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Читатель должен быть постоянно вооружен терпением, бумагой и анализом.
Кроме того, в математике, как в любом другом виде поэзии, читатель

должен быть поэтом в душе.
Мишель Лоэв. Предисловие к книге ’Теория вероятностей’

ВВЕДЕНИЕ

Теория вероятностей, это часть математики, которая предоставляет математический аппа-
рат для исследования случайных явлений.

Ниже я привожу определение из авторитетного источника, но заучивать определения не
надо.

Теория вероятностей — математическая наука, изучающая математические модели слу-
чайных явлений. Теория вероятностей позволяет по вероятностям одних случайных собы-
тий находить вероятности других случайных событий, связанных каким-либо образом с
первыми. Это изучение основано на том, что массовые случайные явления в стационарных
условиях обладают закономерностью, называемой статистической устойчивостью частот.

Из статьи Вероятностей теория. Ю.В. Прохоров, Б.А. Севастьянов в энциклопедии ’Ве-
роятность и математическая статистика’ (Изд-во БРЭ, 1999).

Рекомендация. Необходимо во время разбираться во всех вводимых определениях. Знаком
(?) или (?n) я рекомендую постараться проверить сформулированное в тексте утверждение.

1. Частотная интерпретация вероятности события.
Пусть проводится последовательность одинаковых экспериментов в одинаковых условиях.

В результате каждого эксперимента либо происходит либо не происходит некоторое событие
A. Обозначим через n число экспериментов, проведенных к данному моменту времени, а через
nA — число тех экспериментов, в которые произошло событие A. Вероятностью PA события A
называется предел частоты выпадения события A, то есть

PA = lim
n

nA
n
.

Это определение имеет целый ряд недостатков как с точки зрения математики, так и с точки
зрения практики. Определение не может считаться математическим, так как не определены
использованные в нем термины — ’событие’, ’эксперимент’, ’одинаковые условия’ и т. д. С
практической точки зрения определение слишком узкое: условия проведения всех случайных
экспериментов не могут оставаться постоянными (например, эксперименты с погодой, которые
ставит природа, меняются в результате потепления климата), кроме того, мы можем лишь
мыслить в терминах бесконечной последовательности экспериментов.

Итак, наше определение является лишь интерпретацией вероятности. Однако оно дает
некую информацию о свойствах вероятности:

1) nA ≥ 0, поэтому должно быть и PA ≥ 0,
2) nA ≤ n, поэтому PA ≤ 1,
3) если события A и B не могут происходить одновременно, то nA+B = nA+nB , где событие

A+B означает, что i) произошло или A или B, ii) A и B несовместны (не могут происходить
одновременно). Поэтому должно выполняться равенство

P(A+B) = PA+ PB.

В курсе мы будем иметь дело с аксиомами вероятности (см. ниже), а также с различными
моделями, в рамках которых мы сможем иногда вычислять вероятности. Тем не менее, бывает
полезно представить себе то, что описывается этими моделями. Приведу простой пример —
анекдот, возможно из преподавательской практики, а может и нет, который мне рассказывали
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мои коллеги, преподающие математику гуманитариям и даже студентам технических специ-
альностей. Студента спрашивают — сколько будет, если разделить 1/2 на 3? Ответ: 6. Но если
спросить — сколько получится, если поллитра водки разделить на троих, ответ будет более
разумным — немного меньше одного стакана. Таким образом, мыслить в рамках реальной
ситуации бывает полезно. В курсе рекомендуется мыслить в рамках частотной интерпрета-
ции вероятности при анализе Примера 1 в разделе ’Частотная интерпретация’ и при решении
других задач.

2. Аксиоматика теории вероятностей
Математическую аксиоматику для теории вероятностей предложил А.Н. Колмогоров (ис-

пользуя развитую А. Лебегом и другими математиками теорию меры).
Вероятностное пространство — это тройка (Ω,A,P), где Ω называется пространством

элементарных исходов, точки Ω мы будем называть элементарными исходами и обозначать
ω, A — σ-алгебра событий— подмножеств в Ω, P — вероятность на A, т.е.

i) P : A→ [0, 1],

ii) P
(∑
n
An

)
=
∑
n
P(An) для любой последовательности попарно несовместных событий

An,
iii) P(Ω) = 1.
Итак, под ’событием’ мы понимаем множество из σ-алгебры A, ’эксперимент’ — это выпа-

дение некоторого ω ∈ Ω, ’событие A произошло’ означает, что ω ∈ A. Событие A ∪B означает
’A или B’ (это событие произошло, если произошло событие A или событие B), при этом то же
самое обозначается A + B, если события A и B несовместны; AB означает ’A и B’ (в теории
множеств или теории меры используется более новое обозначение A ∩ B, знак произведения
более старый, но в теории вероятности оказывается очень удобным, впрочем иногда мы будем
дублировать знак ∩, чтобы подчеркнуть наличие пересечения множеств), AB = ∅ означает ’A
и B несовместны’ (одновременно происходить не могут, т.е. ω не может попасть одновременно
в оба этих события); A \B означает событие ’A, но не B’; ∅ — невозможное событие; Ω — до-
стоверное событие. Дополнение события A обозначается Ā и означает событие ’не A’. События
мы часто будем обозначать фигурными скобками — {...}, а внутри скобок будут записываться
определяющие событие условия. Для нескольких событий используются также обозначения∑
i

,
⋃
i

,
∏
i

, Свойство A ⊂ B озвучивается ’событие A влечет событие B’ (имеется в виду, что

если элементарный исход ω принадлежит A, то он принадлежит и B).
Скобки в обозначениях P(A) (а также в будущем в обозначениях E(ξ) и D(ξ)) мы часто

будем опускать.
Заметим, что по сравнению с проведенным выше анализом частотной интерпретации веро-

ятности мы усилили свойство аддитивности, заменили его на σ-аддитивность.
В рамках развитой на основе этой аксиоматики теории будут введены те термины, которые

были в частотной интерпретации вероятности, и будет доказана сходимость частоты выпадения
события к вероятности события. Но это произойдет еще очень не скоро.

Отметим важные, но очевидные следствия аксиом. В тексте они неоднократно исполь-
зуются даже без объяснения. Хотя они и очевидны, читателю надо их проверить.

i) Если A ⊂ B, то PA ≤ PB. Действительно,

PB = PA+ P(B \A), где P(B \A) ≥ 0.

ii) PA = 1− PĀ. Иногда PĀ вычисляется легче.
iii) P(A ∪B) ≤ PA+ PB. Действительно,

P(A ∪B) = PA+ P(B \A), P(B \A) ≤ PB.

iv) PA = 0, PB = 0 ⇔ P(A ∪B) = 0, поэтому PA = 1, PB = 1 ⇔ P(AB) = 1.
v) Чтобы использовать формулу P(A+B) = PA+PB = 0, надо проверить равенство AB = ∅.
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vi) Из ∅+ ∅ = ∅ следует P∅ = 0.
Упражнения надо попытаться решить в период подготовки к следующей лекции.
Упражнение 1. a. Построить алгебру всех подмножеств множества {1, 2, 3}, не забудьте

про пустое множество. Почему эта алгебра является также и σ-алгеброй.
b. Докажите, что в любой конечной алгебре множеств любое множество алгебры содер-

жит минимальное непустое множество алгебры. Такой элемент алгебры называется атомом.
Докажите, что различные атомы не пересекаются. Построить алгебру, порожденную тремя
атомами. Сколько элементов в этой алгебре?

Замечание. Полезнейшим примером вероятностного пространства является Ω = [0, 1], A
σ-алгебра всех борелевских подмножеств [0, 1], P — мера Лебега λ.
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Часть 1. СОБЫТИЯ

§1. Классическая модель теории вероятностей

Хотя эпиграф к курсу ориентирует нас на постоянное применение математического анализа,
в первой части курса мы будем иметь с простыми вещами, для понимания которых достаточно
знания школьной математики.

1. Вычисление вероятности в классической модели.
В классической модели (или в модели равновероятных исходов) мы в качестве Ω берем

конечное множество, в качестве A — множество всех подмножеств Ω, и будем считать равными
вероятности всех элементов Ω. |A| будет обозначать число элементов множества A. Тогда (в
этом легко убедиться)

P(A) =
|A|
|Ω|

(pr)

Словами это равенство озвучивается следующим образом: вероятность события в классической
модели — это отношение числа благоприятствующих исходов к числу всех исходов.

Замечание. Разумеется, введенная выше вероятность в классической модели удовлетворяет
всем аксиомам вероятности (на всякий случай проверьте!), в частности, она аддитивна. В
некоторых курсах теории вероятностей для нематематиков этот факт называется теоремой
аддитивности.

Итак, чтобы решить задачу на классическую модель, нужно:
1) придумать модель, т.е. Ω,
2) выделить благоприятствующие исходы, т.е. подмножество A ⊂ Ω,
3) подсчитать |A| и |Ω|, и поделить одно на другое.
Упражнение. Проверьте сами, что вероятность в классической модели удовлетворяет усло-

виям i) - iii).
2. Элементы комбинаторики.
Для решения задач в рамках классической модели мы введем несколько комбинаторных

объектов. Напомним, что

A×B := {(a, b) : a ∈ A, b ∈ B}, |A×B| = |A||B|, (∗)

An := {(a1, ..., an) : ai ∈ A∀i}, |An| = |A|n.

Доказательство первого равенства не нужно, по существу оно может служить определением
произведения двух натуральных чисел: в каждом из множеств {a}×B имеется |B| элементов,
а A × B является суммой |A| экземпляров таких множеств. Впрочем, мы все-таки объясним
это подробнее. Будем считать очевидным равенства |B1 +B2 + ...+Br| = |B1|+ |B2|+ ...+ |Br|.
Обозначим A = {a1, ..., ar}. Тогда по определению A×B имеем:

A×B = {a1} ×B + ...+ {ar} ×B.

Вычисляем:

|A×B| = |{a1} ×B|+ ...+ |{ar} ×B| = r × |{a1} ×B| = r × |B|.

Второе равенство выводится из первого методом математической индукции (индукция по
n), для n = 2 мы имеем |A2| = |A×A| = |A|2.

Замечание. 3× 3 = 9 эффектнее чем 3× 2 = 6. Первое равенство мы можем записать через
число пар элементов из одного множества:

3× 3 = |{a, b, c}| × |{a, b, c}| =

= |{a, b, c} × {a, b, c}| = |{(a, a), (a, b), (a, c), (b, a), (b, b), (b, c), (c, a), (c, b), (c, c)}| = 9,
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второе равенство — число пар из произведения двух разных множеств:

3× 2 = |{a, b, c}| × |{x, y}| =

= |{a, b, c} × {x, y}| = |{(a, x), (a, y), (b, x), (b, y), (c, x), (c, y)}| = 6.

Однако в качестве второго множества мы можем взять часть {a, b, c}:

3× 2 = |{a, b, c}| × |{b, c}| = |{a, b, c} × {b, c}| = |{(a, b), (a, c), (b, b), (b, c), (c, b), (c, c)}| = 6.

Но эта формула некрасива и несимметрична, из каких-то соображений мы выделили элемент
a. Теперь перейдем к степеням — методом математической индукции доказывается, что

|An| = |A|n,

действительно, используя предположение индукции, мы получаем

|An| = |An−1 ×A| = |An−1| × |A| = |A|n−1 × |A| = |A|n.

Напомним, что An — это множество всех n-к (a1, a2, ..., an), элементы которых пробегают мно-
жество A, выше мы назвали такие n-ки упорядоченными выборками с возвращениями длины
n из множества A. В анализе и алгебре вы сталкивались с n-мерным пространством Rn, ко-
торое состоит из всех точек x = (x1, x2, ..., xn), а число xi называлось i-й координатой точки
x. Наша ситуация отличается тем, что множество A конечно, поэтому мы можем подсчитать
число элементов An.

Элементы An, где A состоит из r элементов, мы будем называть упорядоченными выбор-
ками длины n с возвращениями из r-элементного множества. Таким образом произвольный
элемент (a1, ..., an) в An в мы считаем задаваемым в процессе выбора n элементов из A, при
этом фиксируется номер каждого выбранного элемента и после выбора этот элемент возвраща-
ется назад (и может быть выбран снова под другими номерами). Напомним, что число таких
выборок равно rn. Кроме таких выборок, мы будем также рассматривать упорядоченные вы-
борки длины n без возвращений из r-элементного множества. Число таких выборок равно
(если n ≤ r)

r(r − 1)...(r − n+ 1) =
r!

(r − n)!
.

Это утверждение доказывается индукцией по n — к каждой выборке длины n мы можем
дописать один элемент из оставшихся r − n элементов, которые еще не использовались в ней
раньше, поэтому при переходе от n к n + 1 число таких выборок увеличивается в r − n раз.
Таким образом наше равенство остается верным и для n = n+ 1 (если по прежнему n+ 1 ≤ r,
в противном случае процесс выбора заканчивается и мы получаем число r! всех перестановок
нашего множества).

