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       Данное пособие соответствует содержанию курса “Фазовые переходы”. 
Здесь мы рассмотрим задачи по физике фазовых переходов, связанные с 
упорядочением магнитных моментов в ферромагнетиках. Используются метод 
эффективного поля упорядочения в моделях Изинга и Гейзенберга. 
Приведенные задачи требуют знания основ термодинамики и статистической 
физики. Для некоторых задач дана схема решения, для остальных – только 
указания и ответы, в то же время, все решения не требует проведения 
громоздких вычислений. Все это позволяет использовать задачи на практических 
занятиях, в контрольных работах и на экзамене. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



СИСТЕМА НЕВЗАИМОДЕЙСТВУЮЩИХ МАГНИТНЫХ МОМЕНТОВ 
ВО ВНЕШНЕМ МАГНИТНОМ ПОЛЕ 
 
    Рассмотрим систему невзаимодействующих магнитных моментов во внешнем 
магнитном поле напряженности H. Для каждого момента μ энергия 
взаимодействия имеет вид U  μH , и поле приводит к упорядочению момента. 

С другой стороны, тепловое движение стремится разупорядочить их. Если 
направить внешнее магнитное поле по оси z , тогда можно записать 

0 /zU HS S  , где  – спин частицы. Если S 1/S 2 , то число степеней свободы 

равно двум (вдоль и против поля). Энергия взаимодействия отдельного момента 

с внешним полем имеет соответственно только два значения 0E H  . 

    Запишем полную намагниченность системы i
i i

M N       , 

просуммировав по всем N частицам. Угловые скобки означают усреднение по 

ансамблю Гиббса 1 exp( H)
n

Z n n     , где Z  – статистическая сумма, 

 – гамильтониан системы, H 1/ kT  , T – температура, k – постоянная 

Больцмана, n  – собственные функции гамильтониана. В базисе собственных 

функций легко получить 1 exp(
n

)n nZ E   , где  – энергия системы в 

состоянии 

nE

n . Для  можно получить 1 / 2S  0 0th( )H   .  

    Простой анализ средней намагниченности системы показывает, что система 
локализованных невзаимодействующих магнитных моментов проявляет 
свойства парамагнетика. Такая система никогда не испытывает фазового 
перехода.  
 
1. Вычислить статистическую сумму Z  системы невзаимодействующих спинов 
в модели Изинга во внешнем магнитном поле. 
 
Решение. Гамильтониан модели имеет вид 

1

N

i i
i

H


   ,  0i iS  , .  1iS  

Для невзаимодействующих спинов имеем 

0 0exp( ) (2ch( ))
i

N
i

i S
Z S H    H . 

 
2. Найти энергию системы невзаимодействующих спинов в модели Изинга. 
 
Ответ.  

0 0ln th( )E Z N H H       . 

 
3. Найти энтропию системы невзаимодействующих спинов в модели Изинга. 
 
Решение. 

Вероятность состояния системы с энергией  равна nE



1 exp( )n nP Z E  . Поэтому, 
1 1

0 0 0

ln exp( ) ln( exp( ))

ln (ln(2ch( )) th( ).

n n n n
n n

S P P Z E Z E

Z E N H H H

 

   

       

   
 

 
4. Прямым подсчетом числа допустимых состояний найти энтропию системы 
невзаимодействующих спинов с энергией E  в модели Изинга. 
 
Решение. 
Пусть  есть число способов, которыми можно реализовать состояние с 

заданной энергией. Энергия определяется числом спинов направленных вверх 

 и полным числом спинов : 

g

N N 0 0( ) (2E H N N NH x 1)        .  

Тогда . Пусть !/ ( !( )!)N
Ng C N N N N

    N xN  , 0 1x 

) ln(1x

. Используя 

формулу Стирлинга, получим энтропию ln (x x 1 )S N N x     . 

С учетом выражения для энергии имеем 

[(1 ) ln(1 ) (1 ) ln(1 )] / 2 ln 2S N у у у у N        , 0/у E NH . 

 
5. Получить соответствие между энтропией в каноническом и 
микроканоническом ансамбле невзаимодействующих спинов в модели Изинга. 
 
