k k










с ошибкой, не превышающей E>0 (напр., E= 610).

1.3.21. Вводится действительное число x. Вычислить сумму ряда
2 1

0

(1)

2 1

k k

k

x

k










с ошибкой, не превышающей E>0 (напр., E= 610).

1.3.22. Вычислить сумму ряда

1

1
()

()i

x
i i x











с ошибкой, не превышающей E>0, для значений x от 0 до 1 с шагом 0.1.

Замечание. На примере этого ряда можно показать, что непосредственные

вычисления, без предварительного анализа, приводят к медленно

работающей программе (см., напр., [24, стр. 42]). При вычислении можем

применить прием, называемый ускорением сходимости (см., напр.,

[8, стр. 199]). Рассмотрим для этого вспомогательные ряды

()

1

1 1
: , 1,2,

(1) () !

m

i

S m
i i i m m m





  
  



Тогда разность (1)()x S  , с одной стороны, равна () 1x  , а с другой,

1

1
(1)

(1)()i

x
i i i x






 

 .

Далее, имеем

(2)

1 1

1 1
(2)

(1)() (1)(2)()i i

S x
i i i x i i i i x

 

 

  
    

  .

Следовательно,

1

1 1
() 1 (1) (1)(2)

4 (1)(2)()i

x x x x
i i i i x






     
  

 .

1.3.23. Вычислить сумму ряда

2
1

1

1i

S
i










с ошибкой, не превышающей E>0 (напр., E= 610).

Замечание. Для вычисления этого ряда можем использовать формулы
2 4

2 4
1 1

1 1
,

6 90i ii i

  

 

   .

 10

Из соотношений

2 2 2 2 2 2 4 4 2

1 1 1 1 1 1
,

1 (1) (1) (1)i i i i i i i i i
   

   

получаем, что
2 4

2 2 2 4 2
1 1 1

1 1 1

6 90(1) (1)i i i

S
i i i i i

   

  

    
 

   .

1.3.24. Подсчитать количество шагов, необходимых для вычисления ряда

из задачи 1.3.23 с заданной точностью, используя оба варианта

вычислений — ―непосредственный‖ и с ―ускорением‖.

1.3.25. Вводится числовая матрица. Элемент матрицы называется седловой

точкой, если он является одновременно наименьшим в своей строке и

наибольшим в своѐм столбце. Найти номера строки и столбца какой-

нибудь седловой точки.

1.3.26. Вводятся числовые матрицы A и B размера k×l и l×m. Найти

произведение AB.

1.3.27. Вводится числовая матрица A порядка n . Вычислить матрицу 2A .

1.3.28. Вводятся числовые матрицы A и B порядка n. Получить

матрицу AB B A .

1.3.29. Вводятся числовые матрицы A, B и C порядка n. Получить матрицу

 A B C .

1.3.30. Вводится числовая матрица A порядка n. Вычислить

транспонированную матрицу.

1.3.31. Вводятся действительные числа 1, , nx x . Составить матрицу

Вандермонда []ijA a , , , 1, ,i
ij ja x i j n  и вычислить ее определитель

согласно формуле

 
1 1

det .j j i

j n i j n

A x x x
    

  

1.3.32. Даны натуральные числа m и n (m<n). Составить программу

нахождения всех наборов  1, , mk k , таких что 1 21 .mk k k n    

1.3.33. Вводятся действительные числа 1, , nx x . Вычислить матрицу

[]ijB b , используя соотношения

1 2

1

1

1

1 1
, ,

(1) () / ().
n j

j
ij k k k i k i

n j

n j

k k n k n
k ik k i

b x x x x x x








     


   

Отметим, что матрица B является обратной матрицей к матрице

Вандермонда (см., напр., [11, стр. 67]).

 11

1.3.34. Вводятся числовые матрицы A и B порядка n. Вычислить матрицу

C A B , состоящую из элементов

1
min().ik ij jk

j n
c a b

 
 

1.3.35. Пусть A числовая матрица порядка .n Вычислить матрицу
1,nD A  где возведение в степень выполнено по правилам операции,

определенной в предыдущей задаче.

Замечание. Операция умножения, рассмотренная в задачах 1.3.34 и 1.3.35,

используется в теории графов. В частности, если A матрица длин ребер

некоторого графа, то D — матрица расстояний этого графа (см., напр.,

[16, стр. 141]).

2. Работа с файлами

2.1. Общие сведения

 В Delphi поддерживаются три типа файлов: текстовые,

типизированные и двоичные. Текстовые файлы содержат информацию,

которую можно редактировать в любом текстовом редакторе.

Типизированные файлы содержат данные типа запись (record … end).

Остальные файлы можно рассматривать как двоичные.

2.2. Схема работы с текстовыми файлами

1. Описываем файловую переменную
 Var F:TextFile;

2. Связываем файловую переменную с именем файла оператором
 AssignFile(F,NameFile);

например,
assignfile(f,’info.txt’);

assignfile(f,’c:\examples\data\info.txt’);

3. Открываем файл.

a. Для чтения (предполагаем, что файл уже существует).
Reset(F);

b. Для записи (если файл существует, то прежняя информация

будет удалена).
Rewrite(F);

c. Для добавления информации в конец существующего файла
 Append(F);

При открытии файла возможны сбои в работе программы.

Исключительная ситуация возникнет, например, при попытке открыть

файл на недоступном устройстве (к примеру, записать на CD-R или

прочитать файл, которого нет). Если не обрабатывать исключительные

 12

ситуации, то работа программы будет прекращена. Об обработке чуть

позднее.

4. Проводим операции с файлом: читаем из файла или записываем в

него.

a. Читаем с помощью операторов
 Read(F,…..); Readln(F,…..);

С помощью функции Eof(F) можно определить, что файл

полностью прочитан (Eof(F) возвращает True, если

прочитан последний символ в файле). С помощью функции

Eoln(F) можно определить, что закончено чтение строки

(Eoln(F) возвращает True после прочтения последнего

символа в строке).

b. Записываем в файл с помощью операторов

 Write(F,….); или Writeln(F,…..);

Отметим, что одновременно нельзя читать и записывать в файл.

5. Закрываем файл с помощью оператора
 CloseFile(F);

 Приведем примерный участок кода, используемый при открытии

текстового файла

 Var f : TextFile;

 Begin

 AssignFile(f, ’info.txt’);

 Reset(f);

 { РАБОТА С ФАЙЛОМ }

 CloseFile(f);

 End;

 Для записи в новый файл можем применить операторы
 Var f : TextFile;

 Begin

 AssignFile(f, ’info.txt’);

 Rewrite(f);

 { РАБОТА С ФАЙЛОМ }

 CloseFile(f);

 End;

 Добавление данных в конец файла выполняется командами
 Var f : TextFile;

 Begin

 AssignFile(f, ’info.txt’);

 Append(f);

 { РАБОТА С ФАЙЛОМ }

 CloseFile(f);

 End;

 13

Пример 2.2.1. Вывод на экран информации из файла ―info.txt‖.
 Var f: TextFile;

 s:String;

 Begin

 AssignFile(f,’info.txt’);

 Reset(f);

 While Not Eof(f) do

 begin

 Readln(f,s); Writeln(s)

 end;

 CloseFile(f);

 End.

2.3. Обработка исключительных ситуаций при работе с
файлами

С помощью защищенных блоков можем обработать ошибки,

возникающие при открытии файла и работе с ним. ―Исправим‖

пример 2.2.1, добавив защищенные блоки.

Пример 2.3.1.

 Uses

 Dialogs; {для поддержки ShowMessage()}

 Var f: TextFile;

 s:String;

 Begin

 AssignFile(f,’info.txt’);

 try

 Reset(f);

 While Not Eof(f) do

 begin

 Readln(f,s); Writeln(s)

 end;

 CloseFile(f);

 except

 on E:EinOutError do

 ShowMessage(‘Ошибка при работе с файлом.’+

 ‘Номер ошибки=’ +IntToStr(E.ErrorCode))

 end

 End.

 Можно произвести обработку иначе. Этот способ применялся при

работе в Turbo Pascal и сохранился в Delphi. Он состоит в обработке

результата функции IOResult. Проиллюстрируем тем же примером.

Пример 2.3.2.
 Var f: TextFile;

 s:String;

 14

 Begin

 AssignFile(f,’info.txt’);

 {$I-}

 Reset(f);

 {$I+}

 If IOResult<>0 then

 ShowMessage(‘Ошибка при работе с файлом’)

 else

 begin

 While Not Eof(f) do

 begin

 Readln(f,s); Writeln(s)

 end;

 CloseFile(f);

 end

 End.

 Функция IOResult() возвращает код ошибки, возникшей в ходе

выполнения последней операции ввода-вывода. Чтобы получить код

ошибки, необходимо с помощью директивы компилятора {$I-}

отключить автоматическую проверку операций ввода-вывода. Если этого

не сделать, программа автоматически завершит свою работу. После

выполнения операций ввода-вывода, способных привести к ошибке,

необходимо с помощью директивы {$I+} снова включить автоконтроль

ввода-вывода.

2.4. Чтение из текстового файла

Пример 2.4.1. Найти в файле ‘book.txt’самое длинное слово. Под

словом, в данном случае, будем понимать последовательность символов,

ограниченную пробелами или другими разделителями.
program Project2_4_1;

{$APPTYPE CONSOLE}

{Поиск самого длинного слова в файле}

uses SysUtils;

Var

 f:Text;

 lmax:Integer; dlina,i:Integer;

 slovo, maxslovo:String;

 ch:char; Dividers:set of char; flag:Boolean;

begin

 {разделители:}

 Dividers:=[' ',',','.','!','?',';',':'];

 AssignFile(f,'book.txt');

 reset(f);

 lmax:=0;

 15

 slovo:=''; dlina:=0;

 flag:=False;

 while Not Eof(f) {пока файл не кончился} do

 begin {1}

 read(f,ch);

 if ch in Dividers then

 {встретили разделитель - слово закончилось}

 flag :=True

 else

 if Eoln(F) then { закончилась строка}

 begin

 flag :=True;

 slovo := slovo+ch; Inc(dlina)

 end

 else {продолжаем собирать слово}

 begin

 slovo:=slovo+ch; Inc(dlina)

 end;

 {если очередное слово найдено, сравним его длину:}

 if flag then

 begin {2}

 if dlina>lmax then

 begin

 lmax:=dlina; maxslovo:= slovo;

 end;

 {Для нового слова:}

 slovo:=''; dlina:=0;

 flag:=False

 end {2}

 end; {1}

 closefile(f);

 Writeln('Слово ',maxslovo,' имеет длину ', lmax);

Readln;

End.

2.5. Запись в текстовый файл

 Текстовые файлы удобно использовать для хранения результатов

вычислений.

 Пример 2.5.1. Вычислить n членов последовательности

Фибоначчи, где n (n <93) — натуральное число, вводимое при запуске

программы. Результаты сохранить в текстовом файле. Числа Фибоначчи

вычисляются по формуле (см., напр., [8], [11], [16])

0 1 1 20, 1, , 1k k kF F F F F k     

(см. задачи 1.3.7 и 1.3.8).

 16

program Project2_5_1;

{$APPTYPE CONSOLE}

uses SysUtils;

 Var g: TextFile; NameFile:String;

 i,n: Integer; u,v,w: Int64;

Begin

 NameFile:='Fibb.txt';

 Writeln('Последовательность Фибоначчи для n=');

 Readln(n);

 AssignFile(g, NameFile);

 Rewrite(g);

 u := 0; v := 1;

 {Запишем в файл первые два числа}

 Writeln(g, 'f_1=',u); Writeln(g,'f_2', v);

 for i:= 2 to n do

 begin

 w := v + u;

 Writeln(g,'f_',i:3,'=',w);

 u := v; v := w;

 end;

 CloseFile(g);

 End.

Замечание. В программе предполагается, что n<93. Это ограничение

вызвано тем, что количество значащих цифр у последующих чисел

Фибоначчи превышает допустимый диапазон значений типа Int64. В

разделе 5 показано, как можно справиться с подобной проблемой.

2.6. Компоненты Delphi для работы с файлами

Для выбора файла перед операцией открытия можно использовать

компонент OpenDialog, размещенный на странице Dialogs палитры

компонент. Из свойств компонента отметим следующие:

Свойство Возможные значения

DefaultExt
Расширение, добавляемое к имени файла, если у него не

указано расширение

FileName Содержит полное имя выбранного файла

Filter

Текст фильтров, используемых при отображении файлов.

Любое количество строковых пар, разделѐнных символом “|”.

В каждой паре первая часть содержит поясняющий текст, а

вторая часть определяет фильтр, например,

"Все файлы (*.*)|*.*"

InitialDir
Папка, содержимое которой отображается при открытии окна

выбора файлов

 17

Пример 2.6.1.
{Определим фильтр:}

OpenDialog1.Filter := 'Файлы данных (*.dat)|*.dat'

+'Текстовые файлы (*.txt, *.doc)|*.txt;*.doc' +

 'Все файлы (*.*)|*.*';

if OpenDialog1.Execute then

 Name := OpenDialog1.FileName; {Имя выбранного файла}

При сохранении файла можно использовать диалоговое окно ―Save‖

(―Сохранить файл‖), которое выводится с помощью компонента

SaveDialog (страница Dialogs палитры компонент). Этот компонент

имеет точно такие же свойства, как и компонент OpenDialog.

Пример работы с этими компонентами содержится в разделе 4.5.2.

2.7. Типизированные файлы

 Файлы, в которых хранятся структуры данных Object Pascal,

называются типизированными файлами (файлами записей). Покажем на

примере схему работы с типизированным файлом.

Пример 2.7.1. Создается файл для хранения информации о книгах

(автор, название книги, год издания). Введен тип TBook для работы с

такой информацией.

Type

 TBook = record

 Autors : String[80]; {Фамилии авторов}

 Title : String[80]; { Название }

 Year : Integer; {Год издания}

 end;

Var

 F: File of TBook; Book: TBook;

Begin

 AssignFile(F,’BookFile.dat’);

 Rewrite(F);

 {Подготовим данные:}

 Book.Autors:=’Вирт Н.’;

 Book.Title:=

 ’Алгоритмы + структуры данных = программы’;

 Book.Year:=1985;

 {Запишем в файл:}

 Write(F,Book);

 {Снова данные:}

 Book.Autors:=

 ’Грэхем Р., Кнут Д., Паташник О.’;

 Book.Title:=

 ’Конкретная математика. Основания информатики’;

 Book.Year:=1998;

 18

 {Запишем в файл:}

 Write(F,Book);

 { }

 CloseFile(F);

End;

Пример 2.7.2. Чтение записи из типизированного файла.
Type

 TBook = record

 Autors : String[80]; {Фамилии авторов}

 Title : String[80]; { Название }

 Year : Integer; {Год издания}

 end;

Var F: File of TBook; Book: TBook;

Begin

 AssignFile(F,’BookFile.dat’);

 Reset(F);

 If Not Eof(F) then Read(F,Book);

 { }

 CloseFile(F);

End;

Пример 2.7.3. Добавление записи в типизированный файл.
Type

 TBook = record

 Autors : String[80]; {Фамилии авторов}

 Title : String[80]; { Название }

 Year : Integer; {Год издания}

 end;

Var F: File of TBook; Book: TBook;

Begin

 AssignFile(F,’BookFile.dat’);

 Reset(F);

 {переместим указатель в конец файла:}

 Seek(F, FileSize(F));

 {Подготовим данные:}

 Book.Autors:=’Тейксейра С., Пачеко К.’;

 Book.Title:=

 ’Borland Delphi 6. Руководство разработчика’;

 Book.Year:=2002;

 {Запишем в файл:}

 Write(F,Book);

 CloseFile(F);

End;

Процедура Seek() используется в этом примере для перемещения

указателя в конец файла. С помощью этой процедуры можем обращаться к

записям типизированного файла ―напрямую‖, по их порядковому номеру.

