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Введение

Теория полуколец и полумодулей — новое активно развивающееся на-

правление в современной алгебре. Основы теории полуколец и полумо-

дулей, а также примеры практических приложений полуколец и полу-

модулей приведены, например, в книге [4]. Полукольца и полумодули

над ними являются обобщениями колец и модулей. Поэтому для полу-

модулей над полукольцами можно рассматривать вопросы, аналогичные

вопросам о модулях над кольцами (см., например, [5]).

В данной работе исследуются наследственные, полунаследственные и

риккартовы полукольца в классе полуколец вида B(n,m). Полукольца

вида B(n,m) были введены в статье [3] и являются важными примерами

конечных полуколец. В частности, полукольцо B(n, 0) изоморфно кольцу

вычетов Zn.

Выпускная работа содержит 3 параграфа. В первом параграфе даны

основные определения и факты о полукольцах и полумодулях, использу-

емые в работе. Во втором параграфе дано подробное доказательство из-

вестного критерия наследственности (полунаследственности, риккарто-

вости) кольца Zn. В третьем параграфе рассмотрены полукольца B(2, 1),

B(3, 1) и B(5, 1), для каждого из них доказано – являются они наслед-

ственными (полунаследственными, риккартовыми) или нет. В конце при-

веден список использованной литературы.
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1 Основные определения и понятия

Определение 1.1. Непустое множество S с бинарными операциями

+ и · называется полукольцом, если выполняются следующие аксиомы:

1. (S, +) — коммутативная полугруппа с нейтральным элементом 0;

2. (S, ·) — полугруппа с нейтральным элементом 1;

3. умножение дистрибутивно относительно сложения:

a(b + c) = ab + ac, (a + b)c = ac + bc

для любых a, b, c ∈ S;

4. 0a = 0 = a0 для любого a ∈ S.

Определение 1.2. Коммутативная полугруппа (A, +, 0) называет-

ся правым полумодулем над полукольцом S (или S-полумодулем), если

задано умножение справа элементов a ∈ A на элементы s ∈ S, обознача-

емое as, и при этом для любых a, b ∈ A, s, t ∈ S выполняются условия:

1. a(st) = (as)t;

2. (a + b)s = as + bs;

3. a(s + t) = as + at;

4. a · 1 = a;

5. 0 · s = a · 0 = 0.

Двойственным образом вводится определение левого полумодуля. Все

результаты, справедливые для правых полумодулей, будут верны и для

левых, и наоборот. Ниже будут использоваться только правые полумо-

дули. Через AS обозначим правый полумодуль над полукольцом S.

Определение 1.3. Отображение ϕ : AS → BS называется гомомор-

физмом полумодулей, если
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1. ϕ — полугрупповой гомоморфизм, то есть для всех a, a′ ∈ A верно

ϕ(a + a′) = ϕ(a) + ϕ(a′);

2. ϕ(as) = ϕ(a)s для любых a ∈ A, s ∈ S.

Определение 1.4. Множество X ⊆ A называется базисом для S-

полумодуля A, если

1) X — система порождающих для A, то есть

∀a ∈ A ∃x1, . . . , xk ∈ X ∃s1, . . . , sk ∈ S : a = x1s1 + . . . + xksk;

2) X независимо (или свободно), то есть

∀x1, . . . , xk ∈ X ∀s1, . . . , sk, s
′
1, . . . , s

′
k ∈ S верна импликация

x1s1 + . . . + xksk = x1s
′
1 + . . . + xks

′
k ⇒ s1 = s′1, . . . , sk = s′k.

Полумодуль, обладающий базисом, называется свободным.

Пример 1.1. Пусть (N, +, ·) — полукольцо натуральных чисел с

обычными операциями сложения и умножения.

1. Зададим на коммутативном моноиде M = {0, 1}, где 1 + 1 = 1,

умножение на элементы из N по правилу:

0·n = 0 при любом n;

1·n =





0, при n = 0,

1, при n > 0.

Легко видеть, что M — полумодуль над N и M не является свободным.