Учитывая, что в школьной программе комбинаторики больше нет, мы остановимся на этой
выкладке подробнее. Замечу, что во многих книгах упорядоченные выборки без возвращений
называются размещениями n элементов в r местах. Итак, мы обобщаем понятие произведения
A×B и с каждым элементом a ∈ A связываем множество Ba, рассматривая множество пар вида∑
a∈A
{a} × Ba. Разумеется, число элементов этого множества A(2) равно |A(2)| =

∑
a∈A
|Ba|. Если

же все множества Ba состоят из одинакового числа элементов, то число элементов A(2) равно
|A| × |Ba|, где a ∈ A произвольно. Эти рассуждения применимы к подсчету числа выборок
длины 2 из множества A. Такие выборки представляют собой пары (a, b), где a ∈ A, b ∈ Ba =
A \ {a} (b не может равняться a). Если |A| = r, то |Ba| = r− 1, и общее число таких пар равно
r(r − 1). Теперь перейдем к случаю выборок длины 3. Такие выборки являются элементами
множества A(3) =

∑
(a,b)∈A(2)

{(a, b)} ×B(a,b), где B(a,b) = A \ {a, b}, и состоит из r − 2 элементов.

Другими словами, из каждой выборки длины 2 можно сделать r − 2 выборок длины 3, общее
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число таких выборок равно r(r−1)(r−2). Случай произвольного n ≤ r обосновывается методом
математической индукции.

Обозначим через A(n) множество всех упорядоченных выборок без возвращений длины n
из множества A, где |A| = r. Согласно предположению индукции |A(n)| = r(r− 1)...(r− n+ 1).
Теперь запишем представление для множества A(n+1):

A(n+1) =
∑

{a1,...,an}∈A(n)

{a1, ..., an} × (A \ {a1, ..., an}). (∗)

Очевидно, что |A \ {a1, ..., an}| = r−n для любого {a1, ..., an} ∈ A(n) (элементы A(n) — подмно-
жества A), поэтому

|A(n+1)| = (r − n) + · · ·+ (r − n)︸ ︷︷ ︸
|An| times

= |A(n)| × (r − n) = r(r − 1)...(r − n+ 1)(r − n).

Замечание. Еще раз рассмотрим множество всех упорядоченных выборок без возвращений
длины n из множества A, где |A| = r. Очевидно, что для непустоты этого множества необ-
ходимо n ≤ r. Упорядоченные выборки без возвращений часто называются размещениями —
мы размещаем числа 1, 2, ..., n в множестве A так, что разные числа i 6= j размещаются в раз-
ных элементах ai 6= aj . Мы можем такие размещения интерпретировать также как выборки
— если число i размещено в элемента ai, то мы говорим, что на i-м шаге выбрано ai. Число
всех упорядоченных выборок без возвращений длины n из множества A, где |A| = r, равно
r(r−1)...(r−n+1). Эта формула доказывается также методом математической индукции. Обо-
значим через A(a1, ..., as) множество A, из которого мы выкинули (разные !) элементы a1,...,as.
Обозначим через A(s) множество всех упорядоченных выборок без возвращений длины s из
множества A.

Если n = r, то упорядоченные выборки называются перестановками, их число равно r!.
Дело в том, что в этом случае не производится выбор, так как должны быть выбраны все
элементы. Поэтому наша упорядоченная выборка длины r лишь фиксирует порядок выбора
элементов A, переставляя их новых образом.

Наконец, число всех неупорядоченных выборок длины n без возвращений из r-элементного
множества (во многих учебниках они называются сочетаниями) равно

Cnr =
r!

n!(r − n)!
. (∗∗)

Действительно, в каждой неупорядоченной выборке порядок можно задать n! способами, то
есть сделать из нее столько упорядоченных выборок без возвращений. Поэтому число неупо-
рядоченных выборок длины n без возвращения в n! раз меньше числа всех упорядоченных
выборок без возвращения.

Объясним это подробнее. Равенство (*) можно записать и по другому: |A| = |A×B||B| . Лю-

бую упорядоченную выборку без возвращений мы можем интерпретировать как пару (α, β), где
α — неупорядоченная выборка длины n без возвращений из r-элементного множества (порядок
n выбранных элементов не фиксируется) и β — некоторый способ упорядочения n выбранных
элементов. Как мы установили, число пар (α, β) равно r!

(r−n)! , а число способов упорядочения
равно n!.

Все это можно объяснить и по другому. В множестве всех упорядоченных выборок мы вво-
дим отношение эквивалентности: две выборки считаются эквивалентными, если они содержат
одни и те же элементы множества, из которого производится выбор. Очевидно, что в каждом
классе эквивалентности одинаковое число элементов, и каждый класс эквивалентности яв-
ляется неупорядоченной выборкой. Число классов эквивалентности равно отношению общего
числа элементов, деленного на число элементов в каждом классе.
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В ряде задач в качестве пространства Ω элементарных исходов мы можем использовать как
множество всех упорядоченных выборок без возвращения фиксированной длины n, так и мно-
жество всех неупорядоченных выборок той же длины. Во второй модели число элементарных
исходов сокращается в n! раз, но во столько же раз сокращается и число благоприятствующих
исходов. Таким образом, число элементов Ω уменьшается, модель становится более компакт-
ной, а нужная нам вероятность не меняется. Однако использовать ту же идею уменьшения
для модели с упорядоченными выборками с возвращениями нельзя, даже если порядок эле-
ментов выборки никак не связан с интересующим нас событием. Дело в том, что в классах
упорядоченных выборок, соответствующих одной неупорядоченной выборке, может оказаться
разное число элементов, и при переходе от одной модели к другой вероятность по формуле
(pr) изменится. Приведем пример: из одной неупорядоченной выборки (a, b, c) получается 6
упорядоченных выборок (a, b, c), (b, c, a), (c, a, b), (a, c, b), (c, b, a), (b, a, c), в то же время из вы-
борки (a, a, b) можно получить 3 упорядоченные выборки (a, a, b), (a, b, a), (b, a, a), а из выборки
(a, a, a) — лишь одну упорядоченную выборку.

Указанные выше множества выборок могут использоваться при решении задач как мно-
жество всех элементарных исходов или множество всех благоприятствующих исходов. При
решении задачи надо проверить, что все благоприятствующие исходы — выборки того же ви-
да, что и все исходы. Однако в дальнейшем вы увидите, что при решении некоторых задач
для подсчета числа благоприятствующих исходов их выгодно интерпретировать как выборки
другого вида.

Три задачи. 1. В подъезд 32-этажного дома вошли 10 человек, не связанных никакими зна-
комствами. Лифт обслуживает этажи с 5 по 32. Найти вероятность того, что все 10 человек
воспользуются лифтом. В качестве Ω мы берем все упорядоченные выборки с возвращения-
ми длины 10 из множества в 32 этажей. Отличие от предыдущей задачи состоит в том, что
несколько человек могут выйти на одном этаже, таким образом, все элементарные исходы
представляют собой выборки с возвращениями. Опять занумеруем всех пассажиров. Тогда
элементы Ω оказываются упорядоченными выборками с возвращениями, число таких выбо-
рок равно 3210. Точно также считаем число благоприятствующих исходов, которое состоит из

упорядоченные выборки с возвращениями, но из множества в 28 этажей. Ответ:
(

28
32

)10

.

Замечания. Чтобы модель была разумной, нужно, чтобы все этажи состояли из одинакового
набора квартир, и не было бы ни одного ресторана. В противном случае модель будет строить
трудно, брать в качество Ω множество квартир нельзя, если квартиры имеют разную площадь.
Условия отсутствия знакомств существенно при выборе модели. Если бы все 10 человек были
бы друзьями, он шли бы на один этаж, и их всех можно было бы рассматривать как одного
человека. В этом случае ответ равен

(
28
32

)
.

2. В вагоне 8 купе по 4 места. В него заходят 10 человек и рассаживаются наугад. Найти
вероятность того, что в первом купе не окажется пассажиров. Здесь возможны две модели,
дающие одинаковый ответ. Рассмотрим всевозможные упорядоченные выборки (мы перену-
меровали пассажиров по алфавиту) без возвращения (пассажиры садятся на разные места).
Число таких выборок равно 32 ·31 · ... ·23. Число таких же благоприятствующих выборок равно
28 · 27 · ... · 19. Итак, ответ равен

28 · 27 · ... · 19

32 · 31 · ... · 23
.

Другое решение получается, если мы не нумеруем пассажиров. В условиях задачи эта нуме-
рация не фигурирует. Итак, рассматриваются выборки длины 10 из множества 32 мест неупо-
рядоченные без возвращения. Число таких выборок равно C10

32 . Благоприятствующие исходы
берутся уже из множества 28 мест, их число равно C10

28 . Делим второе число на первое, полу-
чаем тот же самый ответ.

3. В лифт 8-этажного дома сели 5 человек. Найти вероятность того, что все они выйдут
на разных этажах (с 2 по 8 этаж). В качестве Ω мы берем все упорядоченные выборки с
возвращениями длины 5 из множества 7 этажей. Отличие от предыдущей задачи состоит в
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том, что несколько человек могут выйти на одном этаже, таким образом, все элементарные
исходы представляют собой выборки с возвращениями. Опять занумеруем всех пассажиров.
Тогда элементы Ω оказываются упорядоченными выборками с возвращениями, число таких
выборок равно 75. Благоприятствующие исходы являются выборками без возвращениями, но
если мы будем считать их неупорядоченными, то они не будут принадлежать Ω. Так делать
мы не имеет право. Но взяв в качестве благоприятствующих исходов упорядоченные выборки
без возвращения, мы получим решение задачи (7 · 6 · 5 · 4 · 3

75 ). Однако почему в этой задаче
мы не можем использовать другую модель, состоящую из неупорядоченных выборок? Дело в
том, что ответ окажется другим. Каждая неупорядоченная выборка без возвращений содержит
одно и то же число упорядоченных выборок без возвращений, для выборок с возвращениями
это неверно. Например, выборка (2, 2, 2, 2, 2) содержит лишь одну упорядоченную выборку, а
выборка (2, 3, 4, 5, 6) содержит 5! упорядоченных выборок. Итак, если мы можем занумеровать
пассажиров, почему бы это не сделать. Ω, состоящее из неупорядоченных выборок, может
привести к ошибке. Ниже будет приведен пример из физики (квантовая статистика), когда
нумерация в принципе невозможна, в этой ситуации правильное решение будет другим.

Замечание. Грубая ошибка — в качестве элементов Ω взять упорядоченные выборки без
возвращений, а в качестве элементов A — неупорядоченные выборки без возвращений. Тогда
мы не можем утверждать, что A ⊂ Ω. А если сделать наоборот — элементы Ω брать неупо-
рядоченными, а элементы A — упорядоченными, вероятность может оказаться даже больше
1!

3. Пример с деталями (теоретический). Имеется N деталей, из которых R деталей
стандартно, а N −R деталей браковано. Выбирается n деталей. Какова вероятность того, что
из них r деталей стандартно, а n− r деталей браковано?

Ясно, что одну деталь мы не выбираем дважды (кстати, в условиях это можно было бы
оговорить). Поэтому Ω состоит из выборок без возвращения. Никакой нумерации деталей в
условиях задачи нет, поэтому мы можем использовать как модель, состоящую из упорядо-
ченных выборок, так и модель из неупорядоченных выборок. На мой взгляд, вторая модель
удобнее, так как при вычислении числа благоприятствующих исходов нам не надо будет рас-
пределять между стандартными и бракованными деталями еще и номера. Итак, |Ω| = CnN .
Каждую благоприятствующую выборку мы можем представить в виде пары (ωст, ωбр), где ωст
— это неупорядоченная выборка длины r из R стандартных деталей, а ωбр — неупорядоченная
выборка длины n − r из N − R бракованных деталей. Итак, наше событие A представляется
как произведение двух множеств, |A| = CrRC

n−r
N−R.

4. Симметричная модель Бернулли. Симметричная монета бросается n раз, вычислить
вероятность выпадения k гербов в n испытаниях.

Бросание монеты мы можем интерпретировать как выбор между гербом и решкой. Итак,
мы можем использовать в качестве Ω множество всех упорядоченных выборок длины n из 2-
элементного множества (герб, решка). Поэтому |Ω| = 2n. (Мы можем попытаться использовать
и неупорядоченные выборки, но их использование изменит вероятность: при n = 2 упорядочен-
ная модель дает нам 4 элементарных исхода — {герб, герб}, {герб, решка},{решка, герб},{решка, решка},
а неупорядоченная модель — только три элементарных исхода. Поэтому так делать нельзя.)
Заметим, что упорядоченную модель легко обосновать: из симметриии между гербом и решкой
должны следовать равенства

P{герб, герб} = P{герб, решка} = P{решка,решка} = P{решка, герб}.

В нашей модели событие - ’на i-м шаге выпал герб’ мы интепретируем как множество всех
таких n-k из гербов или решек, в которых на i-м месте находится герб.

Как теперь подсчитать число элементов Ak – благоприятствующих исходов. Оказывается,
для подсчета эти исходы нужно переинтерпретировать. Очевидно, что каждый благоприят-
ствующий исход задается k числами — номерами испытаний, в которых выпал герб, в осталь-
ных испытаниях выпала решка. Итак, каждый благоприятствующий исход мы интерпретируем
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как выборку (n1, ..., nk) длины k из множества {1, ..., n}. Разумеется, порядок выбора чисел ni
не меняет элементарный исход в Ak, а один и тот же номер испытания не может быть выбран
дважды. Итак, |Ak| = Ckn,

PA =
Ckn
2n
.

Проверка использует бином Ньютона.

