252. ОПРЕДЕЛЕНИЕ КОЭФФИЦИЕНТА ОБЪЕМНОГО РАСШИРЕНИЯ ЖИДКОСТЕЙ

Введение

Если температура υ жидкости объемом V_0 изменяется на $\Delta \upsilon$, то объем будет (как в случает твердых тел) определяться:

$$\Delta V_0 = \gamma^* V_0^* \Delta \theta \tag{1}$$

Коэффициент объемного расширения γ практически независим от температуры υ , но зависим от типа жидкости.

Коэффициент объемного расширения может быть определен с помощью дилатометра. Дилатометр состоит из стеклянной колбы и капилляра известного радиуса r, прикрепленного сверху колбы. Уровень жидкости в измерительном капилляре измеряется в миллиметрах. Он увеличивается при объемном расширении жидкости, которое происходит при постоянном нагревании стеклянной колбы на водяной бане.

Изменение уровня жидкости h соответствует изменению объема:

$$\Delta V = \pi r^2 * \Delta h,\tag{2}$$

где $r = (1.5 \pm 0.08)$ мм

Однако, нужно взять в расчет тепловое расширение самого дилатометра. Это расширение противодействует изменению уровня жидкости. Таким образом, изменение объема жидкости будет:

$$\Delta V_0 = \Delta V + \Delta V_D \tag{3}$$

(5)

где изменение объема ΔV_D :

$$\Delta V_D = V_D * V_0 * \Delta \theta, \quad V_D = 0.84 * 10^{-4} K^{-1}$$
 (4)

Учитывая соотношения (1), (3) и (4), получаем, что коэффициент объемного расширение определяется выражением:

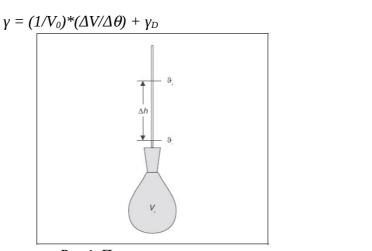


Рис.1. Принцип эксперимент

Цель работы

✓ Изучить явление объемного расширения жидкостей

Решаемые задачи

- ✓ Определить объем V_0 дилатометра.
- ✓ Измерить коэффициент объемного у расширения воды и этанола (этилового спирта) в зависимости от температуры.
- ✓ Сравнить коэффициенты объемного расширения воды и этилового спирта.

Техника безопасности

- ✓ Внимание: в работе используется стекло.
- ✓ Будьте предельно внимательны при работе с горячей водой.

Экспериментальная установка

- ✓ Приборы и принадлежности
- ✓ дилатометр
- ✓ термометр, -10 до 110 ЊС.
- ✓ датчик температуры, NiCr-Ni
- ✓ цифровой термометр с одним входом
- ✓ плитка, 150 мм., 1500 Вт
- ✓ стакан, 400 мл, термостойкое стекло
- ✓ подставки, V-образной формы
- ✓ штатив, 47 см (8)
- ✓ универсальный зажим, 0 ... 80 мм

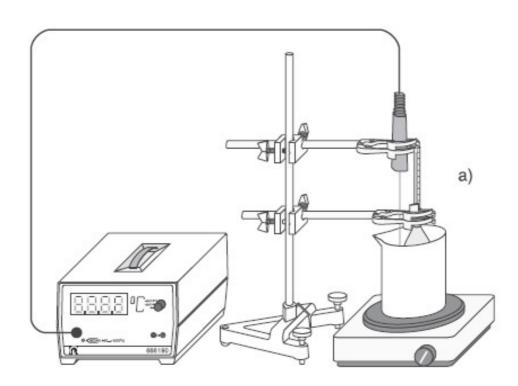


Рис. 2 Внешний вид установки

Примечание: Измерение уровня жидкости h может быть сильно искажено воздействием

капиллярных сил. Держите капилляр чистым, и, если необходимо, протрите его и промойте дистиллированной водой перед использованием.

Порядок выполнения работы

Упражнения N_01 . Определение объема дилатометра V_0

Объем дилатометра V_0 можно определить, измерив массы m_1 пустого, сухого дилатометра и m_2 дилатометра, заполненного дистиллированной водой до нижней части измерительного капилляра. Плотность ρ воды при известной температуре θ можно определить по таблице 1:

Табл.1. Зависимость плотности воды от температуры.

θ	ρ, гр/см ³	θ	ρ, гр/см³
15 °C	0.999099	23 °C	0.997540
16°C	0.988943	24 °C	0.997299
17°C	0.998775	25℃	0.997047
18 °C	0.998596	26 °C	0.996785
19°C	0.998406	27 °C	0.996515
20°C	0.998205	28 °C	0.996235
21 °C	0.997994	29℃	0.995946
22°C	0.997772	30°C	0.995649

$$V_0 = (m_2 - m_1)/\rho$$

Упражнение №2. Измерение объемного расширения воды

Примечание: После выключения нагревательной плитки, жидкость продолжает нагреваться некоторое время, поэтому вода из дилатометра может перелиться. Выключите плитку заранее.

- 1. Заполните колбу дистиллированной водой.
- 2. Опустите дилатометр в водяную баню так, чтобы измерительный капилляр остался наверху.
- 3. Включите нагревательную плитку на минимальное значение и нагревайте жидкость.
- 4. Определите уровень воды h в зависимости от температуры.
- 5. Постройте график зависимости изменения объема ΔV от разницы температур $\Delta \theta = \theta -$

- $heta_0$ вычисленных по формуле (2), зная изменение $\Delta h = h h_0$. Вычислите наклон прямой, проведенной через начало координат $\Delta V / \Delta \theta$.
- 6. По формуле 5 вычислите коэффициент объемного расширения воды и сравните с табличным значением.

$$\gamma_{80\partial a} = 4.9 \cdot 10^{-4} \, K^{-1}$$

В случае воды присутствует систематическое отклонение в измерениях от прямой, проходящей через начало координат, так как объемный коэффициент расширения воды увеличивается в диапазоне от 30°C до 60°C.

Контрольные вопросы и дополнительные задания

- 1) Свойства жидкостей.
- 2) Объемные коэффициенты расширения жидкости.