2. Пусть M = NN — регулярный полумодуль. Тогда M — свободный

полумодуль, так как X = {1} — его базис.
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Пункт 2 из примера 1.1 легко переносится на случай произвольных

свободных полумодулей. А именно, полумодуль M над полукольцом S

свободен тогда и только тогда, когда для некоторого индексного множе-

ства I верно MS
∼= ⊕

i∈I Mi, где Mi = SS — регулярный полумодуль для

всех i ∈ I.

Определение 1.5. Полумодуль MS называется проективным,

если для любых S-полумодулей A,B, любого сюръективного S-

гомоморфизма α : A → B и любого S-гомоморфизма ϕ : M → B су-

ществует такой S-гомоморфизм ψ : M → A, что ϕ = αψ.

Определение 1.6. Проектор — это такой S-гомоморфизм α : M →
M , что α2 = α; при этом образ α(M) называется проекцией.

Утверждение 1.1. ([5, Предложение 2.1]) Полумодуль над полуколь-

цом S проективен тогда и только тогда, когда он изоморфен проекции

некоторого свободного S-полумодуля.

Таким образом, каждый свободный полумодуль проективен. Следую-

щий пример показывает, что существуют проективные полумодули, не

являющиеся свободными.

Пример 1.2. Пусть S = B2 — двухэлементная булева алгебра,

M = S×S. Непосредственно проверяется, что отображение α : M → M ,

где α(x1, x2) = (x1, x1 + x2) для всех (x1, x2) ∈ M , является проек-

тором. Следовательно, P = α(M) = {(0, 0), (0, 1), (1, 1)} — проектив-

ный S-полумодуль. Очевидно, что для P есть только две различных

системы порождающих элементов: само множество P и подмножество
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X = {(0, 1), (1, 1)}. Но так как (0, 1) + (1, 1) = (1, 1), то ни одна из этих

систем порождающих не является независимой. Поэтому у полумодуля

P нет базиса, значит, он не свободный.

Определение 1.7. Полумодуль MS называется

– риккартовым, если любой его циклический подполумодуль (то

есть подполумодуль вида mS, где m ∈ M) проективен;

– полунаследственным, если любой его конечно-порожденный

подполумодуль (то есть подполумодуль вида m1S + . . . + mkS, где

m1, . . . , mk ∈ M , k ∈ N) проективен;
– наследственным, если любой его подполумодуль проективен.

Полукольцо S риккартово (полунаследственно, наследственно), если ре-

гулярный полумодуль SS является риккартовым (соотв., полунаслед-

ственным, наследственным).

Рассмотрим конечные полукольца специального вида, которые были

введены в статье [3] (см. также [4, Пример 1.8, стр. 9]).

Пример 1.3. Пусть m,n ∈ N, m < n. Обозначим через B(n,m)

множество {0, 1, 2, . . . , n − 1} и зададим на нем операцию сложения ⊕
следующим образом:

для всех a, b ∈ B(n,m) при a + b < n полагаем a ⊕ b = a + b; если

же a + b ≥ n, то полагаем a⊕ b = c, где c ∈ B(n,m) — наибольший

элемент, такой что a + b ≡ c (mod n−m).

Аналогичным образом определяется операция умножения ¯. В результа-

те, система (B(n,m),⊕,¯) образует конечное полукольцо. В частности,

B(2, 1) — это двухэлементная булева алгебра, а B(n, 0) — это кольцо
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вычетов Zn.

Основная задача данной работы состоит в исследовании и описании

риккартовых (полунаследственных, наследственных) полуколец среди

полуколец вида B(n,m). При m = 0 эта задача решается в следующем

параграфе. В третьем параграфе даны примеры полуколец вида B(n, 1),

среди которых есть риккартовы, полунаследственные и наследственные

полукольца, а также найден пример полукольца, не обладающего дан-

ными свойствами.
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2 Риккартовы, полунаследственные и наследствен-

ные кольца вычетов

Пусть n ≥ 2, Zn — кольцо вычетов по модулю n и I ⊆ Zn — его

идеал. Тогда аддитивная группа (Zn, +) — циклическая, а (I, +) — ее

подгруппа. Хорошо известен следующий факт (см., например, [2, Теоре-

ма 3, стр. 22]):

Теорема 2.1. Если G — циклическая группа, то любая ее подгруппа

— тоже циклическая.