P(Ω) =
∑

_k = 0nP(Ak) =
∑

_k = 0n
Ckn
2n

=
(1 + 1)n

2n
= 1.

Замечание. В решении этой задачи мы отошли от ранее выдвинутого принципа — элементы
множества A должны быть выборками того же вида, что и элементы множества Ω. Дело в том,
что множество всех исходов Ω состоит из упорядоченных выборок с возвращениями длины
n из 2-элементного множества {герб, герб}, а множество благоприятных исходов состоит из
неупорядоченных выборок без возвращений, но из множества в n элементов и длины k.

Задача 4. Имеются две клетки и n кроликов, каждый из которых случайным образом раз-
мещается в одной из двух клеток, Какова вероятность того, что в первой клетке окажется
ровно k кроликов? Эта задача совпадает с предыдущей и имеет то же решение, для каждого
кролика мы подбрасываем монету и в зависимости от результата помещаем его в первую или
вторую клетку. Но новая формулировка допускает обобщение на r клеток.

5. Статистика Больцмана — Максвелла.
Задача с кроликами (в отличие от задачи с монетами) обобщается на случай r клеток. Итак,

n кроликов наугад размещаются по r клеткам (то есть, каждый кролик наугад помещается
в одну из r клеток). Какова вероятность, что в 1-й клетке окажется n1 кролик, во 2-й —
n2 кроликов,..., в r-й клетке — nr кроликов? Как и в прошлой ситуации, Ω состоит из всех
упорядоченных выборок длины n с возвращениями из множества в r клеток. Итак, |Ω| = rn.
Для подсчета числа благоприятствующих исходов в

A = { в 1-й клетке — n1, во 2-й — n2,..., в r-й клетке — nr }

используется обобщение формулы для числа сочетаний,

|A| = n!

n1!n2!...nr!
.

Доказательство методом математической индукции по r, для перехода от r− 1 к r мы сначала
объединяем r − 1 и r клетки, получаем событие

A′ = { в 1-й клетке — n1, во 2-й — n2,..., в r − 1-й клетке — nr−1 + nr}

(в новом вероятностном пространстве Ω′ величины (r−1)n). По предположению индукции для
r − 1 имеем

|A′| = n!

n1!n2!...(nr−1 + nr)!
.

Далее, согласно нашему утверждению для r = 2 мы можем разделить nr−1 + nr кроликов

между r − 1-й и r-й клетками в нужном соотношении ровно (nr−1 + nr)!
nr−1!nr!

способами. Таким

образом, каждый элемент в A′ дает ровно (nr−1 + nr)!
nr−1!nr!

элементов в A. Поэтому

|A| = n!

n1!n2!...(nr−1 + nr)!
· (nr−1 + nr)!

nr−1!nr!
=

n!

n1!n2!...nr!
.

Итак,

P{n1, ..., nr} = r−n
n!

n1!n2!...nr!
. (1)
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Полученный нами результат в физике называется статистикой Больцмана — Максвелла. Но
слова нужно произносить другие. Имеется r состояний и n частиц (но не слишком маленьких).
Тогда распределение частиц по состояниям описывается формулой (1).

6. Статистика Бозе — Эйнштейна.
Однако в случае совершенно идентичных квантовых частиц (предполагается, что в одном

состоянии может быть несколько частиц) распределение частиц по состояниям описывается
другой статистикой, которая называется статистикой Бозе — Эйнштейна.

В рамках статистики Больцмана — Максвелла обмен частицами между двумя состояниями
меняет элементарный исход (частицы ведут себя как кролики).

В рамках статистики Бозе — Эйнштейна обмен частицами между двумя состояниями не
меняет элементарный исход (так как частицы неразличимы между собой). В результате эле-
ментарным исходом оказывается набор чисел (n1, ..., nr), указывающих число частиц в каждом
состоянии, причем все такие наборы равновероятны. Итак, в отличие от формулы (1) мы имеем

P{n1, ..., nr} =
1

|Ω|
. (2)

Для вычисления этой вероятности нам нужно научиться считать число |Ω|, которое состоит
из всех возможных представлений

n1 + ...+ nr = n (3),

где ni — целые неотрицательные числа. Идея вычисления состоит в представлении (2) в виде
рисунка вида

|| ⊗ | ⊗ || ⊗ ⊗| ⊗ ⊗ ⊗ || ⊗ |,

где каждый знак ⊗ представляет частицу, а | отделяет частицы в одном состоянии от частиц
в другом состоянии. Например, нарисованная выше картинка означает, что n1 = 0, n2 = 0,
n3 = 1, n4 = 1, n5 = 0, n6 = 2, n7 = 3, n8 = 0, n9 = 1, n10 = 0. Всего в такой картинке
n знаков ⊗ и r − 1 знаков |. Обратно, каждая такая картинка определяет распределение n
частиц по r состояниям. Число |Ω|, которое совпадает с числом таких картинок, равно Cnn+r−1.
Вероятность каждой картинки равна 1/Cnn+r−1.

Задача 5. 2 частицы в 2 состояниях. В статистике Больцмана — Максвелла четыре элемен-
тарных исхода 12|, 1|2, 2|1, 2|2, поэтому P{1|2 + 2|1} = 1/2. В статистике Бозе — Эйнштейна
три элементарных исхода ⊗⊗ |, ⊗|⊗, | ⊗ ⊗, поэтому P{⊗|⊗} = 1/3.

Хороший вопрос. Итак, все дело в неразличимости частиц и различимости монет. А что
будет, если мы будем подбрасывать две монеты в кулаке. Тогда мы не сможем различать ис-
ходы {герб, |решка} и {решка, герб}, не будет ли тогда P{1 герб, 1 решка} = 1/3? Нет, так
как мы можем как-то отметить две монеты, например, краской, но с одинаковыми частицами
это невозможно. Точно так же ситуация в физическом эксперименте изменится, если частицы,
которые мы считаем одинаковыми, на самом деле могут быть различны, состоят из двух раз-
ных сортов (даже если они очень похожи друг на друга). Тогда частота выпадения события
{⊗|⊗} будет лежать между числами 1/2 и 1/3 и будет определяться долями частиц первого
и второго типа. Итак, даже не умея различать частицы первого и второго типа, мы будем
приблизительно знать, что p — доля частиц одного из двух типов, 1−p — доля частиц другого
типа.

Замечание. Статистика Больцмана – Максвелла справедлива лишь для частиц, которые
называются бозонами. Для электронов и некоторых частиц, которые называются фермионами,
действует статистика Ферми – Дирака, в которой постулируется не только неразличимость
частиц, но и невозможность попадания двух частиц в одно состояние. В этой статистике r ≤ n и
|Ω| = Crn. Вид частиц роли не играет. Чисто вероятностные соображения и наблюдения частоты
не позволят здесь указать наличие среди похожих фермионов нескольких видов частиц.

Задача 6. 5 бозонов размещены в 8 состояниях. Какова вероятность того, что все они попа-
дут в состояния с номерами 1, 2, 3, 4?
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Как мы уже видели выше, Ω состоит из всех наборов вида ·| · | · | · | · | · | · |·, где · обозначает
неизвестное нам некоторое число частиц (возможно, что нулевое), но общее число частиц равно
5. Множество A благоприятствующих исходов состоит из всех наборов ·| · | · | · |||| (в последних
4 состояниях частиц заведомо нет. Как мы уже видели выше, |Ω| = C5

12. При подсчете числа
элементов A последние 4 состояния можно не учитывать. Таким образом, A состоит из всех
исходов вида ·| · | · |·, частиц по прежнему 5. Ответ: |A| = C5

8 , P(A) = C5
8/C

5
12.

Упражнение 2. Имеется 4 детали, из них детали {a, b} имеют 1 сорт и {x, y} имеют 2
сорт. из них вытащили 2 детали. Какова вероятность, что вытащили по одной детали каж-
дого сорта? Дайте формулу и запишите Ω — множество всех исходов и A — множество всех
благоприятствующие исходов.

Упражнение 3. Имеется 12 деталей, из них 3 детали имеют 1 сорт, 4 детали имеют 2 сорт
и 5 деталей имеют 3 сорт. Вытащили 6 деталей. Какова вероятность, что среди них по 2 детали
каждого сорта?

§2. Геометрическая модель теории вероятностей

В геометрической модели равновероятны события, имеющие одинаковую геометрическую
меру. В качестве Ω берется некоторое множество на прямой, на плоскости, в пространстве, в
r-мерном пространстве, на котором задана соответственно длина, площадь, объем, r-мерный
объем, а может также длина дуги на окружности, длина отрезка кривой на кривой, площадь
куска поверхности на поверхности. Эту меру мы будем обозначать m. В качестве A берет-
ся множество всех измеримых подмножеств Ω, то есть таких подмножеств, меру m которых
можно вычислить. Геометрическая вероятность задается формулой

P(A) =
m(A)

m(Ω)
.

При выборе геометрической модели для вычисления вероятностей можно ориентироваться на
инвариантность вероятности некоторой группы преобразований (например, вращений окруж-
ности или сферы, сдвигов на прямой, на плоскости, в пространстве). Если такая инвариант-
ность напрашивается, то целесообразно применять геометрическую модель. Труднее обосно-
вать применение геометрической модели, если Ω — отрезок (но не [0, 2π]), квадрат, прямоуголь-
ник или даже треугольник, круг, так как тогда такой группы преобразований нет. В задачах
мы навязываем эту модель, утверждая, что точки соответствующего множества берутся на-
угад. На практике иногда приходится обращаться к геометрической модели в случае отрезка
или квадрата, так как ничего лучшего у нас нет. Но в таком примере, как время ожидания
автобуса или троллейбуса в условии заданного интервала движения (если расписание неизвест-
но), использование геометрической модели вполне оправдано. Иногда геометрическая модель
оказывается теоретико-множественным произведением других более простых геометрических
объектов (например, прямоугольник — произведение двух отрезков, в задаче на время ожи-
дания двух автобусов время ожидание автобуса A и автобуса B — это пара чисел, если нас
интересует событие ’суммарное время ожидания меньше какого-то x’, то эти числа нужно скла-
дывать). Геометрическая модель для распределения плоскостей, на которых вращаются девять
планет вокруг Солнца — это произведение девяти сфер. Но на самом деле плоскости вращения
планет очень близки друг к другу, в геометрической модели вероятность такой близости чрез-
вычайно мала. Таким образом, факт такой близости неслучаен и должен объясняться любой
теорией возникновения Солнечной системы. Мы видим, что иногда геометрическая (да и клас-
сическая модель) строятся лишь для того, чтобы их отвергнуть и обосновать неслучайность
некоторой наблюдаемой нами закономерности. (Астрономы утверждают, что близость плоско-
стей орбит всех планет Солнечной системой объясняется силой притяжения планеты Юпитер,
притянувшей все планеты на одну и ту же плоскость эклиптики.)

Одним из примеров тщательного эксперимента с геометрической вероятностью является
рулетка, если рулетка плохо вращается или останавливается чаще в одном месте, то игроки
могут выигрывать у игорного дома.
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Задача, в которой в условиях геометрической модели мы разными способами получаем
разные (!) вероятности одного и того же события.

На окружности радиуса 1 наугад проводится хорда. Какова вероятность того, что ее длина
больше

√
3?

Первый способ. Зафиксируем один из концов хорды, эта фиксация безразлична для нашей
задачи, поэтому так мы можем сделать. Другой конец хорды пробегает всю окружность, и мы
используем в качестве геометрической модели эту окружность. Мера точек окружности, для
которых длина хорды больше

√
3, равна 2π/3, поэтому вероятность равна 1/3.

Заметим, что если мы один конец хорды не фиксируем, то в качестве Ω мы берем произве-
дение двух окружностей.

Второй способ. Давайте зафиксируем направление хорды, т. е. перпендикулярный ей диа-
метр, который делит хорду пополам. Длина хорды будет больше

√
3, если точка пересечения

будет лежать на половине диаметра, состоящего из точек, расстояние которых до центра мень-
ше 1/2. Тогда геометрическая модель — это точки диаметра, и наша вероятность равна 1/2.

Третий способ. Давайте зафиксируем середину хорды и в качестве Ω будем рассматривать
все точки внутри круга. Площадь таких точек равна π. Нашему событию соответствуют точки
круга, отстоящие от центра не больше чем на 1/2. Площадь множества этих точек равна π/4.
Вероятность равна 1/4.

Итак, разными способами вычисляя вероятность мы получаем разные ответы. По видимо-
му, мы вычисляем вероятность одного и того же события, но получаемого в результате разной
организации случайного эксперимента.

Все же первый способ представляется более разумным, так как он использует инвариант-
ность вероятности относительно группы вращений окружности.

Замечание. Геометрическую вероятность на круге получить и представить в эксперименте
значительно сложнее. Как бы мы не организовали эксперимент, будет очень трудно объяс-
нить даже самим себе равенство вероятностей попадания в две фигуры в круге одинаковой
площади, одна из которых близка к центру круга, а другая близка к краю. Впрочем, если
моделировать геометрическую модель на квадрате, то ее можно смоделировать и на круге —
использовать лишь те точки, попавшие на квадрат, которые попали также в круг. А вот как
организовать эксперимент, моделью которого будет служить площадь на квадрате? Можно
бросать с большой высоты точку на клетчатую бумагу, при этом результат каждого экспе-
римента переносить на выделенный квадрат. По существу, все квадраты клетчатой бумаги
переносятся на один квадрат, благодаря этому бесконечная площадь бесконечной клетчатой
бумаги становится конечной. Для моделирования геометрической модели на квадрате можно
также использовать ту же идею, что и для круга — бросать точки с большой высоты, и брать
во внимание, а следовательно, использовать при подсчете частоты, лишь те эксперименты, в
которых точка попала на данный квадрат.