Решение. 
Энергию для канонического ансамбля в задаче 2 использовать в выражении для 
энтропии, полученном в задаче 4. 
 
6. Найти свободную энергию системы невзаимодействующих спинов в модели 
Изинга. 
 
Ответ. 

0ln(2ch( )) lnF E TS TN H T Z        

 
7. Найти среднее число спинов направленных вверх. 
 
Ответ 

1
0 0

0
( ) exp( (2 )) / (1 exp( 2 )

N
N
N

N
N T Z N C H N N N H   




  


       

 
8. Вычислить теплоемкость системы невзаимодействующих изинговских спинов. 
Рассмотреть предельные случаи  и T . 0T  
 
Ответ 

2 2 2 2
0 0( ) / / ( / ) ch ( / )C T dE dT T F T N H T H T        

 
9. Найти среднюю намагниченность системы невзаимодействующих спинов при 
температуре T . 



 
Ответ 

0 0 02 th( 0 )M N N N N N H              

 
10. Найти удельную магнитную восприимчивость системы 
невзаимодействующих спинов в модели Изинга. 
 
Ответ 

2
0 0(1/ )( / ) /HN dM dH T    

 
11. Найти связь между намагниченностью, магнитной восприимчивостью и 
свободной энергией в системе невзаимодействующих спинов в модели Изинга. 
 
Ответ 

ln / ( ) /M Z H F H      , 2 2/F H     

 
12. Вычислить статистическую сумму невзаимодействующих спинов в 
трехмерной классической модели Гейзенберга во внешнем магнитном поле. 
 
Решение 

Степенью свободы является угол i  между полем  и спином , поэтому H iS

 

0 0exp( cos ) [4 sh( ) / ]N
i i

i
0Z d HS HS            HS  

 
13. Найти намагниченность системы невзаимодействующих спинов в модели 
Гейзенберга. 
 
Решение 
Используя формулу ln / ( ) /M Z H F H       можно получить 

0 0F ( )LM N HS   , где F ( ) cth 1/L x x x   – функция Ланжевена. Аналогичный 

результат можно получить из определения среднего  

0 0( / 4 ) cos exp( )z iM N d S        S H . 

 
14. Рассмотреть поведение намагниченности в случаях  и T . 0T  
 
Решение 
Функция Ланжевена имеет следующие асимптотики 

3 5

F ( ) 1 1/ 2exp( 2 ),

F ( 0) / 3 / 45 2 / 945.

L

L

x x

x x x x

    

   

x
 

Отсюда находим 0( 0)M T NS  , и 2 2
0 / 3M NS H T , T . 

 
15. Найти магнитную восприимчивость системы. 



 
Ответ 

2 2
0 0(1/ )( / ) / 3HN dM dH S T   . 

 
16. Вычислить теплоемкость системы невзаимодействующих спинов в 
классической модели Гейзенберга. Рассмотреть предельные случаи , 

. 
T 

0T 
 
Ответ 

2 2 2 2 2
0 0

2
0 0

2
0

/ ( ln ) / ( / ) F (

( 0) 1 4( ) exp( 2 ),

( ) ( ) / 3.

LC T F T T T Z T HS T HS

C T HS HS

C T HS

 

   

 

       

   

 

)

T

 

 
17. Найти энтропию системы невзаимодействующих спинов в классической 
модели Гейзенберга. Рассмотреть предельные случаи T , .  0T 
 
Указание 

/ ( ln ) /S F T T Z      . Выражение для статистической суммы взять из 

зад.12. 
 



СИСТЕМА МАГНИТНЫХ МОМЕНТОВ СО ВЗАИМОДЕЙСТВИЕМ 
 
    Рассмотрим систему магнитных моментов взаимодействующих друг с другом, 

энергия взаимодействия i и j моментов равна ( i jJ μμ

i
i



). Полный гамильтониан во 

внешнем поле имеет вид H (1/ 2) ij i j
ij

J   μ μ Hμ . Примем, что ориентация 

магнитных моментов может принимать только два значения (по полю и против 
поля).  
    Взаимодействие стремится упорядочить магнитные моменты. На выделенный 
момент действует внешнее поле и поле взаимодействия от всех остальных 

моментов i
j

H H Jij j  . После усреднения для суммарного поля имеем, 

iH H ij j
j

J   . Если принять трансляционную инвариантность, то i  не 

зависит от номера узла, и на выделенный момент в среднем действует 

эффективное поле (0)eff iH J H J. Здесь (0) ij
j

J   . – нулевая фурье-

компонента взаимодействия. В приближении взаимодействия ближайших 
соседей, , можно записать z (0)J zJ . Используя приближение среднего поля 

(истинное поле заменяем на эффективное), легко получить самосогласованное 

уравнение th[ ( (0)i i  )]J H  .  

