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A vector in a coordinate system is a directed line between two points. It
has magnitude and direction. Once we define a coordinate origin, each
particle in a system has a position vector
(e.g. – 𝐴𝐴) associated with its location in space drawn from the origin to
the physical coordinates of the particle (e.g. – (Ax, Ay, Az)):

𝐴𝐴 = 𝐴𝐴𝑥𝑥 �𝑥𝑥 + 𝐴𝐴𝑦𝑦 �𝑦𝑦 + 𝐴𝐴𝑧𝑧𝑧̂𝑧
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The position vectors clearly depend on the choice of
coordinate origin. However, the difference vector or
displacement vector between two position vectors does not
depend on the coordinate origin. To see this, let us consider
the addition of two vectors:

𝐴𝐴 + 𝐵𝐵 = 𝐶𝐶

Note that vector addition proceeds by putting the tail of one
at the head of the other, and constructing the vector that
completes the triangle.

𝑪𝑪 = 𝑨𝑨 + 𝑩𝑩

𝑪𝑪 = 𝑨𝑨 − 𝑩𝑩
= 𝑨𝑨 + (−𝑩𝑩)



Vector

If we are given a vector in terms of its length (magnitude) and orientation (direction angle(s)) then
we must evaluate its cartesian components before we can add them (for example, in 2D):

𝐴𝐴𝑥𝑥 = 𝐴𝐴 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃𝐴𝐴 𝐵𝐵𝑥𝑥 = 𝐵𝐵 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃𝐵𝐵
𝐴𝐴𝑦𝑦 = 𝐴𝐴 𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃𝐴𝐴 𝐵𝐵𝑦𝑦 = 𝐵𝐵 𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃𝐵𝐵

This process is called decomposing the vector into its cartesian components.

The difference between two vectors is defined by the addition law. Subtraction is just adding the
negative of the vector in question, that is, the vector with the same magnitude but the opposite
direction. This is consistent with the notion of adding or subtracting its components.



Scalar

When we reconstruct a vector from its components, we are just using the law of vector addition itself,
by scaling some special vectors called unit vectors and then adding them. Unit vectors are (typically
perpendicular) vectors that define the essential directions and orientations of a coordinate system and
have unit length. Scaling them involves multiplying these unit vectors by a number that represents the
magnitude of the vector component. This scaling number has no direction and is called a scalar.

𝐵𝐵 = 𝐶𝐶𝐴𝐴
where C is a scalar (number) and 𝐴𝐴 is a vector. In this case, 𝐴𝐴 || 𝐵𝐵 (𝐴𝐴 is parallel to 𝐵𝐵).

𝑩𝑩

𝑨𝑨 𝑨𝑨 𝑨𝑨 𝑨𝑨 𝑨𝑨



Let’s define products that multiply two vectors together

The first product creates a scalar (ordinary number with magnitude but no direction) out of two
vectors and is therefore called a scalar product or (because of the multiplication symbol chosen) a
dot product.

𝐴𝐴 = + 𝐴𝐴 � 𝐴𝐴

𝐴𝐴 � 𝐵𝐵 = 𝐴𝐴𝑥𝑥 ∗ 𝐵𝐵𝑥𝑥 + 𝐴𝐴𝑦𝑦 ∗ 𝐵𝐵𝑦𝑦 … = 𝐴𝐴 𝐵𝐵 cos(𝜃𝜃𝐴𝐴𝐴𝐴)

A scalar product is the length of one vector (either one, say |𝐴𝐴|) times the component of the other 
vector (|𝐵𝐵| 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃𝐴𝐴𝐵𝐵 ) that points in the same direction as the vector 𝐴𝐴. 
This product is symmetric and commutative (𝐴𝐴 and 𝐵𝐵 can appear in either order or role).

𝑩𝑩

𝑨𝑨

𝜽𝜽

𝐴𝐴 cos(𝜃𝜃)



A vector product
The other product multiplies two vectors in a way that creates a third vector. It is called a vector 
product or (because of the multiplication symbol chosen) a cross product.

𝐴𝐴 × 𝐵𝐵 = 𝐴𝐴𝑥𝑥 ∗ 𝐵𝐵𝑦𝑦 − 𝐴𝐴𝑦𝑦 ∗ 𝐵𝐵𝑥𝑥 𝑧̂𝑧 + 𝐴𝐴𝑦𝑦 ∗ 𝐵𝐵𝑧𝑧 − 𝐴𝐴𝑧𝑧 ∗ 𝐵𝐵𝑦𝑦 �𝑥𝑥 + 𝐴𝐴𝑧𝑧 ∗ 𝐵𝐵𝑥𝑥 − 𝐴𝐴𝑥𝑥 ∗ 𝐵𝐵𝑧𝑧 �𝑦𝑦

𝐴𝐴 × 𝐵𝐵 = 𝐴𝐴 𝐵𝐵 sin(𝜃𝜃𝐴𝐴𝐴𝐴)

𝐴𝐴 × 𝐵𝐵 = −𝐵𝐵 × 𝐴𝐴

Let’s define the direction of the cross product using the right hand rule:

Let the fingers of your right hand lie along the direction of the first vector in a
cross product (say 𝐴𝐴 below). Let them curl naturally through the small angle
(observe that there are two, one of which is larger than π and one of which is
less than π) into the direction of 𝐵𝐵 . The erect thumb of your right hand then
points in the general direction of the cross product vector – it at least
indicates which of the two perpendicular lines should be used as a direction,
unless your thumb and fingers are all double jointed or your bones are
missing or you used your left-handed right hand or something.

𝑩𝑩
𝑨𝑨
𝜽𝜽

𝑨𝑨 × 𝑩𝑩

𝑩𝑩 × 𝑨𝑨 = −𝑨𝑨 × 𝑩𝑩



Lecture 1. Newton’s Laws

Coordinates

Physics is the study of dynamics. Dynamics is the description of the actual forces of nature that, we
believe, underlie the causal structure of the Universe and are responsible for its evolution in time. We
are about to embark upon the intensive study of a simple description of nature that introduces the
concept of a force, due to Isaac Newton. A force is considered to be the causal agent that produces
the effect of acceleration in any massive object, altering its dynamic state of motion.

a) meters – the SI units of length
b) seconds – the SI units of time
c) kilograms – the SI units of mass

Coordinatized visualization of the motion of a particle
of mass m along a trajectory x⃗(t). Note that in a short
time Δt the particle’s position changes from x⃗(t) to
x⃗(t+Δt) .

x⃗(t)=x(t) �𝑥𝑥 + 𝑦𝑦(𝑡𝑡) �𝑦𝑦



Lecture 1. Newton’s Laws

Velocity

The average velocity of the particle is by definition the vector change in its position ∆x⃗ in some time Δt
divided by that time:

𝑣⃗𝑣𝑎𝑎𝑎𝑎 =
∆𝑥⃗𝑥
∆𝑡𝑡

Sometimes average velocity is useful, but often, even usually, it is not. It can be a rather poor measure for
how fast a particle is actually moving at any given time, especially if averaged over times that are long
enough for interesting changes in the motion to occur.

The instantaneous velocity vector is the time-derivative of the position vector:

𝑣⃗𝑣 𝑡𝑡 = lim
∆𝑡𝑡→0

𝑥⃗𝑥 𝑡𝑡 + ∆𝑡𝑡 − 𝑥⃗𝑥(𝑡𝑡)
∆𝑡𝑡

= lim
∆𝑡𝑡→0

∆𝑥⃗𝑥
∆𝑡𝑡

=
𝑑𝑑𝑥⃗𝑥
𝑑𝑑𝑑𝑑

Speed is defined to be the magnitude of the velocity vector:
𝑣𝑣 𝑡𝑡 = 𝑣⃗𝑣(𝑡𝑡)



Lecture 1. Newton’s Laws

Acceleration

To see how the velocity changes in time, we will need to consider the acceleration of a particle, or the
rate at which the velocity changes. As before, we can easily define an average acceleration over a
possibly long time interval Δt as:

𝑎⃗𝑎𝑎𝑎𝑎𝑎 =
𝑣⃗𝑣 𝑡𝑡 + ∆𝑡𝑡 − 𝑣⃗𝑣(𝑡𝑡)

∆𝑡𝑡
=
𝑑𝑑𝑣⃗𝑣
𝑑𝑑𝑑𝑑

The acceleration that really matters is (again) the limit of the average over very short times; the time
derivative of the velocity. This limit is thus defined to be the instantaneous acceleration:

𝑎⃗𝑎 𝑡𝑡 = lim
∆𝑡𝑡→0

∆𝑣⃗𝑣
∆𝑡𝑡

=
𝑑𝑑𝑣⃗𝑣
𝑑𝑑𝑑𝑑

=
𝑑𝑑2𝑥⃗𝑥
𝑑𝑑𝑑𝑑2



Lecture 1. Newton’s Laws

Newton’s Laws

a) Law of Inertia: Objects at rest or in uniform motion (at a constant velocity) in an inertial reference frame remain 
so unless acted upon by an unbalanced (net, total) force. We can write this algebraically as: 

𝐹⃗𝐹 = ∑𝑖𝑖 𝐹⃗𝐹𝑖𝑖 = 0 = 𝑚𝑚𝑎⃗𝑎 = 𝑚𝑚𝑑𝑑𝑣𝑣
𝑑𝑑𝑑𝑑
⇒ 𝑣⃗𝑣 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣

b) Law of Dynamics: The total force applied to an object is directly proportional to its acceleration in an inertial 
reference frame. The constant of proportionality is called the mass of the object. We write this algebraically as:

𝐹⃗𝐹 = �
𝑖𝑖

𝐹⃗𝐹𝑖𝑖 = 𝑚𝑚𝑎⃗𝑎 =
𝑑𝑑(𝑚𝑚𝑣⃗𝑣)
𝑑𝑑𝑑𝑑

=
𝑑𝑑𝑝⃗𝑝
𝑑𝑑𝑑𝑑

where we introduce the momentum of a particle, 𝑝⃗𝑝 = 𝑚𝑚𝑣⃗𝑣.
c) Law of Reaction: If object A exerts a force 𝐹⃗𝐹𝐴𝐴𝐴𝐴 on object B along a line connecting the two objects, then object B 

exerts an equal and opposite reaction force of 𝐹⃗𝐹𝐴𝐴𝐴𝐴 = −𝐹⃗𝐹𝐵𝐵𝐴𝐴 on object A. We write this algebraically as:

𝐹⃗𝐹𝑖𝑖𝑗𝑗 = −𝐹⃗𝐹𝑗𝑗𝑖𝑖 𝑜𝑜𝑜𝑜 �
𝑖𝑖,𝑗𝑗

𝐹⃗𝐹𝑖𝑖𝑖𝑖 = 0

where i and j are arbitrary particle labels. The latter form will be useful to us later; it means that the sum of all 
internal forces between particles in any closed system of particles cancels!



Lecture 1. Newton’s Laws

Forces

Classical dynamics at this level, in a nutshell, is very simple. Find the total force on an object. Use
Newton’s second law to obtain its acceleration (as a differential equation of motion). Solve the equation
of motion by direct integration or otherwise for the position and velocity.

The next most important problem is: how do we evaluate the total force?

There are fundamental forces – elementary forces that we call “laws of nature” because the forces 
themselves aren’t caused by some other force, they are themselves the actual causes of dynamical action 
in the visible Universe.

The Forces of Nature (strongest to weakest):

a) Strong Nuclear (bound together the quarks, protons and neutrons)

b) Electromagnetic (combines the positive nucleus with electrons)

c) Weak Nuclear (acts at very short range. This force can cause e.g. neutrons to give off an electron and 
turn into a proton)

d) Gravity



Lecture 1. Newton’s Laws

Force Rules
a) Gravity (near the surface of the earth): 

𝐹𝐹𝑔𝑔 = 𝑚𝑚𝑚𝑚, 𝑔𝑔 ≈ 9,81 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠2

≈ 10 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠2

b) The Spring (Hooke’s Law) in one dimension:
𝐹𝐹𝑥𝑥 = −𝑘𝑘∆𝑥𝑥

c) The Normal Force: 
𝐹𝐹⊥ = 𝑁𝑁

d) Tension in an Acme (massless, unstretchable, unbreakable) string: 
𝐹𝐹𝑆𝑆 = 𝑇𝑇

e) Static Friction:
𝑓𝑓𝑆𝑆 ≤ 𝜇𝜇𝑠𝑠𝑁𝑁

f) Kinetic Friction:
𝑓𝑓𝑘𝑘 = 𝜇𝜇𝑘𝑘𝑁𝑁

g) Fluid Forces, Pressure: A fluid in contact with a solid surface (or anything else) in general exerts a force on that 
surface that is related to the pressure of the fluid:

𝐹𝐹𝑃𝑃 = 𝑃𝑃𝑃𝑃
h) Drag Forces: 

𝐹𝐹𝑑𝑑 = −𝑏𝑏𝑣𝑣𝑛𝑛



Lecture 1. Newton’s Laws

Force Balance – Static Equilibrium

If all of the forces acting on an object balance:

𝐹⃗𝐹𝑡𝑡𝑡𝑡𝑡𝑡 = �
𝑖𝑖

𝐹⃗𝐹𝑖𝑖 = 𝑚𝑚𝑎⃗𝑎 = 0

Example: Spring and Mass in Static Force Equilibrium

Suppose we have a mass m hanging on a spring with spring constant k such that the spring is stretched out some distance 
Δx from its unstretched length. 

A mass m hangs on a spring with spring constant k. We would like to compute the amount Δx
by which the string is stretched when the mass is at rest in static force equilibrium.

�𝐹𝐹𝑥𝑥 = −𝑘𝑘 𝑥𝑥 − 𝑥𝑥0 − 𝑚𝑚𝑚𝑚 = 𝑚𝑚𝑎𝑎𝑥𝑥

or (with Δx = x − x0, so that Δx is negative as shown)

𝑎𝑎𝑥𝑥 = −
𝑘𝑘
𝑚𝑚
∆𝑥𝑥 − 𝑔𝑔



Lecture 1. Newton’s Laws

Force Balance – Static Equilibrium

In static equilibrium, 𝑎𝑎𝑥𝑥 = 0 (and hence, 𝐹𝐹𝑥𝑥 = 0) and we can solve for Δx:

𝑎𝑎𝑥𝑥 = −
𝑘𝑘
𝑚𝑚
∆𝑥𝑥 − 𝑔𝑔 = 0

𝑘𝑘
𝑚𝑚
∆𝑥𝑥 = 𝑔𝑔

∆𝑥𝑥 =
𝑚𝑚𝑚𝑚
𝑘𝑘



Lecture 1. Newton’s Laws

Simple Motion in One Dimension

A mass m at rest is dropped from a height H above the ground at time t = 0; what happens to the mass as 
a function of time?

1. You must select a coordinate system to use to describe what happens. 

2. You must write Newton’s Second Law in the coordinate system for all masses, being sure to include 
all forces or force rules that contribute to its motion.

3. You must solve Newton’s Second Law to find the accelerations of all the masses (equations called 
the equations of motion of the system). 

4. You must solve the equations of motion to find the trajectories of the masses, their positions as a 
function of time, as well as their velocities as a function of time if desired. 

5. Finally, armed with these trajectories, you must answer all the questions the problem poses using 
algebra and reason



Lecture 1. Newton’s Laws

Example: A Mass Falling from Height H 

Draw in all of the forces that act on the mass as proportionate 
vector arrows in the direction of the force.

𝐹⃗𝐹 = −𝑚𝑚𝑚𝑚�𝑦𝑦

or if you prefer, you can write the dimension-labelled scalar 
equation for the magnitude of the force in the y-direction:

𝐹𝐹𝑦𝑦 = −𝑚𝑚𝑚𝑚

𝐹𝐹𝑦𝑦 = −𝑚𝑚𝑚𝑚 = 𝑚𝑚𝑚𝑚𝑦𝑦

𝑚𝑚𝑚𝑚𝑦𝑦 = −𝑚𝑚𝑚𝑚

𝑎𝑎𝑦𝑦 = −𝑔𝑔

𝑑𝑑2𝑦𝑦
𝑑𝑑𝑑𝑑2

=
𝑑𝑑𝑣𝑣𝑦𝑦
𝑑𝑑𝑑𝑑

= −𝑔𝑔

where g = 10 m/second2



Lecture 1. Newton’s Laws

Example: A Mass Falling from Height H 
The last line (the algebraic expression for the acceleration) is called the equation of motion for the 
system

𝑑𝑑𝑣𝑣𝑦𝑦
𝑑𝑑𝑑𝑑

= −𝑔𝑔 Next, multiply both sides by dt to get:

𝑑𝑑𝑣𝑣𝑦𝑦 = −𝑔𝑔𝑔𝑔𝑔𝑔 Then integrate both sides:

∫𝑑𝑑𝑣𝑣𝑦𝑦 = −∫𝑔𝑔𝑔𝑔𝑔𝑔 doing the indefinite integrals to get:

𝑣𝑣𝑦𝑦 𝑡𝑡 = −𝑔𝑔 � 𝑡𝑡 + 𝐶𝐶

The final C is the constant of integration of the indefinite integrals. We have to evaluate it using the
given (usually initial) conditions. In this case we know that:

𝑣𝑣𝑦𝑦 0 = −𝑔𝑔 � 0 + 𝐶𝐶 = 𝐶𝐶 = 0

Thus:

𝑣𝑣𝑦𝑦 𝑡𝑡 = −𝑔𝑔𝑔𝑔

We now know the velocity of the dropped ball as a function of time!



Lecture 1. Newton’s Laws

Example: A Mass Falling from Height H 
However, the solution to the dynamical problem is the trajectory function, y(t). To find it, we repeat the same process, 
but now use the definition for vy in terms of y:

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑣𝑣𝑦𝑦 𝑡𝑡 = −𝑔𝑔𝑔𝑔 Multiply both sides by dt to get:

𝑑𝑑𝑑𝑑 = −𝑔𝑔𝑔𝑔 𝑑𝑑𝑑𝑑 Next, integrate both sides:

∫𝑑𝑑𝑑𝑑 = −∫𝑔𝑔𝑔𝑔 𝑑𝑑𝑑𝑑 to get:

𝑦𝑦 𝑡𝑡 = −
1
2
𝑔𝑔𝑡𝑡2 + 𝐷𝐷

The final D is again the constant of integration of the indefinite integrals. We again have to evaluate it using the given
(initial) conditions in the problem. In this case we know that:

𝑦𝑦 0 = −
1
2
𝑔𝑔02 + 𝐷𝐷 = 𝐷𝐷 = 𝐻𝐻

because we dropped it from an initial height 𝑦𝑦 0 = 𝐻𝐻. Thus:

𝑦𝑦 𝑡𝑡 = −1
2
𝑔𝑔𝑡𝑡2 + 𝐻𝐻

and we know everything there is to know about the motion!



Lecture 1. Newton’s Laws

Example: A Mass Falling from Height H 
Finally, we have to answer any questions that the problem might ask! Here are a couple of common questions you can 
now answer using the solutions you just obtained:

a) How long will it take for the ball to reach the ground?

b) How fast is it going when it reaches the ground?

To answer the first one, we use a bit of algebra. “The ground” is (recall) y = 0 and it will reach there at some specific
time (the time we want to solve for) tg.

We write the condition that it is at the ground at time tg :

𝑦𝑦 𝑡𝑡𝑔𝑔 = −
1
2
𝑔𝑔𝑡𝑡2 + 𝐻𝐻 = 0

If we rearrange this and solve for tg we get:

𝑡𝑡𝑔𝑔 = ±
2𝐻𝐻
𝑔𝑔



Lecture 1. Newton’s Laws

Example: A Mass Falling from Height H 
To find the speed at which it hits the ground, one can just take our correct (future) time and plug it into 
vy! That is:

𝑣𝑣𝑔𝑔 = 𝑣𝑣𝑦𝑦 𝑡𝑡𝑔𝑔 = −𝑔𝑔𝑡𝑡𝑔𝑔 = −𝑔𝑔
2𝐻𝐻
𝑔𝑔

= − 2𝑔𝑔𝑔𝑔

Note well that it is going down (in the negative y direction) when it hits the ground.



Lecture 1. Newton’s Laws

Example: A Constant Force in One Dimension
A car of mass m is travelling at a constant speed v0 as it enters a long, nearly straight merge lane. A
distance d from the entrance, the driver presses the accelerator and the engine exerts a constant force of
magnitude F on the car.

a) How long does it take the car to reach a final velocity vf > v0?

b) How far (from the entrance) does it travel in that time?



Lecture 1. Newton’s Laws

Example: A Constant Force in One Dimension
We will write Newton’s Second Law and solve for the acceleration (obtaining an equation of motion). Then we will
integrate twice to find first vx(t) and then x(t).

𝐹𝐹 = 𝑚𝑚𝑎𝑎𝑥𝑥

𝑎𝑎𝑥𝑥 = 𝐹𝐹
𝑚𝑚

= 𝑎𝑎0 (a constant)

𝑑𝑑𝑣𝑣𝑥𝑥
𝑑𝑑𝑑𝑑

= 𝑎𝑎0

Next, multiply through by dt and integrate both sides:

𝑣𝑣𝑥𝑥 𝑡𝑡 = �𝑑𝑑𝑣𝑣𝑥𝑥 = �𝑎𝑎0𝑑𝑑𝑑𝑑 = 𝑎𝑎0𝑡𝑡 + 𝑉𝑉 =
𝐹𝐹
𝑚𝑚
𝑡𝑡 + 𝑉𝑉

V is a constant of integration that we will evaluate below.