 19

Процедура Seek() имеет два параметра: первый имеет тип файловой

переменной и служит для определения файла, вторым параметром

передаем порядковый номер элемента файла, на который должен быть

установлен указатель файла (первый элемент файла имеет номер 0).

2.8. Задачи

2.8.1. Дан текстовый файл f, получить копию файла f в файле g.

2.8.2. Даны текстовые файлы f и g. Записать в файл h сначала компоненты

файла f, а затем — компоненты файла g.

2.8.3. Дан текстовый файл f. Создать файл g, образованный из файла f

заменой всех прописных букв одноименными строчными. Заметим, что

стандартные функции, например, UpperCase(), не ―справляются‖ с

буквами русского алфавита.

2.8.4. Дан текстовый файл f. Подсчитать количество слов в файле f.

2.8.5. Дан текстовый файл f. Подсчитать в файле f количество слов

заданной длины n.

2.8.6. Подсчитать количество вхождений данного слова s в текстовый

файл.

2.8.7. Дан текстовый файл f, содержащий информацию в кодировке DOS

(OEM – 866). Преобразовать информацию в кодировку Windows (Win-

1251). (Функция, выполняющая обратное преобразование, приведена в

примере раздела 1.2.)

2.8.8. Дан текстовый файл f, содержащий информацию на русском языке.

Преобразовать текст, заменив символы кириллицы на ―подходящие‖

латинские буквы (для букв, не имеющих аналогов в латинице,

использовать сочетания букв, например, ―ж‖ — ―zh‖, ―х‖ — ―kh‖, ―ц‖ —

―ts‖, ―ч‖ — ―ch‖, ―ш‖ — ―sh‖, ―щ‖ — ―tsh‖, ―ю‖ — ―ju‖, ―я‖ — ―ja‖).

Преобразованный текст записать в файл g.

2.8.9. Дан текстовый файл f. Найти слово (слова), встречающиеся наиболее

часто.

2.8.10. Дан текстовый файл f. Вычислить количество вхождений каждого

символа в файле f. Результат сохранить в массиве
Var Num:Array[Char] of Integer;

так, чтобы элемент Num[ch] содержал количество вхождений символа ch

в файле f.

2.8.11. Дан файл, содержащий сведения о автомобилях. Эти сведения

состоят из марки автомобиля, фамилии владельца и гос. номера. Составить

программу, в которой по номеру автомобиля выводится фамилия

владельца.

 20

3. Динамические массивы

Динамические массивы отличаются от ―обычных‖ тем, что

размерность массива можно не задавать явно, а определить во время

работы программы. Этот тип данных появился в Delphi 4.

Динамические массивы объявляются с помощью описания
Array of базовый тип;

Например,
Var b : array of Double;

Динамические массивы индексируются с нуля. Размерность массива

при объявлении не указывается. Если в программе используется

динамический массив, то необходимо выделить память для этого массива

с помощью процедуры SetLength(). В качестве первого параметра

процедуры указывается имя массива, а вторым — количество элементов

массива. Например, SetLength(b, 3).

Пример 3.1.

 Var b : Array of Double;

 begin

 SetLength(b, 3);

 b[0] := 1; b[1] := 0.1; b[2] := 4;

 end;

3.1. Функции, используемые при работе с динамическими
массивами

Length(a) — число элементов динамического массива a.

High(a) — наибольший индекс массива a (т.е. Length(a)-1). Если

массив имеет нулевую длину, функция High() возвращает значение –1.

Low(a) — наименьший индекс массива (=0).

3.2. Многомерные динамические массивы

Многомерные динамические массивы объявляются с помощью

повторного использования конструкции
Array of . . .

Например,
Var a : Array of array of Double;

— объявлен двумерный динамический массив вещественных чисел.

Для выделения памяти для такого массива используется процедура

SetLength() с тремя параметрами: первый — имя массива, второй —

количество строк, третий — количество столбцов. Например,
SetLength(a, 3, 3).

 21

Пример 3.2.1. Можно определить динамические массивы, не

являющиеся прямоугольными.
Var a : Array of array of double;

 i, j : Integer;

begin

 SetLength(a, 10);

 for i := 0 to High(a) do

 begin

 SetLength(a[i], i + 1);

 for j := 0 do High (a[i]) do

 a[i, j] :=sin(i+j);

 end;

end;

 Размер динамического массива можно изменять после его

объявления.

 Пример 3.2.2. Из матрицы a создается новая матрица b, в которую

включаются строки матрицы a, не содержащие нулевых элементов.

Память под каждую строку матрицы b выделяется в процессе проверки

строк матрицы a.
program Project3_2_2;

{$APPTYPE CONSOLE}

uses SysUtils;

Type

 TMatr=Array of Array of Double;

procedure ExclN(a:TMatr; var b:TMatr);

Var

 i,j,k,n,m:Integer; flag:Boolean;

begin

 n:=Length(a);//количество строк матрицы a

 k:=0; //текущее количество строк матрицы b

 for i:=0 to n-1 do

 begin {1}

 {просматриваем i-ю строку матрицы a:}

 flag:=false;{изменим на True, если

 в строке есть нулевые элементы}

 m:=Length(a[i]); // длина строки

 j:=0;

 repeat

 if a[i,j]=0 then flag:=true;

 Inc(j);

 until (j>=m) or flag;

 if Not flag then {i-я строка без нулей}

 begin

 {i-ю строку матрицы a запишем в

 k-ю строку матрицы b}

 22

 SetLength(b,k+1,m);{Увеличили память

 на одну строку}

 for j:=0 to m-1 do b[k,j]:=a[i,j];

 Inc(k);

 end;

 end; {1}

end;

Var a,b:TMatr; i,j:Integer;

Begin

 SetLength(a,3,3);

 a[0,0]:=1; a[0,1]:=1;a[0,2]:=0;

 a[1,0]:=2; a[1,1]:=2; a[1,2]:=2;

 a[2,0]:=3; a[2,1]:=3; a[2,2]:=3;

 ExclN(a,b);

 for i:=0 to High(b) do

 begin

 for j:= 0 to High(b[i]) do

 write(b[i,j]);

 writeln;

 end;

 Readln;

End.

3.3. Параметры функций в виде открытых массивов

В процедурах и функциях допускается использование параметров с

описаниями в виде
Array of базовый тип;

Например,
function Sum(b : Array of Double) : Double;

 Отметим, что индексация открытых массивов начинается с нуля.

 Пример 3.3.1. Использование открытых массивов.

program Project3_3_1;

{$APPTYPE CONSOLE}

uses SysUtils;

function Sum(a:array of double):double;

Var i:Integer; S:double;

begin

 S:=0;

 for i := 0 to High(a) do

 S:= S + a[i];

 Result := s;

end;{Sum}

Var a:array[0..5] of double=(3,1,4,1,5,9);

 b:array[-5..0] of double=(2,6,5,3,5,8);

 23

 c:array[1..12] of double=(3,1,4,1,5,9,

 2,6,5,3,5,8);

Begin

 writeln(Sum(a));

 writeln(Sum(b));

 writeln(Sum(c));

 Readln;{задержка}

End.

 При вызове функций и подпрограмм значения открытого массива

можно передать с помощью конструктора массива. Значения элементов

массива записываются в виде списка, обрамленного квадратными

скобками, запятая служит разделителем элементов.

 Пример 3.3.2. Использование конструктора массива.
program Project3_3_2;

{$APPTYPE CONSOLE}

uses SysUtils;

function Sum(a:array of double):double;

Var i:Integer; S:double;

begin

 S:=0;

 for i := 0 to High(a) do

 S:= S + a[i];

 Result := s;

end;{Sum}

Begin

 writeln(Sum([3,1,4,1,5,9]));

 writeln(Sum([2,6,5,3,5,8]));

 writeln(Sum([3,1,4,1,5,9,2,6,5,3,5,8]));

 Readln;{задержка}

End.

3.4. Задачи

3.4.1. Вводятся натуральное число n (n>1) и действительные числа

0 1, , , nx x x . Получить последовательность

0 1 1, , , .n n n nx x x x x x  

3.4.2. Вводятся натуральное число n и действительные числа 0 1, , , nx x x .

Вычислить

0 1 1 0.n n nx x x x x x  

3.4.3. Вводятся натуральное число n и действительные числа 0 1, , , nx x x .

Вычислить

0 1 2 1 2 3 2 1(2 3)(2 3) (2 3).n n nx x x x x x x x x        

3.4.4. Вводятся натуральное число n и действительные числа 0 1, , , nx x x .

Вычислить среднее арифметическое этих чисел.

 24

3.4.5. Многочлен
1

0 1 1() n n
n n nP x a x a x a x a

    

представляется массивом коэффициентов a . Написать функцию

вычисления значения многочлена для заданного x . Вычисления

организовать по схеме Горнера

  0 1 1()n n nP x a x a x a x a     .

3.4.6. Составить процедуру сложения динамических матриц.

3.4.7. Составить процедуру перемножения динамических матриц. С

помощью параметра типа Boolean осуществить контроль за

возможностью выполнения этой операции (количество строк первой

матрицы должно совпадать с количеством столбцов второй матрицы).

3.4.8. Дана матрица A вещественных чисел. Создать новую матрицу,

включив в нее те строки матрицы A, в которых нет элементов, равных

минимальному значению элементов матрицы A.

3.4.9. Дана матрица вещественных чисел. Создать новую матрицу путем

включения строк исходной матрицы, содержащих хотя бы один

отрицательный элемент. Если все элементы исходной матрицы

неотрицательны, вывести соответствующее сообщение.

4. Решение уравнений

 В этом разделе рассмотрены некоторые простейшие численные

методы приближенного решения линейных и нелинейных уравнений и

систем.

 Для решения нелинейных уравнений используются метод итераций,

метод половинного деления и метод Ньютона (см., например, [2], [9], [24]).

 Для решения систем линейных уравнений рассмотрен метод

исключения Гаусса, а методы прогонки, квадратного корня, итераций

рассмотрены в задачах.

4.1. Метод итераций

Пусть известно, что отрезок [,]a b содержит единственный корень

уравнения
() 0.f x 

 Метод итераций при определенных ограничениях на функцию ()f x

позволяет вычислить корень с заданной точностью.

Применение метода итераций требует предварительного приведения

уравнения к виду

()x g x .

Способы приведения рассмотрены в [9], отметим, что способ приведения

влияет на сходимость метода (см., напр., [24]). Будем предполагать, что

 25

)(xg удовлетворяет условию Липшица с постоянной 1q , в этом случае

метод итераций сходится и скорость сходимости оценивается

неравенством

* ,
1

n
n

e
x x q

q
 



где 0()ox g x e  , *x — решение уравнения, 0x — начальное

приближение. Метод итераций состоит из следующих шагов.

2. Выбирается начальное приближение 0x .

3. Вычисляется последовательность чисел

 1(), 1,2,n nx g x n  .

4. Вычисления продолжаются до тех пор, пока для двух последо-

вательных приближений nx и 1nx  не будет обеспечено вы-

полнение неравенства

  1 1 / ,n nx x q e q  

где e — заданная точность вычислений и '() .g x q

5. Если количество итераций превысит некоторую заранее

установленную величину, считают, что метод не сходится.

Пример 4.1.1. Листинг программы.
program Example4_1_1;

{$APPTYPE CONSOLE}

uses SysUtils;

Const

 MaxN=1000; {макс. число шагов метода}

Type Funct=function(x:double):double;

 function g(x:double):double;

begin

 Result:=-x*x*x*0.04 + 1.08*x + 0.2;

end;

procedure Iterat(g:TFunct; x0,

 eps : Double;

 Var x : Double; Var N : Integer);

{Метод итерации:}

Var t:double;

 begin

 N:=1;

 repeat

 x:=g(x0);

 t:=abs(x-x0);

 Inc(N);

 x0:=x;

 until (t<eps) Or (N>MaxN);

end;{Iterat}

 26

Var x:Double; N:Integer;

begin

 Iterat(g,2.5,0.000001,x,N);

 Writeln('Методом Iterat найден корень', x, 'за', N,

'шагов');

 Readln;

End.

 Метод итераций можно использовать для решения систем

уравнений









).,(

),,(

yxy

yxx
 (4.1.1)

 Выбирается начальное приближение  0 0,x y , итерационный

процесс выполняется по формулам

 

 

1

1

, ,
0,1,

, ,

k k k

k k k

x x y
k

y x y








 

 . (4.1.2)

Вычисления продолжаются до тех пор, пока изменения неизвестных x и

y в двух последовательных итерациях не станут малыми. Это условие не

гарантирует достижения выбранной точности приближения и, в данном

случае, предложено для упрощения программирования (см., напр., [2], [9]).

 Достаточным условием сходимости метода итераций является

выполнение неравенств (см., напр., [9])

.1,1 21 


















q

yy
q

xx

 Вместо итерационного процесса (4.1.2) можно использовать

―процесс Зейделя‖:

    1 1 1, , ,k k k k k kx x y y x y    . (4.1.3)

 Приведенные в этом разделе формулы достаточно просто

обобщаются на случай систем произвольной размерности (подробности в

[2], [9]).

4.2. Метод половинного деления

Согласно этому методу, для уравнения () 0f x  отыскивается

интервал [,]u v , в котором ()f x меняет знак. В процессе выполнения

алгоритма интервал уменьшается до величины, которая соответствует

точности вычислений. Метод состоит из следующих шагов:

1. Положить u = a, v = b. Вычислить ()f u и ()f v .

2. Положить () / 2w u v  . Вычислить ()f w .

3. Если () 0f w  , закончить вычисления (w является корнем).

4. Если f(w) и f(u) имеют одинаковые знаки, то заменить u на w, в

противном случае заменить v на w.

 27

5. Если v - u > e (здесь e — заданная точность вычислений), то перейти

к шагу 2, в противном случае завершить вычисления (считаем w

приближенным значением корня).