    В предельном случае нулевого внешнего поля при больших температурах 
получаем закон Кюри-Вейсса. При температурах меньших температуры Кюри 
возможен переход в ферромагнитное состояние. 
 
1. Рассмотрим гамильтониан модели Изинга во внешнем магнитном поле 

2
0 0H ( / 2) ij i j i

ij i

J S S S H      , 1iS   , . Получить гамильтониан в 

приближении среднего поля, пренебрегая квадратичными флуктуациями 
магнитных моментов. 

0ijJ 

 
Решение 

В нашем случае 2 2 0S S     

i j i jS S S S    

0 (i ii
S S H H

. и в приближении среднего поля запишем 

. В итоге для гамильтониана имеем i j i jS S S S   

0 0H ( / 2) )NH 0      , где 0 0 0ij i ii
H J S z J S      

iS

 – 

среднее поле, – число ближайших соседей, а z    – средний магнитный 

момент (параметр порядка). 
 
2. Вычислить статистическую сумму в приближении среднего поля, используя 
гамильтониан, полученный в предыдущей задаче. 
 
Ответ 

0 0 0 01

0 0 0 0

exp( /2 ( ))

exp( /2)[2ch( ( )]

i
i ii S

N
i

Z H S S H

NH S H H

H   

   


        

    
 



 
3. Найти свободную энергию в модели Изинга в приближении среднего поля. 
Использовать статистическую сумму в задаче 2. 
 
Ответ 

0 0 0 0ln /2 ln[2ch( ( ))]iF T Z NH S TN H H        

0

T

 

 
4. Используя условие минимума свободной энергии (см. задачу 3), получить 
уравнение на параметр порядка. 
 
Указание 

Рассмотреть условие . / iF S   

 

5. Найти температуру Кюри  и исследовать поведение параметра порядка при 

 и  в модели Изинга в приближении среднего поля. 

kT

0T  kT T

 
Решение 
Условие минимума свободной энергии приводит к уравнению 

. Учитывая, что  th( / )i i kS S T   
3 5th( 0) / 3 2 / 45,

th( ) 1 2exp( )

x x x x

x x

   
   

 

Легко получить  при  и  1 2exp( 2 / )i kS T    T 0T 
2 23 12 / 5iS      , / 1k kT T T    , при , . kT T 2

0kT z J

0

 

6. Исследовать поведение свободной энергии при  и  в нулевом 

магнитном поле. Показать устойчивость ферромагнитного состояния в этих 
пределах. Получить разложения свободной энергии по параметру порядка в 

пределе . 

0T  kT T

iS 

 
Ответ 

/ / 2 (exp( 2 / ))k kF N T O T T    , , 0T 
2 4/ ln 2 / 2k i k iF N T T S T S        /12 ( ) /k kT T T,    , . kT T

2 3( ) ( 0) (3 / 4)( / 5)i i kF S F S NT           0 kT T, . 

 
7. Выразить теплоемкость в модели Изинга через параметр порядка. Рассмотреть 

предельные случаи  и . 0T  kT T

 
Ответ 

2( / 2) /k iC NT S     T ,  

(3 / 2)[1 8 / 5]C N   , при , kT T ( ) /k kT T T    и  
24 ( / ) exp( 2 / )k kC N T T T T   при . 0T 



 
8. Вычислить магнитную восприимчивость в модели Изинга в приближении 

среднего поля. Рассмотреть предельные случаи cT T  и . 0

2

2 

kT T 

 
Ответ 

2 2
0 (1 ) / ( (1 ))i k iS T T S          

2
0(4 / ) exp( 2 / )kT T   T 0T ,  

2
0 / 2( )kT T   ,  0kT T 
2
0 / ( )kT T   ,  0kT T 

 
9. Выразить магнитную восприимчивость через среднеквадратичную 
флуктуацию магнитного момента. 
 