Note that if 𝑎𝑎0 = 𝐹𝐹/𝑚𝑚 was not a constant (say that F(t) is a function of time) then we would have to do the integral:

𝑣𝑣𝑥𝑥 𝑡𝑡 = �
𝐹𝐹(𝑡𝑡)
𝑚𝑚

𝑑𝑑𝑡𝑡 =
1
𝑚𝑚
�𝐹𝐹 𝑡𝑡 𝑑𝑑𝑑𝑑 =? ? ?



Lecture 1. Newton’s Laws

Example: A Constant Force in One Dimension

At time t = 0, the velocity of the car in the x-direction is v0, so V = v0 and:

𝑣𝑣𝑥𝑥 𝑡𝑡 = 𝑎𝑎0𝑡𝑡 + 𝑣𝑣0 =
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

We multiply this equation by dt on both sides, integrate, and get:

𝑥𝑥 𝑡𝑡 = �𝑑𝑑𝑑𝑑 = �(𝑎𝑎0𝑡𝑡 + 𝑣𝑣0)𝑑𝑑𝑑𝑑 =
1
2
𝑎𝑎0𝑡𝑡2 + 𝑣𝑣0𝑡𝑡 + 𝑥𝑥0

where x0 is the constant of integration. We note that at time t = 0, x(0) = d, so x0 = d. Thus:

𝑥𝑥 𝑡𝑡 =
1
2
𝑎𝑎0𝑡𝑡2 + 𝑣𝑣0𝑡𝑡 + 𝑑𝑑

𝑣𝑣𝑥𝑥 𝑡𝑡 = 𝑎𝑎0𝑡𝑡 + 𝑣𝑣0

𝑥𝑥 𝑡𝑡 =
1
2
𝑎𝑎0𝑡𝑡2 + 𝑣𝑣0𝑡𝑡 + 𝑥𝑥0
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Motion in Two Dimensions
The idea of motion in two or more dimensions is very simple. Force is a vector, and so is acceleration. Newton’s
Second Law is a recipe for taking the total force and converting it into a differential equation of motion:

𝑎⃗𝑎 =
𝑑𝑑2𝑟𝑟
𝑑𝑑𝑑𝑑2

=
𝐹⃗𝐹𝑡𝑡𝑡𝑡𝑡𝑡
𝑚𝑚

If we write the equation of motion out in components:

𝑎𝑎𝑥𝑥 =
𝑑𝑑2𝑥𝑥
𝑑𝑑𝑑𝑑2

=
𝐹𝐹𝑡𝑡𝑡𝑡𝑡𝑡,𝑥𝑥

𝑚𝑚

𝑎𝑎𝑦𝑦 =
𝑑𝑑2𝑦𝑦
𝑑𝑑𝑑𝑑2

=
𝐹𝐹𝑡𝑡𝑡𝑡𝑡𝑡,𝑦𝑦

𝑚𝑚

𝑎𝑎𝑧𝑧 =
𝑑𝑑2𝑧𝑧
𝑑𝑑𝑑𝑑2

=
𝐹𝐹𝑡𝑡𝑡𝑡𝑡𝑡,𝑧𝑧

𝑚𝑚

we will often reduce the complexity of the problem from a “three dimensional problem” to three “one dimensional
problems”.

Select a coordinate system in which one of the coordinate axes is aligned with the total force.



Lecture 1. Newton’s Laws

Example: Trajectory of a Cannonball

An idealized cannon, neglecting the drag force of the air. Let x be the horizontal direction and y be the vertical
direction, as shown. Note well that 𝐹⃗𝐹𝑔𝑔 = −𝑚𝑚𝑚𝑚𝑦⃗𝑦 points along one of the coordinate directions while Fx = (Fz = ) 0 in
this coordinate frame.

A cannon fires a cannonball of mass m at an initial speed v0 at an angle θ with respect to the ground as shown in
figure. Find:

a) The time the cannonball is in the air.

b) The range of the cannonball.



Lecture 1. Newton’s Laws

Example: Trajectory of a Cannonball
Newton’s Second Law for both coordinate directions:

𝐹𝐹𝑥𝑥 = 𝑚𝑚𝑎𝑎𝑥𝑥 = 0

𝐹𝐹𝑦𝑦 = 𝑚𝑚𝑎𝑎𝑦𝑦 = 𝑚𝑚
𝑑𝑑2𝑦𝑦
𝑑𝑑𝑑𝑑2

= −𝑚𝑚𝑚𝑚

We divide each of these equations by m to obtain two equations of motion, one for x and the other for y:

𝑎𝑎𝑥𝑥 = 0

𝑎𝑎𝑦𝑦 = −𝑔𝑔

We solve them independently. In x:

𝑎𝑎𝑥𝑥 =
𝑑𝑑𝑑𝑑𝑥𝑥
𝑑𝑑𝑑𝑑

= 0

The derivative of any constant is zero, so the x-component of the velocity does not change in time. We find the initial
(and hence constant) component using trigonometry:

𝑣𝑣𝑥𝑥 𝑡𝑡 = 𝑣𝑣0𝑥𝑥 = 𝑣𝑣0 cos𝜃𝜃



Lecture 1. Newton’s Laws

Example: Trajectory of a Cannonball
We then write this in terms of derivatives and solve it:

𝑣𝑣𝑥𝑥 𝑡𝑡 =
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑣𝑣0 cos(𝜃𝜃)

𝑑𝑑𝑑𝑑 = 𝑣𝑣0 cos(𝜃𝜃)𝑑𝑑𝑑𝑑

�𝑑𝑑𝑑𝑑 = 𝑣𝑣0 cos(𝜃𝜃)�𝑑𝑑𝑑𝑑

𝑥𝑥 𝑡𝑡 = 𝑣𝑣0 cos(𝜃𝜃) 𝑡𝑡 + 𝐶𝐶

We evaluate C (the constant of integration) from our knowledge that in the coordinate system we
selected, x(0) = 0 so that C = 0. Thus:

𝑥𝑥 𝑡𝑡 = 𝑣𝑣0 cos(𝜃𝜃) 𝑡𝑡



Lecture 1. Newton’s Laws

Example: Trajectory of a Cannonball
The solution in y is more or less identical to the solution that we obtained above dropping a ball, except
the constants of integration are different:

𝑎𝑎𝑦𝑦 =
𝑑𝑑𝑣𝑣𝑦𝑦
𝑑𝑑𝑑𝑑

= −𝑔𝑔

𝑑𝑑𝑣𝑣𝑦𝑦 = −𝑔𝑔𝑔𝑔𝑔𝑔

�𝑑𝑑𝑣𝑣𝑦𝑦 = −�𝑔𝑔 𝑑𝑑𝑑𝑑

𝑣𝑣𝑦𝑦 𝑡𝑡 = −𝑔𝑔𝑔𝑔 + 𝐶𝐶′

For this problem, we know from trigonometry that:

𝑣𝑣𝑦𝑦 0 = 𝑣𝑣0 sin(𝜃𝜃)

so that 𝐶𝐶′ = 𝑣𝑣0 sin(𝜃𝜃) and:

𝑣𝑣𝑦𝑦 𝑡𝑡 = −𝑔𝑔𝑔𝑔 + 𝑣𝑣0 sin(𝜃𝜃)



Lecture 1. Newton’s Laws

Example: Trajectory of a Cannonball
We write vy in terms of the time derivative of y and integrate:

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑣𝑣𝑦𝑦 𝑡𝑡 = −𝑔𝑔𝑔𝑔 + 𝑣𝑣0 sin 𝜃𝜃

𝑑𝑑𝑑𝑑 = (−𝑔𝑔𝑔𝑔 + 𝑣𝑣0 sin 𝜃𝜃 )𝑑𝑑𝑑𝑑

�𝑑𝑑𝑑𝑑 = �(−𝑔𝑔𝑔𝑔 + 𝑣𝑣0 sin 𝜃𝜃 )𝑑𝑑𝑑𝑑

𝑦𝑦 𝑡𝑡 = −
1
2
𝑔𝑔𝑡𝑡2 + 𝑣𝑣0 sin 𝜃𝜃 𝑡𝑡 + 𝐷𝐷

Again we use y(0) = 0 in the coordinate system we selected to set D = 0 and get:

𝑦𝑦 𝑡𝑡 = −
1
2
𝑔𝑔𝑡𝑡2 + 𝑣𝑣0 sin 𝜃𝜃 𝑡𝑡



Lecture 1. Newton’s Laws

Example: Trajectory of a Cannonball
Collecting the results from above, our overall solution is thus:

𝑥𝑥 𝑡𝑡 = 𝑣𝑣0 cos(𝜃𝜃) 𝑡𝑡

𝑦𝑦 𝑡𝑡 = −
1
2
𝑔𝑔𝑡𝑡2 + 𝑣𝑣0 sin 𝜃𝜃 𝑡𝑡

𝑣𝑣𝑥𝑥 𝑡𝑡 = 𝑣𝑣0𝑥𝑥 = 𝑣𝑣0 cos𝜃𝜃

𝑣𝑣𝑦𝑦 𝑡𝑡 = −𝑔𝑔𝑔𝑔 + 𝑣𝑣0 sin(𝜃𝜃)

We know exactly where the cannonball is at all times, and we know exactly what its velocity is as well.



Lecture 1. Newton’s Laws

The Inclined Plane

In this problem we will talk about a new force, the normal force. Recall from above that the
normal force is whatever magnitude it needs to be to prevent an object from moving in to a
solid surface, and is always perpendicular (normal) to that surface in direction.

This is the naive/wrong coordinate system to use
for the inclined plane problem. The problem can
be solved in this coordinate frame, but the
solution (as you can see) would be quite difficult.



Lecture 1. Newton’s Laws

The Inclined Plane

A block m rests on a plane inclined at an angle of θ with respect to the horizontal. There is no
friction, but the plane exerts a normal force on the block that keeps it from falling straight
down. At time t = 0 it is released (at a height H = Lsin(θ) above the ground), and we might
then be asked any of the “usual” questions – how long does it take to reach the ground, how
fast is it going when it gets there and so on.

The motion we expect is for the block to slide down
the incline, and for us to be able to solve the problem
easily we have to use our intuition and ability to
visualize this motion to select the best coordinate
frame.



Lecture 1. Newton’s Laws

The Inclined Plane

Let’s try to decompose these forces in terms of our coordinate system:
𝑁𝑁𝑥𝑥 = 𝑁𝑁 sin𝜃𝜃
𝑁𝑁𝑦𝑦 = 𝑁𝑁 cos𝜃𝜃

where 𝑁𝑁 = 𝑁𝑁 is the (unknown) magnitude of the normal force.

We then add up the total forces in each direction and write
Newton’s Second Law for each direction’s total force :

𝐹𝐹𝑥𝑥 = 𝑁𝑁 sin𝜃𝜃 = 𝑚𝑚𝑎𝑎𝑥𝑥
𝐹𝐹𝑦𝑦 = 𝑁𝑁 cos𝜃𝜃 − 𝑚𝑚𝑚𝑚 =𝑚𝑚𝑎𝑎𝑦𝑦

Finally, we write our equations of motion for each direction:

𝑎𝑎𝑥𝑥 =
𝑁𝑁 sin𝜃𝜃
𝑚𝑚

𝑎𝑎𝑦𝑦 =
𝑁𝑁 cos𝜃𝜃 −𝑚𝑚𝑚𝑚

𝑚𝑚
Unfortunately, we cannot solve these two equations as
written yet. That is because we do not know the value of
N; it is in fact something we need to solve for!



Lecture 1. Newton’s Laws

The Inclined Plane

To solve them we need to add a condition on the solution, expressed as an equation. The
condition we need to add is that the motion is down the incline, that is, at all times:

𝑦𝑦(𝑡𝑡)
𝐿𝐿 cos𝜃𝜃 − 𝑥𝑥(𝑡𝑡)

= tan𝜃𝜃

That means that:
𝑦𝑦 𝑡𝑡 = 𝐿𝐿 cos𝜃𝜃 − 𝑥𝑥 𝑡𝑡 tan𝜃𝜃

𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑑𝑑

= −
𝑑𝑑𝑑𝑑 𝑡𝑡
𝑑𝑑𝑑𝑑

tan𝜃𝜃
𝑑𝑑2𝑦𝑦(𝑡𝑡)
𝑑𝑑𝑡𝑡2

= −
𝑑𝑑2𝑥𝑥 𝑡𝑡
𝑑𝑑𝑡𝑡2

tan𝜃𝜃
𝑎𝑎𝑦𝑦 = −𝑎𝑎𝑥𝑥 tan𝜃𝜃

We can use this relation to eliminate (say) ay from the equations above, solve for ax, then
backsubstitute to find ay.

The solutions we get will be so very complicated (at least compared to choosing a better
frame), with both x and y varying nontrivially with time!



A good choice of coordinate frame has (say) the x-
coordinate lined up with the total force and hence
direction of motion.

Lecture 1. Newton’s Laws

The Inclined Plane

We can decompose the forces in this coordinate
system, but now we need to find the components of
the gravitational force as 𝑁𝑁 = 𝑁𝑁�𝑦𝑦 is easy!
Furthermore, we know that ay = 0 and hence Fy = 0.

𝐹𝐹𝑥𝑥 = 𝑚𝑚𝑚𝑚 sin𝜃𝜃 = 𝑚𝑚𝑎𝑎𝑥𝑥
𝐹𝐹𝑦𝑦 = 𝑁𝑁 −𝑚𝑚𝑚𝑚 cos𝜃𝜃 = 𝑚𝑚𝑎𝑎𝑦𝑦 = 0

We can immediately solve the y equation for:
𝑁𝑁 = 𝑚𝑚𝑚𝑚 cos𝜃𝜃

and write the equation of motion for the x-direction: 𝑎𝑎𝑥𝑥 = 𝑔𝑔 sin𝜃𝜃 which is a constant.
From this point on the solution should be familiar – since 𝑣𝑣𝑦𝑦 0 = 0 and 𝑦𝑦 0 = 0, 𝑦𝑦 𝑡𝑡 = 0
and we can ignore y altogether and the problem is now one dimensional!
See if you can find how long it takes for the block to reach bottom, and how fast it is going
when it gets there. You should find that 𝑣𝑣𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 2𝑔𝑔𝑔𝑔
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Circular Motion

A small ball, moving in a circle of radius r. We are
looking down from above the circle of motion at a
particle moving counterclockwise around the circle. At
the moment, at least, the particle is moving at a constant
speed v (so that its velocity is always tangent to the
circle).

The length of a circular arc is the radius times the angle
subtended by the arc we can see that:

∆𝑠𝑠 = 𝑟𝑟∆𝜃𝜃

Note Well! In this and all similar equations θ must be
measured in radians, never degrees
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Circular Motion

The average speed v of the particle is thus this distance
divided by the time it took to move it:

𝑣𝑣𝑎𝑎𝑎𝑎𝑎𝑎 =
∆𝑠𝑠
∆𝑡𝑡

= 𝑟𝑟
∆𝜃𝜃
∆𝑡𝑡

Of course, we really don’t want to use average speed (at
least for very long) because the speed might be varying,
so we take the limit that Δt → 0 and turn everything into
derivatives, but it is much easier to draw the pictures
and visualize what is going on for a small, finite Δt :

𝑣𝑣 = lim
∆𝑡𝑡→0

𝑟𝑟
∆𝜃𝜃
∆𝑡𝑡

= 𝑟𝑟
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

This speed is directed tangent to the circle of motion (as
one can see in the figure) and we will often refer to it as
the tangential velocity.
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Circular Motion

𝑣𝑣𝑡𝑡 = 𝑟𝑟
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

In this equation, we see that the speed of the particle at
any instant is the radius times the rate that the angle is
being swept out by the particle per unit time. This latter
quantity is a very useful one for describing circular
motion, or rotating systems in general.

We define it to be the angular velocity:

𝜔𝜔 =
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

Thus: 𝑣𝑣 = 𝑟𝑟𝜔𝜔 or 𝜔𝜔 = 𝑣𝑣
𝑟𝑟
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Centripetal Acceleration

A ball of mass m swings down in a circular arc of radius L
suspended by a string, arriving at the bottom with speed v. What
is the tension in the string?

At the bottom of the trajectory, the tension T in the string points
straight up and the force mg points straight down. No other forces
act, so we should choose coordinates such that one axis lines up
with these two forces. Let’s use +y vertically up, aligned with the
string. Then:

𝐹𝐹𝑦𝑦 = 𝑇𝑇 −𝑚𝑚𝑚𝑚 = 𝑚𝑚𝑎𝑎𝑦𝑦 = 𝑚𝑚
𝑣𝑣2

𝐿𝐿

or 𝑇𝑇 = 𝑚𝑚𝑚𝑚 + 𝑚𝑚 𝑣𝑣2

𝐿𝐿

The net force towards the center of the circle must be algebraically equal to mv2/r
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Example: Ball on a String

The velocity of the particle at t and t + Δt. Note that over a very
short time Δt the speed of the particle is at least approximately
constant, but its direction varies because it always has to be
perpendicular to 𝑟𝑟, the vector from the center of the circle to
the particle. The velocity swings through the same angle Δθ
that the particle itself swings through in this (short) time.

In time Δt, then, the magnitude of the change in the velocity is:

∆𝑣𝑣 = 𝑣𝑣∆𝜃𝜃

Consequently, the average magnitude of the acceleration is:

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 =
∆𝑣𝑣
∆𝑡𝑡

= 𝑣𝑣
∆𝜃𝜃
∆𝑡𝑡

The instantaneous magnitude of the acceleration is: 𝑎𝑎 = lim
∆𝑡𝑡→0

𝑣𝑣 ∆𝜃𝜃
∆𝑡𝑡

= 𝑣𝑣 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑣𝑣𝑣𝑣 = 𝑣𝑣2

𝑟𝑟
= 𝑟𝑟𝜔𝜔2

If a particle is moving in a circle at instantaneous speed v, then its acceleration towards the center of that
circle is v2/r (or rω2 if that is easier to use in a given problem).
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Example: Tether Ball/Conic Pendulum

Ball on a rope (a tether ball or conical pendulum). The ball
sweeps out a right circular cone at an angle θ with the vertical
when launched appropriately.

Suppose you hit a tether ball so that it moves in a plane circle at
an angle θ at the end of a string of length L. Find T (the tension
in the string) and v, the speed of the ball such that this is true.

Note well in this figure that the only “real” forces acting on the
ball are gravity and the tension T in the string. Thus in the y-
direction we have:

�𝐹𝐹𝑦𝑦 = 𝑇𝑇cos𝜃𝜃 −𝑚𝑚𝑚𝑚 = 0

and in the x-direction (the minus r-direction, as drawn) we have: ∑𝐹𝐹𝑥𝑥 = 𝑇𝑇sin𝜃𝜃 = 𝑚𝑚𝑎𝑎𝑟𝑟 = 𝑚𝑚𝑣𝑣2

𝑟𝑟

Thus 𝑇𝑇 = 𝑚𝑚𝑚𝑚
cos 𝜃𝜃

𝑣𝑣2 = 𝑇𝑇𝑇𝑇 sin 𝜃𝜃
𝑚𝑚

or   𝑣𝑣 = 𝑔𝑔𝑔𝑔 sin𝜃𝜃 tan𝜃𝜃
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Example: Tangential Acceleration

Sometimes we will want to solve problems where a particle speeds up or slows down while
moving in a circle. Obviously, this means that there is a nonzero tangential acceleration
changing the magnitude of the tangential velocity.

Let’s write 𝐹⃗𝐹 (total) acting on a particle moving in a circle in a coordinate system that rotates
along with the particle – plane polar coordinates. The tangential direction is the 𝜃⃗𝜃 direction,
so we will get:

𝐹⃗𝐹 = 𝐹𝐹𝑟𝑟𝑟̂𝑟 + 𝐹𝐹𝜃𝜃𝜃̂𝜃

From this we will get two equations of motion (connecting this, at long last, to the dynamics
of two dimensional motion):

𝐹𝐹𝑟𝑟 = −𝑚𝑚
𝑣𝑣2

𝑟𝑟

𝐹𝐹𝑡𝑡 = 𝑚𝑚𝑎𝑎𝑡𝑡 = 𝑚𝑚
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
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Friction

The maximum force static friction can exert is proportional to both the pressure between the surfaces
and the area in contact. This makes it proportional to the product of the pressure and the area, which
equals the normal force. We write this as:

𝑓𝑓𝑠𝑠 ≤ 𝑓𝑓𝑠𝑠
𝑚𝑚𝑚𝑚𝑚𝑚

= 𝜇𝜇𝑠𝑠𝑁𝑁

where μs is the coefficient of static friction, a dimensionless constant characteristic of the two surfaces
in contact, and N is the normal force.

Static Friction is the force exerted by one surface on
another that acts parallel to the surfaces to prevent the
two surfaces from sliding.

Static friction is as large as it needs to be to prevent any
sliding motion, up to a maximum value, at which point
the surfaces begin to slide.

The frictional force will depend only on the total force, not the area or pressure separately:

𝑓𝑓𝑘𝑘 = 𝜇𝜇𝑘𝑘𝑃𝑃 ∗ 𝐴𝐴 = 𝜇𝜇𝑘𝑘
𝑁𝑁
𝐴𝐴
∗ 𝐴𝐴 = 𝜇𝜇𝑘𝑘𝑁𝑁
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Inclined Plane of Length L with Friction

A block of mass m released from rest at time t = 0 on a plane of
length L inclined at an angle θ relative to horizontal is once again
given, this time more realistically, including the effects of friction.

a) At what angle θc does the block barely overcome the
force of static friction and slide down the incline?

b) Started at rest from an angle θ>θc (so it definitely
slides), how fast will the block be going when it
reaches the bottom?
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Inclined Plane of Length L with Friction
To answer the first question, we note that static friction exerts
as much force as necessary to keep the block at rest up to the
maximum it can exert, 𝑓𝑓𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚 = 𝜇𝜇𝑠𝑠𝑁𝑁.