Задача 1. В метро в СПб интервал движения (время между приходом двух последователь-
ных поездов) равен 4 минутам. Какова вероятность того, что ждать поезд придется меньше 1
мин.?

Решение. Используем геометрическую модель, в которой в качестве Ω используется интер-
вал (0, 4), A = (0, 1). P(A) = m(0,1)

m(0,4) = 1/4 (m — длина интервала, а в более общей ситуации —
мера Лебега).

Задача 2. В метро в Москве интервал движения (время между приходом двух последова-
тельных поездов) равен 2 минутам. Пассажир едет с одной пересадкой. Какова вероятность
того, что суммарное время ожидания двух поездов будет меньше 1 мин.?

Решение. Опять используем геометрическую модель, но тепер ждать нужно два поезда,
время ожидания первого поезда обозначим через x, второго — через y. Как x так и y попадают
в интервал (0, 1). Пара (x, y) попадает в квадрат {(x, y) : 0 < x < 1, 0 < y < 1}, который и
используется в качестве Ω. A ={(x,y): x+y<1 }} ∩ Ω. P(A) = m(A)

m(Ω) = 1/8 (m — площадь).
Замечание. В случае метро использование геометрической модели наиболее оправдано. Для
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автобуса, троллейбуса или трамвая интервал движения обычно расплывается. Тем не менее,
использование геометрической модели оправдано, так как выработка адекватной вероятност-
ной модели для данного маршрута потребовало бы слишком больших усилий.

Упражнение 4. В метро в Москве интервал движения (время между приходом двух по-
следовательных поездов) равен 2 минутам. Пассажир едет с двумя пересадками. Какова веро-
ятность того, что суммарное время ожидания всех трех поездов будет меньше 1.5 мин.?

§3. Вероятностные формулы. Условная вероятность

Мы рассмотрели два вида моделей — классические и геометрические. В первой модели ве-
роятность события считается по формуле P(A) = |A|

|Ω| , во второй — по формуле P(A) = m(A)
m(Ω) .

Обоснованием в практической ситуации справедливости обеих моделей является соображение
симметрии элементарных исходов. В классической модели симметрия осуществляется любой
перестановкой множества всех элементарных исходов. Для применения этой модели нужно
быть уверенным, что такая перестановка не меняет вероятность. Аналогичный подход возмо-
жен и при применении геометрической модели, но не всегда. Если множество всех исходов —
точки окружности или сферы, то всегда существует вращение Ω, переводящее любую точку
в любую. Для отрезка, квадрата, круга и шара это не так, и поэтому даже придумать ситуа-
цию, в которой по всей видимости должна быть справедлива геометрическая модель, непросто.
Например, если точка бросается на клетчатую бумагу, то мы предполагаем, что точки броса-
ются с большой высоты, используя симметричность точек при преобразовании не квадрата
разбиения, а всей плоскости. Но так как мера на плоскости (площадь) бесконечна, то мы рас-
сматриваем не точки плоскости, а классы эквивалентности точек, одинаково расположенных
по отношению к клеткам клетчатой бумаги. Другими словами, все клетки клетчатой бума-
ги мы складываем на одну клетку, и для этой клетки используем геометрическую модель.
При использовании геометрической модели для времени ожидания транспорта мы предпола-
гаем наличие жестко заданного интервала движения, а случайным считаем время прихода
на остановку (мы не знаем расписание). Впрочем, если отрезок превратить в окружность, то
реализацией геометрической модели можно считать момент остановки быстро вращающейся
рулетки. Но если посмотреть на игровую рулетку, то можно заметить, что при делении кру-
га на девять равных областей, занумерованных числами от 1 до 9, каждая часть не состоит
из одного угла, а является объединением углов в разных частях круга. Кроме удобства для
игроков, это позволяет уменьшить ошибку от возможных искривлений рулетки.

Итак, если нет нужных симметрий, то мы пока не умеем вычислять вероятности, даже
как функции некоторых параметров. Если мы бросаем монету и она не симметрична, то пока
ничего не знаем о вероятности выпадения k гербов в n испытаниях, даже если вероятность вы-
падения герба равна 0.51 вместо нужных нам 0.5. Далее мы займемся формулами и понятиями,
позволяющими иногда анализировать такие несимметричные ситуации.

Вероятностные формулы позволяют в рамках построенных классических или геометри-
ческих моделей облегчить вычисление вероятностей событий, сделать это вычисление более
обоснованным. Знание этих формул поможет избежать элементарных ошибок. Часто приме-
нение таких формул позволяет одну громоздкую модель заменить на несколько более простых
и более очевидных. Важнейшим понятием, которое будет введено в этом параграфе, является
понятие условной вероятности.

1. Формула сложения.
Для двух событий формула имеет следующий вид:

P(A ∪B) = P(A) + P(B)− P(AB). (1)

Доказательство очевидно. A ∪B = A+ (B \A), поэтому

P(A ∪B) = P(A) + P(B \A).
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С другой стороны B = (B \A) +AB, поэтому

P(B) = P(B \A) + P(AB).

Эти равенства вместе дают (1).
Формула сложения для n событий

P

⋃
i≤n

Ai

 =
∑
i

P(Ai)−
∑
i<j

P(AiAj)+

+
∑
i<j<k

P(AiAjAk)− ...+ (−1)n+1P

∏
i≤n

Ai

 . (1′)

Доказательство формулы сложения для произвольного n производится методом математи-
ческой индукции. Предполагая доказанной формулу (1′) для n слагаемых, в формуле для n+1
мы сначала рассматриваем An ∪An+1 как одно множество и применяем формулу для n, после
чего используем в соответствующих слагаемых формулу сложения для P (An ∪An+1) а также
для вероятностей множеств вида

AiAj · · ·Ak(An ∪An+1) = AiAj · · ·AkAn ∪AiAj · · ·AkAn+1,

используя, как мы только что сделали, дистрибутивность операций объединения и умножения
(пересечения) событий.

Другой способ доказательства методом индукции состоит в использовании формулы

P

⋃
i≤n

Ai

 ∪An+1

 = P

⋃
i≤n

Ai

+ P (An+1)− P

⋃
i≤n

AiAn+1

 .

Замечание. Иногда объединение бывает полезно представить как сумму несовместных со-
бытий и представить вероятность объединения как сумму вероятностей несовместных событий:
например,

A1 ∪ ... ∪An = A1 + [A2 \A1] + ...+ [An \ (A1 ∪A2 ∪ ... ∪An−1)].

2. Условная вероятность. По определению условная вероятность событияA при условии
B вводится формулой

P(A|B) :=
P(AB)

P(B)
. (2)

Разумность этого определения легко следует из частотной интерпретации вероятности. Мы
рассматриваем не все эксперименты, а лишь те, в которых выполнилось условие, то есть про-
изошло B, среди таких экспериментов берем лишь те, в которых произошло также A. В итоге

nAB
nB

=
nAB
n

/
nB
n
→ P(AB)

P(B)
.

Разумеется, условная вероятность имеет смысл лишь при P(B) 6= 0. Полезно четко пони-
мать, что условная вероятность (при данном условии) — это вероятность. Действительно,

P(Ω|B) =
P(ΩB)

P(B)
= 1,P

(∑
n

An

∣∣∣B) =
∑
n

P(An|B).

В частности, можно рассмотреть условную вероятность, в которой роль вероятности также
играет условная вероятность. Что это означает?

P{(A|B)|C} =
P(AC|B)

P(C|B)
=

P(ACB)

P(B)
/
P(CB)

P(B)
=

P(ACB)

P(CB)
= P(A|BC).
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Комментарий. Понятие условной вероятности ввел Байес в середине 18 века. Первона-
чально это был набор понятий: рассматривались ситуации, когда событие A происходит после
B, предшествует B и т.д. К математической теории эти подробности не имеют отношения.
Мы вполне вправе рассматривать условную вероятность более раннего события A при условии
выполнения более позднего события B, таким образом, мы в вероятностном смысле реконстру-
ируем более раннюю ситуацию по позднему результату.

Замечание. Бывают задачи, условия которых мы можем сформулировать в терминах услов-
ных вероятностей (см. ниже задачу о распаде атома). При переходе к условной вероятности
P(A|B) мы меняем модель (заменяем множество всех элементарных исходов Ω на другое мно-
жество B, существенно разные события могут стать при такой замене одинаковыми, например,
P(A|B) = P(AB|B).

3. Формула умножения.

P (A1A2...An) = P (A1)P (A2|A1) ...P (An|A1...An−1) . (3)

Доказательство также производится методом математической индукции. Для двух сомно-
жителей формула умножения следует из определения условной вероятности —

P(AB) = P(A|B)P(B).

Для n+ 1 событий имеем:

P (A1A2...AnAn+1) = P (A1A2...An)P (An+1|A1A2...An) =

= P (A1)P (A2|A1) ...P (An|A1...An−1)P (An+1|A1A2...An) .

Замечание. Формула умножения чрезвычайно полезна, если мы можем как-то вычислять
условную вероятность, но не можем без этой формулы вычислить вероятность произведения
событий. В следующем примере формула умножения позволяет упростить модели.

Задача 1. Имеется 100 деталей, из них 90 — стандартные, 10 — бракованные. Выбираем
5 деталей (без возвращения). Какова вероятность того, что все они окажутся стандартными?
Обозначим Ai = { i-я деталь стандартна}, тогда интересующее нас событие записывается как
A1A2A3A4A5. Вычисляем: P(A1) = 90

100 , условие A1 означает, что у нас 99 деталей, из них 89
— стандартно, условие A1A2 означает, что у нас 98 деталей, из них 88 — стандартно, и т. д.
Таким образом, для вычисления каждой условной вероятности мы строим свою классическую
модель, число элементарных исходов которой определяется соответствующим условием. Итак,

P (A1A2...A5) = P (A1)P (A2|A1) ...P (A5|A1...A4) =
90

100

89

99

88

98

87

97

86

96
.

Этот результат может быть получен и с помощью одной сложной модели, состоящих из упоря-
доченных (или неупорядоченных) выборок длины 5 без возвращений. Таким образом, в данной
(и в последующей) задачах польза от применения формулы умножения незначительна.

4. Задача о рассеянном почтальоне. Почтальон должен был разнести n писем по n
адресам. Но он перепутал все адреса случайным образом. Какова вероятность того, что хотя
бы один адресат получил свое письмо?

Введем обозначение — Ai = {i-е письмо дошло до своего адресата}. Заодно мы нумеру-
ем письма. Наше событие имеет вид

⋃
i

Ai. Для вычисления вероятности применим формулу

сложения, для вычисления вероятностей произведений применим формулу умножения, а для
вычисления условных вероятностей будем строить промежуточные классические модели. Име-
ем:

P(Ai) =
1

n
∀i, P(AiAj) = P(Aj |Ai)P(Ai) =

1

n− 1

1

n
∀i < j, ...,
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P

∏
i≤n

Ai

 =
1

n!

Далее мы учитываем то, что количество пар, троек и т.д. совпадает с соответствующим числом
сочетаний, после очевидных выкладок получаем

P

⋃
i≤n

Ai

 = 1− 1

2!
+

1

3!
− ...+ (−1)n+1 1

n!
≈ 1− e−1.

5. Время жизни атома.
Как известно, атом в отличие от людей не стареет. Вероятность распада атома не зависит

от того, сколько он до этого просуществовал. Если обозначить через ξ время жизни атома, то
это обстоятельство можно записать следующей формулой:

P{ξ > t+ h|ξ > t} = P{ξ > h}. (∗)

В итоге имеем:

P{ξ > t+ h} = P [{ξ > t+ h}{ξ > t}] = P{ξ > t+ h|ξ > t}P{ξ > t} = P{ξ > h}P{ξ > t}.

(Очевидно, что {ξ > t+h} = {ξ > t+h}{ξ > t}.) Итак, вероятность для атома прожить дольше
t удовлетворяет равенству, определяющему в случае непрерывности функции (см. 1 семестр,
Анализ) экспоненциальную функцию. В нашем случае вместо непрерывности мы можем ис-
пользовать убывание, и этого также достаточно. Итак,

P{ξ > t} = e−λt,

где λ > 0 для каждого вида атома свое. λ неотрицательно, так как в противном случае веро-
ятность зашкалит за 1. Числовой множитель перед e−λt равен P{ξ > 0} = 1.

Замечание. Попробуем еще раз объяснить формулу (*). Если атом уже прожил t времени, то
вероятность для него прожить еще h оказывается условной при условииBt = {атом прожил t времени}.
То, что эта условная вероятность не зависит от t, отражает физические свойства атомов. Для
других объектов, например, для человека, такое предположение неверно.