 Пример 4.2.1. Листинг программы.

procedure Bisect(c,d,eps:Double;

 Var x:Double; Var i:Integer);

{Метод половинного деления:}

Var

 u, v, f1, f2 : Double;

begin

 i := 1;

 u := c; v := d;

 f1 := f(u);

 repeat

 x := (u + v) * 0.5;

 f2 := f(x);

 if f2 = 0 then break;{Выход из цикла}

 if f1*f2 >0 then

 begin

 u := x;

 f1 := f2;

 end

 else v := x;

 Inc(i);

 until (v - u) < eps;

end; {Bisect}

4.3. Метод Ньютона

Предполагается, что на отрезке [,]c d уравнение () 0f x  имеет

единственный корень, кроме того, ()f x и ()f x непрерывны и сохраняют

определенные знаки на отрезке [,]c d . Алгоритм состоит из следующих

шагов:

1. Выбирается начальное приближение 0x .

2. Вычисляется следующее приближение согласно формуле

 1 1 1() / '(), 1,2,n n n nx x f x f x n    

или (упрощѐнный метод Ньютона) по формуле:

 1 1 0() / '(), 1,2,n n nx x f x f x n   

3. Процедура вычислений приближений продолжается до тех пор, пока

1 ,n nx x e  где e — заданная точность вычислений.

Если количество шагов алгоритма превысит некоторую заранее

установленную величину, считают, что метод не сходится.

 28

 Пример 4.3.1. Листинг программы.

procedure Newton(x0, eps : Double;

 Var x : Double; Var i : Integer);

{Метод Ньютона}

Var t : Double;

begin

 i:=1;

 repeat

 x := x0 - f(x0)/df(x0);

 t := abs(x - x0);

 Inc(i);

 x0 := x;

 until (t<eps) Or (N>MaxI);

end; {Newton}

 Метод Ньютона позволяет решать системы уравнений (см. [2], [9]).

Приведем расчетные формулы для случая двух уравнений

(,) 0,

(,) 0.

F x y

G x y






Выбирается начальное приближение  0 0,x y . Для уточнения решения

используются формулы

 

   

   1

, ,1
,

, ,,

k k y k k
k k

k k y k kk k

F x y F x y
x x

G x y G x yJ x y



 



 

   

   1

, ,1
,

, ,,

x k k k k
k k

x k k k kk k

F x y F x y
y y

G x y G x yJ x y



 



где 0,1, .k  . На каждом шаге итерации якобиан должен быть отличным

от нуля:

 
   

   

, ,
, 0.

, ,

x k k y k k
k k

x k k y k k

F x y F x y
J x y

G x y G x y

 
 

 

4.4. Пример решения нелинейного уравнения

 Создадим класс, ориентированный на приближенное решение

уравнения. В качестве методов этого класса включим уже рассмотренные

процедуры нахождения приближенного решения.

 Техника использования объектно-ориентированного программиро-

вания в вычислительных задачах описана в [18].

 Пример 4.4.1. Листинг программы.

program Project4_4_1;

{$APPTYPE CONSOLE}

{Класс для решения уравнений}

 29

Const

 MaxN=1000; {макс. число шагов метода}

Type TFunct=function(x:double):double;

Type

 TEquation=class

 f: TFunct; {f(x)=0}

 g: TFunct;

 {x-g(x)=0 эквивалентно f(x)=0}

 Df: Tfunct; {производная функции f(x)}

 a,b: double; {границы отрезка}

 x0: double; {прибл. значение корня}

 eps: double; {точность вычислений}

 N: Integer; {Кол. шагов прибл. метода}

 {общий для всех методов конструктор:}

 constructor Create(f_,g_,Df_:TFunct;

 a_,b_,x0_,eps_:double);overload;

 {конструктор для метода половинного деления:}

 constructor Create(f_:TFunct;

 a_,b_,eps_:double);overload;

 {конструктор для метода итераций:}

 constructor Create(f_,g_:TFunct;

 x0_,eps_:double);overload;

 {конструктор для метода Ньютона:}

 constructor Create(x0_,eps_:double;

 f_,Df_:TFunct);overload;

 destructor Destroy;

 function Bisect:double;

 function Iterat:double;

 function Newton:double;

 function GetN:Integer;

 end;

constructor TEquation.Create(f_,g_,Df_:TFunct;

 a_,b_,x0_,eps_:double);

 {общий конструктор}

 begin

 f:=f_; g:=g_; Df:=Df_;

 a:=a_; b:=b_; x0:=x0_; eps:=eps_;

 end;

constructor TEquation.Create(f_:TFunct;

 a_,b_,eps_:double);

 {конструктор для метода половинного деления}

 begin

 f:=f_;

 a:=a_; b:=b_; eps:=eps_;

 end;

 30

constructor TEquation.Create(f_,g_:TFunct;

 x0_,eps_:double);

{конструктор для метода итераций}

 begin

 f:=f_; g:=g_;

 x0:=x0_; eps:=eps_;

 end;

constructor TEquation.Create(x0_,eps_:double;

 f_,Df_:TFunct);

{конструктор для метода Ньютона}

 begin

 f:=f_; Df:=Df_;

 x0:=x0_; eps:=eps_;

 end;

destructor TEquation.Destroy;

 begin

 end;

function TEquation.Bisect:double;

 {Метод половинного деления:}

Var u, v, f1, f2 : double;

begin

 N := 1;

 u := a; v := b;

 f1 := f(u);

 repeat

 x0 := (u + v) * 0.5;

 f2 := f(x0);

 if f2 = 0 then break;

 if f1*f2 >0 {т.е. у f1 и f2 одинаковые знаки}

 then

 begin

 u := x0; f1 := f2;

 end

 else v := x0;

 Inc(N);

 until (v - u) < eps;

 Result := x0;

end; {Bisect}

function TEquation.Iterat:double;

 {Метод итераций}

Var x,t:double;

begin

 N := 1;

 repeat

 x := g(x0);

 t := abs(x-x0);

 31

 Inc(N);

 x0 := x;

 until (t<eps) Or (N>MaxN);

 Result := x;

end;{Iterat}

function TEquation.Newton:double;

 {Метод Ньютона}

Var t,x:double;

begin

 N := 1;

 repeat

 x := x0-f(x0)/df(x0);

 t := abs(x-x0);

 Inc(N);

 x0 := x;

 until (t<eps) Or (N>MaxN);

 Result := x;

 end; {Newton}

 function TEquation.GetN:Integer;

 begin

 Result := N;

 end;

 { Пример уравнения }

function f(x:double):double;

{Левая часть уравнения:}

begin

 Result := x*x*x - 2*x - 5;

end;

function g(x:double):double;

{x=g(x) равносильно f(x)=0}

{используется в методе итераций}

begin

 Result := -x*x*x*0.04 + 1.08*x + 0.2;

end;

function df(x:double):double;

{Производная функции f(x)}

{Используется в методе Ньютона}

begin

 Result := 3*x*x - 2;

end;

Var Eq: TEquation;

Begin

 Eq := TEquation.Create(f,2,3,0.000001);

 Writeln('Методом Bisect найден корень',

 Eq.Bisect,'за',Eq.GetN,'шагов');

 32

 Eq := TEquation.Create(f,g,2.5,0.000001);

 Writeln('Методом итераций найден корень',

 Eq.Iterat, 'за',Eq.GetN,'шагов');

 Eq:= TEquation.Create(2.5,0.000001,f,df);

 Writeln('Методом Ньютона найден корень',

 Eq.Newton,'за',Eq.GetN,'шагов');

Readln; {задержка}

End.

 Для каждого из численных методов использовался отдельный

конструктор Create(). Поскольку для метода итераций и метода

Ньютона необходимо передать два параметра типа double и два

параметра типа TFunct, пришлось произвести перестановку этих

параметров, чтобы сигнатуры конструкторов были различными. Можно

использовать общий конструктор, в этом случае основная программа

имеет вид

Var Eq: TEquation;

Begin

 Eq:= TEquation.Create(f,g,df,2,3,2.5,0.000001);

 Writeln('Методом Bisect найден корень',

 Eq.Bisect,'за',Eq.GetN,'шагов');

 Writeln('Методом итерации найден корень',

 Eq.Iterat,'за',Eq.GetN,'шагов');

 Writeln('Методом Ньютона найден корень',

 Eq.Newton,'за',Eq.GetN,'шагов');

Readln; {задержка}

End.

Замечание. В операторах Writeln() содержится текст на русском языке,

который при запуске приложения будет отражен в ANSI – кодировке

(―нечитаемой‖ в DOS). В разделе 1.2 указано, как решить эту проблему.

4.5. Решение систем линейных уравнений

4.5.1. Метод Гаусса

Наиболее распространенным методом решения систем линейных

алгебраических уравнений является метод последовательного исключения

неизвестных (см., напр., [2], [9], [24]). Обычно этот метод называют

методом исключения Гаусса. Рассматривается система

a11 x1 + a12 x2 + . . . + a1n xn = b1

a21 x1 + a22 x2 + . . . + a2n xn = b2

.

an1 x1 + an2 x2 + . . . + ann xn = bn..

Алгоритм решения состоит из двух этапов: прямого хода и обратной

подстановки.

 33

Прямой ход. Сначала с помощью первого уравнения исключается 1x из

остальных уравнений системы. Затем с помощью второго уравнения из

последующих уравнений исключается 2x . На k-м шаге кратные k-го

уравнения вычитаются из оставшихся уравнений для исключения kx . В

результате за 1n  шагов матрица системы будет приведена к

треугольному виду. В процессе исключения неизвестных приходится

производить деления на коэффициенты kka . Если на k-м шаге 0kka  , то

необходимо произвести перестановку последующих уравнений системы.

Схема с выбором ведущего элемента предполагает, что на k-м шаге в k-м

столбце матрицы системы отыскивается наибольший по модулю элемент и

производится перестановка уравнений так, чтобы этот элемент оказался

на месте элемента kka .

После выполнения прямого хода получим систему

11 1 12 2 1 1

22 2 2 2

,

,

.

n n

n n

nn n n

a x a x a x b

a x a x b

a x b

   

  



Обратный ход. Состоит в последовательном вычислении неизвестных:

решая последнее уравнение, находим

/ ,n n nnx b a

затем, используя это значение, из предпоследнего уравнения находим 1nx 

и т.д. Расчетная формула для k-го неизвестного имеет вид

 1 1

1
, 1, ,1.k k k k k k n n

kk

x b a x a x k n
a

      

 Пример 4.5.1 Листинг программы.

program Project4_5_1;

{$APPTYPE CONSOLE}

{Решение системы линейных уравнений методом Гаусса}

uses SysUtils;

Type

 TDynMatr=Array of array of double;

Procedure Solve(a:TDynMatr;b:Array of double;

 Var x:Array of double; var Flag: Integer);

Var

 max_k, t:double;

 i,j,k,m,n:integer;

begin

 Flag:=0;{система разрешима, если Flag=0}

 n:=Length(b); {порядок системы}

 34

 if n>1 then

 begin {1}

 n:=n-1;

 for k:=0 to n-1 do

 begin {2}

 { Найдем ведущий элемент в k-ом столбце:}

 max_k:=a[k,k];m:=k;

 for i:=k+1 to n do

 if abs(max_k)<abs(a[i,k]) then

 begin

 m:=i;max_k:=a[m,k];

 end;

{Ведущий элемент расположен в m-ой строке.

 Система не разрешима, если этот элемент нулевой}

 if abs(max_k)>0.00000001 then

 begin {3}

 if m<>k then {перестановка строк m и k:}

 begin {4}

 for j:=k to n do

 begin

 t:=a[m,j];a[m,j]:=a[k,j];a[k,j]:=t;

 end;

 t:=b[m];b[m]:=b[k];b[k]:=t;

 end;{4}

 { Делим k-ю строку на max_k:}

 for i:=k+1 to n do

 a[k,i]:=a[k,i]/max_k;

 b[k]:=b[k]/max_k;

 { Исключение по столбцам: }

 for i:=k+1 to n do

 begin

 for j:=k+1 to n do

 a[i,j]:=a[i,j]-a[k,j]*a[i,k];

 b[i]:=b[i]-b[k]*a[i,k];

 end;

 end {3}

 else

 begin

 Flag := m; Exit; {Выходим из процедуры}

 end;

 end;{2}

 {Обратный ход:}

 if abs(a[n,n])>0 then

 begin {2_}

 b[n]:=b[n]/a[n,n];

 x[n]:=b[n];

 35

 for i:=n-1 downto 0 do

 begin {3_}

 t:=0;

 for j:=i+1 to n do

 t:=t+a[i,j]*x[j];

 x[i]:=b[i]-t;

 end;{3_}

 end {2_}

 else

 Flag:=n;

 end {1}

 else

 if abs(a[0,0]) >0 then

 x[0]:=b[0]/a[0,0]

 else Flag:=1;

End; {Solve}

Var a:TDynMatr; b:array of double;

 x:array of double;

 i,N:Integer; Flag:Integer;

Begin {Основная программа}

 N:=3; {порядок системы}

 SetLength(a,N,N);

 SetLength(b,N);

 SetLength(x,N);

 {Пример системы:}

 a[0,0]:=1;a[0,1]:=1;a[0,2]:=1;

 a[1,0]:=2;a[1,1]:=3;a[1,2]:=1;

 a[2,0]:=1;a[2,1]:=-1;a[2,2]:=-1;

 b[0]:=4;b[1]:=9;b[2]:=-2;

 Solve(a,b,x,Flag);

 if Flag<>0 then writeln('Error ',Flag)

 else for i:=0 to High(x) do

 writeln('x[',i:2,']=', x[i]);

 readln;

End.

4.5.2. Замечания по проектированию интерфейса приложения

 При проектировании интерфейса приходится решать вопросы,

связанные с вводом коэффициентов системы, записью и печатью

результатов, а также выводом информации о ходе выполнения

вычислений.

Можем организовать интерфейс приложения, например, в виде

―мастера‖. Переход на следующий шаг мастера осуществляется выбором

 36

кнопки ―Далее>‖. Кнопка ―<Обратно‖ позволяет возвратиться на шаг

назад, в случае каких-либо ошибочных действий на текущем шаге.

 На первом шаге предлагается выбрать способ ввода данных. Данные

можно прочитать из файла или ввести непосредственно во время работы

программы.

 В случае выбора радиокнопки ―С экрана‖ предлагается ввести

порядок системы уравнений:

 Затем, после выбора кнопки ―Далее>‖, выводится окно для ввода

системы уравнений. Данные заносятся в ячейки соответствующих таблиц.

Размер таблиц регулируется значением ―Порядок системы‖,

установленным на предыдущем шаге. Данная версия программы не

допускает ячеек без значений (―пустых‖ ячеек), хотя незначительная

доработка позволит внести эту возможность в программу, после чего

можно будет не вводить нулевые значения в таблицы.

 37

 Если на первом шаге была отмечена радиокнопка ―Чтение из

файла‖, то на следующем шаге последует предложение указать файлы с

данными:

Имена файлов можно ввести с клавиатуры или воспользоваться кнопкой

―Обзор…‖, выбор которой откроет стандартный диалог открытия файлов.

Файлы с данными можно подготовить с помощью любого текстового

редактора. В приведенном приложении предполагается, что значения

матрицы системы записаны построчно, с использованием пробела в

качестве разделителя значений. Столбец свободных членов записан в

отдельном файле, причем числа записаны по одному в строке.