We therefore decompose the known force rules into x and y
components, sum them componentwise, write Newton’s
Second Law for both vector components and finally use our
prior knowledge that the system remains in static force
equilibrium to set ax = ay = 0. We get:

�𝐹𝐹𝑥𝑥 = 𝑚𝑚𝑚𝑚 sin𝜃𝜃 − 𝑓𝑓𝑠𝑠 = 0

(for θ ≤ θc and v(0) = 0) and 

�𝐹𝐹𝑦𝑦 = 𝑁𝑁 −𝑚𝑚𝑚𝑚 cos𝜃𝜃 = 0

So far, fs is precisely what it needs to be to prevent motion: 𝑓𝑓𝑠𝑠 = 𝑚𝑚𝑚𝑚 sin𝜃𝜃
while N = 𝑚𝑚𝑚𝑚 cos𝜃𝜃 . It is true at any angle, moving or not moving, from the Fy equation



Lecture 2. Newton’s Laws

Inclined Plane of Length L with Friction
The critical angle is the angle where fs is as large as it can be
such that the block barely doesn’t slide. To find it, we can
substitute fs

max = μsNc where Nc = mg cos(θc) into both
equations, so that the first equation becomes:



Lecture 2. Newton’s Laws

Inclined Plane of Length L with Friction
The critical angle is the angle where fs is as large as it can be
such that the block barely doesn’t slide. To find it, we can
substitute fs

max = μsNc where Nc = mg cos(θc) into both
equations, so that the first equation becomes:

�𝐹𝐹𝑥𝑥 = 𝑚𝑚𝑚𝑚 sin𝜃𝜃𝑐𝑐 − 𝜇𝜇𝑠𝑠𝑚𝑚𝑚𝑚 cos𝜃𝜃𝑐𝑐 = 0

at θc. Solving for θc, we get: θc=tan-1(μs)

Once it is moving then the block will accelerate and 
Newton’s Second Law becomes: 

�𝐹𝐹𝑥𝑥 = 𝑚𝑚𝑚𝑚 sin𝜃𝜃 − 𝜇𝜇𝑘𝑘𝑚𝑚𝑚𝑚 cos𝜃𝜃 = 𝑚𝑚𝑎𝑎𝑥𝑥

which we can solve for the constant acceleration of the block down the incline:
𝑎𝑎𝑥𝑥 = 𝑔𝑔 sin𝜃𝜃 − 𝜇𝜇𝑘𝑘𝑔𝑔 cos𝜃𝜃 = 𝑔𝑔 sin𝜃𝜃 − 𝜇𝜇𝑘𝑘 cos𝜃𝜃)

Given ax, it is now straightforward to answer the second question above. For example, we can integrate 
twice and find vx(t) and x(t), use the latter to find the time it takes to reach the bottom, and substitute that 
time into the former to find the speed at the bottom of the incline.



Lecture 2. Newton’s Laws

Block Hanging off of a Table

Atwood’s machine, sort of, with one block resting on a table with friction and the other dangling over
the side being pulled down by gravity near the Earth’s surface. Note that we should use an “around the
corner” coordinate system as shown, since a1 = a2 = a if the string is unstretchable.



Lecture 2. Newton’s Laws

Block Hanging off of a Table

Suppose a block of mass m1 sits on a table. The coefficients of static and kinetic friction between the
block and the table are μs > μk and μk respectively. This block is attached by an “ideal” massless
unstretchable string running over an “ideal” massless frictionless pulley to a block of mass m2 hanging
off of the table. The blocks are released from rest at time t = 0.

What is the largest that m2 can be before the system starts to move, in terms of the givens and
knowns (m1, g, μk, μs...)?
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Block Hanging off of a Table

Static force equilibrium (ax = ay = 0):

�𝐹𝐹𝑥𝑥1 = 𝑇𝑇 − 𝑓𝑓𝑠𝑠 = 0

�𝐹𝐹𝑦𝑦1 = 𝑁𝑁 −𝑚𝑚1𝑔𝑔 = 0

�𝐹𝐹𝑥𝑥2 = 𝑚𝑚2𝑔𝑔 − 𝑇𝑇 = 0

�𝐹𝐹𝑦𝑦2 = 0

From the second equation, N = m1g. At the point where m2 is the largest it can be (given m1 and so on)
𝑓𝑓𝑠𝑠 = 𝑓𝑓𝑠𝑠

𝑚𝑚𝑚𝑚𝑚𝑚
= 𝜇𝜇𝑠𝑠𝑁𝑁 = 𝜇𝜇𝑠𝑠𝑚𝑚1𝑔𝑔. If we substitute this in and add the two x equations, the T cancels and we

get: 𝑚𝑚2
𝑚𝑚𝑚𝑚𝑚𝑚

𝑔𝑔 − 𝜇𝜇𝑠𝑠𝑚𝑚1𝑔𝑔 = 0 Thus: 𝑚𝑚2
𝑚𝑚𝑚𝑚𝑚𝑚

= 𝜇𝜇𝑠𝑠𝑚𝑚1
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Block Hanging off of a Table

If m2 is larger than this minimum, so m1 will
slide to the right as m2 falls. We will have to
solve Newton’s Second Law for both masses
in order to obtain the non-zero acceleration to
the right and down, respectively:

�𝐹𝐹𝑥𝑥1 = 𝑇𝑇 − 𝑓𝑓𝑘𝑘 = 𝑚𝑚1𝑎𝑎

�𝐹𝐹𝑦𝑦1 = 𝑁𝑁 −𝑚𝑚1𝑔𝑔 = 0

�𝐹𝐹𝑥𝑥2 = 𝑚𝑚2𝑔𝑔 − 𝑇𝑇 = 𝑚𝑚2𝑎𝑎

�𝐹𝐹𝑦𝑦2 = 0

If we substitute the fixed value for 𝑓𝑓𝑘𝑘 = 𝜇𝜇𝑘𝑘𝑁𝑁 = 𝜇𝜇𝑘𝑘𝑚𝑚1𝑔𝑔 and then add the two x equations once again
(using the fact that both masses have the same acceleration because the string is unstretchable as noted in
our original construction of round-the-corner coordinates), the tension T cancels and we get:
𝑚𝑚2𝑔𝑔 − 𝜇𝜇𝑠𝑠𝑚𝑚1𝑔𝑔 = 𝑚𝑚1 + 𝑚𝑚2 𝑎𝑎 or 𝑎𝑎 = 𝑚𝑚2𝑔𝑔−𝜇𝜇𝑠𝑠𝑚𝑚1𝑔𝑔

𝑚𝑚1+𝑚𝑚2



Lecture 2. Newton’s Laws

Drag Forces

A “cartoon” illustrating the differential force on an
object moving through a fluid.

When the object is moving with
respect to the fluid then we
empirically observe that a
friction-like force is exerted on
the object called drag.

Drag Force is the “frictional”
force exerted by a fluid (liquid or
gas) on an object that moves
through it. Like kinetic friction, it
always opposes the direction of
relative motion of the object and
the medium

Note well: When an object is enlongated and passes through a fluid parallel to its long axis with a
comparatively small forward-facing cross section compared to its total area, we say that it is a
streamlined object as the fluid tends to pass over it in laminar flow. A streamlined object will often have
its total drag dominated by skin friction. A bluff object, in contrast has a comparatively large cross-
sectional surface facing forward and will usually have the total drag dominated by form drag.
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Drag Forces

Note well:
When an object is enlongated and passes through a fluid parallel to its long axis with a comparatively
small forward-facing cross section compared to its total area, we say that it is a streamlined object as the
fluid tends to pass over it in laminar flow. A streamlined object will often have its total drag dominated
by skin friction.
A bluff object, in contrast has a comparatively large cross-sectional surface facing forward and will
usually have the total drag dominated by form drag.
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Drag Forces

Drag is an extremely complicated force. It depends on a vast array of things including but not limited to:

• The size of the object.
• The shape of the object.
• The relative velocity of the object through the fluid.
• The state of the fluid (e.g. its velocity field including any internal turbulence).
• The density of the fluid.
• The viscosity of the fluid (we will learn what this is later).
• The properties and chemistry of the surface of the object (smooth versus rough, strong or weak

chemical interaction with the fluid at the molecular level).
• The orientation of the object as it moves through the fluid, which may be fixed in time (streamlined

versus bluff motion) or varying in time (as, for example, an irregularly shaped object tumbles).

To eliminate most of this complexity and end up with “force rules” that will often be quantitatively
predictive we will use a number of idealizations. We will only consider smooth, uniform, nonreactive
surfaces of convex bluff objects (like spheres) or streamlined objects (like rockets or arrows) moving
through uniform, stationary fluids where we can ignore or treat separately the other non-drag (e.g.
buoyant) forces acting on the object.
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Drag Forces

There are two dominant contributions to drag for objects of this sort.

The first, as noted above, is form drag – the difference in pressure times projective area between the
front of an object and the rear of an object. It is strongly dependent on both the shape and orientation of
an object and requires at least some turbulence in the trailing wake in order to occur.

The second is skin friction, the friction-like force resulting from the fluid rubbing across the skin at
right angles in laminar flow.
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Stokes, or Laminar Drag

The first is when the object is moving through the fluid relatively slowly and/or is arrow-shaped or
rocket-ship-shaped so that streamlined laminar drag (skin friction) is dominant. In this case there is
relatively little form drag, and in particular, there is little or no turbulence – eddies of fluid spinning
around an axis – in the wake of the object as the presence of turbulence (which we will discuss in more
detail later when we consider fluid dynamics) breaks up laminar flow.

This “low-velocity, streamlined” skin friction drag is technically named Stokes’ drag or laminar drag
and has the idealized force rule:

𝐹⃗𝐹𝑑𝑑 = −𝑏𝑏𝑣⃗𝑣
This is the simplest sort of drag – a drag force directly proportional to the velocity of relative motion of
the object through the fluid and oppositely directed.

Stokes derived the following relation for the dimensioned number bl (the laminar drag coefficient)
that appears in this equation for a sphere of radius R:

𝑏𝑏𝑙𝑙 = −6𝜋𝜋𝜋𝜋𝜋𝜋
where μ is the dynamical viscosity.
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Rayleigh, or Turbulent Drag

On the other hand, if one moves an object through a fluid too fast – where the actual speed depends in
detail on the actual size and shape of the object, how bluff or streamlined it is – pressure builds up on
the leading surface and turbulence appears in its trailing wake in the fluid.

This high velocity, turbulent drag exerts a force described by a quadratic dependence on the relative
velocity due to Lord Rayleigh:

𝐹⃗𝐹𝑑𝑑 = −
1
2
𝜌𝜌𝐶𝐶𝑑𝑑𝐴𝐴 𝑣𝑣 𝑣⃗𝑣 = −𝑏𝑏𝑡𝑡 𝑣𝑣 𝑣⃗𝑣

It is still directed opposite to the relative velocity of the object and the fluid but now is proportional to
that velocity squared. In this formula ρ is the density of the fluid through which the object moves (so
denser fluids exert more drag as one would expect) and A is the cross-sectional area of the object
perpendicular to the direction of motion, also known as the orthographic projection of the object on any
plane perpendicular to the motion. For example, for a sphere of radius R, the orthographic projection is a
circle of radius R and the area A = πR2.
The number Cd is called the drag coefficient and is a dimensionless number that depends on relative
speed, flow direction, object position, object size, fluid viscosity and fluid density.
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Example: Falling From a Plane and Surviving

Suppose you fall from a large height (long enough to reach terminal velocity) to hit a
haystack of height H that exerts a nice, uniform force to slow you down all the way to the
ground, smoothly compressing under you as you fall. In that case, your initial velocity at the
top is vt, down. In order to stop you before y = 0 (the ground) you have to have a net
acceleration −a such that:

𝑣𝑣 𝑡𝑡𝑔𝑔 = 0 = 𝑣𝑣𝑡𝑡 − 𝑎𝑎𝑡𝑡𝑔𝑔

𝑦𝑦 𝑡𝑡𝑔𝑔 = 0 = 𝐻𝐻 − 𝑣𝑣𝑡𝑡𝑡𝑡𝑔𝑔 −
1
2
𝑎𝑎𝑡𝑡𝑔𝑔2

If we solve the first equation for tg and substitute it into the second and solve for the
magnitude of a, we will get:

−𝑣𝑣𝑡𝑡2= −2𝑎𝑎𝑎𝑎 or 𝑎𝑎 = 𝑣𝑣𝑡𝑡2

2𝐻𝐻
We know also that 𝐹𝐹ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 − 𝑚𝑚𝑚𝑚 = 𝑚𝑚𝑚𝑚 or

𝐹𝐹ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑚𝑚𝑚𝑚 + 𝑚𝑚𝑚𝑚 = 𝑚𝑚 𝑎𝑎 + 𝑔𝑔 = 𝑚𝑚𝑔𝑔′ = 𝑚𝑚
𝑣𝑣𝑡𝑡2

2𝐻𝐻
+ 𝑔𝑔
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Example: Falling From a Plane and Surviving

𝐹𝐹ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑚𝑚𝑚𝑚 + 𝑚𝑚𝑚𝑚 = 𝑚𝑚 𝑎𝑎 + 𝑔𝑔 = 𝑚𝑚𝑔𝑔′ = 𝑚𝑚
𝑣𝑣𝑡𝑡2

2𝐻𝐻
+ 𝑔𝑔

Let’s suppose the haystack was H = 1.25 meter high and, because you cleverly landed on it
in a “bluff” position to keep vt as small as possible, you start at the top moving at only vt = 50
meters per second. Then g′ = a + g is approximately 1009.8 meters/second2, 103 ‘gees’, and
the force the haystack must exert on you is 103 times your normal weight. You actually have
a small chance of surviving this stopping force, but it isn’t a very large one.

To have a better chance of surviving, one needs to keep the g-force under 100, ideally well
under 100. Since the “haystack” portion of the acceleration needed is inversely proportional
to H we can see that a 10 meter haystack would lead to 13.5 gees
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Work and Kinetic Energy

If you integrate a constant acceleration of an object twice, you obtain:
𝑣𝑣 𝑡𝑡 = 𝑎𝑎𝑎𝑎 + 𝑣𝑣0

𝑥𝑥 𝑡𝑡 =
1
2
𝑎𝑎𝑡𝑡2 + 𝑣𝑣0𝑡𝑡 + 𝑥𝑥0

where v0 is the initial speed and x0 is the initial x position at time t = 0.

Now, suppose you want to find the speed v1 the object will have when it reaches position x1.
One can algebraically, once and for all note that this must occur at some time t1 such that:

𝑣𝑣 𝑡𝑡1 = 𝑎𝑎𝑡𝑡1 + 𝑣𝑣0 = 𝑣𝑣1
𝑥𝑥 𝑡𝑡1 =

1
2
𝑎𝑎𝑡𝑡12 + 𝑣𝑣0𝑡𝑡1 + 𝑥𝑥0 = 𝑥𝑥1

We can algebraically solve the first equation once and for all for t1:
𝑡𝑡1 =

𝑣𝑣1 − 𝑣𝑣0
𝑎𝑎

and substitute the result into the second equation, eliminating time altogether from the
solutions:
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Work and Kinetic Energy
1
2
𝑎𝑎
𝑣𝑣1 − 𝑣𝑣0

𝑎𝑎

2
+ 𝑣𝑣0

𝑣𝑣1 − 𝑣𝑣0
𝑎𝑎

+ 𝑥𝑥0 = 𝑥𝑥1

1
2
𝑎𝑎(𝑣𝑣1

2−2𝑣𝑣0𝑣𝑣1 + 𝑣𝑣02) +
𝑣𝑣0𝑣𝑣1 − 𝑣𝑣02

𝑎𝑎
= 𝑥𝑥1 − 𝑥𝑥0

𝑣𝑣12 − 2𝑣𝑣0𝑣𝑣1 + 𝑣𝑣02 + 2𝑣𝑣0𝑣𝑣1 − 𝑣𝑣02 = 2𝑎𝑎(𝑥𝑥1 − 𝑥𝑥0)
or 𝑣𝑣12 − 𝑣𝑣02 = 2𝑎𝑎(𝑥𝑥1 − 𝑥𝑥0)

Lets consider a constant acceleration in one dimension only:
𝑣𝑣12 − 𝑣𝑣02 = 2𝑎𝑎∆𝑥𝑥

If we multiply by m (the mass of the object) and move the annoying 2 over to the other side, we can
make the constant acceleration a into a constant force Fx = ma:

𝑚𝑚𝑚𝑚 ∆𝑥𝑥 =
1
2
𝑚𝑚𝑣𝑣12 −

1
2
𝑚𝑚𝑣𝑣02

𝐹𝐹𝑥𝑥∆𝑥𝑥 =
1
2
𝑚𝑚𝑣𝑣12 −

1
2
𝑚𝑚𝑣𝑣02

We now define the work done by the constant force Fx on the mass m as it moves through the distance
Δx to be: ∆𝑊𝑊 = 𝐹𝐹𝑥𝑥∆𝑥𝑥
Work is a form of energy.

1 Joule = 1 Newton � meter = 1
kilogram � meter2

second2
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Kinetic Energy

Let’s define the quantity changed by the work to be the kinetic energy and will use
the symbol K to represent it in this work:

𝐾𝐾 =
1
2
𝑚𝑚𝑣𝑣2

Work-Kinetic Energy Theorem:
The work done on a mass by the total force acting on it is equal to the change in its
kinetic energy.

and as an equation that is correct for constant one dimensional forces only:

∆𝑊𝑊 = 𝐹𝐹𝑥𝑥∆𝑥𝑥 =
1
2
𝑚𝑚𝑣𝑣𝑓𝑓2 −

1
2
𝑚𝑚𝑣𝑣𝑖𝑖2 = ∆𝐾𝐾



Lecture 3. Work and Energy

Conservative Forces: Potential Energy

We define a conservative force to be one such that the work done by the force as you move a
point mass from point 𝑥⃗𝑥1 to point 𝑥⃗𝑥2 is independent of the path used to move between the 
points:

𝑊𝑊𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = �
𝑥⃗𝑥1(path 1)

𝑥⃗𝑥2
𝐹⃗𝐹 � 𝑑𝑑𝑙𝑙 = �

𝑥⃗𝑥1(path 2)

𝑥⃗𝑥2
𝐹⃗𝐹 � 𝑑𝑑𝑙𝑙

In this case (only), the work done going around an arbitrary closed path (starting and ending
on the same point) will be identically zero!

