Федеральное государственное автономное образовательное Учреждение высшего профессионального образования КАЗАНСКИЙ (ПРИВОЛЖСКИЙ) ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ

ПРОГРАММА ДИСЦИПЛИНЫ

«ФИЗИКА ПОЛИМЕРОВ»

ФТД.3

Специальность: 010701.65 - Физика

Принята на заседании кафедры физики молекулярных систем (протокол № 1 от "Э " сеисэбря 2014 г.)
Заведующий кафедрой физики молекулярных систем

(В.Д. Скирда)

Методические указания (пояснительная записка)

Рабочая программа дисциплины "Физика полимеров" Предназначена для студентов 3 курса, 5 семестр по специальности: Физика 01.07.01.65

АВТОР: Фаткуллин Н.Ф., М.А. Рудакова

КРАТКАЯ АННОТАЦИЯ: в рамках дисциплины «Статистическая физика макромолекул» систематически излагаются основы статистической физики макромолекул.

1. Требования к уровню подготовки студента, завершившего изучение дисциплины «Физика полимеров»: качественное знание любого вопроса программы.

СОДЕРЖАНИЕ КУРСА

2. Объем дисциплины и виды учебной работы (в часах)

Форма обучения: очная Количество семестров: 1 Форма контроля: зачет

№ п/п	Виды учебных занятий	Количество часов
1.	Всего часов по дисциплине	80
2.	Самостоятельная работа	44
3.	Аудиторных занятий	36
	в том числе лекций	36
	семинарских (или лабораторно-практических)	

3.1. ТРЕБОВАНИЯ ГОСУДАРСТВЕННОГО ОБРАЗОВАТЕЛЬНОГО СТАНДАРТА К ОБЯЗАТЕЛЬНОМУ МИНИМУМУ СОДЕРЖАНИЯ ПРОГРАММЫ

Индекс	Наименование дисциплины и ее основные разделы	Всего часов
ФТД.3	Физика полимеров	80

3.2. СОДЕРЖАНИЕ РАЗДЕЛОВ ДИСЦИПЛИНЫ

№ п/п	Название темы и ее содержание	Количество часов		
		лекции	семинарские (лабпракт.) занятия	самостоятельная работа
1	Идеальная свободно-сочлененная цепочка. Сегмент Куна. Функция распределения радиуса Флори. Радиус инерции. Радиус Флори. Гидродинамический радиус.	6		8
2	Проблема объемных взаимодействий. Метод функций Майера. Второй вириальный коэффициент. Θ - температура. Θ -областъ. Z-фактор набухания Флори. Коэффициент набухания.	6		8
3	Приближение среднего поля. Число самопересечений идеальной цепочки в d -мерном пространстве.	2		2
4	Уравнение для коэффициента набухания.	2		2
5	Макромолекула во внешнем сжимающем поле. Статистическая сумма.	2		2
6	Ψ -функция. Свободная энергия. Энтропияоператор.	2		3
7	Идеальная полимерная цепь в поре. Захват полимерной цепи потенциальной ямой.	2		2
8	Полимерная глобула, сформированная самосогласованным полем.	2		2
9	Уравнение для локальной равновесной концентрации. Самосогласованное поле.	2		3
10	Объемное приближение. Поверхностные эффекты. Переход клубок-глобула.	2		2
11	Статистическая сумма системы полимер-растворитель в приближении Флори.	4		6
12	Скейлинговая теория полуразбавленных растворов макромолекул.	2		2
13	Характерные концентрации. Концентрация блобов. Корреляционная длина раствора. Осмотическое давление.	2		2
	Итого часов:	36		44

Основная литература

- 1.Высокомолекулярные соединения: Учебник / Кленин В.И., Федусенко И.В. Издательство "Лань". - 2013. – 512 с. – ISBN: 978-5-8114-1473-4. Электронно-библиотечная система. http://e.lanbook.com/books/element.php?pl1 id=5842
- 2.Фазовые переходы полимерных систем во внешних полях : Учебное пособие / Вшивков С.А.— Издание 2-е, исправленное и дополненное .— 2013.— Издательство "Лань" Электронно-библиотечная система. http://e.lanbook.com/books/element.php?pl1 id=30431
- 3.Поверхностно-активные вещества и полимеры в водных растворах: монография / Холмберг К.,Йёнссон Б., Кронберг Б.,Линдман Б.. "Бином. Лаборатория знаний". 2013. 532 с. http://e.lanbook.com/books/element.php?pl1 id=8691