 После выбора кнопки ―Далее>‖ в окнах ―Form3‖ или ―Form4‖

система линейных уравнений будет решена и результаты выведены в окно:

 38

Описание глобальных переменных и код алгоритма исключения

разместим в отдельном модуле UnitDat, который создадим с помощью

команды меню File|New|Unit.
unit UnitDat;

interface

Type

 TDynMatr= Array of Array of Double;

Var

 a: TDynMatr;

 b: Array of Double;

 x: Array of Double;

 N: Integer;

 Flag: Integer;

Procedure Solve(a:TDynMatr;b:Array of double;

 Var x:Array of double; var Flag: Integer);

implementation

Procedure Solve(a:TDynMatr;b:Array of double;

 Var x:Array of double; var Flag: Integer);

Var max_k,t:real;

 i,j,k,m,n:integer;

begin

 Flag:=0;

 n:=Length(b);

 if n>1 then

 begin {1}

 n:=n-1;

 for k:=0 to n-1 do

 begin {2}

 max_k:=a[k,k];m:=k;

 39

 for i:=k+1 to n do

 if abs(max_k)<abs(a[i,k]) then

 begin

 m:=i;max_k:=a[m,k];

 end;

 if abs(max_k)>0.00000001 then

 begin {3}

 if m<>k then

 begin {4}

 for j:=k to n do

 begin

 t:=a[m,j];

 a[m,j]:=a[k,j];

 a[k,j]:=t;

 end;

 t:=b[m];b[m]:=b[k];b[k]:=t;

 end;{4}

 for i:=k+1 to n do

 a[k,i]:=a[k,i]/max_k;

 b[k]:=b[k]/max_k;

 for i:=k+1 to n do

 begin

 for j:=k+1 to n do

 a[i,j]:=a[i,j]-a[k,j]*a[i,k];

 b[i]:=b[i]-b[k]*a[i,k];

 end;

 end {3}

 else Flag:=m;

 end;{2}

 if abs(a[n,n])>0 then

 begin {2_}

 b[n]:=b[n]/a[n,n];

 x[n]:=b[n];

 for i:=n-1 downto 0 do

 begin {3_}

 t:=0;

 for j:=i+1 to n do

 t:=t+a[i,j]*x[j];

 x[i]:=b[i]-t;

 end;{3_}

 end {2_}

 else Flag:=n;

 end {1}

 else x[0]:=b[0]/a[0,0];

 End; {Solve}

End.

 40

 Во всех формах проекта присутствует кнопка ―Выход‖, выбор

которой должен приводить к закрытию приложения. В обработчики этих

кнопок запишем всего одну строку
Application.Terminate; {Завершить приложение}

 При выборе кнопки ―Далее>‖ необходимо открыть следующее окно

мастера и передать значения параметров, определенных на данном шаге

мастера.

В форме Form1 с помощью радиокнопок организуется выбор

способа ввода данных. Обработчик кнопки ―Далее>‖ этой формы имеет

вид

procedure TForm1.BitBtn2Click(Sender:TObject);

 begin

 if Form1.RadioButton1.Checked then

 Form2.ShowModal

 else

 Form3.ShowModal;

 end;

Для формы Form2 в обработчик кнопки ―Далее>‖ запишем

procedure TForm2.BitBtn2Click(Sender:TObject);

 begin

 UnitDat.N:=Form2.SpinEdit1.Value; {размерность

системы}

 Form4.StringGrid1.ColCount := UnitDat.N;

 Form4.StringGrid1.RowCount := UnitDat.N;

 Form4.ShowModal;

 end;

С помощью компонента SpinEdit (находится на странице

Samples) в форме Form2 пользователю предлагается установить

значение порядка системы уравнений. Значение можно установить с

помощью кнопок этого компонента или отредактировать вручную.

Введенное значение можно ―узнать‖ с помощью свойства Value.

Компонент StringGrid1 в форме Form4 используется для ввода

элементов матрицы системы, а компонент StringGrid2 — для ввода

столбца свободных членов. Эти компоненты находятся на странице

Additional. Для свойств FixedCols (количество фиксированных

столбцов) и FixedRows (количество фиксированных строк) этих

компонент установим нулевые значения. Значения свойств ColCount

(число столбцов таблицы) и RowCount (число строк) устанавливаются в

обработчике кнопки ―Далее>‖ формы Form2, в зависимости от

выбранного размера системы уравнений. Чтобы сделать таблицы

 41

редактируемыми, установим значение True у опций goEditing и

goAlwaysShowEditor свойства Options. Опция goEditing,

установленная в True, разрешает редактирование ячеек. Опция

goAlwaysShowEditor, установленная в True, позволяет редактировать

содержимое ячейки после выбора ячейки щелчком мыши, значение False

означает, что редактирование возможно после двойного щелчка мыши или

нажатия клавиши F2. Содержимое ячеек таблицы доступно с помощью

свойства Cells[j,i], при этом первым параметром указывается номер

столбца, а вторым — номер строки таблицы.

В обработчике кнопки ―Далее>‖ формы Form4 с помощью

свойства Cells значения из таблиц передаются в динамические массивы

a (матрица системы) и b (столбец свободных членов). Полный код

обработчика этой кнопки имеет вид

procedure TForm4.BitBtn2Click(Sender: TObject);

Var i,j, m: Integer; s:String;

begin

 Form1.Hide;

 Form4.Hide;

 {Выделяем память под данные:}

 m:=UnitDat.N;

 SetLength(UnitDat.a,m,m);{матрица системы}

 SetLength(UnitDat.b,m); {свободные члены}

 SetLength(UnitDat.x,m); {вектор решений}

 {содержимое ячеек таблиц переносим в a и b}

 for i:= 0 to m-1 do

 for j:=0 to m-1 do

 UnitDat.a[i,j]:=

 StrToFloat(Form4.StringGrid1.Cells[j,i]);

 for i:=0 to m-1 do

 UnitDat.b[i]:=

 StrToFloat(Form4.StringGrid2.Cells[0,i]);

{Решаем систему:}

 UnitDat.Solve(UnitDat.a,UnitDat.b,

 UnitDat.x, UnitDat.Flag);

{решения помещаем в окно Form5.Memo1.}

 Form5.Memo1.Lines.Clear;

 for i:=0 to m-1 do

 begin

 s:='x_'+IntToStr(i)+'='+FloatToStr(UnitDat.x[i]);

 Form5.Memo1.Lines.Insert(i,s);

 end;

 Form5.Panel1.Caption:=IntToStr(UnitDat.Flag);

 Form5.ShowModal;

end;

 42

 В форме Form3 предлагается другой вариант ввода данных.

Матрица системы и столбец свободных членов вводятся из текстовых

файлов. Предполагается, что значения столбца свободных членов

записаны по одному в строке, а элементы матрицы записаны в другом

файле, причем одна строка файла соответствует строке матрицы, а числа

разделены пробелами. Подготовить такие файлы можно с помощью

любого текстового редактора. Имена файлов можно ввести в поля Edit1

и Edit2 вручную или с помощью кнопок ―Обзор…‖, выбор которых

открывает стандартный диалог ―Открыть файл‖. Для этого размещаем

на форме две компоненты OpenDialog со страницы Dialogs.

Обработчик первой кнопки ―Обзор…‖ организует диалог для выбора

файла со значениями матрицы системы и состоит из операторов

procedure TForm3.Button1Click(Sender: TObject);

 begin

 OpenDialog1.Title:='Файл с матрицей системы';

 if OpenDialog1.Execute then

 Edit1.Text:=OpenDialog1.FileName;

 end;

 Соответственно обработчик для второй кнопки ―Обзор…‖ имеет вид

procedure TForm3.Button2Click(Sender: TObject);

begin

 OpenDialog2.Title:='Файл со свободными членами';

 if OpenDialog2.Execute then

 Edit2.Text:=OpenDialog2.FileName;

 end;

С помощью Object Inspector установим следующее значение свойства

Filter для компонент OpenDialog:

Файлы данных (*.dat)|*.dat|Все файлы (*.*)|*.*

 Обработчик кнопки ―Далее>‖ формы Form3 содержит

операторы чтения данных, вызов процедуры решения и вывод

результатов.

procedure TForm3.BitBtn2Click(Sender: TObject);

Var

 NameFile_a, NameFile_b:String;

 F_a, F_b :TextFile;

 i, j, m : Integer; t: double; s:String;

begin

{Узнаем имена файлов с данными:}

 NameFile_a:=Form3.Edit1.Text;

 NameFile_b:=Form3.Edit2.Text;

 {Узнаем порядок системы:}

 AssignFile(F_b,NameFile_b);

 43

 try

 Reset(F_b);

 m:=0;

 While Not Eof(F_b) do

 begin

 m:=m+1;

 Readln(F_b,t);

 end;

 CloseFile(F_b);

 if m<>0 then

 begin {m}

 {Выделяем память под данные}

 SetLength(UnitDat.a,m,m);{матрица системы}

 SetLength(UnitDat.b,m); {свободные члены}

 SetLength(UnitDat.x,m); {вектор решений}

 {Читаем данные из файлов:}

 AssignFile(F_a,NameFile_a);

 Reset(F_a);

 for i:=0 to m-1 do

 begin

 for j:=0 to m-1 do Read(F_a,UnitDat.a[i,j]);

 Readln(F_a);{перешли на следующую строку}

 end;

 CloseFile(F_a);

 AssignFile(F_b,NameFile_b);

 Reset(F_b);

 for i:=0 to m-1 do

 Readln(F_b,UnitDat.b[i]);

 CloseFile(F_b);

 {Решаем систему:}

 UnitDat.Solve(UnitDat.a,UnitDat.b,

 UnitDat.x, UnitDat.Flag);

 {решения помещаем в окно Form5.Memo1:}

 Form5.Memo1.Lines.Clear;

 for i:=0 to m-1 do

 begin

 s:='x_'+IntToStr(i)+'='+FloatToStr(UnitDat.x[i]);

 Form5.Memo1.Lines.Insert(i,s);

 end;

 s:='m='+IntToStr(m);

 Form5.Memo1.Lines.Insert(m,s);

 Form5.Panel1.Caption:=IntToStr(UnitDat.Flag);

 Form1.Hide;

 Form3.Hide; Form3.Close;

 Form5.ShowModal;

 end; {m}

 44

 except

 on E:EInOutError do

 ShowMessage('Ошибка #'+IntToStr(E.ErrorCode)+

 'при работе с файлом'+NameFile_b);

 end;

end;

 Форма Form5 служит для отображения результатов программы. В

компоненту Panel1 передается код ошибки, для этого используются

операторы

Form5.Panel1.Caption:=IntToStr(UnitDat.Flag);

обработчиков кнопки ―Далее>‖ форм Form3 и Form4. Если код

ошибки нулевой, то в компоненту Memo1 записываются решения

системы. Свойство Lines этого компонента является основным и

содержит текст окна в виде списка строк типа TStrings. Строки

нумеруются с 0 и для доступа к информации, содержащейся в строке с

номером m, можем использовать оператор Memo1.Lines[m]. Для

добавления новой строки s в позицию m списка используется метод

Memo1.Lines.Insert(m,s). Перед выводом результатов с помощью

метода Memo1.Lines.Clear() производится очистка окна Memo. В

форме Form5 необходимо разместить компоненту SaveDialog, с

помощью которой организуется диалог выбора файла для записи

результатов. Запись производится после выбора кнопки ―Запись в

файл‖ и обработчик этой кнопки имеет вид

procedure TForm5.BitBtn1Click(Sender: TObject);

 Var f:TextFile; i:Integer;

 begin

 if SaveDialog1.Execute then

 begin

 AssignFile(f,SaveDialog1.FileName);

 Rewrite(f);

 for i:=0 to Memo1.Lines.Count-1 do

 writeln(f,Memo1.Lines[i]);

 CloseFile(f);

 end;

 end;

 При выборе кнопки ―<Обратно‖ фокус ввода передается на форму

предшествующего шага, а текущая форма закрывается. Приведем

обработчики для этой кнопки каждой из форм.

procedure TForm2.BitBtn1Click(Sender: TObject);

 begin

 {Кнопка "<Обратно" формы Form2}

 Form2.Close;

 45

 Form1.SetFocus;

 end;

procedure TForm3.BitBtn1Click(Sender: TObject);

 begin

 {Кнопка "<Обратно" формы Form3}

 Form3.Close;

 Form1.SetFocus;

 end;

procedure TForm4.BitBtn1Click(Sender: TObject);

 begin

 {Кнопка "<Обратно" формы Form4}

 Form4.Hide; Form4.Close;

 Form2.Show;

 end;

4.5.3. Объектно-ориентированный подход

 На примере консольного приложения покажем использование

технологии объектно-ориентированного программирования для

реализации алгоритма решения систем линейных уравнений. Для работы с

элементами системы в классе TLinEquation используются

динамические массивы (на самом деле, создается только один массив —

для хранения решения системы, а для матрицы системы и столбца

свободных членов при вызове конструктора передаются адреса уже

созданных массивов). Вместо динамических массивов можно

использовать указатели или специальные классы, например, классы

динамический вектор и динамическая матрица, введенные в работе [18].

 Пример 4.5.3. Листинг программы.

program Project4_5_3;

{$APPTYPE CONSOLE}

 {Решение системы лин. ур. методом исключения}

 {Объектно-ориентированный подход}

uses SysUtils;

Type

 TDynMatr=Array of array of double;

 TVect=Array of double;

Type

 TLinEquation=class

 NEq:Integer; {Порядок системы}

 Flag:Integer; {Код ошибки}

 a:TDynMatr; {Матрица системы}

 b:TVect; {Столбец свободных членов}

 x:TVect; {Решение системы}

 46

 constructor Create(N_:Integer;

 a_:TDynMatr;b_:TVect);overload;

 procedure Solve;

 function GetX(i:Integer):double;

 function GetXP: Pointer;

 function GetFlag:Integer;

 end;

constructor TLinEquation.Create(N_:Integer;

 a_:TDynMatr;b_:TVect);

begin

 NEq := N_;

 a := a_;

 b := b_;

 SetLength(x,N);

end;

procedure TLinEquation.Solve;

Var

 max_k,t:double;

 i,j,k,m,n:integer;

begin

 Flag:=0;

 if NEq>1 then

 begin {1}

 n := NEq-1;

 {… … …}

 {Код этого метода совпадает с кодом процедуры Solve()

 примера 4.5.1}

 {… … …}

end; {Solve}

function TLinEquation.GetX(i:Integer):double;

begin

 Result := x[i];

end;

function TLinEquation.GetXP:Pointer;

begin

 Result := x;

end;

function TLinEquation.GetFlag:Integer;

begin

 Result := Flag;

end;

Var a_:TDynMatr;b_:TVect;

 i,N:Integer;

 Eq:TLinEquation;

 47

Begin {Основная программа}

 N:=3;

 SetLength(a_,N,N);

 SetLength(b_,N);

 a_[0,0]:=1;a_[0,1]:=1;a_[0,2]:=1;

 a_[1,0]:=2;a_[1,1]:=3;a_[1,2]:=1;

 a_[2,0]:=1;a_[2,1]:=-1;a_[2,2]:=-1;

 b_[0]:=4;b_[1]:=9;b_[2]:=-2;

 Eq := TLinEquation.Create(N,a_,b_);

 Eq.Solve;

 if Eq.GetFlag =0 then

 begin {1}

 for i:=0 to N-1 do

 writeln('x[',i:2,']=',Eq.GetX(i));

 end {1}

 else Writeln('Error Flag=',Eq.GetFlag);

 Readln;

End.