𝑊𝑊𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = �
𝐶𝐶
𝐹⃗𝐹 � 𝑑𝑑𝑙𝑙 = 0

The work done going around an arbitrary loop by a
conservative force is zero. This ensures that the work
done going between two points is independent of the
path taken, its defining characteristic.
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Conservative Forces: Potential Energy

Since the work done moving a mass m from an arbitrary starting point to any point in space
is the same independent of the path, we can assign each point in space a numerical value: the
work done by us on mass m, against the conservative force, to reach it.
This is the negative of the work done by the force. We do it with this sign for reasons that
will become clear in a moment. We call this function the potential energy of the mass m
associated with the conservative force 𝐹⃗𝐹:

𝑈𝑈 𝑥⃗𝑥 = −�
𝑥𝑥0

𝑥𝑥
𝐹⃗𝐹 � 𝑑𝑑𝑥⃗𝑥 = −𝑊𝑊

Note Well: that only one limit of integration depends on x; the other depends on where you
choose to make the potential energy zero. This is a free choice. No physical result that can be
measured or observed can uniquely depend on where you choose the potential energy to be
zero.
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Conservation of Mechanical Energy

The principle of the Conservation of Mechanical Energy:
The total mechanical energy (defined as the sum of its potential and kinetic energies) of
a particle being acted on by only conservative forces is constant.
Or, if only conservative forces act on an object and U is the potential energy function for the
total conservative force, then

𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 𝐾𝐾 + 𝑈𝑈 = 𝐴𝐴 scalar constant

The fact that the force is the negative derivative of the potential energy of an object means
that the force points in the direction the potential energy decreases in.
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Example: Falling Ball Reprise

To see how powerful this is, let us look back at a falling
object of mass m (neglecting drag and friction). First, we
have to determine the gravitational potential energy of the
object a height y above the ground (where we will choose
to set U(0) = 0):

𝑈𝑈 𝑦𝑦 = −�
0

𝑦𝑦
−𝑚𝑚𝑚𝑚 𝑑𝑑𝑑𝑑 = 𝑚𝑚𝑚𝑚𝑚𝑚

Now, suppose we have our ball of mass m at the height H
and drop it from rest. How fast is it going when it hits the
ground? This time we simply write the total energy of the
ball at the top (where the potential is mgH and the kinetic
is zero) and the bottom (where the potential is zero and
kinetic is 1

2
𝑚𝑚𝑣𝑣2 and set the two equal! Solve for v, done:

𝐸𝐸𝑖𝑖 = 𝑚𝑚𝑚𝑚𝑚𝑚 + 0 = 0 +
1
2
𝑚𝑚𝑣𝑣2 = 𝐸𝐸𝑓𝑓

or 𝑣𝑣 = 2𝑔𝑔𝑔𝑔
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Example: Block Sliding Down Frictionless Incline Reprise

The block starts out a height H above the ground, with potential energy mgH and kinetic
energy of 0. It slides to the ground (no non-conservative friction!) and arrives with no potential
energy and kinetic energy 1

2
𝑚𝑚𝑣𝑣2

𝐸𝐸𝑖𝑖 = 𝑚𝑚𝑚𝑚𝑚𝑚 + 0 = 0 +
1
2
𝑚𝑚𝑣𝑣2 = 𝐸𝐸𝑓𝑓

or 𝑣𝑣 = 2𝑔𝑔𝑔𝑔
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Example: Looping the Loop

What is the minimum height H such that a block of mass m loops-the-loop (stays on the
frictionless track all the way around the circle)?
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Example: Looping the Loop

Here we need two physical principles: Newton’s Second Law and the kinematics of circular
motion since the mass is undoubtedly moving in a circle if it stays on the track. Here’s the
way we reason:
“If the block moves in a circle of radius R at speed v, then its acceleration towards the center
must be ac = v2/R. Newton’s Second Law then tells us that the total force component in the
direction of the center must be mv2/R. That force can only be made out of (a component of)
gravity and the normal force, which points towards the center. So we can relate the normal
force to the speed of the block on the circle at any point.”
At the top (where we expect v to be at its minimum value, assuming it stays on the circle)
gravity points straight towards the center of the circle of motion, so we get:

𝑚𝑚𝑚𝑚 + 𝑁𝑁 =
𝑚𝑚𝑣𝑣2

𝑅𝑅
and in the limit that N → 0 (“barely” looping the loop) we get the condition:

𝑚𝑚𝑚𝑚 =
𝑚𝑚𝑣𝑣𝑡𝑡2

𝑅𝑅
where vt is the (minimum) speed at the top of the track needed to loop the loop.
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Example: Looping the Loop

Now we need to relate the speed at the top of the circle to the original height H it began at.
This is where we need our third principle – Conservation of Mechanical Energy!
With energy we don’t care about the shape of the track, only that the track do no work on
the mass which (since it is frictionless and normal forces do no work) is in the bag. Thus:

𝐸𝐸𝑖𝑖 = 𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑚𝑚𝑚𝑚2𝑅𝑅 +
1
2
𝑚𝑚𝑣𝑣𝑡𝑡2 = 𝐸𝐸𝑓𝑓

If you put these two equations together (e.g. solve the first for 𝑚𝑚𝑣𝑣𝑡𝑡2 and substitute it into the
second, then solve for H in terms of R) you should get

Hmin = 5R/2.
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Example: Generalized Work-Mechanical Energy Theorem

Let’s consider what happens if both conservative and nonconservative forces are acting on a 
particle. In that case the argument above becomes:

𝑊𝑊𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑊𝑊𝐶𝐶 + 𝑊𝑊𝑁𝑁𝑁𝑁 = ∆𝐾𝐾

or 𝑊𝑊𝑁𝑁𝑁𝑁 = ∆𝐾𝐾 −𝑊𝑊𝐶𝐶 = ∆𝐾𝐾 + ∆𝑈𝑈 = ∆𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚𝑚

which we state as the Generalized Non-Conservative Work-Mechanical Energy
Theorem:

The work done by all the non-conservative forces acting on a particle equals the change
in its total mechanical energy.
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Example: Heat and Conservation of Energy

The important empirical law is the Law of Conservation of Energy. Whenever we examine a
physical system and try very hard to keep track of all of the mechanical energy exchanges
within that system and between the system and its surroundings, we find that we can always
account for them all without any gain or loss.

In other words, we find that the total mechanical energy of an isolated system never changes,
and if we add or remove mechanical energy to/from the system, it has to come from or go to
somewhere outside of the system. This result, applied to well defined systems of particles,
can be formulated as the First Law of Thermodynamics:

∆𝑄𝑄𝑖𝑖𝑖𝑖 = ∆𝐸𝐸𝑜𝑜𝑜𝑜 + 𝑊𝑊𝑏𝑏𝑏𝑏

In words, the heat energy flowing in to a system equals the change in the internal total
mechanical energy of the system plus the external work (if any) done by the system on its
surroundings.
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Example: Heat and Conservation of Energy

When a block slides down a rough table from some initial velocity to rest, kinetic friction
turns the bulk organized kinetic energy of the collectively moving mass into disorganized
microscopic energy – heat.

As the rough microscopic surfaces bounce off of one another and form and break chemical
bonds, it sets the actual molecules of the block bounding, increasing the internal microscopic
mechanical energy of the block and warming it up.
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Power

The energy in a given system is not, of course, usually constant in time. Energy is added to a
given mass, or taken away, at some rate.

There are many times when we are given the rate at which energy is added or removed in
time, and need to find the total energy added or removed. This rate is called the power.

Power: The rate at which work is done, or energy released into a system.

𝑑𝑑𝑑𝑑 = 𝐹⃗𝐹𝑑𝑑𝑥⃗𝑥 = 𝐹⃗𝐹 �
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

𝑃𝑃 =
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝐹⃗𝐹 � 𝑣⃗𝑣

so that ∆𝑊𝑊 = ∆𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡 = ∫𝑃𝑃𝑃𝑃𝑃𝑃

The units of power are clearly Joules/sec = Watts. Another common unit of power is
“Horsepower”, 1 HP = 746 W.
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Equilibrium

The force is given by the negative gradient of the potential energy:

𝐹⃗𝐹 = −𝛻𝛻𝑈𝑈

or (in each direction): 𝐹𝐹𝑥𝑥 = −𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

,𝐹𝐹𝑦𝑦 = −𝑑𝑑𝑑𝑑
𝑑𝑑𝑦𝑦

, 𝐹𝐹𝑧𝑧 = −𝑑𝑑𝑑𝑑
𝑑𝑑𝑧𝑧

,

or the force is the negative slope of the potential energy function in this direction.

The meaning of this is that if a particle moves in the direction of the (conservative) force, it
speeds up. If it speeds up, its kinetic energy increases. If its kinetic energy increases, its
potential energy must decrease. The force (component) acting on a particle is thus the rate at
which the potential energy decreases (the negative slope) in any given direction
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Equilibrium

A one-dimensional potential energy curve U(x).



Lecture 3. Work and Energy

Equilibrium

A one-dimensional potential energy
curve U(x).

At the point labelled a, the x-slope of U(x) is
positive. The x (component of the) force,
therefore, is in the negative x direction. At the
point b, the x-slope is negative and the force is
correspondingly positive. Note well that the force
gets larger as the slope of U(x) gets larger (in
magnitude).

The point in the middle, at x = 0, is special. Note
that this is a minimum of U(x) and hence the x-
slope is zero. Therefore the x-directed force F at
that point is zero as well. A point at which the
force on an object is zero is, as we previously
noted, a point of static force equilibrium – a
particle placed there at rest will remain there at
rest.
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Equilibrium

A one-dimensional potential energy
curve U(x).

In this particular figure, if one moves the particle
a small distance to the right or the left of the
equilibrium point, the force pushes the particle
back towards equilibrium. Points where the force
is zero and small displacements cause a restoring
force in this way are called stable equilibrium
points. As you can see, the isolated minima of a
potential energy curve (or surface, in higher
dimensions) are all stable equilibria.
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Equilibrium

A fairly generic potential energy shape for microscopic (atomic or molecular) interactions,
drawn to help exhibits features one might see in such a curve more than as a realistically
scaled potential energy in some set of units. In particular, the curve exhibits stable, unstable,
and neutral equilibria for a radial potential energy as a function of r, the distance between two
e.g. atoms.
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Equilibrium

At very long ranges, the forces between neutral atoms are extremely small, effectively zero.
This is illustrated as an extended region where the potential energy is flat for large r. Such a
range is called neutral equilibrium because there are no forces that either restore or repel
the two atoms. Neutral equilibrium is not stable in the specific sense that a particle placed
there with any nonzero velocity will move freely (according to Newton’s First Law). Since
it is nearly impossible to prepare an atom at absolute rest relative to another particle, one
basically “never” sees two unbound microscopic atoms with a large, perfectly constant
spatial orientation.
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Equilibrium

As the two atoms near one another, their interaction becomes first weakly attractive due to
e.g. quantum dipole-induced dipole interactions and then weakly repulsive as the two atoms
start to “touch” each other. There is a potential energy minimum in between where two
atoms separated by a certain distance can be in stable equilibrium without being chemically
bound.
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Equilibrium

Atoms that approach one another still more closely encounter a second potential energy
well that is at first strongly attractive followed by a hard core repulsion as the electron
clouds are prevented from interpenetrating by e.g. the Pauli exclusion principle. This
second potential energy well is often modelled by a Lennard-Jones potential energy It also
has a point of stable equilibrium.
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Equilibrium

In between, there is a point where the growing attraction of the inner potential energy well
and the growing repulsion of the outer potential energy well balance, so that the potential
energy function has a maximum. At this maximum the slope is zero (so it is a position of
force equilibrium) but because the force on either side of this point pushes the particle away
from it, this is a point of unstable equilibrium. Unstable equilibria occur at isolated
maxima in the potential energy function, just as stable equilibria occur at isolated minima.



Lecture 4. Systems of Particles,
Momentum and Collisions. Statics

Systems of Particles

An object such as a baseball is not really a particle. It is made of many, many particles – even
the atoms it is made of are made of many particles each. Yet it behaves like a particle as far as
Newton’s Laws are concerned.

We will obtain this collective behavior by averaging, or summing over at successively larger
scales, the physics that we know applies at the smallest scale to things that really are particles.



Lecture 4. Systems of Particles,
Momentum and Collisions. Statics

Newton’s Laws for a System of Particles – Center of Mass

A system of N = 3 particles is shown, with various forces
𝐹⃗𝐹𝑖𝑖 acting on the masses (which therefore each their own
accelerations 𝑎⃗𝑎𝑖𝑖). From this, we construct a weighted
average acceleration of the system, in such a way that
Newton’s Second Law is satisfied for the total mass.

Suppose we have a system of N particles, each of which is experiencing a force. Some (part)
of those forces are “external” – they come from outside of the system. Some (part) of them
may be “internal” – equal and opposite force pairs between particles that help hold the system
together (solid) or allow its component parts to interact (liquid or gas).
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Newton’s Laws for a System of Particles – Center of Mass

We would like the total force to act on the total mass of
this system as if it were a “particle”. That is, we would
like for:

𝐹⃗𝐹𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑀𝑀𝑡𝑡𝑡𝑡𝑡𝑡𝐴𝐴

where 𝐴𝐴 is the “acceleration of the system”. Newton’s
Second Law for a system of particles is written as:

𝐹⃗𝐹𝑡𝑡𝑡𝑡𝑡𝑡 = �
𝑖𝑖

𝐹⃗𝐹𝑖𝑖 =�
𝑖𝑖

𝑚𝑚𝑖𝑖
𝑑𝑑2𝑥⃗𝑥𝑖𝑖
𝑑𝑑𝑡𝑡2

=

= �
𝑖𝑖

𝑚𝑚𝑖𝑖
𝑑𝑑2𝑋𝑋
𝑑𝑑𝑡𝑡2

= 𝑀𝑀𝑡𝑡𝑡𝑡𝑡𝑡
𝑑𝑑2𝑋𝑋
𝑑𝑑𝑡𝑡2

= 𝑀𝑀𝑡𝑡𝑡𝑡𝑡𝑡𝐴𝐴
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Momentum and Collisions. Statics

Newton’s Laws for a System of Particles – Center of Mass

�
𝑖𝑖

𝑚𝑚𝑖𝑖
𝑑𝑑2𝑥⃗𝑥𝑖𝑖
𝑑𝑑𝑡𝑡2

= 𝑀𝑀𝑡𝑡𝑡𝑡𝑡𝑡
𝑑𝑑2𝑋𝑋
𝑑𝑑𝑡𝑡2

Basically, if we define an 𝑋𝑋 such that this relation is true then Newton’s second law is recovered
for the entire system of particles “located at 𝑋𝑋” as if that location were indeed a particle of mass
Mtot itself. We can rearrange this a bit as:

𝑑𝑑𝑉𝑉
𝑑𝑑𝑑𝑑

=
𝑑𝑑2𝑋𝑋
𝑑𝑑𝑡𝑡2

=
1

𝑀𝑀𝑡𝑡𝑡𝑡𝑡𝑡
�
𝑖𝑖

𝑚𝑚𝑖𝑖
𝑑𝑑2𝑥⃗𝑥𝑖𝑖
𝑑𝑑𝑡𝑡2

=
1

𝑀𝑀𝑡𝑡𝑡𝑡𝑡𝑡
�
𝑖𝑖

𝑚𝑚𝑖𝑖
𝑑𝑑𝑣⃗𝑣𝑖𝑖
𝑑𝑑𝑡𝑡

and can integrate twice on both sides. The first integral is:

𝑑𝑑𝑋𝑋
𝑑𝑑𝑡𝑡

= 𝑉𝑉 =
1

𝑀𝑀𝑡𝑡𝑡𝑡𝑡𝑡
�
𝑖𝑖

𝑚𝑚𝑖𝑖𝑣⃗𝑣𝑖𝑖 + 𝑉𝑉0 =
1

𝑀𝑀𝑡𝑡𝑡𝑡𝑡𝑡
�
𝑖𝑖

𝑚𝑚𝑖𝑖
𝑑𝑑𝑥⃗𝑥𝑖𝑖
𝑑𝑑𝑑𝑑

+ 𝑉𝑉0

and the second is: 𝑋𝑋 = 1
𝑀𝑀𝑡𝑡𝑡𝑡𝑡𝑡

∑𝑖𝑖 𝑚𝑚𝑖𝑖𝑥⃗𝑥𝑖𝑖 + 𝑉𝑉0𝑡𝑡 + 𝑋𝑋0
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Newton’s Laws for a System of Particles – Center of Mass

We define the position of the center of mass to be:

𝑀𝑀𝑋𝑋cm = ∑𝑖𝑖𝑚𝑚𝑖𝑖𝑥⃗𝑥𝑖𝑖 or 𝑋𝑋cm = 1
𝑀𝑀
∑𝑖𝑖𝑚𝑚𝑖𝑖𝑥⃗𝑥𝑖𝑖

Not all systems we treat will appear to be made up of point particles. Most solid objects or
fluids appear to be made up of a continuum of mass, a mass distribution. In this case we
need to do the sum by means of integration, and our definition becomes:

𝑀𝑀𝑋𝑋cm = ∫ 𝑥⃗𝑥𝑑𝑑𝑑𝑑 or 𝑋𝑋cm = 1
𝑀𝑀 ∫ 𝑥⃗𝑥𝑑𝑑𝑑𝑑
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Momentum

Momentum is a useful idea that follows naturally from our decision to treat collections as 
objects. It is a way of combining the mass (which is a characteristic of the object) with the 
velocity of the object. We define the momentum to be:

𝑝⃗𝑝 = 𝑚𝑚𝑣⃗𝑣
Thus (since the mass of an object is generally constant):

𝐹⃗𝐹 = 𝑚𝑚𝑎⃗𝑎 = 𝑚𝑚
𝑑𝑑𝑣⃗𝑣
𝑑𝑑𝑑𝑑

=
𝑑𝑑
𝑑𝑑𝑑𝑑

𝑚𝑚𝑣⃗𝑣 =
𝑑𝑑𝑝⃗𝑝
𝑑𝑑𝑑𝑑

is another way of writing Newton’s second law.
Note that there exist systems (like rocket ships, cars, etc.) where the mass is not constant. As
the rocket rises, its thrust (the force exerted by its exhaust) can be constant, but it continually
gets lighter as it burns fuel. Newton’s second law (expressed as 𝐹⃗𝐹 = 𝑚𝑚𝑎⃗𝑎) does tell us what to
do in this case – but only if we treat each little bit of burned and exhausted gas as a “particle”,
which is a pain. On the other hand, Newton’s second law expressed as 𝐹⃗𝐹 = 𝑑𝑑𝑝⃗𝑝

𝑑𝑑𝑑𝑑
still works fine

and makes perfect sense – it simultaneously describes the loss of mass and the increase of
velocity as a function of the mass correctly.
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Momentum

Clearly we can repeat our previous argument for the sum of the momenta of a collection of 
particles:

𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡 = �
𝑖𝑖

𝑝⃗𝑝𝑖𝑖 = �
𝑖𝑖

𝑚𝑚𝑣⃗𝑣𝑖𝑖

so that

𝑑𝑑𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡
𝑑𝑑𝑑𝑑

= �
𝑖𝑖

𝑝⃗𝑝𝑖𝑖
𝑑𝑑𝑑𝑑

= �
𝑖𝑖

𝐹⃗𝐹𝑖𝑖 = 𝐹⃗𝐹𝑡𝑡𝑡𝑡𝑡𝑡

Differentiating our expression for the position of the center of mass above, we also get:
𝑑𝑑∑𝑖𝑖𝑚𝑚𝑥⃗𝑥𝑖𝑖

𝑑𝑑𝑑𝑑
= �

𝑖𝑖

𝑚𝑚
𝑑𝑑𝑥⃗𝑥𝑖𝑖
𝑑𝑑𝑑𝑑

=�
𝑖𝑖

𝑝⃗𝑝𝑖𝑖 = 𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑀𝑀𝑡𝑡𝑡𝑡𝑡𝑡𝑣⃗𝑣𝑐𝑐𝑐𝑐
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The Law of Conservation of Momentum

We are now in a position to state and trivially prove the Law of Conservation of Momentum.

If and only if the total external force acting on a system is zero, then the total momentum 
of a system (of particles) is a constant vector.

You are welcome to learn this in its more succinct algebraic form:

If and only if 𝐹⃗𝐹𝑡𝑡𝑡𝑡𝑡𝑡 = 0 then 𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑃𝑃𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = a constant vector.
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Impulse

As the surfaces of the two (hard) balls come into contact, they “suddenly” exert relatively
large, relatively violent, equal and opposite forces on each other over a relatively short time,
and then the force between the objects once again drops to zero as they either bounce apart or
stick together and move with a common velocity.
“Relatively” here in all cases means compared to all other forces acting on the system during
the collision in the event that those forces are not actually zero.

Let us imagine a typical collision: one pool ball
approaches and strikes another, causing both
balls to recoil from the collision in some
(probably different) directions and at different
speeds. Before they collide, they are widely
separated and exert no force on one another.
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Momentum and Collisions. Statics

Impulse

Let us begin, then, by defining the average force over the (short) time Δt of any given
collision, assuming that we did know 𝐹⃗𝐹 = 𝐹⃗𝐹21(𝑡𝑡), the force one object (say m1) exerts on the
other object (m2).
The magnitude of such a force (one perhaps appropriate to the collision of pool balls) is
sketched below in figure where for simplicity we assume that the force acts only along the line
of contact and is hence effectively one dimensional in this direction.

The time average of this force is
computed the same way the time
average of any other timedependent
quantity might be:
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Impulse

The time average of this force is computed the same way the time average of any other
time-dependent quantity might be:

𝐹⃗𝐹𝑎𝑎𝑎𝑎𝑎𝑎 =
1
∆𝑡𝑡
�
0

∆𝑡𝑡
𝐹⃗𝐹 𝑡𝑡 𝑑𝑑𝑑𝑑

We can evaluate the integral using Newton’s Second Law expressed in terms of momentum:

𝐹⃗𝐹 𝑡𝑡 =
𝑑𝑑𝑝⃗𝑝
𝑑𝑑𝑑𝑑

so that (multiplying out by dt and integrating):

𝑝⃗𝑝2𝑓𝑓 − 𝑝⃗𝑝2𝑖𝑖 = ∆𝑝⃗𝑝2 = �
0

∆𝑡𝑡
𝐹⃗𝐹 𝑡𝑡 𝑑𝑑𝑑𝑑

Note that the momentum change of the first ball is equal and opposite. From Newton’s
Third Law, 𝐹⃗𝐹12 𝑡𝑡 = −𝐹⃗𝐹21 𝑡𝑡 = 𝐹⃗𝐹 and:

𝑝⃗𝑝1𝑓𝑓 − 𝑝⃗𝑝1𝑖𝑖 = ∆𝑝⃗𝑝1 = −�
0

∆𝑡𝑡
𝐹⃗𝐹 𝑡𝑡 𝑑𝑑𝑑𝑑 = −∆𝑝⃗𝑝2
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Impulse

The integral of a force 𝐹⃗𝐹 over an interval of time is called the impulse imparted by the force

𝐼𝐼 = �
𝑡𝑡1

𝑡𝑡2
𝐹⃗𝐹 𝑡𝑡 𝑑𝑑𝑑𝑑 = �

𝑡𝑡1

𝑡𝑡2 𝑑𝑑𝑝⃗𝑝
𝑑𝑑𝑑𝑑

𝑡𝑡 𝑑𝑑𝑑𝑑 = �
𝑝𝑝1

𝑝𝑝2
𝑑𝑑𝑝⃗𝑝 = 𝑝⃗𝑝2 − 𝑝⃗𝑝1 =∆𝑝⃗𝑝

This proves that the (vector) impulse is equal to the (vector) change in momentum over the
same time interval, a result known as the impulse-momentum theorem. From our point of
view, the impulse is just the momentum transferred between two objects in a collision in
such a way that the total momentum of the two is unchanged.
Returning to the average force, we see that the average force in terms of the impulse is just:

𝐹⃗𝐹𝑎𝑎𝑎𝑎𝑎𝑎 =
𝐼𝐼
∆𝑡𝑡

=
∆𝑝𝑝
∆𝑡𝑡

=
𝑝⃗𝑝𝑓𝑓 − 𝑝⃗𝑝𝑖𝑖
∆𝑡𝑡



Lecture 4. Systems of Particles,
Momentum and Collisions. Statics

Impulse, Fluids, and Pressure

Another valuable use of impulse is when we have many objects colliding with something –
so many that even though each collision takes only a short time Δt, there are so many
collisions that they exert a nearly continuous force on the object.
This is critical to understanding the notion of pressure exerted by a fluid, because
microscopically the fluid is just a lot of very small particles that are constantly colliding
with a surface and thereby transferring momentum to it, so many that they exert a nearly
continuous and smooth force on it that is the average force exerted per particle times the
number of particles that collide.