Дополнительная литература

- 1. Физика конденсированного состояния: Учебное пособие / Ю.А. Байков, В.М. Кузнецов. 2-е изд. (эл.). М.: БИНОМ. Лаборатория знаний, 2013. 293с.: ил. (Учебник для высшей школы). Издательство "Лань" Электронно-библиотечная система. http://e.lanbook.com/books/element.php?pl1 id=56908
- 2. Теоретическая физика. Т.9 Статистическая физика. Ч. 2. Теория конденсированного состояния. / Ландау Л.Д., Лифшиц Е.М.— 4-е изд., стереот.— 2004.— Издательство "Лань" Электронно-библиотечная система. http://e.lanbook.com/books/element.php?pl1 id=2235
- 3. Физико-химия полимеров: учебник/ A.A. Tarep. Рипол Классик, 2013 508 c. http://books.google.ru/books?id=zl79AgAAQBAJ&printsec=frontcover&hl=ru&source=gbs_ge_sum mary r&cad=0#v=onepage&q&f=false

Интернет-ресурсы

- 1. Институт высокомолекулярных соединений, http://imc.macro.ru:8080/web/guest/24;jsessionid=758a85e193ad7ba1bbc8175a5a6b.
- 2. Кафедра физики полимеров МГУ, http://polly.phys.msu.ru/ru/history/history polymer.html.
- 3. КАФЕДРА ХИМИИ И ФИЗИКИ ПОЛИМЕРОВ И ПОЛИМЕРНЫХ МАТЕРИАЛОВ ИМ. Б.А. ДОГАДКИНА, http://hfp.mitht.ru/nauchrabot.htm.
- 4. Лаборатория полимерных материалов и композитов, http://nanospheres.ru.
- 5. Санкт Петербургский национальный исследовательский институт, http://books.ifmo.ru/file/pdf/693.pdf

Билеты к зачету по курсу «Физика полимеров»

 Сегмент Куна. Корреляционная длина раствора. 	Билет 1
 Функция распределения радиуса Флори. Осмотическое давление растворов полимеров. 	Билет 2
 Осмотическое давление растворов полимеров. Радиус инерции. 	Билет 3
2. Захват полимерной цепи потенциальной ямой.	Билет 4
 Гидродинамический радиус. Переход клубок-глобула. 	
 Коэффициент набухания. Концепция блобов. 	Билет 5
1. Коэффициент набухания цепочки.	Билет 6
2. Характерные концентрация полимерного раство	pa.

Контроль остаточных знаний - качественное знание любого вопроса программы.

Регламент БРС спецкурса «Физика полимеров» (3 курс, физика полимеров, 5 семестр)

Nº	Вид работы	Баллы
1	Текущая работа на занятиях по темам	20
2	Контрольная работа 1(по темам занятий 1-3)	10
3	Контрольная работа 2 (по темам занятий 4-7)	10
4	Контрольная работа 3 (по темам занятий 15-16)	10
5	Экзамен	50
	Итого	100

	Темы занятий	баллы
1	Идеальная свободно-сочлененная цепочка. Сегмент Куна.	1
2	Функция распределения радиуса Флори.	1
3	Радиус Флори. Радиус инерции, гидродинамический радиус.	1
4	Проблема объемных взаимодействий. Метод функций Майера. Второй вириальный коэффициент.	1
5	Θ -температура. Θ -область. Z- фактор набухания Флори. Коэффициент набухания.	2
6	Приближение среднего поля. Число самопересечений идеальной цепочки в d-мерном пространстве.	1
7	Уравнение для коэффициента набухания радиуса Флори.	1
8	Экспериментальное определение длины сегмента Куна.	2
9	Уравнение Ланжевена. Соотношение Эйнштейна.	1
10	Модель Рауза.	1
11	Нормальные моды Рауза.	1
12	Спектр времен релаксаций цепочки Рауза.	1
13	Бинарные динамические функции нормальных мод Рауза.	2
14	Среднеквадратичное смещение сегментов цепи Рауза.	1
15	Затухание автокорреляционной функции радиуса Флори цепочки Рауза.	1
16	Затухание тангенциального вектора модели Рауза.	1
17	Зацепленные полимерные системы.	1

Преподаватель:

профессор Н. Ф.Фаткуллин. доцент М.А. Рудакова