 В основной программе для доступа к вектору решений можно также

использовать метод GetXP(). Для этого необходимо объявить

динамический массив
Var x:TVect;

и изменить блок begin {1} . . . end {1} следующим образом
begin {1}

 x:=Eq.GetXP;

 for i:=0 to N-1 do

 writeln('x_[',i:2,']=',x[i]);

 end {1}

4.6. Вычисление определителя матрицы

 Метод исключения можно применить для вычисления определителя

матрицы. Достаточно выполнить прямой ход метода, убрать операции со

столбцом свободных членов и вычислить знак определителя.

 Прямой ход состоит из операций перестановки строк, деления строк

на их ведущие элементы и вычитания строк. Операция вычитания из

одной строки матрицы линейной комбинации других строк не изменяет

определителя матрицы. При делении строки матрицы на число

определитель также делится на это число. Перестановка любых строк

матрицы меняет знак определителя.

 После прямого хода метода исключений матрица приводится к

треугольному виду, поэтому, в обозначениях пункта 4.5.1, имеем

11 22det (1) ,k
nnA a a a    

где k — количество перестановок.

 48

 Программирование операций вычисления определителя

предлагается в качестве упражнения.

4.7. Вычисление обратной матрицы

 Пусть  ijA a невырожденная матрица. Для вычисления обратной

матрицы  1
ijA y  можно использовать метод исключения Гаусса.

Равенство 1A A E  , где E — единичная матрица, приводит к системе

1

1, ,
, 1,2, , .

0, ,

n

ik kj ij

k

i j
a y i j n

i j





  




Это равенство означает, что для нахождения элементов обратной матрицы

необходимо решить n систем линейных уравнений с одинаковой

матрицей A , но с различными правыми частями. Прямой ход метода

исключений проводится только один раз. Затем требуется n раз

выполнить обратный ход, предварительно пересчитав правые части,

учитывая, при этом, перестановки, связанные с выбором ведущих

элементов.

 Приведем текст программы, реализующий обращение матрицы.

Элементы обратной матрицы обозначены через y[i,j]. Поскольку эти

переменные участвуют только в обратном ходе, в целях сокращения

памяти, элементы y[i,j] используются для хранения правых частей

систем уравнений. Поэтому в начале работы массив y совпадает с

единичной матрицей E.

 Пример 4.7. Листинг программы.

program InverseMatr;

{$APPTYPE CONSOLE}

uses

 SysUtils;

Type

 TDynMatr=Array of array of double;

procedure Inverse(a:TDynMatr;{Исходная матрица}

 var y:TDynMatr;{Обратная к a}

 var Flag:Integer);

Var

 max_k,t:double;

 i,j,k,m,n:integer;

begin

 Flag:=0;

 n:=Length(a); {порядок системы}

 if n>1 then

 begin {1}

 n:=n-1;

 49

 for i := 0 to n do

 begin

 for j :=0 to n do y[i,j]:=0;

 y[i,i] := 1;

 end;

 for k:=0 to n-1 do

 begin {2}

 {Найдем ведущий элемент k-го шага:}

 max_k:=a[k,k];m:=k;

 for i:=k+1 to n do

 if abs(max_k)<abs(a[i,k]) then

 begin

 m:=i;max_k:=a[m,k];

 end;

 {Ведущий элемент расположен в m-ой строке,

 если он равен 0, то система не разрешима}

 if abs(max_k)>0.00000001 then

 begin {3}

 if m<>k then

 {перестановка строк m и k:}

 begin {4}

 for j:=k to n do

 begin

 {перестановка в матрице a:}

 t:=a[m,j];a[m,j]:=a[k,j];

 a[k,j]:=t;

 end;

 for j := 0 to n do

 begin

 {перестановка в массиве y:}

 t:=y[m,j];y[m,j]:=y[k,j];

 y[k,j]:=t;

 end;

 end;{4}

 {Делим k-ю строку матрицы a на max_k:}

 for j:=k+1 to n do

 a[k,j]:=a[k,j]/max_k;

 {Делим k-ю строку массива y на max_k:}

 for j:= 0 to n do

 y[k,j]:=y[k,j]/max_k;

 {Исключение по столбцам:}

 for i:=k+1 to n do

 begin

 for j:=k+1 to n do

 a[i,j]:=a[i,j]-a[k,j]*a[i,k];

 50

 for j:=0 to n do

 y[i,j]:=y[i,j]-y[k,j]*a[i,k];

 end;

 end {3}

 else

 begin

 Flag:=m; Exit;

 end;

 end;{2}

 {Вычисление элементов обратной матрицы.

 Для каждого k=0,...,n проводим обратный ход,

 используя в качестве правых частей системы

 k-й столбец массива y}

 for k :=0 to n do

 begin {1_}

 if abs(a[n,n])>0 then

 begin {2_}

 y[n,k]:=y[n,k]/a[n,n];

 for i:=n-1 downto 0 do

 begin {3_}

 t:=0;

 for j:=i+1 to n do

 t:=t+a[i,j]*y[j,k];

 y[i,k]:=y[i,k]-t;

 end;{3_}

 end {2_}

 else

 begin

 Flag:=n; Exit;

 end

 end;{1_}

 end {1}

 else

 if abs(a[0,0])>0 then y[0,0]:=1/a[0,0]

 else Flag:=1;

end; {Inverse}

Var

 a,b:TDynMatr;

 i,j,N:Integer; Flag:Integer;

begin

 N:=4; {порядок системы}

 SetLength(a,N,N);

 SetLength(b,N,N);

 a[0,0]:=1.8;a[0,1]:=-3.8;a[0,2]:=0.7; a[0,3]:=-3.7;

 a[1,0]:=0.7;a[1,1]:=2.1; a[1,2]:=-2.6;a[1,3]:=-2.8;

 51

 a[2,0]:=7.3;a[2,1]:=8.1; a[2,2]:=1.7; a[2,3]:=-4.9;

 a[3,0]:=1.9;a[3,1]:=-4.3;a[3,2]:=-4.9;a[3,3]:=-4.7;

 {Вычисление обратной матрицы:}

 Inverse(a,b,Flag);

 if Flag<>0 then writeln('Error ',Flag)

 else

 for i:=0 to High(b) do

 begin

 for j:=0 to High(b[i]) do

 write(b[i,j]:7:5,' ');

 writeln;

 end;

readln;

End.

4.8. Задачи

4.8.1. Составить программу решения уравнения () 0f x  методом

секущих. В этом методе выбирают два начальных приближения 0x и 1x .

Последующие приближения вычисляются по формуле

   
1

1 1

,
/

k
k k

k k k k

f
x x

f f x x


 

 
 

где ().k kf f x

4.8.2. Составить программу решения системы двух нелинейных уравнений

методами итераций и Ньютона.

4.8.3. Составить процедуру вычисления определителя матрицы

произвольного порядка на основе прямого хода метода исключения.

4.8.4. Метод прогонки (см., напр., [9, 24]) является модификацией метода

исключения для случая трехдиагональных матриц

1 1 1 2 1

1 1 2 2 2 3 2

1 2 1 1 1 1

1

,

,

,

.

n n n n n n n

n n n n n

b x c x d

a x b x c x d

a x b x c x d

a x b x d

     



 

  

  

 

На первом этапе (прямая прогонка) вычисляются прогоночные

коэффициенты

 
1 1 1 1 1 1

1

/ , / ,

/ , / ,i i i i i i i i

A c b B d b

A c e B d a B e

  

   

где 1 , 2,3, , 1.i i i ie a A b i n   

 52

Значения неизвестных ix вычисляются в процессе обратной прогонки с

помощью формул

1

1

1

,

, 1, 2, ,2,1.

n n n
n

n n n

i i i i

d a B
x

b a A

x A x B i n n












    

Составить процедуру решения трехдиагональной системы линейных

уравнений произвольного порядка методом прогонки.

4.8.5. (Метод простой итерации). Составить программу уточнения

решения системы линейных уравнений

,x Cx f 

где  ijC c — некоторая матрица, а  1, ,
t

nf f f — вектор (символ ()t

означает транспонирование).

Исходя из начального приближения  (0) (0) (0)
1 , , nx x x , организуется

итерационный процесс
(1) () , 0,1,2, .k kx Cx f k   

Окончание итераций определяется либо заданием максимального числа

итераций, либо условием
(1) ()

1
max ,k k

i i
i n

x x 

 
  (0 ).

4.8.6. Метод квадратного корня (см., напр., [2], [9]) используется для

решения линейной системы

,Ax b

у которой матрица  ijA a симметрическая, т.е. ij jia a для всех , .i j В

процессе прямого хода вычисляется треугольная матрица  ijT t такая,

что .tA T T  Для этого используются формулы

1

11 11 1

11

, , 1,
j

j

a
t a t j

t
  

1

1

/ , ,
i

ii ij ki kj ii

k

t a t t t i j




 
   
 



0ijt  при .i j

5. Алгоритмы сортировки данных

В этом разделе приведены некоторые алгоритмы упорядочивания

данных. Самым простым из них является метод ―пузырька‖, а наиболее

сложным — алгоритм быстрой сортировки. Дополнительные сведения по

вопросам сортировки данных можно найти в книгах [5], [6] и [13]. Под

 53

термином сортировка в данном случае понимается процедура

перестановки элементов множества в определѐнном порядке, т.е. если

даны элементы

1, , na a ,

то сортировка означает перестановку этих элементов в таком порядке

1 2
, , ,

nk k ka a a ,

что при заданной функции упорядочения f справедливо соотношение:

     1 2 nk k kf a f a f a   .

5.1. Метод “пузырька”

Будем производить последовательные просмотры массива и каждый

раз пару за парой сравнивать соседние числа. Если числа в паре

расположены в порядке возрастания, оставляем их без изменения; в

противном случае меняем их местами. Затем переходим к следующей

паре. Сортировка считается законченной, если в ходе просмотра не была

произведена ни одна перестановка (в приведѐнной далее программе

используется переменная flag, — в начале каждого просмотра ей

присваивается значение True, если в ходе просмотра выполнили хотя бы

одну перестановку, значение переменной flag меняется на False, таким

образом, по значению этой переменной определяем, нужен или нет ещѐ

один просмотр).

 Пример 5.1. Листинг программы.

program Project5_1;

{$APPTYPE CONSOLE}

Const N=9; {количество элементов массива}

Type

 TMass = array[1..N] of Double;

Procedure Swap(Var x, y : Double);

{процедура перестановки элементов}

Var

 temp : Double;

begin

 temp := x; x := y; y := temp;

end;

procedure sort_change(var a:TMass;dim:Integer);

Var

 flag : Boolean; i, j : Integer;

begin

 j := dim;

 repeat

 flag := True;

 j := j - 1;

 54

 for i := 1 to j do

 if a[i] > a[i+1] then

 begin

 {перестановка}

 Swap(a[i], a[i+1]);

 flag := False;

 end;

 until flag;

end; {sort_change}

{ Основная программа }

Var

 a, b : TMass; i : Integer;

begin

 for i := 1 to N do

 begin

 writeln('a[',i:2,']= ');

 readln(a[i]);

 end;

 {Упорядочим массив};

 Sort_change(a,N);

End.

5.2. Метод просеивания

Выполняется так же как метод пузырька, но после перестановки

элементов величина с меньшим значением передвигается к началу

массива, насколько это возможно. Она сравнивается в обратном порядке

со всеми предшествующими элементами массива. Если значение меньше,

чем у предшествующего элемента массива, то выполняется обмен. Если же

встречается элемент с меньшим значением, то процесс продвижения к

началу массива прекращается и нисходящее сравнение возобновляется с

той же позиции, с которой начался обратный ход.

 Пример 5.2. Листинг программы.

program Project5_2;

{$APPTYPE CONSOLE}

Const N=9; {количество элементов массива}

Type

 TMass=array[1..N] of Double;

Procedure Swap(Var x,y:Double);

{процедура перестановки элементов}

Var

 temp:Double;

begin

 temp:=x; x:=y; y:=temp;

end;

 55

procedure sort_sift(var a:TMass; dim:Integer);

Var

 i,j,m:Integer;

begin

 m:=dim-1;

 for i:= 1 to m do

 if a[i]>a[i+1] then

 begin

 {перестановка}

 Swap(a[i],a[i+1]);

 {Обратный ход:

 "проталкиваем" a[i] в начало списка:}

 for j:= i downto 2 do

 if a[j-1] >a[j] then Swap(a[j-1],a[j]);

 end;

end;{sort_sift}

{ Основная программа }

Var a,b:TMass; i:Integer;

begin

 for i:=1 to N do

 begin

 writeln('a[',i:2,']= ');

 readln(a[i]);

 end;

 {Упорядочим массив};

 Sort_sift (a, N);

End.

5.3. Метод Шелла

 Так же как и метод просеивания, состоит из прямого и обратного

хода. Но сравниваются и обмениваются не непосредственные соседи, а

элементы, отстоящие на заданном расстоянии. Когда обнаружена

перестановка, цепочка вторичных сравнений охватывает те элементы,

которые входили в последовательность первичных просмотров.

Проход 1 Е Г А В Б Д

Проход 2 В Б А Е Г Д

Проход 3 А Б В Д Г Е

Результат А Б В Г Д Е

 56

 Каждый последующий просмотр производится с уменьшенным

шагом, на последнем просмотре шаг должен равняться 1. Можем

использовать следующую процедуру выбора шага. На первом просмотре

шаг имеет значение 2 1kd   , где k выбрано из условия

12 2k kn   . Новый просмотр производим с шагом
 1

2
d

d
 

  
 

.

Сортировка заканчивается при 0d  .

 Пример 5.3. Листинг программы.

program Shell;

{$APPTYPE CONSOLE}

uses SysUtils;

Const n=30;

Type TMass=Array[1..n] of Integer;

Var a:TMass; x:Integer; i,j, d:Integer;

begin

{Вводим массив:}

for i:= 1 to n do

 begin

 writeln(‘a[‘,i:2,’]=’); readln(a[i]);

 end;

 {Вычисляем d, т.ч. 2^d <n<=2^(d+1)}

 d:=1;

 repeat

 d:=2*d;

 until d>n;

 d:= d-1;

 While d>0 do

 begin

 for i:=d+1 to n do

 begin

 x:=a[i];

 j:=i-d;

 While (x<a[j]) And (j>0) do

 begin

 a[j+d]:=a[j];

 j:=j-d;

 end;

 a[j+d]:=x;

 end;

 d:= (d-1) div 2;

 end;

 for i:=1 to n do writeln(a[i]);

 readln;

End.

 57

5.4. Быстрая сортировка

1. Выбираем в массиве 1, , na a (случайным образом) какой-нибудь

элемент x .