6. Формула полной вероятности.
Полной группой событий называется набор {Ai} несовместных событий положительной

вероятности, сумма которого равна Ω. Примером такого набора является множество всех эле-
ментарных исходов в классической модели. Каждый такой набор позволяет получить новую
формулу для вычисления произвольного события B:

P(B) =
∑
i

P(B|Ai)P(Ai). (4)

Доказательство очевидно: Ω =
∑
i

Ai, поэтому

P(B) =
∑
i

P

(
B
∑
i

Ai

)
=
∑
i

P(BAi) =
∑
i

P(B|Ai)P(Ai).

7. Формула Байеса.
Формула (4) вместе с определением условной вероятности и формулой умножения позво-

ляет выразить условную вероятность P(Ai|B) через P(B|Ai). А именно,

P(Ai|B) =
P(B|Ai)P(Ai)∑
i

P(B|Ai)P(Ai)
. (5)
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8. Задача о разорении игрока.
Два игрока играют одинаково сильно (т. е. каждый из них выигрывает одну партию с

вероятностью 1/2) до разорения одного из них. Стоимость партии равна 1 рублю. У игрока A
— m рублей, у игрока B — n рублей. Какова вероятность того, что разорится A? Эту задачу
можно трактовать также как задачу о выигрыше B. Мы так и будем делать, сохранив, тем не
менее, за задачей общепринятое название.

Заметим, что игра может продолжаться сколь угодно и поэтому множество всех элементар-
ных исходов бесконечно. Это затрудняет использование классической модели даже несмотря
на симметрию ситуации.

Пожалуй, идея решения заключается в введении обозначения для общей суммы денег —
s = m+n, тогдаm = s−n. Теперь изменение числа n рублей у игрока B не меняет общую сумму.
Обозначим через p(n) вероятность окончательного выигрыша B, если у B на данный момент
n рублей. После первой партии у B будет либо n + 1 либо n − 1 рублей, причем вероятность
и того и другого равна 1/2. Разложим вероятность окончательного выигрыша B по формуле
полной вероятности по полной группе событий

Ω = {выигрыш 1 партии}+ {проигрыш 1 партии}.

Имеем:
p(n) =

1

2
p(n− 1) +

1

2
p(n+ 1)∀n, p(s) = 1, p(0) = 0.

Нетрудно догадаться, что этой системе равенств (для всех n от нуля до s) удовлетворяет
функция p(n) = n

s .
Для доказательства единственности этого решения надо вспомнить линейную алгебру. Мы

имеем s+ 1 равенств:
p(0) = 0;

p(1) =
1

2
p(0) +

1

2
p(2)

· · ·

p(s− 1) =
1

2
p(s− 2) +

1

2
p(s);

p(s) = 1.

В этой системе лишь s− 1 равенств содержат неизвестные p(n). Определитель системы равен∣∣∣∣∣∣∣∣∣∣∣∣

−1 1/2 0 0 · · · 0
1/2 −1 1/2 0 · · · 0
0 1/2 −1 1/2 · · · 0
· · · · · · · · · · · · · · · · · ·
0 · · · 0 1/2 −1 1/2
0 · · · · · · 0 1/2 −1

∣∣∣∣∣∣∣∣∣∣∣∣
.

Нетрудно убедиться в том, что определитель системы не равен нулю, а это означает, что реше-
ние p(n) = n

s является единственным. Игра может длиться сколь угодно, и число p(n) можно
представить в виде суммы ряда. Студенты-механики задали мне очень существенный вопрос:
а не может ли так оказаться, что вероятность события C, которое означает, что никто не вы-
играет за бесконечное время, не равна нулю? Из нашей формулы следует, что это невозможно:

p(n) + p(m) =
n

n+m
+

m

n+m
= 1.

Но это можно доказать и по другому. При любом числе игр k вероятность C оценивается (очень
грубо) сверху суммой вероятностей α(n) того, что на данный момент игрок A выиграл на n
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партий больше игрока B, где n пробегает все числа от −s до s. Легко проверить (см. раздел
’Случайное блуждание’ и формулу Стирлинга), что

α(n) = C
(n+k)/2
k 2−k =

k!

[(k + n)/2]![(k − n)/2]!
≤ α(0) ≈

≈
(
k

e

)k
2
√
πk/

[(
k/2

e

)k/2
2
√
πk/2

(
k/2

e

)k/2
2
√
πk/2

]
2−k =

1√
πk
→ 0.

Поэтому и вероятность C оценивается числом 2s√
πk

(s фиксировано) и сходится к 0 при k →∞.

Упражнение. Решите аналогичную задачу в ситуации, когда вероятность выигрыша равна
p, а проигрыша – 1− p. [Указание. Используйте формулу для геометрической прогрессии.]

9. Разрушающий контроль качества.
Формула Байеса позволяет использовать для контроля качества априорную информацию

— производственный опыт.
Допустим, что для проверки качества изделия его нужно разрушить. В этой ситуации

используется контроль качества не одного изделия, а партии изделий.
Пример. Допустим, что на заводе производятся электрические лампы. В нормальной си-

туации производятся стандартные партии ламп, в которых 90 процентов ламп стандартно,
а 10 процентов ламп браковано. Обычно (с вероятностью 0.91) завод выпускает стандартные
партии. Однако иногда производство разлаживается (с вероятностью 0.09) и выпускаются бра-
кованные партии, в которых 50 процентов ламп стандартно, а 50 процентов ламп браковано.
Выборочный контроль качества партии осуществляется следующим образом — испытывается
(и разрушается) одна лампа, если она стандартна, то партия объявляется стандартной, если
она бракована, то партия объявляется бракованной. Насколько эффективен и разумен такой
контроль?

Без контроля согласно производственному опыту доля бракованных партий равна 0.09.
Посмотрим, какова доля бракованных партий среди объявленных стандартными. Введем со-
бытия:

B = {выбранная лампа стандартна},A1 = {партия стандартная},A2 = {партия бракованная}.
Интересующее нас событие имеет вид P(A2|B). Считаем:

P(A2|B) =
P(B|A2)P(A2)

P(B|A1)P(A1) + P(B|A2)P(A2)
=

0.5 · 0.09

0.5 · 0.09 + 0.9 · 0.91
.

В результате нашего контроля доля бракованных партий среди принятых существенно пони-
зилась.

10. Урновая модель.
Довольно много задач используют так называемую урновую модель.
Пример. В комнате находятся две урны. Известно, что в первой урне 4 белых и 2 черных

шара, а во второй — 2 белых и 3 черных шара. Вы зашли в комнату, наугад выбрали урну,
вытащили из нее шар, шар оказался белым. Какова вероятность того, что вы вытащили шар
из первой урны?

Казалось бы ответ очевиден: урну выбрали наугад, они обе равноправны, следовательно,
вероятность вытащить шар из каждой урны равна 1/2. Но давайте рассмотрим другую, более
определенную ситуацию — во второй урне нет черных шаров. Тогда из цвета вытащенного шара
немедленно следует, что он вынут из первой урны, т.е. вероятность первой урны равна 1. Итак,
результат эксперимента меняет вероятность обращения к каждой из урн. Введем обозначения:
B = {вытащили белый шар}, Ai = {обратились к i-й урне}. В начальный момент вероятность
обращения к каждой урне равна 1/2,

P(B) = P(B|A1)P(A1) + P(B|A2)P(A2).
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Как мы уже отметили, P(A1) = P(A2) = 1/2. Из известного нам состава урн следует, P(B|A1) =
4/6, P(B|A2) = 2/5, поэтому

P(B) =
4

6
· 1

2
+

2

5
· 1

2
=

8

15
.

Теперь мы можем подсчитать изменившиеся в результате эксперимента вероятности каждой
из урн по формуле Байеса:

P(A1|B) =
P(A1B)

P(B)
=

1/3

8/15
=

5

8
,P(A2|B) =

3

8
.

Давайте решим еще одну задачу. После того, как мы вытащили белый шар из урны, мы
поменяли урну и вытащили из шар из другой урны. Какова вероятность того, что он оказался
белым?

Решая эту задачу, мы должны использовать уже измененные вероятности урн. Обозначим
второе событие через B′. Легко видеть, что нас интересует P(B′|B). Итак, мы используем
измененную формулу полной вероятности, в которой все вероятности оказываются условными,
причем вероятность того, что другая урна является первой, равна теперь 3/8, а вероятность
того, что она является второй, равна 5/8:

P(B′|B) = P(B′|A1)P(A1|B) + P(B′|A2)P(A2|B) =
3

8
· 2

3
+

5

8
· 2

5
=

1

2
.

Упражнение 5. В условиях задачи 2 §2 найти условную вероятность

P(время ожидания 1-го поезда < 0.5 мин.|суммарное время ожидания < 1 мин.).

§4. Независимость

К определению независимости можно придти из определения условной вероятности. Есте-
ственно назвать событие A независимым от B, если P(A|B) = P(A). Умножив равенство на
P(B), мы получаем:

1. Определение. События A и B называются независимыми, если

P(AB) = P(A)P(B).

Это определение не только симметрично, но и имеет смысл также и для невозможного события
∅.

Очевидно, что невозможное событие ∅ и достоверное событие Ω независимы от любого
другого события.

Примеры независимых событий можно привести для классической и геометрической мо-
делей. Например, когда в качестве модели мы используем множество всех упорядоченных вы-
борок с возвращениями из множества Ω из n элементов, то события

A = {1-й элемент выборки есть данноеω1},

B = {2-й элемент выборки есть данноеω2}

независимы. Проверим:

P(AB) = nn−2/nn = 1/n · 1/n = P(A)P(B).

Но независимости нет, если в качестве Ω используется множество всех выборок без возвраще-
ний (разумеется, тогда ω1 6= ω2 ): в этом случае

P(A) = P(B) = 1/n,P(AB) = 1/n(n− 1).
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Все же при больших n события A и B ’примерно’ независимы. Аналогичный пример неза-
висимости можно придумать для геометрической модели. Пусть Ω — квадрат [0, 1] × [0, 1],
вероятность — обычная площадь. Тогда события

A = {(x, y) ∈ Ω : x ∈ (a, b)} и B = {(x, y) ∈ Ω : y ∈ (c, d)}

независимы:
P(A) = b− a,P(B) = d− c,

P(AB) = P{(x, y) : x ∈ (a, b), y ∈ (c, d)} = (b− a)(d− c).

Ситуация изменится, если в качестве модели Ω будет использоваться не квадрат, а круг Ω =
{(x, y) : x2 + y2 ≤ 1} с вероятностью P – площадью, деленной на π. Тогда для введенных нами
множеств A и B равенство P(AB) = P(A)P(B) будет неверно. Проверьте сами, что при

A = {(x, y) ∈ Ω : x ∈ (−
√

1/2,
√

1/2)},

B = {(x, y) ∈ Ω : y ∈ (−
√

1/2,
√

1/2)}

имеют место равенства P(A) = P(B) = (π/2 + 1)/π, P(AB) = 1/π. При a. b, c, d вблизи 0
события A и B будут также зависимы и число P(AB)/P(A)P(B) будет примерно равно π/4.

Пример: Независимы пары событий ’пики’, ’маленькие’ и ’трефи’, ’маленькие’, которые в
сумме дают независимую пару ’черные’, ’маленькие’. Независимость этих пар событий имеет
место как для колоды из 36 карт, так и для колоды из 52 карт. Но если добавить к этой колоде
один джокер, то пример окажется несостоятельным. Более того, я рекомендую разобраться,
почему в классической модели из 53 карт нет нетривиальных (т. е. не содержащих достоверное
или невозможное событие) пар независимых событий.

2. Условная независимость.
События A и B называются условно независимыми относительно события C, если

P(AB|C) = P(A|C)P(B|C).

Приведенные выше события в круге условно независимы относительно события C = (c, d)×
(e, f), заданного любым прямоугольником внутри круга, стороны которого параллельны осям
координат.

Упражнения. Пусть A ∪B ⊂ C, 0 < P(C) < 1. Покажите, что два условия ’события A и B
независимы’ и ’события A и B условно независимы при условии C’ одновременно выполняться
не могут. Пусть события A, B и C независимы в совокупности (определение см. ниже). Про-
верьте, что тогда A и B условно независимы при условии C. Могут ли события A и B быть
условно независимыми относительно события A ∪B? события AB?

3. Несколько эквивалентных определений независимости в совокупности.
Теорема. Следующие определения эквивалентны:
a) События A1, A2, . . . An называются независимыми в совокупности, если для любого мно-

жества индексов I ⊂ 1, n имеет место равенство:

P

(∏
i∈I

Ai

)
=
∏
i∈I

P(Ai). (0).

b) События A1, A2, . . . An называются независимыми в совокупности, если для любых непе-
ресекающихся множеств индексов I ⊂ 1, n и J ⊂ 1, n события

∏
i∈I Ai и

∏
i∈J Ai независимы.

c) События A1, A2, . . . An называются независимыми в совокупности, если для любого на-
бора событий B1, B2, . . . Bn, где каждое Bi равно или Ai или Ai, выполняется равенство

P

∏
i≤n

Bi

 =
∏
i≤n

P(Bi). (1)
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Доказательство. a) ⇒ b) очевидно.

P

(∏
i∈I

Ai

)
P

(∏
i∈J

Ai

)
=
∏
i∈I

P(Ai)
∏
i∈J

P(Ai) =

=
∏

i∈I+J
P(Ai) = P

( ∏
i∈I+J

Ai

)
= P

(∏
I

Ai
∏
J

Ai

)
.

b) ⇒ a) доказывается индукцией по числу элементов в I. Например,

P (AiAjAk) = P(Ai)P (AjAk) = P(Ai)P(Aj)P(Ak).