Следствие 2.1. Для кольца вычетов Zn следующие условия эквива-

лентны:

1. Zn — риккартово;

2. Zn — полунаследственно;

3. Zn — наследственно.

Таким образом, свойства риккартовости, полунаследственности и на-

следственности для колец вычетов равносильны. Поэтому будем иссле-

довать только риккартовы кольца вычетов. Сначала рассмотрим случай,

когда n = pm, где p — простое число.

Утверждение 2.1. Кольцо Zpm риккартово тогда и только тогда,

когда m = 1.

Доказательство. Пусть m > 1. Тогда главный идеал I = pZpm от-

личен от нулевого идеала. Покажем, что I не является проективным

Zpm-модулем.
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Имеем сюръективный гомоморфизм α : Zpm → I, где α(x) = px для

всех x ∈ Zpm, и тождественный гомоморфизм 1I : I → I.

Предположим, что I проективен. Тогда существует гомоморфизм

ψ : I → Zpm, такой что 1I = αψ. В частности, элемент pm−1 лежит в

I, поэтому

pm−1 = 1I(p
m−1) = α(ψ(pm−1)) = pψ(pm−1) = ψ(pm) = ψ(0) = 0,

то есть pm−1 = 0 — противоречие.

Итак, при m > 1 кольцо Zpm не является риккартовым, значит, m = 1.

Обратно, если m = 1, то кольцо Zp является полем и, значит, имеет

ровно два идеала: нулевой идеал и само кольцо Zp. Оба этих идеала

являются проективными. Следовательно, кольцо Zp риккартово.

Приведем формулировку еще одного известного факта о кольцах вы-

четов (см., например, [2, Следствие 2, стр. 156]):

Утверждение 2.2. Пусть n = pm1
1 . . . pmk

k — каноническое раз-

ложение натурального числа n на простые множители. Тогда Zn
∼=

Zp
m1
1
⊕ . . .⊕ Zp

mk
k

— прямая сумма колец.

Таким образом, с учетом Утверждения 2.2 нужно исследовать рик-

картовость прямых сумм колец.

Утверждение 2.3. Пусть R = R1⊕ . . .⊕Rk — прямая сумма колец.

Кольцо R риккартово тогда и только тогда, когда риккартовы кольца Ri

для всеx i = 1, . . . , k.

Доказательство. Обозначим через ei единицу кольца Ri, i =
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1, . . . , k. Тогда 1 = e1 + . . . + ek и eiej = 0 при i 6= j, так что eiR = Ri

для всех i = 1, . . . , k.

Пусть кольцо R риккартово и I = aiRi — главный идеал кольца Ri,

где ai ∈ Ri. Тогда aiR = aieiR = aiRi = I, значит, I — главный идеал в R

и, следовательно, I — проективный R-модуль. Тогда по Утверждению 1.1

существует проектор α : RR → RR и изоморфизм χ : IR → α(RR). Так

как χ−1(α(1)) ∈ I ⊆ Ri, то

χ−1(α(1)) = χ−1(α(1))ei = χ−1(α(1)ei) = χ−1(α(ei)),

поэтому α(1) = α(ei) и, значит, α(R) = α(eiR) = α(Ri). Таким образом,

идеал I изоморфен проекции регулярного модуля RiRi
, следовательно, I

является проективным Ri-модулем по Утверждению 1.1.

Обратно, пусть все кольца R1,. . . , Rk риккартовы и пусть I = aR —

главный идеал кольца R. Тогда I = a(e1 + . . . + ek)R = I1 ⊕ . . . ⊕ Ik,

где Ij = aejRj — главный идеал кольца Rj для всех j = 1, . . . , k. Сле-

довательно, каждый из идеалов Ij является проективным Rj-модулем и

изоморфен проекции регулярного модуля RjRj
для некоторого проекто-

ра αj : RjRj
→ RjRj

. Нетрудно видеть, что отображение βj : RR → RR,

где βj(x) = αj(ejx) для всех x ∈ R, также является проектором и

βj(R) = αj(Rj). Значит, каждый из идеалов Ij является проективным

R-модулем, и поэтому идеал I – как их прямая сумма – тоже проективен

(см., например, [1, Теорема 5.3.4 b), стр. 117]).