2. Просматриваем массив, двигаясь слева направо, пока не найдем

элемент ia x .

3. Просматриваем список, двигаясь справо налево, пока не найдем

элемент ja x .

4. Меняем местами элементы ia и ja .

5. Продолжим процесс просмотра, пока два просмотра не встретятся. В

результате массив разделится на две части: левую с ключами,

меньшими чем x , и правую — с ключами, большими x .

6. Применяем приведѐнную процедуру для каждой из полученных

частей.

Пример. Упорядочим последовательность чисел: 2, 6, 7, 9, 3, 2, 5, 1,

4. Будем обозначать через L — левую границу просмотра, через R —

правую границу просмотра, в качестве x возьмем элемент ka с индексом

  / 2k L R    .

Первый просмотр.

L=1, R=9, x=a5

2, 6, 7, 9, 3, 2, 5, 1, 4 — a2 > x, a8 < x; поменяем их местами:

2, 1, 7, 9, 3, 2, 5, 6, 4

2, 1, 7, 9, 3, 2, 5, 6, 4 — a3 > x, a6 < x; поменяем их местами:

2, 1, 2, 9, 3, 7, 5, 6, 4

2, 1, 2, 9, 3, 7, 5, 6, 4 — просмотры встретились

2, 1, 2, 3, 9, 7, 5, 6, 4.

Список разделился на две части: 2, 1, 2, 3 и 9, 7, 5, 6, 4.

Для каждой из частей применим аналогичную процедуру.

Для левой части: 2, 1, 2, 3. L=1, R=4, x=a2.

2, 1, 2, 3

1, 2, 2, 3 — левая часть списка упорядочена.

Для правой части: 9, 7, 5, 6, 4. L=1, R=5, x=a3.

9, 7, 5, 6, 4 — a1 > x, a5 < x; поменяем их местами:

4, 7, 5, 6, 9

4, 7, 5, 6, 9 — просмотры встретились

4, 5, 7, 6, 9.

Список разделился на две части: 4, 5 и 7, 6, 9. Левая часть упорядочена, а

для правой требуется один просмотр:

7, 6, 9

6, 7, 9.

 58

Соединяя упорядоченные части, получаем весь список:

1, 2, 2, 3, 4, 5, 6, 7, 9 .

 Пример 5.4. Листинг программы.
program Project5_4;

{$APPTYPE CONSOLE}

Const N=9; {количество элементов массива}

Type

 TMass =array[1..N] of Double;

procedure quicksort(var a: TMass;

 Lo,Hi: integer);

 procedure sort(L,r: integer);

 var

 i, j: integer; x, y:Double;

 begin

 i:=L; j:=r;

 x:=a[(L+r) DIV 2];

 repeat

 while a[i] < x do i := i + 1;

 while x<a[j] do j:=j-1;

 if i<=j then

 begin

 y := a[i]; a[i] := a[j]; a[j] := y;

 i := i + 1; j := j - 1;

 end;

 until i > j;

 if L < j then sort(L, j);

 if i < r then sort(i, r);

 end;

begin {quicksort}

 sort(Lo,Hi);

end; {quicksort}

{ Основная программа }

Var a, b:TMass; i : Integer;

begin

 for i := 1 to N do

 begin

 writeln('a[' ,i:2 ,']= ');

 readln(a[i]);

 end;

 {Упорядочим массив};

 quicksort(a,1,N);

End.

 59

5.5. Сортировка структурированных данных

В этом разделе показано, как производить сортировку данных типа

запись.

 Пример 5.5. Пусть имеется массив анкет (записи с полями:

―Фамилия‖, ―Имя‖, ―Адрес‖, ―Примечания‖). Требуется упорядочить

анкеты согласно алфавитному порядку фамилий.

program Project5_5;

{$APPTYPE CONSOLE}

Const N=9; {Количество анкет }

Type

 TAnketa = record

 FirstName : String; { Фамилия }

 Name : String; { Имя }

 EMail : String;

 Memo : String; {Примечания}

 end;

 TMass=array[1..N] of TAnketa;

Procedure Swap(Var x, y : TAnketa);

{перестановка анкет}

Var

 temp : TAnketa;

begin

 temp := x; x := y; y := temp;

end;

procedure sort_change(var a : TMass; dim : Integer);

Var

 flag:Boolean;

 i , j : Integer;

begin

 j := dim;

 repeat

 flag := True;

 j := j - 1;

 for i := 1 to j do

 {сравниваем фамилии:}

 if a[i].FirstName > a[i+1].FirstName then

 begin

 {перестановка}

 Swap(a[i], a[i+1]);

 flag := False;

 end;

 until flag;

end; {sort_change}

Var Person:TMass; i:Integer;

 60

begin {Основная программа}

 {Ввод анкет:}

 for i:= 1 to N do

 begin

 Writeln('Anket No ',i:2);

 Writeln(' Name: ');

 Readln(Person[i].Name);

 Writeln(' FirstName: ');

 Readln(Person[i].FirstName);

 Writeln(' Email: ');

 Readln(Person[i].Email);

 Writeln(' Memo: ');

 Readln(Person[i].Memo);

 end;

 {Упорядочим анкеты согласно алфавитному

 порядку фамилий:}

 sort_change(Person,N);

 {Выводим упорядоченные анкеты}

 for i:= 1 to N do

 begin

 writeln;

 write(Person[i].Name, ' ',

 Person[i].FirstName,' ',

 Person[i].Email,' ',

 Person[i].Memo);

 end;

 readln;

End.

5.6. Задачи

3.6.1. Даны два упорядоченных числовых массива a и b. Написать

программу, которая сливает эти массивы в один упорядоченный массив c.

3.6.2. Даны упорядоченные файлы f и g. Создать упорядоченный файл h

как слияние файлов f и g.

3.6.3. Даны упорядоченные файлы f и g. Создать упорядоченный файл h

как пересечение файлов f и g, то есть в файл h включаются только те

элементы файла f, которые содержатся также и в файле g.

3.6.4. Даны упорядоченные файлы f и g. Создать упорядоченный файл h

как разность файлов f и g. Файл h состоит из компонент файла f, из

которых исключены компоненты файла g (например, если

f={1,1,2,2,4,5,6}, а g={1,2,5}, то h={1,2,4,6}). Создание файла h

необходимо выполнить за один просмотр файлов f и g.

3.6.5. Даны упорядоченные файлы f и g. Проверить, содержатся ли все

компоненты файла f в файле g.

 61

3.6.6. Дан файл f. Последовательность , ,i kx x компонент файла

называется цепочкой, если еѐ члены упорядочены  1 1i i k kx x x x     .

Если, кроме того, 1i ix x  и 1k kx x  , то цепочка называется

максимальной. Найти длину самой длинной максимальной цепочки

файла f.

6. Списки

6.1. Приемы работы со списками

 Указатель — это переменная, значениями которой являются адреса

памяти. С помощью указателей можно разместить в памяти любой тип

данных Object Pascal. Указатель называется типизированным, если он

связан с некоторым типом данных. Для объявления типизированного

указателя используется знак ^, который ставится перед обозначением типа,

например,
 Var pd:^double;

 Тип Pointer используется для объявления ―нетипизированных‖

указателей, т.е. не связанных с каким-либо конкретным типом.

 Память для динамически размещаемой переменной выделяется

процедурой New(), а освобождается процедурой Dispose().

 Присвоение указателю адреса памяти выполняется с помощью

оператора @. Доступ к значению динамической переменной

осуществляется с помощью символа ^, который помещают после

идентификатора указателя, например,

 Var

 x, y:double; px:^double;

 Begin

 x := 3.141569;

 px := @x;

 y := px^;

 End.

 С помощью зарезервированного слова Nil определяется значение

адреса, которое не ссылается ни на какой элемент. Это значение исполь-

зуется при построении списков и деревьев, как признак конца списка или

ветви дерева.

 Список представляет собой множество, между элементами которого

установлено отношение ―предыдущий–следующий‖. Для организации

списков стандартными средствами языка Pascal можем применить тип

record, содержащий поля, являющиеся ссылками на другие элементы

этого же типа. Например, список из вещественных чисел можем создать на

основе типа

 62

 Type

 PListDouble=^ListDouble;

 ListDouble=record

 x:double;

 next:PListDouble;

 end;

Для обозначения линейных списков обычно (см., напр., [5])

используют рисунки

 . . .

 Nil

Для работы с линейными списками достаточно знать указатель на

первый элемент списка.

 Можем также организовать двусвязный список

 …

 Nil Nil

 Type

 PListDouble2=^ListDouble2;

 ListDouble2=record

 x:double;

 Last:PListDouble2;

 next:PListDouble2;

 end;

Пример 6.1.1. Вводится последовательность действительных чисел

(количество чисел до запуска программы неизвестно). Вычислить среднее

арифметическое этих чисел.

program Project6_1_1;

{$APPTYPE CONSOLE}

uses

 SysUtils;

Type

 PListDouble=^ListDouble;

 ListDouble=record

 Item:double;

 next:PListDouble;

 end;

 63

function CreateList(n:Integer):PListDouble;

Var

 head,p,q:PListDouble;

 x:double; i:integer;

begin

 if n=0 then Result:=Nil {список пуст}

 else

 begin

 New(head);

 p:=head;

 for i:=1 to n do

 begin

 Writeln('x='); Readln(x);

 p^.Item:=x;{занесли данные в список}

 q:=p;

 New(p);

 q^.next:=p; {связали элементы списка}

 end;

 q^.next:=nil; {последняя ссылка в списке}

 dispose(p);

 Result:=head;

end;

end;{CreateList}

Var

 head,p:PListDouble;

 s:double; n:Integer;

begin

 Writeln('n='); Readln(n);

 head:=CreateList(n); {создали список}

 {находим среднее арифметическое:}

 s:=0;

 {проходим по списку:}

 p:=head;

 While p<>Nil do

 begin

 s:=s+p^.Item;

 p:=p^.next; {переходим к следующему элементу}

 end;

 if n>0 then s:=s/n;

 Writeln('s=',s);

 Readln;

End.

Пример 6.1.2. Вещественные числа записаны в файл ‘info.txt’

по одному в строке. Вычислить 0 1 1 0n n ns x x x x x x    , где ix — i–я

компонента файла.

 64

program Project6_1_2;

{$APPTYPE CONSOLE}

uses

 SysUtils,

 Dialogs; {для поддержки ShowMessage}

{Вычислим s=x[0]x[n]+x[1]x[n-1]+...+x[n]x[0],}

{где x[i] - i-я компонента файла F}

Type

 PListDouble2=^ListDouble2;

 ListDouble2=record

 Item:double;

 last,next:PListDouble2;

 end;

Var

 head,tail,p,q:PListDouble2;

 x:double; s:double; n:Integer; F:TextFile;

begin

 n:=0;

 AssignFile(F,'info.txt');

 try

 Reset(F);

 if Eof(f) then

 begin {список пуст}

 head:=Nil; tail:=Nil

 end

 else

 begin

 New(head);

 head^.last :=Nil; p:=head;

 While Not Eof(F) do

 begin

 {Заносим в список числа из файла:}

 Read(f,x); Inc(n);

 p^.Item:=x;

 q:=p;

 New(p);

 {свяжем элементы списка:}

 p^.last:=q;

 q^.next:=p;

 end;

 q^.next:=nil; {конец списка}

 {удалим элемент, созданный на последнем шаге:}

 dispose(p);

 tail:=q;

 CloseFile(F);

 end;

 65

 except on E:EInOutError do

 ShowMessage('Ошибка'+IntToStr(E.ErrorCode));

 end;

 {проводим вычисления:}

 s:=0;

 {проходим по списку:}

 p:=head; q:=tail;

 While p<>Nil do

 begin

 s:=s + (p^.Item) * (q^.Item);

 {переходим к следующей паре элементов:}

 p:=p^.next; q:=q^.last;

 end;

 Writeln('s=',s);

 Readln;

End.

6.2. Средства Delphi для поддержки списков

 При работе в Delphi списки можно создавать на основе класса

TList. Свойства и методы этого класса позволяют добавлять, удалять и

сортировать элементы списка.

 Максимальное число элементов списка (текущая емкость списка)

задается с помощью свойства
property Capacity: Integer;

Емкость списка, если она исчерпана, будет автоматически увеличена на

фиксированную величину. С помощью этого свойства можно как

увеличить, так и уменьшить объем выделенной для списка памяти. Если

значение Capacity окажется меньше значения Count, возникает

исключительная ситуация EListError.

 Число элементов списка регулируется свойством
property Count: Integer;

это свойство изменяется при добавлении или удалении элементов списка.

 Доступ к указателям на элементы списка осуществляется с помощью

свойства
property Items(Index:Integer):Pointer;

С помощью параметра Index задается порядковый номер элемента, при

этом первый элемент списка имеет номер 0.

 Приведем наиболее важные методы класса TList.

Для размещения нового элемента Item в конец списка

предназначен метод
function Add(Item:Pointer):Integer;

Возвращает индекс размещенного элемента (первый элемент списка

имеет индекс 0).

 66

Можно добавить новый элемент Item не только в конец списка, но

и в заданную позицию Index. Для этой цели используется метод
procedure Insert(Index:Integer;Item:Pointer);

Индексы всех элементов списка, расположенных после элемента Item,

увеличиваются на единицу. Если Index равен 0, то элемент вставляется в

начало списка.

 Удалить все элементы списка можно с помощью метода
procedure Clear;

Свойствам Capacity и Count присваиваются нулевые значения, но

память, выделенная под элементы списка, не освобождается.

 Для удаления отдельных элементов списка используется метод
procedure Delete(Index:Integer);

Параметр Index содержит индекс удаляемого элемента. Индекс

элементов списка, расположенных за удаляемым элементом, уменьшается

на единицу.

 Поменять местами элементы списка с индексами Index1 и Index2

можно с помощью метода
procedure Exchange(Item1, Index2:Integer);

 Индекс элемента списка с указателем Item можно узнать с

помощью метода
function IndexOf(Item:Pointer):Integer;

 Пример 6.2.1. Выполним ту же задачу, что и в примере 6.1.1, но с

помощью класса TList.

program Project6_2_1;

{$APPTYPE CONSOLE}

uses

 SysUtils,

 Classes;{добавили эту ссылку для поддержки типа

 TList}

Var

 List:TList;

 x,s:double; px:^double; i,n:Integer;

begin

 Writeln('n='); Readln(n);

 {Создадим список из n элементов:}

 List:=TList.Create; {вызвали конструктор}

 for i:= 1 to n do

 begin

 New(px);

 Writeln('x='); Readln(x);

 px^:=x;

 List.Add(px);

 end;

 67

 {найдем среднее арифметическое элементов}

 s:=0;

 {проходим по списку:}

 for i:=0 to List.Count-1 do

 begin

 px:=List[i];

 s:=s+px^;

 end;

 if List.Count>0 then s:=s/List.Count;

 Writeln('s=',s);

 Readln;

End.