Аналогично, случай |I| = 4 сводится к случаю |I| = 3 и т. д.
a) и b) эквивалентны даже более сильному варианту c):
с′) где (1) заменяется на

P

(∏
i∈I

Bi

)
=
∏
i∈I

P(Bi). (1′)

для любого множества индексов I ⊂ 1, n. По видимому, доказательство эквивалентности a) и
c) проще всего провести через эквивалентность с с′), как это делается ниже.

Доказательство a)⇒ с′) ведется индукцией по числу элементов j в I, для которых Bj равно
Aj (для всех других i ∈ I имеет место Bi = Ai). Покажем, как из (0) выводится (1′), если
лишь для одного j ∈ I имеет место Bj = Aj . Мы рассмотрим два равенства (0) с множествами
индексов I \ {j} и I.

P

 ∏
i∈I\{j}

Ai

 =
∏

i∈I\{j}

P(Ai).

P

(∏
i∈I

Ai

)
=
∏
i∈I

P(Ai).

Вычитая из верхнего равенства нижнее получаем:

P

 ∏
i∈I\{j}

AiAj

 =
∏

i∈I\{j}

P(Ai)P(Aj).

Импликация с′)⇒ a) очевидна. Поэтому нам достаточно доказать с)⇒ с′). Доказательство
индукцией по числу сомножителей, но от n к 2, то есть на каждом следующем шаге число
сомножителей уменьшается. Допустим, что мы уже доказали (1′) для k + 1 сомножителей,
докажем его для k сомножителей. Выберем индекс j 6∈ I. Согласно предположению верны
равенства

P

(∏
i∈I

BiAj

)
=
∏
i∈I

P(Bi)P(Aj),

P

(∏
i∈I

BiAj

)
=
∏
i∈I

P(Bi)P(Aj).

Складывая эти равенства, получаем

P

(∏
i∈I

Bi

)
=
∏
i∈I

P(Bi).
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Замечание. Рекомендуется построить пример зависимых событий A1, A2, . . . An таких, что
выполнено одно равенство

P

∏
i≤n

Ai

 =
∏
i≤n

P(Ai).

4. Модели, предполагающие независимость в совокупности.
Пример с электрической цепью. Рассматривается электрическая цепь, в которую включе-

но некоторое число разных сопротивлений. Надо найти вероятность прохода тока (хотя бы по
одной из линий) от начала цепи до конца. Мы предполагаем независимость в совокупности со-
бытий, состоящих в исправности разных сопротивлений. В вычислениях используется форму-
ла сложения вероятностей (в случае параллельного расположения сопротивлений) и формула
произведения (в случае последовательного расположения).

Упражнение. Симметричная монета. Классическая модель (любой набор длины n из гер-
бов или решек имеет вероятность 2−n) означает, что события ’герб (или решка) в i испытании’
при разных i независимы в совокупности. Проверьте.

5. Пример Бернштейна попарно независимых событий, которые не являются
независимыми в совокупности.

Рассматривается правильный тетраэдр, который с равной вероятностью может упасть на
любую из своих граней. Покрасим боковые стороны тетраэдра в красный, синий и зеленый
цвета, а основание во все три цвета. События K, S, Z имеют место, если на грани тетраэдра, на
которую он упал, имеется соответствующий цвет. Непосредственно проверяется, что события
K, S, Z попарно независимы, в то же время

P(KSZ) = 1/4 6= 1/8 = P(K)P(S)P(Z).

6. Независимые σ-алгебры.
Определение. σ-подалгебры Ai (i ≤ n) событий σ-алгебры Ai называются независимыми,

если для любых событий Ai ∈ Ai имеет место равенство

P

(∏
i

Ai

)
=
∏
i

P(Ai).

Любопытно, что добавка ’в совокупности’ оказывается в этом случае излишней, так как
из этого определения следует независимость в совокупности событий Ai. Мы требуем выпол-
нения лишь одного равенства, но для всех наборов, состоящих из одного события в каждой
из σ-алгебр независимость в совокупности следует из определения c). Действительно, каждое
событие в наборе можно заменить на его отрицание.

Замечания. 1) Как конструировать примеры независимых σ-алгебр? Для этого можно рас-
смотреть последовательность или конечное число вероятностных пространств (Ωi,Ai,Pi) и
взять теоретико-множественное произведение

∏
i

Ωi, а в нем рассмотреть σ-алгебру A, порож-

денную всевозможными множествами вида
∏
i

Ai, где Ai ∈ Ai. Можно доказать, но это не

просто, и мы этого делать не будем (это аналог известной вам теоремы Фубини), что функция
множеств

P

(∏
i

Ai

)
=
∏
i

Pi(Ai) (∗)

продолжается до вероятностной меры на всю σ-алгебру A. Первоначальным σ-алгебрам Ai
соответствуют (мы их будем обозначать так же) σ-подалгебры σ-алгебры A, состоящие из
множеств вида

∏
i

Bi, где Bj равно Ωj при j 6= i и Bi равно Ai, а Ai пробегает Ai. Из равенства

(*) следует независимость этих σ-подалгебр Ai.
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Теперь мы сможем смоделировать ситуацию (см. Введение) — проводится последователь-
ность экспериментов в одинаковых условиях. Один эксперимент моделируется вероятностным
пространством (Ω,A,P), далее берется степень ΩN, где N — множество натуральных чисел,
осуществляющая для этого бесконечного произведения указанную выше конструкцию, а в ка-
честве события A, наблюдаемого в n-м эксперименте, возьмем событие

∏
i

Bi, где Bi равно Ω

при i 6= n и Bn равно A.
Заметим, что удобное для примеров вероятностное пространство — отрезок [0, 1] с σ-алгеброй

борелевских множеств и мерой Лебега изоморфен счетной степени вероятностного простран-
ства {0, 1}, где P{1} = P{0} = 1/2.

7. Операции с независимыми событиями.
Для дальнейшего представляет интерес вопрос — можно ли с помощью теоретико-множественных

операций увеличивать число событий, независимых в совокупности. Например, пусть нам даны
полуалгебры Ci, i ≤ n, и все наборы событий Ai ∈ Ci, i ≤ n, независимы в совокупности. Будут
ли независимы в совокупности все наборы Ai ∈ Ui, i ≤ n, где Ui — порожденная Ci, i ≤ n,
алгебра? Мы докажем это утверждение, и более того, докажем в этой ситуации независимость
σ-алгебр Ai, порожденных Ci. Для упрощения обозначений мы рассмотрим случай лишь двух
полуалгебр, C1 и C2.

Напомним определение полуалгебры — это полукольцо, содержащее Ω, то есть набор мно-
жеств, замкнутый относительно конечных пересечений, и такой, что из принадлежности к
нему двух множеств A и B следует, что множество A \B представимо в виде конечной суммы
попарно непересекающихся элементов полуалгебры. Полуалгебра содержит и все пространство
Ω (пересечение пустого семейства элементов полуалгебры). Существенным примером полуал-
гебры является набор всех полуоткрытых интервалов вида [a, b) на числовой прямой. Другой
существенный пример — это произведение алгебр (или полуалгебр). Если C1 — полуалгебра в
Ω1, а C2 — полуалгебра в Ω2, то всевозможные произведения A1 ×A2, где A1 пробегает C1, A2

пробегает C2, образуют полуалгебру в Ω1 × Ω2. Это утверждение легко проверяется и верно,
разумеется, для любого конечного числа сомножителей. Тем более оно верно, если A1 и A2

берутся из двух σ-алгебр.
Мы приведем несколько правил об операциях с парами независимых событий, которые

сохраняют независимость.
1) Если события A,B независимы, то события A, B̄ тоже независимы. Действительно, мы

вычитаем из
P(AΩ) = P(A) · 1

равенство
P(AB) = P(A)P(B)

и получаем
P(AB̄) = P(A)P(B̄).

Используя этот факт, мы получаем, что независимость A,B означает независимость четы-
рех пар (A,B), (A, B̄), (Ā, B), (Ā, B̄).

2) Если A1A2 = ∅, а пары (A1, B), (A2, B) независимы, то пара (A1 + A2, B) независима.
Доказательство сложением равенств

P(A1B) = P(A1)P(B),

P(A2B) = P(A2)P(B).

Замечание. Если убрать условие несовместности, то все не так: события (K∪S,Z) в примере
Бернштейна зависимы. Однако ниже мы увидим, что из независимости в совокупности событий
A,B,C следует независимость событий (A ∪B,C).

Все сказанное в пунктах 1), 2) верно и для наборов событий, независимых в совокупности.
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Вспомним, что порожденная полуалгеброй алгебра состоит из всевозможных конечных
сумм попарно непересекающихся элементов полуалгебры. Таким образом, с учетом возмож-
ностей, предоставляемых методом математической индукции, из 1) и 2) следует:

8. Предложение. Пусть F1 и F2 — независимые полуалгебры. Тогда порожденные ими
алгебры U1 и U2 также независимы.

Теперь рассмотрим операцию предела последовательности событий. Но предварительно
докажем свойство вероятностной меры, которое называется непрерывностью.

9. Определение. Пусть последовательность событий (An) и событие A таковы, что A1 ⊂
A2 ⊂ ... ⊂ An... и A =

⋃
n
An или A1 ⊃ A2 ⊃ ... ⊃ An... и A =

⋂
n
An. В каждом из этих случаев

мы будем говорить, что последовательность (An) имеет предел A и обозначать An → A, для
удобства мы будем также вводить дополнительную нагрузку на символ и писать в первом
случае An ↑ A, а во втором случае An ↓ A.

10. Определение. Функция множеств µ называется непрерывной, если An → A влечет
µ(An)→ µ(A).

11. Предложение. Вероятностная мера P на σ-алгебре непрерывна.
Доказательство. Пусть An ↑ A. Тогда

A = A1 + (A2 \A1) + . . .

An = A1 + (A2 \A1) + . . .+ (An \An−1).

В силу конечной аддитивности µ

P(An) = P(A1) + P(A2 \A1) + . . .+ P(An \An−1)

и в силу счетной аддитивности

P(A) = P(A1) + P(A2 \A1) + . . . .

Поэтому, так как сумма ряда по определению — предел частичных сумм ряда, мы имеем:

P(A) = lim
n

P(An).

Непрерывность для последовательности An ↓ A выводится из непрерывности для An ↑ A
переходом к дополнениям.

12. Предложение. Если пары событий (An, B) независимы для всех n, An ↑ A или An ↓ A,
то события A и B также независимы. Доказательство переходом к пределу в определении
независимости.

Далее мы покажем, что из независимости алгебр следует независимость порожденных ими
σ-алгебр. Для этого нам надо показать, что порожденная σ-алгебра получается из алгебры
лишь (сохраняющими независимость) переходами к пределу возрастающих или убывающих
последовательностей. В теории меры имеется понятие, использующееся для исследования этого
процесса.

13. Определение. Монотонным классом называется класс множеств (в каком-то множе-
стве, содержащем все множества из класса, которое нам будет удобно по-прежнему обозначать
Ω), замкнутый относительно перехода к пределу возрастающей или убывающей последова-
тельности множеств (то есть вместе с любой такой последовательностью этот класс содержит
и ее предел).

14. Предложение. Для любого набора множеств F существует наименьший содержащий
F монотонный класс.

Доказательство очевидно и применяется для доказательства многих других утверждений
такого рода. 1) Монотонные классы, содержащие F, существуют, например, множество всех
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подмножеств Ω. 2) Рассмотрим все монотонные классы, содержащие F, и возьмем их пере-
сечение. 3) Легко проверяется (??), что это пересечение является наименьшим монотонным
классом.

В то же время, в более или менее сложной ситуации выписать явно все элементы наимень-
шего монотонного класса невозможно. Постараюсь дать представление о том, что получается.
Сначала мы добавим к F все пределы монотонных последовательностей из F, получим F1. Но
в F1 появляются новые монотонные последовательности, добавив их пределы к F1, получим
F2. Продолжим эту процедуру счетное число раз, получим возрастающую последовательность
множеств (Fn). Объединение этой последовательности обозначается Fω. Но и это объединение
не является монотонным классов, в нем появятся монотонные последовательности множеств
по одному из каждого Fn. Добавив их к Fω, получим Fω+1. Этот процесс называется транс-
финитным. В течение процесса мы получим множества вида Fω, Fωω, Fωωω и т. д., вплоть до
первого несчетного трансфинитного числа.

15. Предложение. σ-алгебра — это алгебра, которая является монотонным классом.
Доказательство в обе стороны очевидно. То, что σ-алгебра является монотонным классом,

следует из того, что предел монотонной последовательности множеств на деле является объ-
единением или пересечением. Обратно, любое счетное объединение (или пересечение) является
монотонным пределом конечных объединений (или пересечений).

16. Теорема (о монотонных классах). Наименьший монотонный класс M, содержащий
алгебру A, является σ-алгеброй.

Доказательство этой теоремы нетривиально. Очевидно, что M также содержит Ω и ∅, как
и A. Просто доказывается, что M замкнут относительно операции перехода к дополнению.
Мы рассматриваем вместе с M класс Mc, состоящий из дополнений всех множеств из M. По
построению Mc также является монотонным классом (если An ↑ A и An ∈ Mc , то Acn ↓ Ac в
M и A = (Ac)c ∈ Mc). Но тогда M ∩Mc – также монотонный класс (почему, проверьте хотя
бы здесь!) меньший M.