Suppose you have a cube with sides of length L
containing N molecules of a gas.
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Impulse, Fluids, and Pressure

Let’s suppose that all of the molecules have a mass m and an average speed in the x direction
of vx, with (on average) one half going left and one half going right at any given time.
In order to be in equilibrium (so vx doesn’t change) the change in momentum of any molecule
that hits, say, the right hand wall perpendicular to x is Δpx = 2mvx. This is the impulse
transmitted to the wall per molecular collision. To find the total impulse in the time Δt, one
must multiply this by one half the number of molecules in in a volume L2vx Δt. That is,

∆𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡 =
1
2

𝑁𝑁
𝐿𝐿3

𝐿𝐿2𝑣𝑣𝑥𝑥∆𝑡𝑡(2𝑚𝑚𝑣𝑣𝑥𝑥)

Let’s call the volume of the box L3 = V and the area of the wall receiving the impulse L2 = A.

𝑃𝑃 =
𝐹𝐹𝑎𝑎𝑎𝑎𝑎𝑎
𝐴𝐴

=
∆𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡
𝐴𝐴∆𝑡𝑡

=
𝑁𝑁
𝑉𝑉

1
2
𝑚𝑚𝑣𝑣𝑥𝑥2 =

𝑁𝑁
𝑉𝑉

𝐾𝐾𝑥𝑥,𝑎𝑎𝑎𝑎𝑎𝑎

where the average force per unit area applied to the wall is the pressure, which has SI units of
Newtons/meter2 or Pascals.
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Impulse, Fluids, and Pressure

If we add a result called the equipartition theorem:

𝐾𝐾𝑥𝑥,𝑎𝑎𝑎𝑎𝑎𝑎 =
1
2
𝑚𝑚𝑣𝑣𝑥𝑥2 =

1
2
𝑘𝑘𝑏𝑏𝑇𝑇2

∆𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡 =
1
2

𝑁𝑁
𝐿𝐿3

𝐿𝐿2𝑣𝑣𝑥𝑥∆𝑡𝑡(2𝑚𝑚𝑣𝑣𝑥𝑥)

where kb is Boltzmann’s constant and T is the temperature in degrees absolute, one gets:
𝑃𝑃𝑃𝑃 = 𝑁𝑁𝑁𝑁𝑁𝑁

which is the Ideal Gas Law.
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Collisions

A “collision” in physics occurs when two bodies that are more or less not interacting (because
they are too far apart to interact) come “in range” of their mutual interaction force, strongly
interact for a short time, and then separate so that they are once again too far apart to interact.

There are three general “types” of collision:
• Elastic
• Fully Inelastic
• Partially Inelastic
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Elastic collision
By definition, an elastic collision is one that also conserves total kinetic energy so that the
total scalar kinetic energy of the colliding particles before the collision must equal the total
kinetic energy after the collision. This is an additional independent equation that the solution
must satisfy.

General relationships:

1. Conservation of momentum 𝑝⃗𝑝1𝑖𝑖 + 𝑝⃗𝑝2𝑖𝑖 = 𝑝⃗𝑝1𝑓𝑓 + 𝑝⃗𝑝2𝑓𝑓

2. Conservation of kinetic energy: 1
2
𝑚𝑚1𝑣⃗𝑣1𝑖𝑖2 + 1

2
𝑚𝑚2𝑣⃗𝑣2𝑖𝑖2 = 1

2
𝑚𝑚1𝑣⃗𝑣𝑓𝑓2

′ + 1
2
𝑚𝑚2𝑣⃗𝑣2𝑓𝑓2

3. For head-on collisions: 𝑣𝑣1′ = (𝑚𝑚1−𝑚𝑚2)
(𝑚𝑚1−𝑚𝑚2)

𝑣𝑣1 ; 𝑣𝑣2′ = 2𝑚𝑚1
(𝑚𝑚1+𝑚𝑚2)

𝑣𝑣1

4. For head-on collisions the velocity of approach is equal to the velocity of separation
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Inelastic collision
A fully inelastic collision is where two particles collide and stick together. As always,
momentum is conserved in the impact approximation, but now kinetic energy is not!

𝑝⃗𝑝𝑖𝑖,𝑛𝑛 𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑚𝑚1𝑣⃗𝑣1𝑖𝑖 + 𝑚𝑚2𝑣⃗𝑣2𝑖𝑖 = 𝑚𝑚1 + 𝑚𝑚2 𝑣⃗𝑣𝑓𝑓 = 𝑚𝑚1 + 𝑚𝑚2 𝑣⃗𝑣𝑐𝑐𝑐𝑐 = 𝑝⃗𝑝𝑓𝑓,𝑡𝑡𝑡𝑡𝑡𝑡

In other words, in a fully inelastic collision, the velocity of the outgoing combined particle is
the velocity of the center of mass of the system, which we can easily compute from a
knowledge of the initial momenta or velocities and masses.
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Example: Ballistic Pendulum

The “ballistic pendulum”, where a bullet strikes and
sticks to/in a block, which then swings up to a
maximum angle θf before stopping and swinging back
down.
The classic ballistic pendulum question gives you the
mass of the block M, the mass of the bullet m, the
length of a string or rod suspending the “target” block
from a free pivot, and the initial velocity of the bullet
v0. It then asks for the maximum angle θf through which
the pendulum swings after the bullet hits and sticks to
the block (or alternatively, the maximum height H
through which it swings).

Solution:
During the collision momentum is conserved in the impact approximation, which in this
case basically implies that the block has no time to swing up appreciably “during” the
actual collision.
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Example: Ballistic Pendulum

Solution:
• During the collision momentum is conserved in the

impact approximation, which in this case basically implies
that the block has no time to swing up appreciably
“during” the actual collision.

• After the collision mechanical energy is conserved.
Mechanical energy is not conserved during the collision
(see solution above of straight up inelastic collision).

Momentum conservation: 𝑝𝑝𝑚𝑚,0 = 𝑚𝑚𝑣𝑣0 = 𝑝𝑝𝑀𝑀+𝑚𝑚,𝑓𝑓

kinetic part of mechanical energy conservation in terms of momentum:

𝐸𝐸0 =
𝑝𝑝𝐵𝐵+𝑏𝑏,𝑓𝑓
2

2(𝑀𝑀 + 𝑚𝑚)
=

𝑝𝑝𝑏𝑏,0
2

2(𝑀𝑀 + 𝑚𝑚)
= 𝐸𝐸𝑓𝑓 = 𝑀𝑀 + 𝑚𝑚 𝑔𝑔𝑔𝑔 = 𝑀𝑀 + 𝑚𝑚 𝑔𝑔𝑔𝑔(1 − cos𝜃𝜃𝑓𝑓)

Thus: 𝜃𝜃𝑓𝑓 = cos−1(1 − 𝑚𝑚𝑣𝑣0 2

2 𝑀𝑀+𝑚𝑚 2𝑔𝑔𝑔𝑔
) which only has a solution if mv0 is less than some 

maximum value.
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Torque and Rotation

Rotations in One Dimension are rotations of a solid object about a single axis. Since we are
free to choose any arbitrary coordinate system we wish in a problem, we can without loss of
generality select a coordinate system where the z-axis represents the (positive or negative)
direction or rotation, so that the rotating object rotates “in” the xy plane. Rotations of a rigid
body in the xy plane can then be described by a single angle θ, measured by convention in
the counterclockwise direction from the positive x-axis.

Time-dependent Rotations can thus be described by:
a) The angular position as a function of time, θ(t).
b) The angular velocity as a function of time,

𝑤𝑤 𝑡𝑡 =
𝑑𝑑𝜃𝜃
𝑑𝑑𝑑𝑑

c) The angular acceleration as a function of time,

𝛼𝛼 𝑡𝑡 =
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=
𝑑𝑑2𝜃𝜃
𝑑𝑑𝑡𝑡2
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Torque and Rotation

• Forces applied to a rigid object perpendicular to a line drawn from an axis of rotation
exert a torque on the object. The torque is given by:

𝜏𝜏 = 𝑟𝑟𝑟𝑟 sin 𝜑𝜑 = 𝑟𝑟𝐹𝐹⊥ = 𝑟𝑟⊥𝐹𝐹
• The torque (as we shall see) is a vector quantity and by convention its direction is

perpendicular to the plane containing 𝑟𝑟 and 𝐹⃗𝐹 in the direction given by the right hand
rule. Although we won’t really work with this until next week, the “proper” definition of
the torque is:

𝜏𝜏 = 𝑟𝑟 × 𝐹⃗𝐹
• Newton’s Second Law for Rotation in one dimension is:

𝜏𝜏 = 𝐼𝐼𝐼𝐼
where I is the moment of inertia of the rigid body being rotated by the torque about a
given/specified axis of rotation. The direction of this (one dimensional) rotation is the
righthanded direction of the axis – the direction your right handed thumb points if you grasp
the axis with your fingers curling around the axis in the direction of the rotation or torque.
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Torque and Rotation

• The moment of inertia of a point particle of mass m located a (fixed) distance r from
some axis of rotation is:

𝐼𝐼 = 𝑚𝑚𝑟𝑟2

• The moment of inertia of a rigid collection of point particles is:

𝐼𝐼 = �
𝑖𝑖

𝑚𝑚𝑖𝑖𝑟𝑟𝑖𝑖2

• The moment of inertia of a continuous solid rigid object is:

𝐼𝐼 = �𝑟𝑟2𝑑𝑑𝑚𝑚

• The rotational kinetic energy of a rigid body (total kinetic energy of all of the chunks of
mass that make it up) is:

𝐾𝐾𝑟𝑟𝑟𝑟𝑟𝑟 =
1
2
𝐼𝐼𝑤𝑤2



Lecture 4. Systems of Particles,
Momentum and Collisions. Statics

Conditions for Static Equilibrium

An object at rest remains at rest unless acted on by a net external force.
Previously we showed that Newton’s Second Law also applies to systems of particles, with
the replacement of the position of the particle by the position of the center of mass of the
system and the force with the total external force acting on the entire system.

We also learned that the force equilibrium of particles acted on by conservative force
occurred at the points where the potential energy was maximum or minimum or neutral
(flat), where we named maxima “unstable equilibrium points”, minima “stable equilibrium
points” and flat regions “neutral equilibria”.

However, we learned enough to now be able to see that force equilibrium alone is not
sufficient to cause an extended object or collection of particles to be in equilibrium. We can
easily arrange situations where two forces act on an object in opposite directions (so there is
no net force) but along lines such that together they exert a nonzero torque on the object and
hence cause it to angularly accelerate and gain kinetic energy without bound, hardly a
condition one would call “equilibrium”.
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Conditions for Static Equilibrium

The Newton’s Second Law for Rotation is sufficient to imply Newton’s First Law for
Rotation:

If, in an inertial reference frame, a rigid object is initially at rotational rest (not
rotating), it will remain at rotational rest unless acted upon by a net external torque.

That is, 𝜏𝜏 = 𝐼𝐼𝛼⃗𝛼 = 0 implies 𝑤𝑤 = 0 and constant. We will call the condition where 𝜏𝜏 = 0 and
a rigid object is not rotating torque equilibrium.

Therefore we now define the conditions for the static equilibrium of a rigid body to be:

A rigid object is in static equilibrium when both the vector torque and the vector force
acting on it are zero.

That is:

If 𝑭𝑭𝒕𝒕𝒕𝒕𝒕𝒕 = 𝟎𝟎 and 𝝉𝝉𝒕𝒕𝒕𝒕𝒕𝒕 = 𝟎𝟎, then an object initially at translational and rotational rest
will remain at rest and neither accelerate nor rotate.
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Balancing a See-Saw

You are given m1, x1, and x2 and are asked to find m2 and F such that the see-saw is in static
equilibrium.

One typical problem in statics is balancing weights on a see-saw type arrangement – a
uniform plank supported by a fulcrum in the middle. This particular problem is really only
one dimensional as far as force is concerned, as there is no force acting in the x-direction or
z-direction.
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Balancing a See-Saw

Let’s imagine that in this particular problem, the mass m1 and the distances x1 and x2 are
given, and we need to find m2 and F.

We have two choices to make – where we
select the pivot and which direction (in or
out of the page) we are going to define to
be “positive”. A perfectly reasonable
choice is to select the pivot at the fulcrum
of the see-saw where the unknown force F
is exerted, and to select the +z-axis as
positive rotation.

�𝐹𝐹𝑦𝑦 = 𝐹𝐹 −𝑚𝑚1𝑔𝑔 −𝑚𝑚2𝑔𝑔 = 0

�𝜏𝜏𝑧𝑧 = 𝑥𝑥1𝑚𝑚1𝑔𝑔 − 𝑥𝑥2𝑚𝑚2𝑔𝑔 = 0
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Balancing a See-Saw

�𝐹𝐹𝑦𝑦 = 𝐹𝐹 −𝑚𝑚1𝑔𝑔 −𝑚𝑚2𝑔𝑔 = 0

�𝜏𝜏𝑧𝑧 = 𝑥𝑥1𝑚𝑚1𝑔𝑔 − 𝑥𝑥2𝑚𝑚2𝑔𝑔 = 0

𝑚𝑚2 =
𝑚𝑚1𝑔𝑔𝑥𝑥1
𝑔𝑔𝑥𝑥2

=
𝑥𝑥1
𝑥𝑥2

𝑚𝑚1

From the first equation and the solution for m2:

𝐹𝐹 = 𝑚𝑚1𝑔𝑔 + 𝑚𝑚2𝑔𝑔 = 𝑚𝑚1𝑔𝑔 1 + 𝑥𝑥1
𝑥𝑥2

= 𝑚𝑚1𝑔𝑔
𝑥𝑥1+𝑥𝑥2
𝑥𝑥2



Lecture 4. Systems of Particles,
Momentum and Collisions. Statics

Tipping

Another important application of the ideas of static equilibrium is to tipping problems. A
tippingproblem is one where one uses the ideas of static equilibrium to identify the
particular angle or force combination that will marginally cause some object to tip over.

The idea of tipping is simple enough. An object placed on a flat surface is typically stable
as long as the center of gravity is vertically inside the edges that are in contact with the
surface, so that the torque created by the gravitational force around this limiting pivot is
opposed by the torque exerted by the (variable) normal force.
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Tipping Versus Slipping

A rectangular block either tips first or slips
(slides down the incline) first as the incline
is gradually increased. Which one happens
first? The figure is show with the block
just past the tipping angle.

At some angle we know that the block will start to slide. This will occur because the normal 
force is decreasing with the angle (and hence, so is the maximum force static friction can 
exert) and at the same time, the component of the weight of the object that points down the 
incline is increasing. Eventually the latter will exceed the former and the block will slide.
However, at some angle the block will also tip over. We know that this will happen because
the normal force can only prevent the block from rotating clockwise (as drawn) around the
pivot consisting of the lower left corner of the block.
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Tipping Versus Slipping

The tipping point, or tipping angle is thus the angle where
the center of gravity is directly over the pivot that the
object will “tip” around as it falls over.

Let’s find the slipping angle θs. Let “down” mean “down the incline”. Then:

�𝐹𝐹𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑚𝑚𝑚𝑚 sin 𝜃𝜃 − 𝐹𝐹𝑠𝑠 = 0

�𝐹𝐹⊥ = 𝑁𝑁 −𝑚𝑚𝑚𝑚 cos 𝜃𝜃 = 0

From the latter, as usual: 𝑁𝑁 = 𝑚𝑚𝑚𝑚 cos 𝜃𝜃 and 𝐹𝐹𝑠𝑠 ≤ 𝐹𝐹𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚 = 𝜇𝜇𝑠𝑠𝑁𝑁
When 𝑚𝑚𝑚𝑚 sin 𝜃𝜃𝑠𝑠 = 𝐹𝐹𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚 = 𝜇𝜇𝑠𝑠𝑁𝑁 cos 𝜃𝜃𝑠𝑠
The force of gravity down the incline precisely balances the force of static friction. We can 
solve for the angle where this occurs:𝜃𝜃𝑠𝑠 = tan−1(𝜇𝜇𝑠𝑠)
This happens when the center of mass passes directly over the pivot.
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Tipping Versus Slipping

From inspection of the figure (which is drawn very close to
the tipping point) it should be clear that the tipping angle
𝜃𝜃𝑡𝑡 is given by:

𝜃𝜃𝑡𝑡 = tan−1
𝑊𝑊
𝐻𝐻

So, which one wins? The smaller of the two, θs or θt, of
course – that’s the one that happens first as the plank is
raised. Indeed, since both are inverse tangents, the smaller
of: 𝜇𝜇𝑠𝑠, W/H

determines whether the system slips first or tips first, no
need to actually evaluate any tangents or inverse tangents!
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General Fluid Properties

Fluids are the generic name given to two states of matter, liquids and gases characterized by a
lack of long range order and a high degree of mobility at the molecular scale.

A large number of atoms or molecules are confined within in a “box”, where they bounce
around off of each other and the walls. They exert a force on the walls equal and opposite
the force the walls exert on them as the collisions more or less elastically reverse the
particles’ momenta perpendicular to the walls.
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General Fluid Properties

Many particles all of mass m are constantly moving in
random, constantly changing directions (as the particles
collide with each other and the walls) with an average
kinetic energy related to the temperature of the fluid.
Some of the particles (which might be atoms such as
helium or neon or molecules such as H2 or O2) happen to
be close to the walls of the container and moving in the
right direction to bounce (elastically) off of those walls.

When they do, their momentum perpendicular to those walls is reversed. Since many, many of
these collisions occur each second, there is a nearly continuous momentum transfer between
the walls and the gas and the gas and the walls. This transfer, per unit time, becomes the
average force exerted by the walls on the gas and the gas on the walls

Eventually, we will transform this simple picture into the Kinetic Theory of Gases and use it
to derive the venerable Ideal Gas Law

𝑃𝑃𝑃𝑃 = 𝑁𝑁𝑘𝑘𝑏𝑏𝑇𝑇
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Pressure
To describe the forces that confine and act on the fluids in terms of pressure, defined to be the force
per unit area with which a fluid pushes on a confining wall or the confining wall pushes on the fluid:

𝑃𝑃 =
𝐹𝐹
𝐴𝐴

Pressure gets its own SI units, which clearly must be Newtons per square meter. We give these units
their own name, Pascals:

1 Pascal =
Newton
meter2

A Pascal is a tiny unit of pressure – a Newton isn’t very big, recall (one kilogram weighs roughly ten
Newtons) so a Pascal is the weight of a quarter pound spread out over a square meter.

A more convenient measure of pressure in our everyday world is a form of the unit called a bar:

1bar = 105 Pa = 100 kPa
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Pressure
The average air pressure at sea level is very nearly 1 bar.

The symbol atm stands for one standard atmosphere. The connection between atmospheres, bars, and
pascals is:

1 standard atmosphere = 101.325 kPa = 1013.25 mbar

The extra significant digits therefore refer only to a fairly arbitrary value (in pascals) historically
related to the original definition of a standard atmosphere in terms of “millimeters of mercury” or torr :

1 standard atmosphere = 760.00 mmHg = 760.00 torr

In this class we will use the simple rule 1 bar ≈ 1 atm

Note well: in the field of medicine blood pressures are given in mm of mercury (or torr) by long
standing tradition (largely because for at least a century blood pressure was measured with a mercury-
based sphygmomanometer). These can be converted into atmospheres by dividing by 760,
remembering that one is measuring the difference between these pressures and the standard atmosphere
(so the actual blood pressure is always greater than one atmosphere).
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Density
Even a very tiny volume of fluid has many, many atoms or molecules in it.

We can work to create a vacuum – a volume that has relatively few molecules in it per unit volume, but
it is almost impossible to make that number zero – even the hard vacuum of outer space has on average
one molecule per cubic meter or thereabouts. We live at the bottom of a gravity well that confines our
atmosphere – the air that we breathe – so that it forms a relatively thick soup that we move through and
breathe with order of Avogadro’s Number (6 × 1023) molecules per liter – hundreds of billions of
billions per cubic centimeter.

At this point we cannot possibly track the motion and interactions of all of the individual molecules, so
we coarse grain and average.

The properties of oxygen molecules and helium molecules might well be very different, so the
molecular count alone may not be the most useful quantity. Since we are interested in how forces might
act on these small volumes, we need to know their mass, and thus we define the density of a fluid to be:

𝜌𝜌 =
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑



Lecture 5. Fluids

Compressibility

A major difference between fluids and solids, and liquids and gases within the fluids, is the
compressibility of these materials. Compressibility describes how a material responds to
changes in pressure.

This can be expressed as a simple linear relationship:

∆𝑃𝑃 = −𝐵𝐵
∆𝑉𝑉
𝑉𝑉

Pressure up, volume down and vice versa. The constant of proportionality B is called the
bulk modulus of the material.

Note well that we haven’t really specified yet whether the “material” is solid, liquid or gas.
All three of them have densities, all three of them have bulk moduli. Where they differ is in
the qualitative properties of their compressibility.
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Compressibility

• Solids are typically relatively incompressible (large B), although there are certainly exceptions.
They have long range order – all of the molecules are packed and tightly bonded together in
structures and there is usually very little free volume.

• Liquids are also relatively incompressible (large B). They differ from solids in that they lack long
range order. All of the molecules are constantly moving around and any small “structures” that
appear due to local interaction are short-lived. The molecules of a liquid are close enough together
that there is often significant physical and chemical interaction, giving rise to surface tension and
wetting properties – especially in water, which is an amazing fluid!