Ответ 

0

2 2(1/ )( / ) ( / )[ ] ( / ) ( )
H

N dM dH N M M N M M  


           . 

 
10. Найти флуктуацию магнитного момента в приближении среднего поля в 
модели Изинга в нулевом поле. 
 
Ответ 

2 1 2 2 2 2 2 2

2 2 2 2
0 0 0

2 2 2 2 1
0

/ ( ) ( / ( )) / ( )

/

[ (1 )( (1 )) ]

i i i

i i k i

M Z Z H F H F H

S Td S dH S T

S T S T T S

    

   







          

         

         

 

 
11. Найти статистическую сумму ферромагнитной одномерной модели Изинга 
во внешнем поле. 
 
Ответ 

2[exp( )ch( ) exp(2 )sh ( ) exp( 2 )]NZ J H J H J         

 
12. Найти свободную энергию ферромагнитной одномерной модели Изинга, 
используя результат зад.11. Рассмотреть случай нулевого поля. 
 
Ответ 

2

0

ln ln[exp( )ch( ) exp(2 )sh ( ) exp( 2 )]

[ln(2ch( ))]H

F T Z TN J H J H J

TN J

    
 

       


. 

 
13. Найти статистическую сумму антиферромагнитной одномерной модели 
Изинга во внешнем поле. 
 
Ответ 
В ответе задачи 11 следует сделать замену . J J



 
14. Найти теплоемкость в одномерной модели Изинга в нулевом поле. 
 
Ответ 

2 2( / ) ch ( )C N J T J . 

 
15. Найти энергию одномерной модели Изинга в нулевом поле. 
 
Ответ 

th( )E NJ J  . 

 
16. Найти магнитную восприимчивость одномерной модели Изинга. 
 
Ответ 

2 2
0 0( / ) exp( 2 / )T T    . 

 
17. Получить свободную энергию двумерной модели Изинга. 
 
Указание 
Точное выражение для статистической суммы имеет вид 

2 2 2 2

, 1

2 (1 ) [(1 ) 2 (1 )(cos 2 / cos 2 / )]
L

N N

n m

Z x x x x n L m L 



      1/2 , th( / )x J T . 

Решение 
Используя выражение для статистической суммы, находим 

2

2 2 2

, 0

ln 2 ln(1 )

( / 2) [(1 ) 2 (1 )(cos 2 / cos 2 / )]
L

n m

F NT NT x

T x x x n L m 


    

    L

2

. 

Переходя от суммирования к интегрированию, в пределе  получим:  ,L N 
2

2 22 2 2 2
1 2 10 0

ln 2 ln(1 )

( / 2(2 ) ) ln[(1 ) 2 (1 )(cos cos )]

F NT NT x

TN x x x d d
 

   

    

     
. 

 
18. Исследовать свободную энергию двумерной модели Изинга вблизи 
критической температуры. 
 
Решение 
Свободная энергия имеет особую точку при таком значении x , при котором 
аргумент логарифма под знаком интеграла обращается в нуль. Аргумент 

минимален при 1 2cos cos 1   , и равен 2 2 2(1 ) 4 (1 )x x x   . Это выражение 

имеет минимум в нуле при 2 1cx x 

/ )c cJ T x cT T

 , что определяет температуру фазового 

перехода .  Можно показать, что свободная энергия th(



понижается при ln cC T T , непрерывна при cT T .Теплоемкость имеет 

логарифмическую особенность в точке фазового перехода. 
 
19. Найти теплоемкость двумерной модели Изинга. 
 
Решение 

Разложим свободную энергию по степеням cT T  и рассмотрим особенность, 

возникающую из интегрального слагаемого. Разложение вблизи минимума по 

степеням 1,2  и cT T : 
2 2

10 0
ln[ ( )c

2 2( 2
1 2 )]F a T T d

 
b d 2       . 