Итак, нам достаточно доказать, что M замкнут относительно операций объединения и
пересечения конечного числа множеств, причем достаточно это доказать для двух множеств.

1) Введем класс M0 всех множеств B ⊂ Ω со свойством: для любого A ∈ A множества
A ∪B и A ∩B принадлежат M. Проверим, что M0 – монотонный класс. Действительно, если
Bn ↓ B, A ∪ Bn и A ∩ Bn для любого n принадлежат M, то так как M — монотонный класс,
A ∪ B = limn(A ∪ Bn) и A ∩ B = limn(A ∩ Bn) принадлежат M. Итак, M0 — монотонный
класс. Так как A – алгебра, элементы B ∈ A также принадлежат M0. По определению M, M0

содержит M. Следовательно, для любых A ∈ A, B ∈M тем более имеет место A∪B,A∩B ∈M.
2) Введем классM00 всех множеств B ⊂ Ω со свойством: для любого A ∈M множества A∪B

и A ∩B принадлежат M. Как и выше проверяется (??), что M00 – монотонный класс. Теперь
проверим, что M00 содержит A. Действительно, в первом пункте показано, что для любого
A ∈ A и B ∈M множества A∪B и A∩B принадлежат M. Поменяв местами обозначения A и
B, мы показываем, что все элементы A ∈ A имеют свойство, определяющее M00.

Итак, M00 — монотонный класс, M00 содержит A, значит M00 содержит M. В итоге для
любых элементов A ∈M, B ∈M, элементы A ∪B и A ∩B принадлежат M.

17. Несимметричная модель Бернулли (биномиальная модель).
Несимметричная монета подбрасывается n раз. В каждом эксперименте вероятность герба

равна p, а вероятность решки — 1 − p. Как и в симметричной модели Бернулли, в качестве
вероятностного пространства служит множество всех наборов из символов Г и Р длины n.
Гербу в i-испытании соответствует событие Gi, состоящее из всех наборов гербов и решек,
в которых на i-м месте находится герб, так же определяется событие Ri. Так как герб или
решка в одном испытании не влияют на условия проведения другого испытания, то все σ-
алгебры Ai = {Ω, Gi, Ri, ∅} независимы. Теперь запишем элементарный исход ............ в виде
произведения событий ...Gi...Rj ...Rk..., которое получается, если под каждым гербом записать
событие G, а под каждой решкой — событие R, снабдив их соответствующими номерами. По
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другому можно сказать, что G1 = {Г...}, G2 = {.Г...}, G3 = {..Г...} и т. д. (’три точки’ означает
здесь ’много точек’) Ввиду независимости σ-алгебр Ai,

P(...Г...Р...Р...) = ...P(Gi)...P(Rj)...P(Rk)... =

= p{число гербов}(1− p){число решек}.

Вероятности всех наборов (то есть элементарных исходов), в которых число гербов равно k,
оказываются равными. Поэтому вероятность события {в n экспериментах выпало k гербов}
равно числу входящих в него элементарных исходов, умноженному на вероятность одного ис-
хода, то есть

P{в n экспериментах выпало k гербов} = Cknp
k(1− p)n−k.

Пример. 6 раз бросался на стол игральный кубик (со сторонами 1, 2, 3, 4. 5. 6). Найти
вероятность того, что 2 раза выпало число 1.

Решение. В данной задаче p = 1/6. Ответ: C2
6 (1/6)2(5/6)4.

18. Полиномиальная модель, в которой вместо двух исходов в биномиальной модели
имеется r состояний, вероятность i-го состояния равна pi, точно так же обобщает модель Больц-
мана — Максвелла. Соответствующие формулы можно вывести самостоятельно. В примере с
кроликами мы можем считать разными размеры клеток, тогда вероятности попадания кролика
в разные клетки будут разными и будут равняться соответственно p1,...,pr, каждый последу-
ющий кролик, занимая место в одной из клеток, не знает число кроликов, уже находящихся
в клетке, поэтому события, связанные с разными кроликами, независимы в совокупности. В
этой модели при рассадке n = n1 + ... + nr вероятность того, что для каждого i в i-ю клетку
попадет ровно ni кроликов, равна

n!

n1! · · ·nr!
pn1

1 · · · pnrr .

19. Предельная теорема Муавра — Лапласа (без доказательства).
Локальная предельная теорема Муавра — Лапласа имеет следующий вид:

P{Sn = k} = Cknp
k(1− p)n−k =

1√
2πnp(1− p)

e−x(k)2/2(1 + αn),

где Sn – число гербов (т.е. сумма чисел 1 или 0) в n испытаниях в модели Бернулли, x(k) =
k − np√
np(1− p)

и αn → 0 равномерно при n → ∞ для всех k, при которых x(k) принадлежит

какому-нибудь интервалу.
Интегральная предельная теорема Муавра — Лапласа имеет следующий вид:

∑
x(k)∈(a,b)

P{Sn = k} =

∫ b

a

1√
2π

exp

(
−x

2

2

)
(1 + αn)dx,

где αn → 0. Здесь k имеет тот же порядок, что и n, следовательно, стремится к ∞.
Мы не будем доказывать эти две теоремы (см. Гнеденко). Доказательство использует знаме-

нитую формулу Стирлинга, которая будет нам полезна и в дальнейшем при оценке некоторых
малых вероятностей:

n! =
√

2πn
(n
e

)n
eθ(n), где |θ(n)| ≤ 1

2n

Локальная предельная теорема используется для приближенных вычислений очень малых
вероятностей событий, связанных с моделью Бернулли, а интегральная теорема использует-
ся для приближенных вычислений уже немалых сумм вероятностей в той же схеме. В обоих
случаях мы предполагаем при применении, что параметр p не слишком близок к 0 или 1,
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а параметры n и k достаточно велики (однако неправильно организованные вычисления на
компьютере этих приближений могут привести к машинному нулю). В дальнейшем, исполь-
зуя технику характеристических функций (преобразований Фурье распределений), будут до-
казаны результаты 20 века, очень частным случаем которых является интегральная теорема
Муавра – Лапласа. Разумеется, стремительное развитие компьютерной техники уменьшает
значимость подобных применений. Для p, близких к 0, и фиксированного не очень большого
k хорошее приближение дает:

20. Предельная теорема Пуассона.
Пусть при n→∞ имеем p = λ

n + o
( 1
n
)
. Тогда для любого натурального k имеем:

P{Sn = k} → λk

k!
e−λ.

Доказательство.

Cknp
k(1− p)n−k =

n(n− 1) · · · (n− k + 1)

k!

(
λ

n
+ o

(
1

n

))k
(

1− λ

n
+ o

(
1

n

))n−k
=

1 ·
(

1− 1

n

)
· · ·
(

1− k − 1

n

)
· 1

k!
· (λ+ o(1))

k

(
1− λ

n
+ o

(
1

n

))n−k
→

1 · 1

k!
· λk · e−λ.

Для примера с электрической цепью нам было нужно следующее предложение, которые я
забыл предварительно сформулировать.

21. Предложение. Если события A1, A2, . . . An независимы в совокупности, множества
индексов I ⊂ 1, n и J ⊂ 1, n не пересекаются, событие A(I) выражается теоретико-мно-
жественными операциями через все события Ai, где i ∈ I, событие A(J) выражается теоретико-
множественными операциями через все события Ai, где i ∈ J , то события A(I) и A(J)
независимы.

Этот факт удобнее рассматривать, введя понятие независимых σ-алгебр.
В предложении нам нужно доказать независимость в совокупности σ-алгебры A(I), по-

рожденной всеми событиями Ai, i ∈ I, и σ-алгебры A(J), порожденной всеми событиями Ai,
i ∈ J . Рассмотрим для примера σ-алгебру A(I). Она состоит из конечного числа событий, а
следовательно, в ней имеются события, называемые атомами – минимальные события, не яв-
ляющиеся невозможными. В качестве таких событий мы берем все события вида

∏
i∈I Bi, где

каждое Bi равно или Ai или Ai. Очевидно, что эти атомы попарно несовместны и каждое со-
бытие Ai является объединением 2|I|−1 числа атомов. Но тогда объединением атомов является
и каждое событие из σ-алгебру A(I). То же верно и для σ-алгебры A(J). Очевидно, что любые
два множества вида

∏
i∈I Bi и

∏
i∈J Bi независимы. это следует, например, из импликации с′)

⇒ a). Независимость любых событий A(I) ∈ A(I) и A(J) ∈ A(J) следует теперь из предста-
вимости этих событий как сумм атомов и многократного применения правила 2) операций с
независимыми событиями.

22. Гипотеза независимости. Пример. Пусть один из пяти данных билетов является
выигрышным. Вы купили два билета из пяти и рассматриваете события

Ai = {i-й купленный вами билет является выигрышным}.

Будут ли события A1, A2 независимыми? Ответ очевиден и отрицателен, так как

P(A1) = P(A2) =
1

5
,P(A1A2) = 0 6= P(A1)P(A2).
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Теперь немного усложним ситуацию, имеется не 5, а 1000 билетов, из которых 200 являются
выигрышными. В этом случае вероятности событий Ai остаются прежними, но

P(A1A2) = P(A1)P(A2|A1) =
200

1000

199

999
.

Мы можем сказать, что события A1 и A2 почти независимы. Однако ситуация упрощается,
если мы не знаем общее число билетов и оно довольно велико, но мы знаем, что пятая часть
билетов — выигрышная. В этой ситуации у нас нет другого варианта, кроме принятия гипотезы
независимости A1 и A2. Используя гипотезу независимости, мы вычисляем:

P{оба билета выигрышные} = P(A1A2) =
1

5

1

5
,

P{ровно один билет выигрышный} = P(A1A2 +A1A2) = 2 · 1

5

4

5
,

P{оба билета проигрышные} = P(A1A2) =
4

5

4

5
.

Упражнение 6. Любая ли σ-алгебра является монотонным классом?
Упражнение 7. Игральный кубик бросается на стол. Будут ли независимы следующие

события: {результат бросания делится на 2}, {результат бросания делится на 3}?
Упражнение 8. В условиях задачи 2 §2 проверьте — какие пары событий будут зависимы,

а какие — независимы: {x < 1}, {y < 1}; {x < y}, {x+ y < 1}; {x < y}, {x+ y < 2}; {x+ y < 1},
{x+ y < 2}?

Упражнение 9. В σ-алгебре событий заданы три события, A, B, C, независимые в со-
вокупности, вероятности которых отличны от 0 и 1. Из скольких элементов состоит алгебра,
порожденная A, B, C? Сравните с упражнением 1b.
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Часть 2. СЛУЧАЙНЫЕ ВЕЛИЧИНЫ

§5. Случайные величины

Определение 1. Борелевской σ-алгеброй на числовой прямой называется наименьшая σ-
алгебра B(R), содержащая все интервалы вида (−∞, x), где x ∈ R. Элементы борелевской σ-
алгебры называются обычно борелевскими множествами. Борелевской функцией на числовой
прямой R называется такое отображение f : R→ R, что прообраз f−1(B) любого борелевского
множества B является борелевским множеством.

Определениe 2. Случайной величиной называется измеримое отображение ξ : (Ω,A,P)→
(R,B(R)), т.е. для ∀B ∈ B(R) прообраз ξ−1(B) = {ω ∈ Ω : ξ(ω) ∈ B} ∈ A, т.е. является
событием.

Для сведения. Мы используем обозначения:
{ξ ∈ B} := {ω : ξ(ω) ∈ B}, {ξ < a} := {ω : ξ(ω) < a}, в том же духе понимаются обозначения
{ξ > a}, {ξ = a}, {ξ ≤ a}, {a ≤ ξ < b} и т.д.

В качестве примера применения таких обозначений удобнее рассмотреть (см. следующий па-
раграф) случай нескольких случайных величин. Рассмотрим, например, эксперимент с тремя
подбрасываниями монеты. Пространство элементарные исходов Ω состоит из 8 элементарных
исходов, каждый из которых — набор из трех гербов или решек. Оцифруем этот эксперимент,
для этого введем случайные величины ξi правилом:

ξi(ω) =

{
1, если в наборе ω на i−м месте герб,
0, если в наборе ω на i−м месте решка.

Тогда, например, {(ξ1, ξ2, ξ3) = (1, 1, 0)} = ГГР, а

{ξ1 + ξ2 + ξ3 = 2} = {ГГР, ГРГ, РГГ}.

Пример. Очень удобный примером в качестве вероятностного пространства является от-
резок [0, 1], в котором события — борелевские подмножества [0, 1], а вероятность — сужение
на отрезок меры Лебега λ. Случайными величинами оказываются тогда любые измеримые по
Борелю функции из [0, 1] в R.

Замечания и упражнения. Проверьте, что всегда

{ξ ∈ [0, 1/2]}+ {ξ ∈ (1/2, 1]} = {ξ ∈ [0, 1]}.

Писать {ξ ∈ [0, 1/2]}+ {ξ ∈ [1/2, 1]} мы уже не имеем права, так как может быть, что

{ξ ∈ [0, 1/2]}{ξ ∈ [1/2, 1]} 6= ∅.