С помощью Следствия 2.1 и Утверждений 2.1–2.3 получаем следую-

щий результат:

Теорема 2.2. Пусть n = pm1
1 . . . pmk

k — каноническое разложение
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натурального числа n на простые множители. Кольцо вычетов Zn рик-

картово (полунаследственно, наследственно) тогда и только тогда, когда

m1 = . . . = mk = 1.
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3 Риккартовы, полунаследственные и наследствен-

ные полукольца вида B(n, 1)

Пусть n ≥ 2. Обозначим R = B(n, 1) \ {0}. Легко видеть, что R

замкнуто относительно сложения и умножения, и что (R, +) — цикличе-

ская группа из n − 1 элементов. Следовательно, (R, +, ·) — это кольцо,

изоморфное кольцу вычетов Zn−1. Аналогичными рассуждениями дока-

зывается следующий результат:

Утверждение 3.1. Подмножество I ⊆ B(n, 1) является ненулевым

идеалом полукольца B(n, 1) тогда и только тогда, когда I = I ′∪{0}, где
I ′ — идеал кольца R.

Так как в кольце вычетов Zn−1 все идеалы — главные, то любой идеал

кольца R является главным. Тогда для любого ненулевого идеала I ⊆
B(n, 1) получаем I = I ′ ∪ {0} = aR ∪ {0} = a(R ∪ {0}) = aB(n, 1)

при подходящем a ∈ R. Значит, все идеалы полукольца B(n, 1) — тоже

главные. В итоге, получаем результат, аналогичный Следствию 2.1:

Следствие 3.1. Для полукольца B(n, 1) следующие условия эквива-

лентны:

1. B(n, 1) — риккартово;

2. B(n, 1) — полунаследственно;

3. B(n, 1) — наследственно.

Таким образом, как и для колец вычетов, в приведенных ниже при-

мерах достаточно проверять только свойство риккартовости.
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Пример 3.1. Полукольцо B(2, 1) содержит ровно два элемента: 0

и 1. Значит, оно имеет в точности два идеала: нулевой идеал и само полу-

кольцо B(2, 1). Оба этих идаела, очевидно, проективны, следовательно,

полукольцо B(2, 1) риккартово (полунаследственно, наследственно).

Пример 3.2. В полукольце B(3, 1) = {0, 1, 2} имеется три глав-

ных идеала: нулевой идеал, само полукольцо B(3, 1) и идеал I = {0, 2}.
Проективность первых двух идеалов очевидна. Для доказательства про-

ективности идеала I рассмотрим гомоморфизм α : B(3, 1) → B(3, 1),

где α(x) = 2x для всех x ∈ B(3, 1). Заметим, что α2 = α. Действи-

тельно, в полукольце B(3, 1) верно 2 · 0 = 0, 2 · 1 = 2 = 2 · 2, поэто-
му α(0) = 0, α(1) = 2 = α(2), откуда получаем, что α2(0) = α(0),

α2(1) = α2(2) = α(2) = α(1). Ясно также, что α(B(3, 1)) = I, поэтому

идеал I проективен как проекция регулярного полумодуля B(3, 1)B(3,1).

Следовательно, полукольцо B(3, 1) риккартово (полунаследственно, на-

следственно).

Аналогично доказывается риккартовость (полунаследственность, на-

следственность) полукольца B(4, 1).

Пример 3.3. Рассмотрим в полукольце B(5, 1) = {0, 1, 2, 3, 4} глав-

ный идеал I = 2B(5, 1) = {0, 2, 4} и сюръективный гомоморфизм

α : B(5, 1) → I, где α(x) = 2x для всех x ∈ B(5, 1).

Пусть 1I : I → I — тождественный гомоморфизм. Предположим, что

существует такой гомоморфизм ψ : I → B(5, 1), что 1I = αψ. Тогда

с учетом выполненных в B(5, 1) при любом x 6= 0 равенств 4 · x = 4

14



получаем

2 = 1I(2) = α(ψ(2)) = 2ψ(2) = ψ(4) = ψ(4 · 4) = 4ψ(4) = 4,

то есть 2 = 4 — противоречие.

Таким образом, главный идеал I не является проективным, следо-

вательно, полукольцо B(5, 1) не риккартово (не полунаследственно, не

наследственно).
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