Пример 6.2.2. Вариант задачи 6.1.2 на основе класса TList.

program Project6_2_2;

{$APPTYPE CONSOLE}

uses

 SysUtils,

 Dialogs,{для поддержки ShowMessage}

 Classes;{для поддержки типа TList}

Var

 List : TList;

 px,qx:^double;

 F:TextFile; x,s:double; i,j,n:Integer;

begin

 {Создадим список:}

 List:=TList.Create;

 AssignFile(F,'info.txt');

 try

 Reset(F);

 While Not Eof(F) do

 begin

 {Заносим в список числа из файла:}

 New(px);

 Read(F,x);

 px^:=x;

 List.Add(px);

 end;

 CloseFile(F);

 except

 on E:EInOutError do

 ShowMessage('Ошибка'+IntToStr(E.ErrorCode));

 end;

 {проводим вычисления:}

 s:=0;

 n:=List.Count-1;

 68

 for i:=0 to n do

 begin

 px:=List[i];

 j:=n-i;

 qx:=List[j];

 s := s + (px^) * (qx^);

 end;

 Writeln('s=',s);

 Readln;

End.

 С помощью метода
procedure Sort(Compare:TListSortCompare);

можно выполнить сортировку списка. Функция Compare() задает

функцию упорядочения, т.е. определяет операцию сравнения элементов

списка.

 Пример 6.2.3. Упорядочим список действительных чисел,

считанных из файла ‘info.txt’.

program Project6_2_3;

{$APPTYPE CONSOLE}

uses

 SysUtils, Classes, Dialogs;

Type

 PDouble=^Double;

function Compare(Item1,Item2:Pointer):Integer;

begin

 if PDouble(Item1)^ <PDouble(Item2)^ then

 Result := -1

 else

 if PDouble(Item1)^ > PDouble(Item2)^ then

 Result := 1

 else Result:=0;

end;

Var List:TList;

 F:TextFile;

 x:double; px:^double; i:integer;

begin

 List:=TList.Create;

 AssignFile(F,'info.txt');

 try

 Reset(F);

 While Not Eof(F) do

 begin

 New(px);

 Read(F,x);

 px^:=x;

 69

 List.Add(px);

 end;

 CloseFile(F);

 except

 on E:EInOutError do

ShowMessage('Ошибка'+IntToStr(E.ErrorCode));

 end;

 {список до упорядочения:}

 for i:=0 to List.Count -1 do

 begin

 px:=List[i]; writeln(px^);

 end;

 {список после упорядочения:}

 Writeln('Sort:');

 List.Sort(Compare);

 for i:=0 to List.Count -1 do

 begin

 px:=List[i]; writeln(px^);

 end;

 Readln;

End.

7. Вычисления с многократной точностью

 Подробное изложение вопросов, связанных с арифметикой

многократной точности, можно найти в [12]. Книги [16], [21] содержат

разделы, посвященные вычислению числа  с высокой точностью.

 Основными в арифметике многократной точности являются

операции:

a) сложение и вычитание n -разрядных целых чисел, с получением

n -разрядного ответа и цифры переноса;

b) умножение n -разрядного целого числа на m -разрядное целое

число, с получением  m n -разрядного результата;

c) деление  m n -разрядного целого числа на n -разрядное целое

число, с получением  1m  -разрядного частного и n -разрядного

остатка.

Д. Кнут предложил называть эти алгоритмы ―классическими‖, так как, по

его замечанию (см. [12, стр. 282]), само слово ―алгоритм‖ в течение многих

веков использовалось лишь в связи с этими вычислительными процессами.

7.1. Вычисление числа 2n для большого n

Для хранения больших чисел можем создать массив, каждая цифра

которого будет хранить одну цифру числа. Приведем программу

вычисления числа 2
1000

. Можно вычислить и большую степень, но нужно

 70

изменить значение константы MaxLength, в которой указано количество

цифр вычисляемого числа.

7.1.1. Алгоритм вычисления

program Power7_1_1;

{$APPTYPE CONSOLE}

Const

 MaxLength=302;{Число цифр, достаточное для

 хранения числа 2**1000}

Var

 xdigit : array[1..MaxLength] of 0..9;

 xstart : 1..MaxLength;

 N : Integer;{Показатель степени}

 i : 1..MaxLength;

procedure Power2(N:integer);

Var

 i : 1..MaxLength;

 transfer:Integer;{переносимая в след.разряд цифра}

 b,k:Integer;

begin

 xdigit[MaxLength] := 1;

 xstart := MaxLength;

 for k := 1 to N do

 begin{1}

 transfer := 0;

 for i := MaxLength downto xstart do

 begin{2}

 {удвоить цифру xdigit[i]}

 b := 2*xdigit[i];

 {прибавить перенос из предыдущего разряда}

 b := b + transfer;

 {записать цифру единиц суммы в xdigit[i]}

 xdigit[i] := b mod 10;

 {запомнить перенос}

 transfer := b div 10;

 end;{2}

 if transfer <> 0 then

 begin

 xstart := xstart - 1;

 xdigit[xstart] := transfer;

 end;

 end;{1}

end;{Power2}

begin{Основная программа}

 Writeln('Type n (<=1000):'); Readln(N);

 71

 Power2(N);

 Writeln('2**',N:4,'=');

 for i := xstart to MaxLength do

write(xdigit[i]:1);

 readln;

End.

 В известной книге М. Гарднера ―Математические новеллы‖

приведена распечатка числа 112132 1 (найденное с помощью ЭВМ

двадцать третье число Мерсенна). Разумеется, самой трудной задачей при

программировании была проверка чисел на простоту (см. по этому поводу

[12]). Нас, в данном случае, интересует организация хранения и вывода

чисел с большим числом значащих цифр. С помощью только что

приведенной программы можем получить распечатку указанного числа,

нужно лишь увеличить значение MaxLength до 3376 (это количество

цифр в числе, но можно было бы взять ―с запасом‖, например 4000).

7.1.2. Организация интерфейса

Для вывода результата будем использовать компоненту Memo1

(страница Standard палитры компонент). Обычно с помощью этой

компоненты создают многострочный редактор текста. Степень числа 2

вводится с помощью компоненты Edit1 (страница Standard).

Вычисления производятся после нажатия на кнопку BitBtn1 (страница

Additional).

С помощью Object Inspector установим значения свойств размещѐнных

компонент.

 72

Очистим поле Text у компоненты Edit1 (из этого поля прочитаем

значение степени числа 2, введѐнное пользователем).

У компоненты Memo1 выберем значение True для свойства

ReadOnly, запретив тем самым исправления результата вычислений.

Найдем свойство ScrollBars компоненты Memo1 и выберем либо

значение ssBoth либо ssVertical (в случае, если результат не

уместится в окне, можно ―прокрутить‖ окно Memo1 с помощью полос

прокрутки).

Изменим значение свойства Caption компонента BitBtn1 на

“Вычислить”. Все вычисления сосредоточены в обработчике для кнопки

“Вычислить”. Поместим в этот обработчик рассмотренную ранее

процедуру Power2(). Прежде чем выводить результат, очистим поле

Memo1 с помощью оператора Memo1.Lines.Clear; Поскольку

результат может оказаться длиннее, чем ширина окна Memo1, нужно

разделить результат на части и выводить в несколько строк. Каждая новая

строка добавляется с помощью метода Insert():

Memo1.Lines.Insert(ys, S);

здесь S — строка с информацией, а ys — номер добавляемой строки

(начинается с 0). Ширина строки устанавливается значением переменной

xsMax.

Далее приведен полный текст обработчика.

procedure TForm1.BitBtn1Click(Sender: TObject);

Const

 MaxLength=4000;

Var

 xdigit:array[1..MaxLength] of Integer;

 xstart:Integer; N:Integer;

 i:Integer; xS,xSMax, yS:integer;

 S:String;

procedure Power2(N:integer);

Var

 i, k, transfer, b : Integer;

begin

 xdigit[MaxLength] := 1;

 xstart := MaxLength;

 for k := 1 to N do

 begin{1}

 transfer := 0;

 for i := MaxLength downto xstart do

 begin{2}

 b := 2 * xdigit[i];

 b := b + transfer;

 73

 xdigit[i] := b mod 10;

 transfer := b div 10;

 end;{2}

 if transfer <> 0 then

 begin

 xstart := xstart - 1;

 xdigit[xstart] := transfer;

 end;

 end;{1}

end;{Power2}

begin

 N := StrToInt(Form1.Edit1.Text);

 Power2(N);

 xS := 1; yS := 0;

 S:=''; {пустая строка}

 xSMax := 80; {количество символов в строке

 Memo1.Lines[ys]}

 Memo1.Lines.Clear;

 for i := xstart to MaxLength do

 begin

 S := S + IntToStr(xdigit[i]);

 if xS < xSMax then Inc(xS)

 else

 begin

 Memo1.Lines.Insert(yS,S);

 S := '';{пустая строка}

 xS := 1; Inc(yS);

 end;

 end;

 Memo1.Lines.Insert(yS,S);

 End;

7.2. Вычисление числа 

 Краткий исторический обзор по анализу и вычислению числа  дан

в статье [26], там же приведены наиболее известные расчѐтные формулы.

Отметим книги [16] и [21], содержащие популярное изложение алгоритма

вычисления этой математической константы. В Internet самую обширную

информацию о числе  , по нашему мнению, можно найти на сайте

www.cesm.sfu.ca/pi/.

В 1949 году на одном из первых компьютеров было вычислено 2035

знаков числа  , на что потребовалось около 70 часов машинного времени

(см. [27]). Вычисления числа  продолжаются и в настоящее время (см.,

например, www.cc.u-tokyo.ac.jp и http://wasi.org/PI/).

Самым простым и хорошо известным является разложение

http://www.cc.u-tokyo.ac.jp/

 74

1 1 1 1
1

4 3 5 7 9


      .

Но этот ряд плохо подходит для вычисления , поскольку сходится

медленно. При вычислениях чаще используются формулы (см., напр., [21,

26])

1 1
4arctan arctan ,

4 5 239


 

1 1 1
8arctan 4arctan arctan ,

4 10 515 239


  

1 1 1
3arctan arctan arctan .

4 4 20 1985


  

 Для вычисления arctan x применяется ряд Грегори
2 1

0

(1)
arctan , 1 1.

2 1

k k

k

x
x x

k






   




В работе [28] вычисление числа  производилось по формуле

1 1 1
24arctan 8arctan 4arctan ,

8 57 239
   

расчеты проверялись с помощью тождества Гаусса

1 1 1
48arctan 32arctan 20arctan .

18 57 239
   

7.2.1. Алгоритм вычисления

program PiCalcul;

{Вычисление числа π с помощью формулы Мечина

 $\pi /4 = 4 \arctan 1/5 - \arctan 1/239$}

{$APPTYPE CONSOLE}

uses

 SysUtils;

Const

 Basa=10000;{наименьшее число типа SmallInt с

 максимальным количеством разрядов}

Type

 TStrInt=String[4];

Type

 TNaborDigs=Array of SmallInt; {Предназначен для

 хранения набора значащих цифр}

function SmallIntToStr(x:SmallInt):TStrInt;

Var i,n:Byte; s:TStrInt;

begin

 for i:= 1 to 4 do

 begin

 n := x mod 10;

 75

 s[5-i] := chr(n+ord('0'));

 x := x div 10;

 end;

 Result := s;

end;

{Процедуры арифметики многократной точности:}

{Сложение:}

procedure AddNabor(Var res:TNaborDigs;

 increm:TNaborDigs);

Var i,nblock:Integer;

begin

 nblock :=Length(res);

 for i:=nblock-1 downto 0 do

 begin

 res[i] := res[i] + increm[i];

 if res[i] >= Basa then

 begin

 res[i] := res[i] - Basa;

 res[i-1] := res[i-1] + 1;

 end

 end;

end; {AddNabor}

{Вычитание:}

procedure SubNabor(Var res:TNaborDigs;

 decrem:TNaborDigs);

Var i,nblock:Integer;

begin

 nblock := Length(res);

 for i := nblock-1 downto 0 do

 begin

 res[i] := res[i] - decrem[i];

 if res[i] < 0 then

 begin

 res[i] := res[i] + Basa;

 res[i-1] := res[i-1] - 1;

 end

 end;

end; {SubNabor}

{Умножение:}

procedure MultNabor(Var res:TNaborDigs;

 factor:SmallInt);

Var i,nblock:Integer; transfer:SmallInt;

 t:Integer;

begin

 nblock :=Length(res);

 76

 transfer := 0;

 for i := nblock-1 downto 0 do

 begin

 t:=res[i];

 t := t * factor;

 t := t + transfer;

 transfer := t div Basa;

 res[i] := t mod Basa;

 end;

end; {MultNabor}

{Деление:}

procedure DivideNabor(Var res:TNaborDigs;

 denom:SmallInt);

Var i,nblock:Integer;

 transfer:SmallInt; t:Integer;

begin

 nblock :=Length(res);

 transfer := 0;

 for i:= 0 to nblock-1 do

 begin

 t:=res[i];

 t := t + transfer * Basa;

 transfer := t mod denom;

 res[i] := t div denom;

 end;

end; {DivideNabor}

{Установка значений: целое число записываем в

 массив TNaborDigs}

procedure IntToNabor(num:SmallInt;

 Var res:TNaborDigs);

Var i,nblock:Integer;

begin

 nblock :=Length(res);

 for i := 0 to nblock-1 do res[i] := 0;

 res[0] := num;

end; { IntToNabor}

{Копирование многозначного числа в другую переменную:}

procedure CopyNabor(Var res:TNaborDigs;

 from:TNaborDigs);

Var i,nblock:Integer;

begin

 nblock :=Length(res);

 for i := 0 to nblock-1 do res[i] := from[i];

end; {CopyNabor}

 77

{Сравнение с нулем:}

function ZeroNabor(Var res:TNaborDigs):Boolean;

Var i,nblock:Integer;

begin

 nblock :=Length(res);

 for i := 0 to nblock-1 do

 if res[i]<>0 then

 begin

 Result := False;

 Exit

 end;

 Result := True;

end; {ZeroNabor}

{Вычисление arctan от 1/x с большим числом знаков:}

procedure ArctanNabor(Var res:TNaborDigs;

 denom:SmallInt);

Var

 w1, w2 : TNaborDigs;

 k, denom2 : SmallInt;

 nblock:Integer;

begin

 nblock :=Length(res);

 SetLength(w1,nblock * SizeOf(SmallInt));

 SetLength(w2,nblock * SizeOf(SmallInt));

 IntToNabor(1,res);

 DivideNabor(res,denom);

 CopyNabor(w1,res);

 k := 1;

 Repeat

 DivideNabor(w1,denom); DivideNabor(w1,denom);

 CopyNabor(w2,w1);

 DivideNabor(w2, 2 * k +1);

 if Odd(k) // т.е. k - нечетное

 then SubNabor(res,w2)

 else AddNabor(res,w2);

 k := k + 1;

 Until ZeroNabor(w2);

end; {ArctanNabor}

procedure PiCalc(Var Res:TNaborDigs);

Var

 ResTemp : TNaborDigs;nblock:Integer;

begin

 nblock :=Length(res);

 SetLength(ResTemp,nblock * SizeOf(SmallInt));

 ArctanNabor(Res,5);

 MultNabor(Res,4);

 78

 ArctanNabor(ResTemp,239);

 SubNabor(Res,ResTemp);

 MultNabor(Res,4);

end; {PiCalc}

procedure PrintNabor(Res:TNaborDigs);

Var i : Integer; ff:TextFile;

ss:TStrInt;

begin

 AssignFile(ff,'Pi_Smallf.txt');

 Rewrite(ff);

 Writeln(ff,'$\pi=$');

 for i := 0 to High(Res) do

 begin

 ss:= SmallIntToStr(res[i]);

 writeln(ff,ss);

 end;

 CloseFile(ff);

end;{PrintNabor}

Var

 ndigit : Integer; Res : TNaborDigs;

Var

 nblock:Integer;{количество блоков цифр, т.е.