• Gases are in contrast quite compressible (small B). One can usually squeeze gases smoothly into
smaller and smaller volumes, until they reach the point where the molecules are basically all
touching and the gas converts to a liquid! Gases per se (especially hot gases) usually remain
“weakly interacting” right up to where they become a liquid, although the correct (non-ideal)
equation of state for a real gas often displays features that are the results of moderate interaction,
depending on the pressure and temperature.
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Compressibility

Water is, as noted, a remarkable liquid. H2O is a
polar molecules with a permanent dipole moment,
so water molecules are very strongly interacting,
both with each other and with other materials. It
organizes itself quickly into a state of relative order
that is very incompressible.

The bulk modulus of water is 2.2 × 109 Pa, which means that even deep in the ocean where
pressures can be measured in the tens of millions of Pascals (or hundreds of atmospheres)
the density of water only varies by a few percent from that on the surface. Its density varies
much more rapidly with temperature than with pressure.

We will idealize water by considering it to be perfectly incompressible in this course, which
is close enough to true for nearly any mundane application of hydraulics that you are most
unlikely to ever observe an exception that matters.
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Viscosity and fluid flow

Fluids, whether liquid or gas, have some internal “stickiness” that resists the relative motion
of one part of the fluid compared to another, a kind of internal “friction” that tries to
equilibrate an entire body of fluid to move together. They also interact with the walls of any
container in which they are confined.

The viscosity of a fluid (symbol μ) is a measure of this internal friction or stickiness. Thin
fluids have a low viscosity and flow easily with minimum resistance; thick sticky fluids
have a high viscosity and resist flow.

Fluid, when flowing through (say) a cylindrical pipe tends to organize itself in one of two
very different ways – a state of laminar flow where the fluid at the very edge of the flowing
volume is at rest where it is in contact with the pipe and the speed concentrically and
symmetrically increases to a maximum in the center of the pipe, and turbulent flow where
the fluid tumbles and rolls and forms eddies as it flows through the pipe. Turbulence and
flow and viscosity are properties that will be discussed in more detail below.
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Static Fluids. Pressure and Confinement of Static Fluids

In figure we see a box of a fluid that is confined
within the box by the rigid walls of the box.

We will imagine that this particular box is in “free
space” far from any gravitational attractor and is
therefore at rest with no external forces acting on it.
We know from our intuition based on things like cups
of coffee that no matter how this fluid is initially
stirred up and moving within the container, after a
very long time the fluid will damp down any initial
motion by interacting with the walls of the container
and arrive at static equilibrium.
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Static Fluids. Pressure and Confinement of Static Fluids

Fluid rotation is more complex than the rotation of a static object because a fluid can be
internally rotating even if all of the fluid in the outermost layer is in contact with a contain
and is stationary. It can also be turbulent – there can be lots of internal eddies and swirls of
motion, including some that can exist at very small length scales and persist for fair amounts
of time.

We will idealize all of this – when we discuss static properties of fluids we will assume that
all of this sort of internal motion has disappeared.

A fluid in static equilibrium has the property that every single
tiny chunk of volume in the fluid has to independently be in
force equilibrium – the total force acting on the differential
volume chunk must be zero.

In addition the net torques acting on all of these differential
subvolumes must be zero, and the fluid must be at rest, neither
translating nor rotating.
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Static Fluids. Pressure and Confinement of Static Fluids

Suppose (as shown) the cross-sectional area of the left and right walls are ΔA originally.
Consider now what we expect if we double the size of the box and at the same time add
enough additional fluid for the fluid density to remain the same, making the side walls have
the area 2 Δ A. With twice the area (and twice the volume and twice as much fluid), we have
twice as many molecular collisions per unit time on the doubled wall areas (with the same
average impulse per collision). The average force exerted by the doubled wall areas therefore
also doubles.

We can now make a few very simple observations about the
forces exerted by the walls of the container on the fluid within.
First of all the mass of the fluid in the box above is clearly:

∆𝑀𝑀 = 𝜌𝜌∆𝑉𝑉

We drew a symmetric box to make it easy to see that the
magnitudes of the forces exerted by opposing walls are equal
Fleft = Fright (for example). Similarly the forces exerted by the top
and bottom surfaces, and the front and back surfaces, must
cancel.
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Static Fluids. Pressure and Confinement of Static Fluids

An important property of fluids is that one part of a fluid can move independent of another
so the fluid in at least some layer with a finite thickness near the wall would therefore
experience a net force and would accelerate. But this violates our assumption of static
equilibrium, so a fluid in static equilibrium exerts no tangential force on the walls of a
confining container and vice versa.
We therefore conclude that the direction of the force exerted by a confining surface with an
area ΔA on the fluid that is in contact with it is: 𝐹⃗𝐹 = 𝑃𝑃∆𝐴𝐴�𝑛𝑛. Where �𝑛𝑛 is an inward-directed
unit vector perpendicular to (normal to) the surface.

From this simple argument we can conclude that the average
force exerted by any wall is proportional to the area of the wall.
This force is therefore most naturally expressible in terms of
pressure:

𝐹𝐹left = 𝑃𝑃left∆𝐴𝐴 = 𝑃𝑃right∆𝐴𝐴 = 𝐹𝐹right
which implies that the pressure at the left and right confining
walls is the same:

𝑃𝑃left = 𝑃𝑃right = 𝑃𝑃
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Pressure and Confinement of Static Fluids in Gravity

The principle change brought about by setting our box of fluid down on the ground in a
gravitational field is that an additional external force comes into play: The weight of the
fluid. A static fluid, confined in some way in a gravitational field, must support the weight
of its many component parts internally, and of course the box itself must support the
weight of the entire mass ΔM of the fluid.

As hopefully you can see if you carefully read the previous section. The only force
available to provide the necessary internal support or confinement force is the variation of
pressure within the fluid. We would like to know how the pressure varies as we move up
or down in a static fluid so that it supports its own weight.

If we consider a tiny (eventually differentially small) chunk of fluid in force equilibrium,
gravity will pull it down and the only thing that can push it up is a pressure difference
between the top and the bottom of the chunk.
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Pressure and Confinement of Static Fluids in Gravity

A fluid in static equilibrium confined to a sealed rectilinear box in a near-Earth
gravitational field 𝑔⃗𝑔. Note well the small chunk of fluid with dimensions Δx, Δy, Δz in the
middle of the fluid. Also note that the coordinate system selected has z increasing from the
top of the box down, so that z can be thought of as the depth of the fluid.
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Pressure and Confinement of Static Fluids in Gravity

In figure a (portion of) a fluid confined to a box is illustrated. The box could be a completely
sealed one with rigid walls on all sides, or it could be something like a cup or bucket that is
open on the top but where the fluid is still confined there by e.g. atmospheric pressure.

Let us consider a small (eventually infinitesimal) chunk of fluid somewhere in the middle of
the container. As shown, it has physical dimensions Δx, Δy, Δz; its upper surface is a distance
z below the origin (where z increases down and hence can represent “depth”) and its lower
surface is at depth z + Δz. The areas of the top and bottom surfaces of this small chunk are
e.g. ΔAtb = ΔxΔy, the areas of the sides are ΔxΔz and ΔyΔz respectively, and the volume of
this small chunk is ΔV = Δx ΔyΔz.

This small chunk is itself in static equilibrium – therefore the forces between any pair of its
horizontal sides (in the x or y direction) must cancel. As before (for the box in space) Fl = Fr
in magnitude (and opposite in their y-direction) and similarly for the force on the front and
back faces in the x-direction, which will always be true if the pressure does not vary
horizontally with variations in x or y. In the z-direction, however, force equilibrium requires
that:

𝐹𝐹𝑡𝑡 + ∆𝑚𝑚𝑚𝑚 − 𝐹𝐹𝑏𝑏 = 0
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Pressure and Confinement of Static Fluids in Gravity

The only possible source of Ft and Fb are the pressure in the fluid itself which will vary with
the depth z: Ft = P(z)ΔAtb and Fb = P(z +Δz)ΔAtb. Also, the mass of fluid in the (small) box is
Δm = ρΔV (using our ritual incantation “the mass of the chunks is...”). We can thus write:

𝑃𝑃 𝑧𝑧 ∆𝑥𝑥∆𝑦𝑦 + 𝜌𝜌 ∆𝑥𝑥∆𝑦𝑦∆𝑧𝑧 𝑔𝑔 − 𝑃𝑃 𝑧𝑧 + ∆𝑧𝑧 ∆𝑥𝑥∆𝑦𝑦 = 0

∆𝑃𝑃
∆𝑧𝑧

=
𝑃𝑃 𝑧𝑧 + ∆𝑧𝑧 − 𝑃𝑃(𝑧𝑧)

∆𝑧𝑧
= 𝜌𝜌𝜌𝜌

Finally, we take the limit Δz → 0 and identify the definition of the derivative to get:

𝑑𝑑𝑃𝑃
𝑑𝑑𝑧𝑧

= 𝜌𝜌𝜌𝜌

Identical arguments but without any horizontal external force followed by Δx → 0 and
Δy → 0 lead to:

𝑑𝑑𝑑𝑑
𝑑𝑑𝑥𝑥

=
𝑑𝑑𝑑𝑑
𝑑𝑑𝑦𝑦

= 0

as well – P does not vary with x or y as already noted
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Pressure and Confinement of Static Fluids in Gravity

𝑑𝑑𝑃𝑃
𝑑𝑑𝑧𝑧

= 𝜌𝜌𝜌𝜌

In order to find P(z) from this differential expression (which applies, recall, to any confined
fluid in static equilibrium in a gravitational field) we have to integrate it. This integral is
very simple if the fluid is incompressible because in that case ρ is a constant. The integral
isn’t that difficult if ρ is not a constant as implied by the equation we wrote above for the
bulk compressibility.

We will therefore first do incompressible fluids, then compressible ones.
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Variation of Pressure in Incompressible Fluids

In the case of incompressible fluids, ρ is a constant and does not vary with pressure and/or
depth. Therefore we can easily multiple dP/dz = ρg above by dz on both sides and integrate
to find P:

𝑑𝑑𝑑𝑑 = 𝜌𝜌𝜌𝜌 𝑑𝑑𝑑𝑑

�𝑑𝑑𝑑𝑑 = �𝜌𝜌𝜌𝜌 𝑑𝑑𝑑𝑑

𝑃𝑃 𝑧𝑧 = 𝜌𝜌𝜌𝜌𝜌𝜌 + 𝑃𝑃0
where P0 is the constant of integration for both integrals, and practically speaking is the
pressure in the fluid at zero depth (wherever that might be in the coordinate system chosen).
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Barometers

Mercury barometers were originally invented
by Evangelista Torricelli a natural philosopher
who acted as Galileo’s secretary for the last
three months of Galileo’s life under house
arrest.

Torricelli demonstrated that a shorter glass tube filled with mercury, when inverted into
a dish of mercury, would fall back into a column with a height of roughly 0.76 meters
with a vacuum on top, and soon thereafter discovered that the height of the column
fluctuated with the pressure of the outside air pressing down on the mercury in the dish,
correctly concluding that water would behave exactly the same way.
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Barometers

A simple mercury barometer is shown in figure. It consists of a tube
that is completely filled with mercury. Mercury has a specific gravity
of 13.534 at a typical room temperature, hence a density of
13534 kg/m3). The filled tube is then inverted into a small reservoir of
mercury. The mercury falls (pulled down by gravity) out of the tube,
leaving behind a vacuum at the top. We can easily compute the
expected height of the mercury column if P0 is the pressure on the
exposed surface of the mercury in the reservoir. In that case:

𝑃𝑃 = 𝑃𝑃0 + 𝜌𝜌𝜌𝜌𝜌𝜌

as usual for an incompressible fluid. Applying this formula to both the
top and the bottom, 𝑃𝑃(0) = 𝑃𝑃0 and

𝑃𝑃(𝐻𝐻) = 𝑃𝑃0 − 𝜌𝜌𝜌𝜌𝜌𝜌

𝑃𝑃0 = 𝜌𝜌𝜌𝜌𝜌𝜌
and one can easily convert the measured height H of mercury above
the top surface of mercury in the reservoir into P0, the air pressure on
the top of the reservoir.
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Barometers

At one standard atmosphere, we can easily determine what a mercury barometer at room
temperature will read (the height H of its column of mercury above the level of mercury in
the reservoir):

𝑃𝑃0 = 13534
kg
m3 × 9.80665

m
sec3

× 𝐻𝐻 = 101325 Pa

Dividing we find the value of H expected at one standard atmosphere:

𝐻𝐻atm = 0.76000 = 760.00 millimeters

𝑃𝑃(𝐻𝐻) = 𝑃𝑃0 − 𝜌𝜌𝜌𝜌𝜌𝜌

𝑃𝑃0 = 𝜌𝜌𝜌𝜌𝜌𝜌
and one can easily convert the measured height H of mercury above the top surface of
mercury in the reservoir into P0, the air pressure on the top of the reservoir.
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Variation of Oceanic Pressure with Depth

The pressure on the surface of the ocean is, approximately, by definition, one atmosphere.
Water is a highly incompressible fluid with ρw = 1000 kilograms per cubic meter. g ≈ 10
meters/second2. Thus:

𝑃𝑃 𝑧𝑧 = 𝑃𝑃0 + 𝜌𝜌𝑤𝑤𝑔𝑔𝑧𝑧 = 105 + 104𝑧𝑧 Pa
or    𝑃𝑃 𝑧𝑧 = 1.0 + 0.1𝑧𝑧 bar = 1000 + 100𝑧𝑧 mbar

Every ten meters of depth (either way) increases water pressure by (approximately) one
atmosphere!

http://www.calctool.org/CALC/other/games/depth_press
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Variation of Atmospheric Pressure with Height

Using z to describe depth is moderately inconvenient, so let
us define the height h above sea level to be −z. In that case
P0 is 1 Atmosphere. The molar mass of dry air is M = 0.029
kilograms per mole. R = 8.31 Joules/(mole-K°). Hence a bit
of multiplication at T = 300°:

𝑀𝑀 𝑔𝑔
𝑅𝑅𝑅𝑅

=
0.029 × 10
8.31 × 300

= 1.12 × 10−4 meters−1

𝑃𝑃 ℎ = 105exp −0.00012 ℎ Pa
= 1000 exp(−0.00012 ℎ) mbar

This equation predicts that air pressure should drop to 1/e
of its sea-level value of 1000 mbar at a height of around
8000 meters, the height of the so-called death zone. We can
compare the actual (average) pressure at 8000 meters, 356
mbar, to 1000 × e−1 = 368 mbar.

http://adventure.howstuffworks.com/outdoor-
activities/climbing/altitude-sickness1.htm
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Pascal’s Principle and Hydraulics
We note that (from the above) the general form of P of a fluid confined to a sealed container
has the most general form:

𝑃𝑃 𝑧𝑧 = 𝑃𝑃0 + �
0

𝑧𝑧

𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌

where P0 is the constant of integration or value of the pressure at the reference depth z = 0.
This has an important consequence that forms the basis of hydraulics.
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Pascal’s Principle and Hydraulics

Suppose, that we have an
incompressible fluid e.g. water
confined within a sealed container by
e.g. a piston that can be pushed or
pulled on to increase or decrease the
confinement pressure on the surface of
the piston.
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Pascal’s Principle and Hydraulics

We can push down (or pull back) on the
piston with any total downward force F
that we like that leaves the system in
equilibrium. Since the piston itself is in
static equilibrium, the force we push
with must be opposed by the pressure in
the fluid, which exerts an equal and
opposite upwards force:

𝐹𝐹 = 𝐹𝐹𝑝𝑝 = 𝑃𝑃0𝐴𝐴
where A is the cross sectional area of
the piston and where we’ve put the
cylinder face at z = 0, which we are
obviously free to do.
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Pascal’s Principle and Hydraulics

The pressure at a depth z in the
container is then

𝑃𝑃 𝑧𝑧 = 𝑃𝑃0 + 𝜌𝜌𝜌𝜌𝜌𝜌
where A is the cross sectional area of
the piston and where we’ve put the
cylinder face at z = 0, which we are
obviously free to do.
where ρ = ρw if the cylinder is indeed
filled with water, but the cylinder could
equally well be filled with hydraulic
fluid
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Pascal’s Principle and Hydraulics

We recall that the pressure changes only
when we change our depth. Moving
laterally does not change the pressure,
because e.g. dP/dx = dP/dy = 0. We can
always find a path consisting of vertical
and lateral displacements from z = 0 to
any other point in the container – two
such points at the same depth z are
shown in figure, along with a
vertical/horizontal path connecting
them. Clearly these two points must
have the same pressure P(z)!
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Pascal’s Principle and Hydraulics

Now consider the following. Suppose we
start with pressure P0 (so that the pressure
at these two points is P(z), but then
change F to make the pressure P′0 and the
pressure at the two points P′(z). Then:

𝑃𝑃 𝑧𝑧 = 𝑃𝑃0 + 𝜌𝜌𝜌𝜌𝜌𝜌
𝑃𝑃′ 𝑧𝑧 = 𝑃𝑃′0 + 𝜌𝜌𝜌𝜌𝜌𝜌

∆𝑃𝑃 𝑧𝑧 = 𝑃𝑃′ 𝑧𝑧 − 𝑃𝑃 𝑧𝑧 = 𝑃𝑃′0 − 𝑃𝑃0 = ∆𝑃𝑃0
That is, the pressure change at depth z
does not depend on z at any point in the
fluid! It depends only on the change in the
pressure exerted by the piston!
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Pascal’s Principle and Hydraulics

This result is known as Pascal’s Principle and it holds (more or less) for any
compressible fluid, not just incompressible ones, but in the case of compressible fluids
the piston will move up or down or in or out and the density of the fluid will change and
hence the treatment of the integral will be too complicated to cope with. Pascal’s
Principle is more commonly given in English words as:

Any change in the pressure exerted at a given point on a confined fluid is transmitted,
undiminished, throughout the fluid.

Pascal’s principle is the basis of hydraulics. Hydraulics are a kind of fluid-based simple
machine that can be used to greatly amplify an applied force.
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A Hydraulic Lift

Figure illustrates the way we can multiply forces
using Pascal’s Principle.

Two pistons seal off a pair of cylinders connected
by a closed tube that contains an incompressible
fluid. The two pistons are deliberately given the
same height (which might as well be z = 0), then,
in the figure, although we could easily deal with
the variation of pressure associated with them
being at different heights since we know P(z) = P0
+ρgz.