После этого легко получить 
2

lnc cF T T T T   , и ln cC T T . 

 
20. Гамильтониан классической модели Гейзенберга можно представить в виде 

. Записать данный гамильтониан в приближении 

среднего поля, пренебрегая квадратичными флуктуациями спиновых моментов. 

2
0H ( / 2) ij i j i

i j i
J 


    S S S H0

 
Решение 
Используя разложение в виде 

i j i j i j i jS S S S S S S S        

0 0 0 0H ( / 2) ( )i
i

N S

, запишем гамильтониан в виде: 

    H m S H H , где 0 0 0
j

zJ SijJ S  H m

/S

m  – среднее 

поле в приближении ближайших соседей, i m S  – параметр порядка. Если 

определить параметр порядка как средний магнитный момент на узле 

0 i  m S , то среднее поле имеет вид 0 zJH m . 

 
21. Вычислить статистическую сумму классической ферромагнитной модели 
Гейзенберга в приближении среднего поля. 
 
Решение 

Определим угол i  между полем 0H H  и спином , поэтому 

. 

iS

0 0

0 0 0

exp( / 2 exp[ (

exp( / 2)[4 ( )) /

i
Z m d S

NmH S H H

 

   

    

 

0

0

) cos ]

(

i iH H

S H H



 

)

sh(

H 
0 )]N

 

0 )]H



0

 
22. Вычислить свободную энергию классической ферромагнитной модели 
Гейзенберга в приближении среднего поля. 
 
Ответ 

0 0 0/ 2 ln[4 sh( ( )) / (F NmH TN S H H S H        . 

 
23. Получить уравнение на параметр порядка классической модели Гейзенберга 
в приближении среднего поля. 
 



Ответ 

Используя условие , получаем /F m   0 00 0F [ ( )]Lm S S H H    , где 

F ( ) cth 1/L x x  x

3

 – функция Ланжевена. 

 
24. Определить температуру перехода в ферромагнитное состояние в 
приближении среднего поля. 
 
Решение 
Используя разложение функции Ланжевена при , легко получить 

. 

0m 
2

0( ) /cT zJ S

 
25. Разложить свободную энергию по параметру порядка вблизи температуры 
перехода в модели Гейзенберга. 
 
Решение 
Используя приближенные выражения  
 

2 4 6 2 4 6sh sh
1 , ln

6 120 5020 6 180 2835

x x x x x x x x

x x
       , 

Разложим свободную энергию (см. задачу 22) по степеням параметра порядка 
2 2 2 4 2 3/ ln 4 (1/ 2) (1 ) (1/ 20 ) (1 3 ) (1/105 ) ,

( ) / 1.
c c

c c

F N T zJ m T z J m T z J m

T T T

   


      
  

3 6

 

Из условия минимума свободной энергии находим зависимость параметра 

порядка от температуры 1/2(5 / ) (1 4 / 7)cm T zJ    , с учетом которой 

зависимость свободной энергии от температуры имеет вид 

2 35 5( ) (0)

4 84
c cT TF m F

N
 

   . 

 

26. Найти теплоемкость в модели Гейзенберга при . cT T

 
Ответ 

5 / 2 (20 / 7)C N N   . 

 
27. Найти продольную намагниченность в модели Гейзенберга. 
 
Ответ 

/M F H Nm    . 
 
28. Записать продольную магнитную восприимчивость через функцию 
Ланжевена. 
 
Ответ 



2
0 0 0

2
0 0 0

( ) F ( )

( ) F (
L

H L

S H Sdm

dH T zJ S H S

  
  

      0 )

)

. 

 

29. Найти магнитную восприимчивость в модели Гейзенберга при . cT T

 
Ответ 

2 2
0 0( 0, 0) / 3( cm H S T T     . 

 
30. Найти продольную магнитную восприимчивость в модели Гейзенберга при 

. 0cT T 

 
Ответ 

Используя асимптотики функции Ланжевена, получаем 2 2 1
0( / 6 )cS T    . 

 
31. Найти продольную магнитную восприимчивость в модели Гейзенберга при 

. 0T 
 
Ответ 

2 2
0/ ( )T zJ S  . 