 количество элементов массива типа TNaborDigs}

begin

 Writeln('\pi with N digits, N= ');

 Readln(ndigit);

 if ndigit < 20 then ndigit:=20;

 nblock := ndigit div 4;

 SetLength(Res,nblock * SizeOf(SmallInt));

 PiCalc(Res);

 PrintNabor(Res);

 Readln;

End.

 Для хранения цифр числа  используется массив Res типа

TNaborDigs. Каждый элемент этого массива содержит 4 значащих

цифры числа  . Если тип TNaborDigs определить на основе типа

Integer, то наборы цифр будут содержать по 9 значащих цифр. Значение

константы Basa в этом случае нужно изменить на 1000000000. Отметим,

что также потребуется небольшая корректировка процедуры

MultNabor(), так как при выполнении операций умножения можем

выйти за допустимый диапазон значений используемого типа.

 Для вывода результатов многоточных вычислений используется

процедура PrintNabor(). Эта процедура учитывает ―незначащие‖ нули

 79

чисел, входящих в наборы. Так, число 781 (это 17 набор наших

вычислений) будет преобразован в 0781.

7.3. Задачи

7.3.1. Составить программы сложения, вычитания, умножения и деления

целых чисел с большим числом значащих цифр.

7.3.2. Вычислить 1000 чисел Фибоначчи (см. задачи 1.3.7, 1.3.8 и

пример 2.5.1).

7.3.3. Составить программу вычисления 2 с большой точностью,

используя последовательность

1 1

1
1, , 1,2,

2

k
k

k

x
x x k

x
    .

Эти соотношения представляют собой метод Ньютона (см. 4.3),

примененный к уравнению x
2
-2=0.

7.3.4. Вычислить число e с заданным количеством десятичных знаков,

используя формулу

1 1 1
1

1! 2! 3!
e      .

7.3.5. Вычислить число  с заданным количеством десятичных знаков,

используя для хранения результата массив типа

Type TNaborDigs=Array of Integer;.

8. Операции с датой и временем

8.1. Тип данных TDateTime

 В Delphi имеется специальный тип данных TDateTime для

выполнения операций с датой и временем. Этот тип определяет число с

плавающей точкой, целая часть которого содержит число дней,

отсчитанное от 12 часов 30 декабря 1899 года (―заданное начало‖), а

дробная часть содержит время, равное части 24-часового дня.

 Над данными типа TDateTime определены те же операции, что и

над вещественными числами.

 Для перевода из ―привычного‖ формата ―число, месяц, год‖ к

значению типа TDateTime используется функция
function StrToDate(const S:String):TDateTime;

Формат представления даты в строке S зависит от установок

операционной системы. В MS Windows эти установки можно изменить с

помощью вызова утилиты ―Язык и стандарты‖ панели управления. Для

России, по умолчанию, установлен формат ―дд.ММ.гггг‖. Можно

использовать формат ―дд.ММ.гг‖, если год попадает в интервал

(например, от 1930 до 2029), установленный с помощью той же утилиты.

 80

 Для преобразования времени из формата ―час:мин:сек‖ в формат

TDateTime используется функция
function StrToTime(const S:String):TDateTime;

 Преобразовать дату, записанную как ―дд.ММ.гггг час:мин:сек‖, в

формат TDateTime можно с помощью функции
function StrToDateTime(const S:String):TDateTime;

 Параметр S в этих функциях должен отвечать установленному

формату для даты и времени, в противном случае возбуждается

исключение EConvertError.

Для ―обратного‖ преобразования из формата TDateTime в строку

предназначены функции
function DateToStr(date:TDateTime):String;

function TimeToStr(time:TDateTime):String;

function DateTimeToStr(date_time:TDateTime):String;

 С помощью функций DateTimeToString() и

FormatDateTime() можно управлять форматом строки, в которую

производится преобразование из типа TDateTime.

 Кроме того, привести заданную дату к типу TDateTime можно с

помощью функции
function EncodeDate(Year,Month,Day:Word):TDateTime;

 Для приведения времени к типу TDateTime можно использовать

функцию
function EncodeTime(Hour,Min,Sec,MSec:Word):TDateTime;

 ―Обратные‖ операции по разделению даты и времени на

составляющие выполняются с помощью процедур
procedure DecodeDate(date:TDateTime;Var

Year,Month,Day:Word);

procedure DecodeTime(time:TDateTime;Var

Hour,Min,Sec,MSec:Word);

 Текущее значение времени определяется с помощью функции
function Time:TDateTime;

 Текущую дату в формате TDateTime возвращает функция
function Date:TDateString;

 Текущее значение даты и времени можно определить с помощью

вызова функции
function Now:TDateTime;

 С помощью функции
function DayofWeek(date:TDateTime):Integer;

можно узнать день недели, соответствующий дате date, при этом

значение 1 отведено воскресенью, а значение 7 — субботе.

 Функция
Function IsLeapYear(Year:Word):Boolean;

 81

возвращает значение True, если год Year високосный, и False — в

ином случае.

 Пример 8.1.1.

program Project8_1_1;

{$APPTYPE CONSOLE}

uses

 SysUtils;

Var

 d:TDateTime; i:Integer;

 Year,Month,Day,Hour,Min,Sec,MSec:Word;

begin

 d:=StrToDate('2.4.2003'); Writeln(d);

 d:=StrToDate('2.4.1812'); Writeln(d);

 d:=StrToTime('21:53:13'); Writeln(d);

 d:=StrToDateTime('2.4.2003 21:53:13');

 Writeln(d);

 d:=EncodeTime(21,53,13,00); Writeln(d);

 d:=EncodeDate(2003,4,2); Writeln(d);

 i:=DayofWeek(d);

 Writeln('Day of Week=',i);

 d:=Date;

 Writeln('Today is ',DateToStr(d));

 d:=Time; Writeln('Time=',TimeToStr(d));

 d:=Now;

 Writeln('Today is ',DateTimeToStr(d));

 DecodeDate(d,Year,Month,Day);

 Writeln(Day,'.',Month,'.',Year);

 DecodeTime(d,Hour,Min,Sec,MSec);

 Writeln(Hour,':',Min,':',Sec);

 Readln;

End.

8.2. Задачи

8.2.1. Вычислить количество полных лет между двумя заданными датами.

8.2.2. Написать функцию, возвращающую количество дней, оставшихся до

конца года.

8.2.3. Написать функцию, возвращающую количество дней, прошедших с

начала года.

8.2.4. Вводится дата. Составить программу, выводящую предыдущую

(вчерашнюю) и следующую (завтрашнюю) даты.

8.2.5. Найти день недели для заданной даты, используя формулу (см.

[17, стр. 110])

 82

   
1 1 1

13 1 2 mod7,
5 4 4

W d m Y Y C C
     

           
     

где C — число полных прошедших столетий (например, для 2003 года

значение С равно 20), Y — номер года в столетии (например, для 2003

года значение Y равно 3), m — номер месяца, а d — день. Значение W,

равное 0, соответствует воскресенью, 1 — понедельнику и так далее.

8.2.6. Вычислить количество пятниц, выпадающих на 13-е число, в

интервале между двумя заданными датами.

8.2.7. Составить программу для пересчета дат старого стиля на новый

стиль и обратно. Для пересчета даты J юлианского календаря (старый

стиль) в дату G григорианского календаря (новый стиль) необходимо к J

прибавить число дней N, определяемых по формуле (см., напр.,

[19, стр. 21], [25, стр. 75])

2
4











C
CN ,

где C — число полных прошедших столетий. При пересчете дат следует

учитывать, что количество високосных лет в юлианском и григорианском

календарях не совпадает: три года в 400 лет в юлианском календаре

високосные, а в григорианском простые. В григорианском календаре из

списка високосных исключаются те годы, у которых первые две цифры не

делятся на 4, а последние две являются нулями (в юлианском такие годы

високосные). После реформы календаря в 1582 году такими годами были

1700, 1800 и 1900, а следующим будет 2100 год.

8.2.8. Составить программу для вычисления даты Пасхи для заданного

года с помощью формул Гаусса (см., напр. [14, стр. 214], [19, стр. 23). При

расчете христианской католической Пасхи нужно найти величины , ,a b c ,

как остатки от деления номера года J на 19, 4 и 7. Затем вычислить

значение d , как остаток от деления величины 19a x на 30, где x равно

22, если 1582 1699J  , x равно 23, если 1700 1899J  и x равно 24,

если 1900 2099J  . Далее следует выбрать y согласно правилу: 2y  ,

если 1582 1699J  ; 3y  , если 1700 1799J  ; 4y  , если

1800 1899J  и 5y  , если 1900 2099J  . После этого найти значение

e как остаток от деления величины 2 4 6b c d y   на 7. Если 10d e  , то

Пасха будет 22 d e  марта, иначе 9d e  апреля. При вычислении

православной Пасхи всегда 15x  , 6y  и результат получается в датах по

старому стилю.

 83

Литература

1. Абрамов С.А., Гнездилова Г.Г., Капустина Е.Н., Селюн М.И. Задачи по

программированию. — М.: Наука. Гл. ред. физ.-мат. лит., 1988. — 224 с.

2. Бахвалов Н.С., Жидков Н.П., Кобельков Г.М. Численные методы — М.:

Наука. Гл. ред. физ.-мат. лит., 1987. — 600 с.

3. Брудно А.Л., Каплан Л.И. Московские олимпиады по

программированию. — М.: Наука. Гл. ред. физ.-мат. лит., 1990. — 208 с.

4. Вирт Н. Систематическое программирование. Введение: Пер. с англ. —

М.: Мир, 1977. — 184 с.

5. Вирт Н. Алгоритмы + структуры данных = программы: Пер. с англ. —

М.: Мир, 1985. — 406 с.

6. Вирт Н. Алгоритмы и структуры данных: Пер. с англ. — М.: Мир,

1989. — 360 с.

7. Вьюкова Н.И., Галатенко В.А., Ходулев А.Б. Систематический подход

к программированию: — М.: Наука. Гл. ред. физ.–мат. лит., 1988. —

208 с.

8. Гудман С., Хидетниеми С. Введение в разработку и анализ алгоритмов:

Пер. с англ. — М.: Мир, 1981. — 368 с.

9. Демидович Б.П., Марон И.А. Основы вычислительной математики. —

М.: Физматгиз, 1963. — 660 с.

10. Карпов Б. Delphi: специальный справочник. — СПб.: Питер, 2002. —

688 с.

11. Кнут Д. Искусство программирования для ЭВМ. Т.1. Основные

алгоритмы: Пер. с англ. — М.: Мир, 1976. — 735 с.; перераб. издание:

М.: Изд. Дом ―Вильямс‖, 2000. —820 с.

12. Кнут Д. Искусство программирования для ЭВМ. Т.2. Получисленные

алгоритмы: Пер. с англ. — М.: Мир, 1978. — 725 с.; перераб. издание:

М.: Изд. Дом ―Вильямс‖, 2000. —712 с.

13. Кнут Д. Искусство программирования для ЭВМ. Т.3. Сортировка и

поиск: Пер. с англ. — М.: Мир, 1978. — 846 с.; перераб. издание: М.:

Изд. Дом ―Вильямс‖, 2000. —822 с.

14. Куликов С. Нить времен: Малая энциклопедия календаря. — М.: Наука.

Гл. ред. физ.-мат. лит., 1991. — 288 с.

15. Липский В. Комбинаторика для программистов: Пер. с англ. — М.:

Мир, 1988. — 213 с.

16. Нивергельт Ю., Фаррар Дж., Рейнгольд Э. Машинный подход к

решению математических задач: Пер. с англ. — М.: Мир, 1977. —

352 с.

 84

17. Оре О. Приглашение в теорию чисел: Пер. с англ. — М.: Наука. Гл. ред.

физ.-мат. лит., 1980. — 128 с.

18. Плещинский Н.Б. Объектное программирование в Delphi. Учебное

пособие. — Казань: Изд-во КМО, 1999. — 86 с.

19. Работа с Turbo Professional. Программирование операций с датой и

временем. (Сост. Липачѐв Е.К., Насибулин В.Г.) — Казань, 1995. —

38 с.

20. Рейнгольд Э., Нивергельт Ю., Део Н. Комбинаторные алгоритмы.

Теория и практика. — М.: Мир, 1980. — 476 с.

21. Уэзерелл Ч. Этюды для программистов: Пер. с англ. — М.: Мир, 1982.

— 288 с.

22. Фаронов В.В. Delphi 3. Учебный курс. —- М.: Нолидж, 1998. — 400 с.

23. Фаронов В.В. Delphi 4. Учебный курс. — М.: Нолидж, 1998. — 464 с.

24. Форсайт Дж., Малькольм М., Моулер К. Машинные методы

математических вычислений: Пер. с англ. — М.: Мир, 1980. — 280 с.

25. Хренов Л.С., Голуб И.Я. Время и календарь. — М.: Наука. Гл. ред. физ.-

мат. лит., 1989. — 128 с.

26. Bailey D.H., Borwein J.M., Borwein P.B. and Plouffe S. The Ques for Pi //

The Mathematical Intelligencer, June, 1996

(www.cecm.sfu.ca/personal/pborwein/).

27. Reitwiesner G.W. An ENIAC Determination of and e to more than 2000

Decimal Places // Mathematical Tables and Other Aids to Computation,

Vol. 4, pp. 11 – 15, 1950 (www.jstor.org).

28. Shanks D., Wrench J.W. Calculation of  to 100,000 Decimals //

Mathematics of Computation, Vol 16, pp. 76 – 99, 1962 (www.jstor.org).

http://www.jstor.org/
http://www.jstor.org/

 85

Е.К. Липачѐв

ВВЕДЕНИЕ В КОМПЬЮТЕРНЫЕ НАУКИ.

ОСНОВНЫЕ АЛГОРИТМЫ

Редактор И.Г. Кондратьева

Подписано в печать 16.10.2003. Форм. 60 х 84 1/16. Гарнитура «Таймс».

Печать офсетная. Усл. печ. л. 5,25. Уч.–изд. 5,5. Тираж 100. Заказ 294.

Издательство

«Казанский государственный университет им. В.И.Ульянова-Ленина»

420008, Казань, ул. Кремлевская, 18

Отпечатано в лаборатории оперативной полиграфии КГУ

420045, Казань, Кр.Позиция, 2а

Тел. 72-22-54