The two pistons have cross sectional areas A1 and
A2 respectively, and support a small mass m on the
left and large mass M on the right in static
equilibrium.
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A Hydraulic Lift

For them to be in equilibrium, clearly:
𝐹𝐹1 − 𝑚𝑚𝑚𝑚 = 0
𝐹𝐹2 − 𝑀𝑀𝑔𝑔 = 0

We also/therefore have:
𝐹𝐹1 = 𝑃𝑃0𝐴𝐴1 = 𝑚𝑚𝑚𝑚
𝐹𝐹2 = 𝑃𝑃0𝐴𝐴2 = 𝑀𝑀𝑔𝑔

Thus
𝐹𝐹1
𝐴𝐴1

= 𝑃𝑃0 =
𝐹𝐹2
𝐴𝐴2

or (substituting and cancelling g):

𝑀𝑀 =
𝐴𝐴2
𝐴𝐴1

𝑚𝑚

A small mass on a small-area piston can easily balance a much larger mass on an equally
larger area piston!
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A Hydraulic Lift

𝑀𝑀 =
𝐴𝐴2
𝐴𝐴1

𝑚𝑚

If we try to lift (say) a car with a hydraulic lift, we have to move the same volume
ΔV = AΔz from under the small piston (as it descends) to under the large one (as it
ascends). If the small one goes down a distance z1 and the large one goes up a distance z2,
then:

𝑧𝑧1
𝑧𝑧2

=
𝐴𝐴2
𝐴𝐴1

The work done by the two cylinders thus precisely balances:

𝑊𝑊2 = 𝐹𝐹2𝑧𝑧2 = 𝐹𝐹1
𝐴𝐴2
𝐴𝐴1

𝑧𝑧2 = 𝐹𝐹1
𝐴𝐴2
𝐴𝐴1

𝑧𝑧1
𝐴𝐴1
𝐴𝐴2

= 𝐹𝐹1𝑧𝑧1 = 𝑊𝑊1

The hydraulic arrangement thus transforms pushing a small force through a large distance
into a large force moved through a small distance so that the work done on piston 1
matches the work done by piston 2.
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Archimedes’ Principle

A solid chunk of “stuff” of mass m and the dimensions shown is immersed in a fluid of
density ρ at a depth z. The vertical pressure difference in the fluid (that arises as the fluid
itself becomes static static) exerts a vertical force on the cube.
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Archimedes’ Principle

The net upward force exerted by the fluid is called the buoyant force Fb and is equal to:
𝐹𝐹𝑏𝑏 = 𝑃𝑃 𝑧𝑧 + ∆𝑧𝑧 ∆𝑥𝑥∆𝑦𝑦 − 𝑃𝑃 𝑧𝑧 ∆𝑥𝑥∆𝑦𝑦 =

= 𝑃𝑃0 + 𝜌𝜌𝜌𝜌 𝑧𝑧 + ∆𝑧𝑧 − 𝑃𝑃0 + 𝜌𝜌𝜌𝜌𝜌𝜌 ∆𝑥𝑥∆𝑦𝑦 =

= 𝜌𝜌𝜌𝜌∆𝑧𝑧∆𝑥𝑥∆𝑦𝑦 =
= 𝜌𝜌𝜌𝜌∆𝑉𝑉

where ΔV is the volume of the small block.
The buoyant force is thus the weight of the fluid displaced by this single tiny block. This is
all we need to show that the same thing is true for an arbitrary immersed shape of object.
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Archimedes’ Principle

In figure, an arbitrary blob-shape is immersed in a fluid
of density ρ. Imagine that we’ve taken a french-fry
cutter and cuts the whole blob into nice rectangular
segments, one of which (of length h and cross-sectional
area ΔA) is shown. We can trim or average the end caps
so that they are all perfectly horizontal by making all of
the rectangles arbitrarily small (in fact, differentially
small in a moment). In that case the vertical force
exerted by the fluid on just the two lightly shaded
surfaces shown would be:

𝐹𝐹𝑑𝑑 = 𝑃𝑃 𝑧𝑧 ∆𝐴𝐴
𝐹𝐹𝑢𝑢 = 𝑃𝑃 𝑧𝑧 + ℎ ∆𝐴𝐴

where we assume the upper surface is at depth z. Since P(z +h) = P(z)+ρgh, we can find the
net upward buoyant force exerted on this little cross-section by subtracting the first from the
second:

∆𝐹𝐹𝑏𝑏 = 𝐹𝐹𝑢𝑢 − 𝐹𝐹𝑑𝑑 = 𝜌𝜌𝜌𝜌𝜌∆𝐴𝐴 = 𝜌𝜌𝜌𝜌∆𝑉𝑉 where the volume of this piece is ΔV = h Δ A.
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Archimedes’ Principle

∆𝐹𝐹𝑏𝑏 = 𝐹𝐹𝑢𝑢 − 𝐹𝐹𝑑𝑑 = 𝜌𝜌𝜌𝜌𝜌∆𝐴𝐴 = 𝜌𝜌𝜌𝜌∆𝑉𝑉 where the volume of this piece is ΔV = h Δ A.
We can now let ΔA → dA, so that ΔV → dV , and write

𝐹𝐹𝑏𝑏 = �𝐹𝐹𝑏𝑏 = �
𝑉𝑉 of blob

𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌 = 𝜌𝜌𝜌𝜌𝜌𝜌 = 𝑚𝑚𝑓𝑓𝑔𝑔

where mf = ρV is the mass of the fluid displaced, so that mf g is its weight.
That is:
The total buoyant force on the immersed object is the weight of the fluid displaced by the
object.
This statement – in the English or algebraic statement as you prefer – is known as
Archimedes’ Principle,
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Fluid Flow

In figure we see fluid flowing from left to right in a circular pipe. The pipe is assumed to be
“frictionless” for the time being – to exert no drag force on the fluid flowing within – and
hence all of the fluid is moving uniformly (at the same speed v with no relative internal
motion) in a state of dynamic equilibrium.
• We are interested in understanding the flow or current of water carried by the pipe, which

we will define to be the volume per unit time that passes any given point in the pipe.
• We would like to understand the relationship between area, speed and flow
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Fluid Flow

In a time Δt, all of the water within a distance vΔt to the left of the second shaded surface will
pass through this surface and hence past the point indicated by the arrow underneath. The
volume of this fluid is just the area of the surface times the height of the cylinder of water:

∆𝑉𝑉 = 𝐴𝐴𝐴𝐴∆𝑡𝑡
If we divide out the Δt, we get:

𝐼𝐼 =
∆𝑉𝑉
∆𝑡𝑡

= 𝐴𝐴𝐴𝐴

This, then is the flow, or volumetric current of fluid in the pipe.
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Conservation of Flow

Fluid does not, of course, only flow in smooth pipes with a single cross-sectional area.
Sometimes it flows from large pipes into smaller ones or vice versa.

Figure shows a fluid as it flows from just such a wider pipe down a gently sloping neck into 
a narrower one. As before, we will ignore drag forces and assume that the flow is as uniform 
as possible. The pressure, speed of the (presumed incompressible) fluid, and cross sectional 
area for either pipe are P1, v1, and A1 in the wider one and P2, v2, and A2 in the narrower one.
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Conservation of Flow

In a time Δt a volume of fluid ΔV = A1v1 Δt passes through the surface/past the point 1
marked with an arrow in the figure. In the volume between this surface and the next grey
surface at the point 2 marked with an arrow no fluid can build up so actual quantity of mass
in this volume must be a constant.
This is a kind of conservation law which, for a continuous fluid or similar medium, is called
a continuity equation.

∆𝑉𝑉 = 𝐴𝐴1𝑣𝑣1∆𝑡𝑡 = 𝐴𝐴2𝑣𝑣2∆𝑡𝑡

𝐼𝐼 =
∆𝑉𝑉
∆𝑡𝑡

= 𝐴𝐴1𝑣𝑣1 = 𝐴𝐴2𝑣𝑣2
Thus the current or flow through the two surfaces marked 1 and 2 must be the same:

𝐴𝐴1𝑣𝑣1 = 𝐴𝐴2𝑣𝑣2



Lecture 6. Fluids

Work-Mechanical Energy in Fluids: Bernoulli’s Equation

A circular cross-sectional necked pipe is arranged so that the pipe changes height between
the larger and smaller sections. We will assume that both pipe segments are narrow
compared to the height change, so that we don’t have to account for a potential energy
difference (per unit volume) between water flowing at the top of a pipe compared to the
bottom, but for ease of viewing we do not draw the picture that way.
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Work-Mechanical Energy in Fluids: Bernoulli’s Equation

The fluid is incompressible and the pipe itself does not leak, so fluid cannot build up
between the bottom and the top. As the fluid on the bottom moves to the left a distance d
(which might be v1Δt but we don’t insist on it as rates will not be important in our result)
exactly the same amount fluid must move to the left a distance D up at the top so that fluid is
conserved.

The total mechanical consequence of this movement is thus the disappearance of a chunk of
fluid mass:

∆𝑚𝑚 = 𝜌𝜌∆𝑉𝑉 = 𝜌𝜌𝐴𝐴1𝑑𝑑 = 𝜌𝜌𝐴𝐴2𝐷𝐷

that is moving at speed v1 and at height y1 at the bottom and it’s appearance moving at speed
v2 and at height y2 at the top. Clearly both the kinetic energy and the potential energy of this
chunk of mass have changed.
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Work-Mechanical Energy in Fluids: Bernoulli’s Equation

What caused this change in mechanical energy?
Well, it can only be work.
What does the work?
The walls of the (frictionless, drag free) pipe can do no work as the only force it exerts is
perpendicular to the wall and hence to 𝑣⃗𝑣 in the fluid.
The only thing left is the pressure that acts on the entire block of water between the first
surface (lightly shaded) drawn at both the top and the bottom as it moves forward to become
the second surface (darkly shaded) drawn at the top and the bottom, effecting this net
transfer of mass Δm.
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Work-Mechanical Energy in Fluids: Bernoulli’s Equation

The force F1 exerted to the right on this block of fluid at the bottom is just F1 = P1A1; the
force F2 exerted to the left on this block of fluid at the top is similarly F2 = P2A2. The work
done by the pressure acting over a distance d at the bottom is W1 = P1A1d, at the top it is W2
= −P2A2D. The total work is equal to the total change in mechanical energy of the chunk Δm:

𝑊𝑊1 + 𝑊𝑊2 = 𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 − 𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑊𝑊𝑡𝑡𝑡𝑡𝑡𝑡 = ∆𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝑃𝑃1𝐴𝐴1𝑑𝑑 − 𝑃𝑃2𝐴𝐴2𝐷𝐷 =
1
2
𝑚𝑚𝑣𝑣22 + ∆𝑚𝑚𝑚𝑚𝑦𝑦2 −

1
2
𝑚𝑚𝑣𝑣12 + ∆𝑚𝑚𝑚𝑚𝑦𝑦1

(𝑃𝑃1−𝑃𝑃2)∆𝑉𝑉 =
1
2
𝜌𝜌∆𝑉𝑉𝑣𝑣22 + 𝜌𝜌∆𝑉𝑉𝑉𝑉𝑦𝑦2 −

1
2
𝜌𝜌∆𝑉𝑉𝑣𝑣12 + 𝜌𝜌∆𝑉𝑉𝑉𝑉𝑦𝑦1

(𝑃𝑃1−𝑃𝑃2) =
1
2
𝜌𝜌𝑣𝑣22 + 𝜌𝜌𝜌𝜌𝑦𝑦2 −

1
2
𝜌𝜌𝑣𝑣12 + 𝜌𝜌𝜌𝜌𝑦𝑦1

𝑃𝑃1 +
1
2
𝜌𝜌𝑣𝑣12 + 𝜌𝜌𝑔𝑔𝑦𝑦1 = 𝑃𝑃2 +

1
2
𝜌𝜌𝑣𝑣22 + 𝜌𝜌𝑔𝑔𝑦𝑦2 = a constant (units of pressure)

This result is known as Bernoulli’s Principle
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Fluid Viscosity and Resistance

In the discussion above, we have consistently ignored viscosity and drag, which behave like “friction”,
exerting a force parallel to the confining walls of the pipe in the opposite direction to the relative motion
of fluid and pipe.

In figure a circular pipe is carrying a fluid with viscosity μ from left to right at a constant speed.
Once again, this is a sort of dynamic equilibrium; the net force on the fluid in the pipe segment shown
must be zero for the speed of the fluid through it to be maintained unabated during the flow.

The fluid is in contact with and interacts with the walls of the pipe, creating a thin layer of fluid at
least a few atoms thick that are “at rest”, stuck to the pipe. As fluid is pushed through the pipe, this
layer at rest interacts with and exerts an opposing force on the layer moving just above it via the
viscosity of the fluid. This layer in turn interacts with and slows the layer above it and so on right up
to the center of the pipe, where the fluid flows most rapidly.
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Fluid Viscosity and Resistance

The interaction of the surface layer with the fluid, redistributed to the whole fluid via the viscosity,
exerts a net opposing force on the fluid as it moves through the pipe. In order for the average speed of
the fluid to continue, an outside force must act on it with an equal and opposite force. The only
available source of this force in the figure is obviously the fluid pressure; if it is larger on the left
than on the right (as shown) it will exert a net force on the fluid in between that can balance the drag
force exerted by the walls.

The forces at the ends are F1 = P1A, F2 = P2A. The net force acting on the fluid mass is thus:

∆𝐹𝐹 = 𝐹𝐹1 − 𝐹𝐹2 = 𝑃𝑃1 − 𝑃𝑃2 𝐴𝐴

All things being equal, we expect the flow rate to increase linearly with v, and for laminar flow, the
drag force is proportional to v. Therefore we expect that:

∆𝐹𝐹 = 𝐹𝐹𝑑𝑑 ∝ 𝑣𝑣 ∝ 𝐼𝐼 (the flow)
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Fluid Viscosity and Resistance

We can then divide out the area and write:

∆𝑃𝑃 ∝
𝐼𝐼
𝐴𝐴

We cannot derive the constant of proportionality in this expression, and we will omit some math and
just write following result:

∆𝑃𝑃 = 𝐼𝐼
8𝐿𝐿𝜇𝜇
𝜋𝜋𝑟𝑟4

= 𝐼𝐼𝐼𝐼

where I have introduced the resistance of the pipe to flow:

𝑅𝑅 =
8𝐿𝐿𝐿𝐿
𝜋𝜋𝑟𝑟4

This equation is know as Poiseuille’s Law and is a key relation for physicians and plumbers to know
because it describes both flow of water in pipes and the flow of blood in blood vessels wherever the
flow is slow enough that it is laminar and not turbulent
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A Brief Note on Turbulence

The velocity of the flow in a circular pipe (and other parameters such as μ and r) can be transformed into
a general dimensionless parameter called the Reynolds Number (Re).

The Reynolds number for a circular pipe is:

𝑅𝑅𝑅𝑅 =
𝜌𝜌𝜌𝜌𝜌𝜌
𝜇𝜇

=
𝜌𝜌𝜌𝜌2𝑟𝑟
𝜇𝜇

where D = 2r is the hydraulic diameter, which in the case of a circular pipe is the actual diameter.

The one thing the Reynolds number does for us is that it serves as a marker for the transition to
turbulent flow.

For Re < 2300 flow in a circular pipe is laminar and all of the relations above hold.

Turbulent flow occurs for Re > 4000. In between is the region known as the onset of turbulence, where
the resistance of the pipe depends on flow in a very nonlinear fashion, and among other things
dramatically increases with the Reynolds number.
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The Human Circulatory System

Here is a list of True Facts about the human cardiovascular system:

• The heart, illustrated in the schematic in figure is the “pump” that drives blood through your blood
vessels.
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The Human Circulatory System
• The blood vessels are differentiated into three distinct types:

 Arteries, which lead strictly away from the heart and which contain a muscular layer that
elastically dilates and contracts the arteries in a synchronous way to help carry the surging waves
of blood. This acts as a “shock absorber” and hence reduces the peak systolic blood pressure.
Arteries split up the farther one is from the heart, eventually becoming arterioles, the very small
arteries that actually split off into capillaries.

 Capillaries, which are a dense network of very fine vessels (often only a single cell thick) that
deliver oxygenated blood throughout all living tissue so that the oxygen can disassociate from
the carrying hemoglobin molecules and diffuse into the surrounding cells in systemic circulation,
or permit the oxygenation of blood in pulmonary circulation.

 Veins, which lead strictly back to the heart from the capillaries. Veins also have a muscle layer
that expand or contract to aid in thermoregulation and regulation of blood pressure as one lies
down or stands up. Veins also provide “capacitance” to the circulatory system and store the
body’s “spare” blood; 60% of the body’s total blood supply is usually in the veins at any one time.
Most of the veins, especially long vertical veins, are equipped with one-way venous valves every
4-9 cm that prevent backflow and pooling in the lower body during e.g. diastoli.

Blood from the capillaries is collected first in venules (the return-side equivalent of arterioles)
and then into veins proper.
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The Human Circulatory System

• There are two distinct circulatory systems in humans (and in the rest of the mammals and birds):

 Systemic circulation, where oxygenated blood enters the heart via pulmonary veins from the
lungs and is pumped at high pressure into systemic arteries that deliver it through the capillaries
and (deoxygenated) back via systemic veins to the heart.

 Pulmonary circulation, where deoxgenated blood that has returned from the system circulation is
pumped into pulmonary arteries that deliver it to the lungs, where it is oxygenated and returned to
the heart by means of pulmonary veins. These two distinct circulations do not mix and together,
form a closed double circulation loop.
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The Human Circulatory System
• Blood pressure is generally measured and reported in terms of two numbers:

 Systolic blood pressure. This is the peak/maximum arterial pressure in the wave pulse generated
that drives systemic circulation. It is measured in the (brachial artery of the) arm, where it is
supposed to be a reasonably accurate reflection of peak aortic pressure just outside of the heart,
where, sadly, it cannot easily be directly measured without resorting to invasive methods that are,
in fact, used e.g. during surgery.

 Diastolic blood pressure. This is the trough/minimum arterial pressure in the wave pulse of
systemic circulation.

“Normal” Systolic systemic blood pressure can fairly accurately be estimated on the basis of the
distance between the heart and the feet; a distance on the order of 1.5 meters leads to a pressure
difference of around 0.15 atm or 120 mmHg.

Blood is driven through the relatively high resistance of the capillaries by the difference in arterial
pressure and venous pressure. The venous system is entirely a low pressure return; its peak pressure is
typically order of 0.008 bar (6 mmHg). This can be understood and predicted by the mean distance
between valves in the venous system – the pressure difference between one valve and another (say) 8 cm
higher is approximately ρbg × 0.08 ≈= 0.008 bar. However, this pressure is not really static – it varies
with the delayed pressure wave that causes blood to surge its way up, down, or sideways through the
veins on its way back to the atria of the heart.
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Atherosclerotic Plaque Partially Occludes a Blood Vessel

Atherosclerosis – granular deposits of fatty material called plaques that attach to the walls of e.g.
arteries and gradually thicken over time, generally associated with high blood cholesterol and lipidemia.
The risk factors for atherosclerosis form a list as long as your arm and its fundamental causes are not
well understood, although they are currently believed to form as an inflammatory response to surplus
low density lipoproteins (one kind of cholesterol) in the blood.

In figure two arteries are illustrated.
Artery a) is “clean”, has a radius of r1, and (from the
Poiseuille Equation above) has a very low resistance to any
given flow of blood. Because Ra over the length L is low,
there is very little pressure drop between P+ and P− on the
two sides of any given stretch of length L. The velocity
profile of the fluid is also more or less uniform in the artery,
slowing a bit near the walls but generally moving smoothly
throughout the entire cross-section.
Artery b) has a significant deposit of atherosclerotic
plaques that have coated the walls and reduced the effective
radius of the vessel to ∼ r2 over an extended length L. The
vessel is perhaps 90% occluded – only 10% of its normal
cross-sectional area is available to carry fluid.
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Atherosclerotic Plaque Partially Occludes a Blood Vessel

We can now easily understand several things about this situation. First, if the total flow in artery b) is
still being maintained at close to the levels of the flow in artery a) (so that tissue being oxygenated by
blood delivered by this artery is not being critically starved for oxygen yet) the fluid velocity in the
narrowed region is ten times higher than normal! Since the Reynolds number for blood flowing in
primary arteries is normally around 1000 to 2000, increasing v by a factor of 10 increases the
Reynolds number by a factor of 10, causing the flow to become turbulent in the obstruction. This
tendency is even more pronounced than this figure suggests – I’ve drawn a nice symmetric occlusion,
but the atheroma (lesion) is more likely to grow predominantly on one side and irregular lesions are
more likely to disturb laminar flow even for smaller Reynolds numbers.

This turbulence provides the basis for one method of possible detection and diagnosis – you can hear
the turbulence (with luck) through the stethoscope during a physical exam. Physicians get a lot of
practice listening for turbulence since turbulence produced by artificially restricting blood flow in the
brachial artery by means of a constricting cuff is basically what one listens for when taking a patient’s
blood pressure. It really shouldn’t be there, especially during diastole, the rest of the time.
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Thermodynamics
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0th Law of Thermodynamics Summary
Thermal Equilibrium

A system with many microscopic components (for
example, a gas, a liquid, a solid with many
molecules) that is isolated from all forms of energy
exchange and left alone for a “long time” moves
toward a state of thermal equilibrium.

A system in thermal equilibrium is characterized by a
set of macroscopic quantities that depend on the
system in question and characterize its “state” (such
as pressure, volume, density) that do not change in
time.

Two systems are said to be in (mutual) thermal
equilibrium if, when they are placed in “thermal
contact” (basically, contact that permits the exchange
of energy between them), their state variables do not
change.

http://www.npl.co.uk/
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0th Law of Thermodynamics Summary
Zeroth Law of Thermodynamics

If system A is in thermal equilibrium with system C, and system B is in thermal equilibrium
with system C, then system A is in thermal equilibrium with system B.

hyperphysics.phy-astr.gsu.edu 
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0th Law of Thermodynamics Summary
Temperature Scales

• Fahrenheit: This is one of the oldest scales, and is
based on the coldest temperature that could be
achieved with a mix of ice and alcohol. In it the
freezing point of water is at 32°F, the boiling point
of water is at 212°F.

• Celsius or Centigrade: This is a very sane system,
where the freezing point of water is at 0°C and the
boiling point is at 100°C. The degree size is thus
9/5 as big as the Fahrenheit degree.

• Kelvin or Absolute: 0°K is the lowest possible
temperature, where the internal energy of a system
is at its absolute minimum. The degree size is the
same as that of the Centigrade or Celsius scale. This
makes the freezing point of water at atmospheric
pressure 273.16°K, the boiling point at 373.16°K.

http://i.livescience.com/
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The First Law of Thermodynamics
Internal Energy

Internal energy is all the mechanical energy in all the components of a system. For example,
in a monoatomic gas it might be the sum of the kinetic energies of all the gas atoms. In a
solid it might be the sum of the kinetic and potential energies of all the particles that make
up the solid.

Heat

Heat is a bit more complicated. It is internal energy as well, but it is internal energy that is
transferred into or out of a given system. Furthermore, it is in some fundamental sense
“disorganized” internal energy – energy with no particular organization, random energy.
Heat flows into or out of a system in response to a temperature difference, always flowing
from hotter temperature regions (cooling them) to cooler ones (warming them).

Common units of heat include the ever-popular Joule and the calorie (the heat required to
raise the temperature of 1 gram of water at 14.5°C to 15.5°C. Note that 1 cal = 4.186 J.
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The First Law of Thermodynamics
Heat Capacity

If one adds heat to an object, its temperature usually increases (exceptions include at a state
boundary, for example when a liquid boils). In many cases the temperature change is linear
in the amount of heat added. We define the heat capacity C of an object from the relation:.

∆𝑄𝑄 = 𝐶𝐶∆𝑇𝑇

where Q is the heat that flows into a system to increase its temperature by T .

Many substances have a known heat capacity per unit mass. This permits us to also write:

∆𝑄𝑄 = 𝑚𝑚𝐶𝐶∆𝑇𝑇

where C is the specific heat of a substance. The specific heat of liquid water is
approximately:

𝐶𝐶𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 = 1
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑘𝑘𝑘𝑘 � ℃
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The First Law of Thermodynamics
Work Done by a Gas

𝑊𝑊 = �
𝑉𝑉𝑖𝑖

𝑉𝑉𝑓𝑓
𝑃𝑃𝑃𝑃𝑃𝑃

This is the area under the P(V) curve, suggesting that we draw lots of state diagrams on a P
and V coordinate system. Both heat transfer and word depend on the path a gas takes P(V )
moving from one pressure and volume to another.

http://mgh-images.s3.amazonaws.com/
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The First Law of Thermodynamics

The First Law of Thermodynamics

∆𝑈𝑈 = ∆𝑄𝑄 −𝑊𝑊

In words, this is that the change in total mechanical
energy of a system is equal to heat put into the system
plus the work done on the system (which is minus the
work done by the system, hence the minus above).