 
32. Исследовать зависимость параметра порядка от температуры в модели 

Гейзенберга при  и . 0T  0cT T 

 
Ответ 

0 (1 / 3 )cm S T T  , 1/2 2 3(5 / ) ( 4 / 7 4 / 49)cm T zJ      . 

 
33. Найти зависимость теплоемкости от температуры в модели Гейзенберга при 

 и . 0T  cT T

 
Ответ 

2( / 2) /C NzJ m   T (5 / 2)(1 8 / 7)C N,   , (1 / 3 )cC N T T  . 



ФЛУКТУАЦИИ МАГНИТНОГОМОМЕНТА В МОДЕЛИ ИЗИНГА 
 
    Теория среднего поля только качественно описывает область вблизи точки 
фазового перехода. Учет флуктуаций позволяет лучше объяснить 
экспериментальные данные вблизи фазового перехода.  

    Дальний порядок возникает в упорядоченной фазе, где 0i  , не зависит от 

номера узла и не спадает даже на больших расстояниях от узла. Дальний 
порядок спонтанно исчезает в точке фазового перехода. Ближний порядок связан 
с локальными флуктуациями магнитного момента на близких расстояниях. В 
теории среднего поля флуктуации не учитываются, поэтому с исчезновением 
спонтанной намагниченности исчезает и ближний порядок.  

    Рассмотрим функцию корреляции i j   выше точки фазового перехода, где 

0i  . Используя метод самосогласованного поля, запишем функцию 

корреляции в виде. 1 2 1 2 2 11
( ) th [ ( ) ( ) (jj

G J J G )]j


      r r r r r r r r

) 0j r r 1( ) 1jG

. В 

приближении Вейсса . Если принять, что 1(G  r r

( ) [ ( ) ( ) ( )]G J G J

, то после 

фурье-преобразования имеем   k k k k

( ) (1/ ) exp( / )G r r r

. Корреляционная 

функция в реальном пространстве принимает вид  , где   

– корреляционная длина, которая расходится в точке фазового перехода. Таким 
образом, магнитные моменты начинают выстраиваться в пределах блока размера 
 . Магнитные моменты блоков ориентированы беспорядочно, так что средний 

магнитный момент всей системы по-прежнему равен нулю. 
 
1. Фурье представление функции корреляции магнитного момента в модели 

Изинга ( )i j ijG r    представим в виде ( ) ( ) / (1 ( ))G J J  k k k cT T, . 

Получить корреляционную функцию в длинноволновом приближении. 
 
Ответ 

( ) / (1 / )c cG k T T T  . 

 
2. Исследовать пространственную зависимость ( )  в пределе больших 

корреляционных длин. 

J r

 
Ответ 

0( ) (1/ ) exp( / )J r r r r . 

 
3. Вычислить координатную зависимость функции корреляции, используя фурье 
компоненты взаимодействия ( ) . J r

 
Ответ 

( ) (1/ )exp( / )G r r r  , . 1/2( )cT T 
 



4. Получить средний квадрат модуля фурье компоненты 
2

k  выше точки 

перехода. 
 
Ответ 

2
1/ (1 ( ))k J    k . 

 
5. Получить среднюю энергию H   в модели Изинга. 
 
Решение 
По определению при нулевом магнитном поле  

H (1/ 2)

(1/ 2) ( ) ( ) (1/ 2) ( ) / (1 ( ))

ij i j
i j

E J

J G J J

 




     

      
k k

k k k k
. 

 
6. Вычислить теплоемкость в модели Изинга вблизи фазового перехода, 
учитывая длинноволновую поправку. 
 
Ответ 

В длинноволновом приближении . 2( ) (0)J k J ak 
2 2 2

1/2
2 3/2

( ) (0)
(1/ 2) ( )

(1 ( )) 16 c

J k VJ
C T

J k a


 

   
k

T

]

. 

 
7. Выразить восприимчивость системы через флуктуации магнитного момента. 
 
Ответ 

2 2( / )[ ( ) ( )i i
i i

N          . 

 
8. Вычислить флуктуационный вклад в магнитную восприимчивость системы 
выше точки перехода. 
 
Ответ 

2 1

0
/ lim (k c

k
m H T T  )


       . 
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