This is just, at long last, the fully generalized law of
conservation of energy. All the cases where
mechanical energy was not conserved in previous
chapters because of nonconservative forces, the
missing energy appeared as heat, energy that naturally
flows from hotter systems to cooler ones.
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The First Law of Thermodynamics

Cyclic Processes

Most of what we study in these final sections will lead us to an understanding of simple heat
engines based on gas expanding in a cylinder and doing work against a piston. In order to
build a true engine, the engine has to go around in a repetitive cycle. This cycle typically is
represented by a closed loop on a state e.g. P(V) curve. A direct consequence of the 1st law
is that the net work done by the system per cycle is the area inside the loop of the P(V)
diagram. Since the internal energy is the same at the beginning and the end of the cycle, it
also tells us that:

∆𝑄𝑄𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑊𝑊𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

the heat that flows into the system per cycle must exactly equal the work done by the
system per cycle.
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The First Law of Thermodynamics

Adiabatic Processes are processes (PV curves)
such that no heat enters or leaves an (insulated)
system.

The adiabatic condition:

𝑃𝑃𝑉𝑉𝛾𝛾 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

Isothermal Processes are processes where the
temperature T of the system remains constant.

𝑃𝑃𝑉𝑉 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
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The First Law of Thermodynamics

Isobaric Processes are processes that
occur at constant pressure.

𝑉𝑉~𝑇𝑇

Isovolumetric Processses are
processes that occur at constant
volume

𝑃𝑃~𝑇𝑇



Lecture 7. Thermodynamics

The First Law of Thermodynamics
Work done by an Ideal Gas:

𝑃𝑃𝑉𝑉 = 𝑁𝑁𝑁𝑁𝑁𝑁

where N is the number of gas atoms or molecules. Isothermal work
at (fixed) temperature T0 is thus:

𝑊𝑊 = �
𝑉𝑉1

𝑉𝑉2
𝑁𝑁𝑁𝑁𝑇𝑇0
𝑉𝑉

𝑑𝑑𝑑𝑑 = 𝑁𝑁𝑁𝑁𝑁𝑁 ln
𝑉𝑉2
𝑉𝑉1

Isobaric work is trivial. P = P0 is a constant, so

𝑊𝑊 = �
𝑉𝑉1

𝑉𝑉2

𝑃𝑃0𝑑𝑑𝑑𝑑 = 𝑃𝑃0 𝑉𝑉2 − 𝑉𝑉1

Adiabatic work is a bit tricky and depends on some of the internal
properties of the gas (for example, whether it is mono- or
diatomic).
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Second Law of Thermodynamics
A heat engine is a cyclic device that takes heat QH in from a hot reservoir, converts some of it
to work W, and rejects the rest of it QC to a cold reservoir so that at the end of a cycle it is in
the same state (and has the same internal energy) with which it began. The net work done per
cycle is the area inside the PV curve.

The efficiency of a heat engine is defined to be:

𝜖𝜖 = 𝑊𝑊
𝑄𝑄𝐻𝐻

= 𝑄𝑄𝐻𝐻−𝑄𝑄𝐶𝐶
𝑄𝑄𝐻𝐻

= 1 − 𝑄𝑄𝐶𝐶
𝑄𝑄𝐻𝐻

http://www.kshitij-iitjee.com
http://www.chemistry.wustl.edu
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Kelvin-Planck statement of the Second Law of Thermodynamics

It is impossible to construct a cyclic heat engine that produces no other effect but the
absorption of energy from a hot reservoir and the production of an equal amount of work.
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Refrigerators (and Heat Pumps)

A refrigerator is basically a cyclic heat engine run
backwards. In a cycle it takes heat QC in from a cold
reservoir, does work W on it, and rejects a heat QH to a hot
reservoir. Its net effect is thus to make the cold reservoir
colder (refrigeration) by removing heat from inside it to
the warmer warm reservoir (warming it still further, e.g.
as a heat pump).

The coefficient of performance of a refrigerator is
defined to be

COP =
𝑄𝑄𝐶𝐶
W

http://www4.uwsp.edu
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Clausius Statement of the Second Law of Thermodynamics

It is impossible to construct a cyclic refrigerator whose sole effect is the transfer of energy
from a cold reservoir to a warm reservoir without the input of energy by work.
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Carnot Engine

The Carnot Cycle is the archetypical reversible cycle, and a Carnot Cycle-based heat engine is one
that does not dissipate any energy internally and uses only reversible steps. Carnot’s Theorem states
that no real heat engine operating between a hot reservoir at temperature TH and a cold reservoir at
temperature TC can be more efficient than a Carnot engine operating between those two reservoirs.

A Carnot Cycle consists of four steps:

a) Isothermal expansion (in contact with the heat
reservoir)

b) Adiabatic expansion (after the heat reservoir is
removed)

c) Isothermal compression (in contact with the
cold reservoir)

d) Adiabatic compression (after the cold reservoir
is removed)

The efficiency of a Carnot Engine is:

ϵCarnot = 1 −
𝑇𝑇𝐶𝐶
𝑇𝑇𝐻𝐻

http://www.physics.louisville.edu
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Entropy

Entropy S is a measure of disorder. The change in entropy of a system can be evaluated by integrating:

𝑑𝑑𝑑𝑑 =
𝑑𝑑𝑑𝑑
𝑇𝑇

between successive infinitesimally separated equilibrium states (the weasel language is necessary
because temperature should be constant in equilibrium, but systems in equilibrium have constant
entropy). Thus:

∆𝑆𝑆 = �
𝑑𝑑𝑄𝑄
𝑇𝑇

Entropy Statement of the Second Law of Thermodynamics:
The entropy of the Universe never decreases. It either increases (for irreversible processes) or remains
the same (for reversible processes).

http://www.michelecoscia.com/ http://figures.boundless.com/
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Entropy Statement of the Second Law of Thermodynamics

The entropy of the Universe never decreases. It either increases (for irreversible processes) or remains
the same (for reversible processes).

http://www.michelecoscia.com/ http://www.michelecoscia.com/
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Phases and Phase Transitions

Matter can exist in three different phases (physical states):

• Solid

• Liquid

• Gas

A phase is a form of matter that is uniform throughout in
chemical composition and physical properties, and that can
be distinguished from other phases with which it may be in
contact by these definite properties and composition.

http://www.chemistry.wustl.edu/

As shown in Figure:

• a substance in the solid phase has a definite shape and rigidity;

• a substance in the liquid phase has no definite shape, but has a definite volume;

• a substance in the gas phase has no definite shape or volume, but has a shape and volume determined
by the shape and size of the container.
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Phases and Phase Transitions

One of the major differences in the three phases is the
number of intermolecular interactions they contain.

The particles in a solid interact with all of their nearest
neighbors

The particles in a liquid interact with only some of the
nearby particles

The particles in a gas ideally have no interaction with one
another.

By breaking or forming intermolecular interactions, a
substance can change from one phase to another.

http://www.chemistry.wustl.edu/

For example, gas molecules condense to form liquids because of the presence of attractive
intermolecular forces. The stronger the attractive forces, the greater the stability of the liquid (which
leads to a higher boiling point temperature). A transition between the phases of matter is called a phase
transition. The names of the phase transitions between solid, liquid, and gas are shown in Figure
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Phases and Phase Transitions

Phase transitions involving the breaking of intermolecular
attractions (i.e., fusion (melting), vaporization, and sublimation)
require an input of energy to overcome the attractive forces between
the particles of the substance.

Phase transitions involving the formation of intermolecular
attractions (i.e., freezing, condensation, and deposition) release
energy as the particles adopt a lower-energy conformation.

The strength of the intermolecular attractions between molecules,
and therefore the amount of energy required to overcome these
attractive forces (as well as the amount of energy released when the
attractions are formed) depends on the molecular properties of the
substance.

In thermodynamics, the triple point of a substance is the temperature
and pressure at which the three phases (gas, liquid, and solid) of that
substance coexist in thermodynamic equilibrium.

https://qph.is.quoracdn.net/
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Surface Tension and Bubbles

http://hyperphysics.phy-astr.gsu.edu/hbase/ptens.html

Pascal's principle requires that the pressure is
everywhere the same inside the balloon at
equilibrium.

But examination immediately reveals that
there are great differences in wall tension on
different parts of the balloon.

The variation is described by Laplace's Law:

The larger the vessel radius, the larger the
wall tension required to withstand a given
internal fluid pressure.

The larger the vessel radius, the larger the
wall tension required to withstand a given
internal fluid pressure.
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Surface Tension and Bubbles

http://hyperphysics.phy-astr.gsu.edu/hbase/ptens.html

Why does wall tension increase with radius?

If the upward part of the fluid pressure remains the same, then the downward component of the wall 
tension must remain the same. But if the curvature is less, then the total tension must be greater in order 
to get that same downward component of tension. 
For equilibrium of a load hanging on a cable, you can explore the effects of having a smaller angle for 
the supporting cable tension.
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Surface Tension and Bubbles

http://hyperphysics.phy-astr.gsu.edu/hbase/ptens.html

The surface tension of water provides the necessary wall tension for the formation of bubbles with
water. The tendency to minimize that wall tension pulls the bubbles into spherical shapes (LaPlace's
law).
The interference colors indicate that the thickness of the soap film is on the order of a few wavelengths
of visible light. Even though the soap film has less surface tension than pure water, which would pull
itself into tiny droplets, it is nevertheless strong to be able to maintain the bubble with such a small
thickness.
The pressure difference between the inside and outside of a bubble depends upon the surface tension
and the radius of the bubble. The relationship can be obtained by visualizing the bubble as two
hemispheres and noting that the internal pressure which tends to push the hemispheres apart is
counteracted by the surface tension acting around the cirumference of the circle.
For a bubble with two surfaces providing tension, the pressure relationship is:
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Surface Tension and Bubbles

http://hyperphysics.phy-astr.gsu.edu/hbase/ptens.html

Surface tension is responsible for the shape of liquid droplets. Although easily deformed,
droplets of water tend to be pulled into a spherical shape by the cohesive forces of the
surface layer. The spherical shape minimizes then necessary "wall tension" of the surface
layer according to LaPlace's law.

Surface tension and adhesion determine the shape of
this drop on a twig. It dropped a short time later, and
took a more nearly spherical shape as it fell. Falling
drops take a variety of shapes due to oscillation and
the effects of air friction.



Lecture 7. Thermodynamics

Surface Tension and Bubbles

https://en.wikipedia.org/

The theoretical description of contact arises from the consideration of a thermodynamic
equilibrium between the three phases: the liquid phase (L), the solid phase (S), and the
gas/vapor phase (G) (which could be a mixture of ambient atmosphere and an equilibrium
concentration of the liquid vapor). The “gaseous” phase could also be another (immiscible)
liquid phase. If the solid–vapor interfacial energy is denoted by γSG, the solid–liquid
interfacial energy by γSL, and the liquid–vapor interfacial energy (i.e. the surface tension) by
γLG, then the equilibrium contact angle θC is determined from these quantities by Young's
Equation:

γSG-γSL-γLGcosθC=0
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Capillary Action

http://hyperphysics.phy-astr.gsu.edu/hbase/ptens.html

Capillary action is the result of adhesion and surface tension. Adhesion of water to the walls
of a vessel will cause an upward force on the liquid at the edges and result in a meniscus
which turns upward. The surface tension acts to hold the surface intact, so instead of just the
edges moving upward, the whole liquid surface is dragged upward.



Lecture 7. Thermodynamics

Capillary Action

http://hyperphysics.phy-astr.gsu.edu/hbase/ptens.html

Capillary action occurs when the adhesion to the walls is stronger than
the cohesive forces between the liquid molecules. The height to which
capillary action will take water in a uniform circular tube is limited by
surface tension.
The height h to which capillary action will lift water depends upon the
weight of water which the surface tension will lift:

𝑇𝑇2𝜋𝜋𝜋𝜋 = 𝜌𝜌𝜌𝜌(ℎ𝜋𝜋𝑟𝑟2)

The height to which the liquid can be lifted is given by ℎ = 2𝑇𝑇
𝜌𝜌𝜌𝜌𝜌𝜌



• As far as we know, humans have always been interested in the motions of
objects in the sky.

• Not only did early humans navigate by means of the sky, but the motions of
objects in the sky predicted the changing of the seasons, etc.

Early Astronomy

Lecture 8. Gravity

http://static.tumblr.com/



• There were many early attempts both to describe and explain 
the motions of stars and planets in the sky.  

• All were unsatisfactory, for one reason or another.

Early Astronomy

Lecture 8. Gravity

www.batesville.k12.in.us



• A geocentric (Earth-centered) solar system is often credited to 
Ptolemy, an Alexandrian Greek, although the idea is very old.

http://abyss.uoregon.edu/~js/ast123/lectures/lec02.html

The Earth-Centered Universe

Lecture 8. Gravity



• Ptolemy’s solar system could be made to fit the observational 
data pretty well, but only by becoming very complicated.

http://abyss.uoregon.edu/~js/ast123/lectures/lec02.html

Ptolemy’s Solar System

Lecture 8. Gravity



• The Polish cleric Copernicus proposed a heliocentric (Sun 
centered) solar system in the 1500’s.

http://abyss.uoregon.edu/~js/ast123/lectures/lec02.html

Copernicus’ Solar System

Lecture 8. Gravity



• How could Earth be moving at enormous speeds when we 
don’t feel it?
– (Copernicus didn’t know about inertia.)

• Why can’t we detect Earth’s motion against the background 
stars (stellar parallax)?

• Copernicus’ model did not fit the observational data very 
well.

Objections to Copernicus

Lecture 8. Gravity

www.batesville.k12.in.us



• Galileo became convinced that
Copernicus was correct by
observations of the Sun, Venus, and
the moons of Jupiter using the
newly-invented telescope.

• Perhaps Galileo was motivated to
understand inertia by his desire to
understand and defend Copernicus’
ideas.

Galileo & Copernicus

Lecture 8. Gravity

www.batesville.k12.in.us



• In the late 1500’s, a Danish nobleman 
named Tycho Brahe set out to make the 
most accurate measurements of planetary 
motions to date, in order to validate his 
own ideas of planetary motion.

Tycho and Kepler

Lecture 8. Gravity

www.batesville.k12.in.us



• Tycho’s data was successfully
interpreted by the German
mathematician and scientist
Johannes Kepler in the early
1600’s.

Tycho and Kepler

Lecture 8. Gravity

www.batesville.k12.in.us



The laws themselves are surprisingly simple and geometric:

a) Planets move around the Sun in elliptical orbits with the Sun at one focus.

b) Planets sweep out equal areas in equal times as they orbit the Sun.

c) The mean radius of a planetary orbit (in particular, the semimajor axis of the
ellipse) cubed is directly proportional to the period of the planetary orbit
squared, with the same constant of proportionality for all of the planets.

Kepler’s Laws

Lecture 8. Gravity

www.batesville.k12.in.us



• Kepler determined that the orbits of the planets were 
not perfect circles, but ellipses, with the Sun at one 
focus.

Sun

Planet

Early Astronomy

Lecture 8. Gravity

www.batesville.k12.in.us



• Kepler determined that a planet moves faster when 
near the Sun, and slower when far from the Sun.

Sun

Planet

Faster
Slower

Kepler’s Second Law

Lecture 8. Gravity

www.batesville.k12.in.us



• Kepler’s Laws provided a complete 
kinematical description of planetary motion 
(including the motion of planetary satellites, 

like the Moon) - but why did the planets 
move like that?

Lecture 8. Gravity

Kepler’s Laws

www.batesville.k12.in.us



• Isaac Newton realized that the motion of a falling apple and
the motion of the Moon were both actually the same motion,
caused by the same force - the gravitational force.

The Apple & the Moon

Lecture 8. Gravity

www.batesville.k12.in.us



• Newton’s idea was that gravity was a universal force 
acting between any two objects.

Universal Gravitation

Lecture 8. Gravity

www.batesville.k12.in.us



• Newton knew that the gravitational force on the 
apple equals the apple’s weight, mg, where g = 9.8 
m/s2. 

W = mg

At the Earth’s Surface

Lecture 8. Gravity

www.batesville.k12.in.us



• Newton reasoned that the centripetal force on the
moon was also supplied by the Earth’s gravitational
force.

Fc = mg?

Weight of the Moon

Lecture 8. Gravity

www.batesville.k12.in.us



• Newton’s calculations showed that the centripetal 
force needed for the Moon’s motion was about 
1/3600th of Mg, however, where M is the mass of the 
Moon.

Weight of the Moon

Lecture 8. Gravity

www.batesville.k12.in.us



• Newton knew, though, that the Moon was about 60 
times farther from the center of the Earth than the 
apple.

• And 602 = 3600

Weight of the Moon

Lecture 8. Gravity

http://www.bbc.co.uk/



• From this, Newton reasoned that the strength of the gravitational force is
not constant, in fact, the magnitude of the force is inversely proportional
to the square of the distance between the objects.

• Newton concluded that the gravitational force is:
– Directly proportional to the masses of both objects.
– Inversely proportional to the distance between the objects.

𝐹⃗𝐹21 = −
𝐺𝐺𝑀𝑀1𝑚𝑚2

𝑟𝑟2
𝑟̂𝑟

where G = 6.67×10−11 N m2/kg2 is the universal gravitational constant
• Newton’s Law of Universal Gravitation is often called an inverse square

law, since the force is inversely proportional to the square of the distance.

Universal Gravitation

Lecture 8. Gravity
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• The Law of Universal Gravitation allowed extremely accurate
predictions of planetary orbits.

• Cavendish measured gravitational forces between human-scale
objects before 1800. His experiments were later simplified
and improved by von Jolly.

• In Newton’s time, there was much discussion about HOW
gravity worked - how does the Sun, for instance, reach across
empty space, with no actual contact at all, to exert a force on
the Earth?

• This spooky notion was called “action at a distance.”

Experimental Evidence

Lecture 8. Gravity
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• During the 19th century, the notion of the “field” entered
physics (via Michael Faraday).

• Objects with mass create an invisible disturbance in the space
around them that is felt by other massive objects - this is a
gravitational field.

• So, since the Sun is very massive, it creates an intense
gravitational field around it, and the Earth responds to the
field. No more “action at a distance.”

The Gravitational Field

Lecture 8. Gravity

www.batesville.k12.in.us



• To measure the strength of the gravitational field at any point,
measure the gravitational force, F, exerted on any “test mass”,
m.

• Gravitational Field Strength, g = F/m
• Near the surface of the Earth, g = F/m = 9.8 N/kg = 9.8 m/s2.
• In general, g = GM/r2, where M is the mass of the object

creating the field, r is the distance from the object’s center, and
G = 6.67 x10-11 Nm2/kg2.

Gravitational Field Strength

Lecture 8. Gravity

www.batesville.k12.in.us



• If g is the strength of the gravitational field at some point, then the
gravitational force on an object of mass m at that point is Fgrav = mg.

• If g is the gravitational field strength at some point (in N/kg), then the free
fall acceleration at that point is also g (in m/s2).

• If you are located a distance r from the center of a planet:
– all of the planet’s mass inside a sphere of radius r pulls you toward the 

center of the planet.
– All of the planet’s mass outside a sphere of radius r exerts no net 

gravitational force on you. 

Gravitational Force

Lecture 8. Gravity

Gravitational Field Inside a Planet

www.batesville.k12.in.us



• The blue-shaded part
of the planet pulls you
toward point C.

• The grey-shaded part
of the planet does 
not pull you at all.

Gravitational Field Inside a Planet

Lecture 8. Gravity

www.batesville.k12.in.us



• Half way to the center of the planet, g has one-half of its surface value.
• At the center of the planet, g = 0 N/kg.

Gravitational Field Inside a Planet

Lecture 8. Gravity

www.batesville.k12.in.us



• When a very massive star gets old and runs out of fusionable material,
gravitational forces may cause it to collapse to a mathematical point - a
singularity. All normal matter is crushed out of existence. This is a black
hole.

Black Holes

Lecture 8. Gravity

http://www.nasa.gov/



• The black hole’s gravity is the same as the original star’s at distances 
greater than the star’s original radius.

• Black hole’s don’t magically “suck things in.”
• The black hole’s gravity is intense because you can get really, really close 

to it!

Black Hole Gravitational Force

Lecture 8. Gravity

Earth’s Tides

• There are 2 high tides and 2 low tides per day.
• The tides follow the Moon.

www.batesville.k12.in.us



• Tides are caused by the stretching of a planet.
• Stretching is caused by a difference in forces on the two sides of an object.
• Since gravitational force depends on distance, there is more gravitational 

force on the side of Earth closest to the Moon and less gravitational force 
on the side of Earth farther from the Moon.

Why Two Tides?

Lecture 8. Gravity

𝐹𝐹𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 = 𝐺𝐺
𝑀𝑀𝑀𝑀
𝑟𝑟2
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• The Sun’s gravitational pull on Earth is much larger than the Moon’s gravitational 
pull on Earth.  So why do the tides follow the Moon and not the Sun?

• Since the Sun is much farther from Earth than the Moon, the difference in distance 
across Earth is much less significant for the Sun than the Moon, therefore the 
difference in gravitational force on the two sides of Earth is less for the Sun than for 
the Moon (even though the Sun’s force on Earth is more).

• The Sun does have a small effect on Earth’s tides, but the major effect is due to the 
Moon.

Why the Moon?

Lecture 8. Gravity
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