Это зависит от случайной величины ξ. Например, если Ω = {ξ ∈ {1, 2}}, то

{ξ ∈ [0, 1/2]}{ξ ∈ [1/2, 1]} = ∅.

Но всегда корректна формула

{ξ ∈ [0, 1/2]} ∪ {ξ ∈ [1/2, 1]} = {ξ ∈ [0, 1]}.

Проверьте, что ⋃
n

{ξ ≤ −1/n} = {ξ < 0}.

Как проще записать
∏
n{−1/n < ξ < 1/n}?

Другое определение 2′ случайной величины – такая функция ξ : Ω → R, что событиями
являются все множества вида {ξ < a}, a ∈R.

Предложение 3. Определение 2 ⇔ Определение 2′.
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1⇒ 1′ очевидно так как {ξ < a} = ξ−1(−∞, a), а (−∞, a) – это борелевское множество.
1′ ⇒ 1. Рассмотрим класс B′ таких множеств B в R, что {ξ ∈ B} является событием

и докажем, что класс B′ является σ-алгеброй. Например, покажем, что класс B′ замкнут
относительно счетного объединения. Пусть Bn ∈ B′, тогда{

ξ ∈
⋃
n

Bn

}
=
⋃
n

{ξ ∈ Bn} ∈ A,

это означает, что
⋃
n
Bn ∈ B′.

Итак, B′ – σ-алгебра. Кроме того, по построению B′ содержит все интервалы вида (−∞, a).
По определению борелевской σ-алгебры как наименьшей с этим же свойством B′ содержит
борелевскую σ-алгебру.

Упражнение. В предложении 3 вместо класса всех интервалов вида (−∞, x) взять любой
другой класс множеств, порождающий борелевскую σ-алгебру. Сформулируйте и докажите
это обобщение предложения 3.

Определение 4. Распределением Pξ случайной величины ξ называется вероятностная
мера на борелевской σ-алгебре B(R), которая задается соотношением

Pξ(B) := P{ξ ∈ B} для всех B ∈ B(R). (1)

Замечание. Корректность определения 4 следует из определения 2, в соответствии с кото-
рым правая часть (1) всегда имеет смысл. На первый взгляд кажется, что Pξ(B) и P{ξ ∈ B}
— это одно и то же, только вводится другое обозначение. Это конечно не так, распределение
– вероятность, заданная не на событиях, а на борелевских множествах. В следующем пара-
графе мы предложим пример с фабрикой и мастерской, иллюстрирующий смысл перехода от
случайной величины и вероятности на событиях к распределению случайной величины.

Аксиомы вероятности для Pξ легко выводятся из этих же аксиом для P. Например, счетная
аддитивность Pξ доказывается с помощью непосредственно проверяемого равенства событий{

ξ ∈
∑
n

Bn

}
=
∑
n

{ξ ∈ Bn},

где все Bn (дополнительная нагрузка на символ) попарно не пересекаются, и отсюда следует,
что события

∑
n
{ξ ∈ Bn} также попарно не пересекаются.

Определение 5. Функцией распределения случайной величины ξ называется функция Fξ :
R→ [0, 1], задаваемая соотношением

Fξ(x) = P{ξ < x} для всех x ∈ R. (2)

Каждая вероятность P на числовой прямой задает функцию распределения F (x) = P(−∞, x) ≥
0, которая имеет следующие свойства:

1) x ≤ y влечет F (x) ≤ F (y);
2) limx→−∞ F (x) = 0, limx→∞ F (x) = 1;
3) limx↑y F (x) = F (y) для всех y ∈ R.
Свойство 1) очевидно и следует из (−∞, x) ⊂ (−∞, y).
Применим предложение 4.11 к доказательству свойств 2) и 3) функции распределения.
2) Пусть xn ↓ −∞, тогда (−∞, xn) ↓ ∅ и тогда

F (xn) = P(−∞, xn) ↓ P(∅) = 0.

Точно так же рассматривается случай xn ↑ +∞ и 3), т.е.рассматривается последовательность
xn ↑ x, в этом случае (−∞, xn) ↑ (−∞, x). Заметим, что в случае xn ↓ x имеет место сходимость
(−∞, xn) ↓ (−∞, x], поэтому функция распределения не обязательно непрерывна справа.
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Утверждение 6 (см. курс теории меры). Если дана функция F , удовлетворяющая услови-
ям 1), 2), 3) то существует единственная вероятность P на борелевской σ-алгебре B такая,
что F (x) = P(−∞, x) для всех x.

Для полноты изложения мы докажем эту теорему, но при этом будем ссылаться на тео-
рему о продолжении меры из функционального анализа, причем доказательство некоторых
несложных фактов мы оставим читателю. Напомним, что начинается определение меры в
курсе функционального анализа с определения меры на полуалгебре. Дополнительно, мы дру-
гим способом строго докажем единственность вероятности P, заодно выясним, как по функ-
ции распределения F вычисляются вероятности некоторых важнейших числовых множеств на
числовой прямой. Развитая при этом техника нам понадобится в дальнейшем при изучении
понятия независимости случайных величин.

Итак, пусть дана полуалгебра C — это класс подмножеств некоторого большого множества
Ω (которое часто называется все пространство) со следующими свойствами:

1) Ω ∈ C, ∅ ∈ C;
2) пересечение двух элементов C принадлежит C;
3) если A,B ∈ C, A ⊂ B, то B \ A представляется в виде объединения конечного числа

попарно неперсекающихся между собой элементов C (напомним, что если записать это свойство
в виде формулы, то для объединения мы можем использовать знак суммы).

Напомним, что полуалгебра C порождает алгебру множеств A, причем каждое множество
A ∈ A представимо в виде A =

∑n
i=1Ai, где Ai inA∀i.

Наконец, алгебра порождает σ-алгебру B.
Напомним также, что в теории меры предполагается заданной на полуалгебре C функция

множеств µ : C→ [0, 1] со следующими свойствами: если
1) µ(Ω) = 1;
2) Если A =

∑
nAn (число слагаемых в сумме может быть как конечным, так и счетным),

A ∈ C, An ∈ C∀n, то

µ(A) =
∑
n

µ(An).

Тогда согласно курсу функционального анализа функция множеств µ продолжается сна-
чала на алгебру C, а потом на σ-алгебру B, каждый раз с сохранением свойства счетной адди-
тивности 3), причем в случае σ-алгебры условие A ∈ B является уже излишним. Продолжение
на B называется в нашем курсе вероятностью.

В нашем случае
C = {[a, b) : a ∈ R ∪ {−∞}, b ∈ R ∪ {+∞}},

функция µ на C определяется соотношением

µ([a, b)) := F (b)− F (a).

Проверка свойства неотрицательности и 1) очевидна (поймите, что это действительно очевид-
но). А проверка свойства 2) очевидна лишь в случае конечного числа слагаемых в представ-
лении A.

Ясно, что вероятности не всех числовых множеств нам интересны с практической точки
зрения. Например, вряд ли кого-нибудь интересует вероятность множества всех рациональных
чисел или вероятность канторова совершенного множества. В то же время вероятности разного
рода интервалов и различных точек (которые являются замкнутыми интервалами) безусловно
представляют интерес. Итак,

P(−∞, x) = F (x),

поэтому в силу конечной аддитивности P должно быть верно

P[a, b) = P(−∞, b)− P(−∞, a) = F (b)− F (a)
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и эта вероятность однозначно определяется по F . Точно так же в силу конечной аддитивности
для непересекающихся интервалов верно

P([a1, b1) + [a2, b2) + . . .+ [an, bn)) = P[a1, b1) + P[a2, b2) + . . .+ P[an, bn) =

= (F (b1)− F (a1)) + (F (b2)− F (a2)) + . . .+ (F (bn)− F (an)),

т.е. на таких множествах P также однозначно задается по F . Нетрудно проверить, что такие
множества составляют алгебру множеств A (проверьте !).

Однозначность меры продолжается не только при сложении непересекающихся множеств
или вычитании из большего множества меньшего, но и при переходе к пределу возрастающей
или убывающей последовательности. По теореме 4.16 с помощью этих операций из элементов
алгебры можно получить все элементы порожденной алгеброй σ-алгебры. В нашем случае это
означает, что по функции распределения F вероятность на борелевской σ-алгебре восстанав-
ливается однозначно.

7. Примеры. P(a, b) = F (b) − F (a + 0); P[a, b] = F (b + 0) − F (a); P{x} = F (x + 0) − F (x)
(т.е. вероятностность точки равна скачку функции распределения в этой точке; если функция
распределения непрерывна в точке, то вероятность этой точки равна нулю).

Предложение 8. Борелевская функция f(ξ) от случайной величины ξ является случайной
величиной.

Доказательство. {f(ξ) ∈ B} = {ξ ∈ f−1(B)}. Для любого борелевского множества B мно-
жество f−1(B) также является борелевским множеством, по определению случайной величины
{ξ ∈ f−1(B)} является событием.

Существенное замечание. Разумеется, вместо функции распределения, мы можем ввести
другие функции, которые будут выполнять ту же роль экономного и видного на графике
задания распределения вероятностей на числовой прямой, например,

F ∗ξ (x) = P{ξ ≤ x} для всех x ∈ R. (2∗)

(эта функция непрерывна справа) или

Gξ(x) = P{ξ > x} для всех x ∈ R. (2∗∗)

(эта функция не возрастает и стремится к 1 на −∞ и к 0 на +∞).
9. Определение. Вероятностное распределение P на борелевской σ-алгебре называется

дискретным, если существует такое конечное или счетное множество чисел {xn}, что
∑
n P{xn} =

1. В этом случае функция распределения имеет скачки в каждой точке xn, равные P{xn}. Ра-
зумеется, сумма скачков равна 1.

10. Определение. Вероятностное распределение P на борелевской σ-алгебре называется
распределением непрерывного типа, если существует такая измеримая относительно борелев-
ской σ-алгебры неотрицательная функция p на R, что p(x)dx = 1 и функция p связана с
вероятностью P следующим соотношением:∫

B

p(x)dx = P(B) (3)

для любого борелевского множества B. Функция p называется плотностью распределения P.
Функция распределения F , определяющая распределение P, в этом случае задается соотноше-
нием

x∫
−∞

p(u)du = F (x) (4)

(действительно, B = (−∞, x), интеграл Лебега по множеству меры нуль равен нулю, поэтому
вероятность точки, заданная равенством (3), равна нулю, и нам все равно, интегрировать по
интервалу (−∞, x) или по (−∞, x], мы вправе просто писать интеграл от −∞ до x).
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Обозначение. Если ξ — случайная величина, распределение которой имеет непрерывный
тип, то плотность распределения обозначается pξ.

Алгоритм вычисления вероятности P(B) для дискретного и непрерывного типа распре-
деления.

В дискретном случае распределение задается равенствами P{an} = pn, где
∑
n pn = 1,

pn ≥ 0 для всех n. Поэтому P{a1, a2, ...} = 1, P(R \ {a1, a2, ...}) = 0. Поэтому вероятность
пересечения любого борелевского множества B и R \ {a1, a2, ...} равна 0. Чтобы вычислить
P(B), надо пересечь его с {a1, a2, ...}:

P(B) = P(B ∩ {a1, a2, ...}) + P[B ∩ (R \ {a1, a2, ...})] =

= P(B ∩ {a1, a2, ...}) =
∑

n:an∈B
pn.

В случае непрерывного типа распределения функция плотности обычно интегрируема по Ри-
ману и даже кусочно непрерывна, т.е. задается в вида

p(x) =

n∑
i=1

pi(x)IBi , где
∑

Bi = R, все Bi −−− промежутки .

В этом случае вероятность считается как сумма интегралов Римана:

P(B) =
∑
i

∫
Bi∩B

pi(x)dx.

11. Примеры дискретных распределений
Распределение Бернулли задается соотношением

P {1} = p,P {0} = 1− p.

Это распределение задается параметром p ∈ (0, 1) и появляется в задаче о бросании монеты
(если мы сопоставим гербу значение 1, а решке — 0 или наоборот).

Биномиальное распределение появляется в задаче о бросании монеты n раз и является рас-
пределением случайной величины — числа гербов в n испытаниях.

P {k} = Cknp
k(1− p)n−k, k = 0, 1, ..., n.

Иногда для краткости используют символ распределения — B(n, p), в котором кратко указаны
вид распределения и его параметры. Например, B(6, 1/3), вычислите вероятность {2}.

Распределение Пуассона появилось у нас в предельной теореме Пуассона и задается фор-
мулой

P {k} =
λk

k!
e−λ, k ∈ {0} ∪N.

Символ этого распределения — P (λ).
Гипергеометрическое распределение (см. задачу о выборе деталей).

P{r} =
CrR · Cn−rN−R

CnN
,

где r ∈ [max{0, n− (N −R)},min{R,n}] ∩ ({0} ∪N).
Геометрическое распределение.

P{k} = p(1− p)k, k = 0, 1, 2, ..., где p ∈ (0, 1).
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Геометрическое распределение появляется в следующей задаче: гнутая монета (вероятность
выпадения герба равна p) подбрасывается до тех пор, пока не появится герб, k + 1 — число
подбрасываний монеты.

12. Примеры распределений непрерывного типа
Равномерное распределение. Равномерное распределение на [a,b] (неважно, отрезок или ин-

тервал) имеет функцию плотности

p(x) =
1

b− a
I[a,b](x),

где IE — индикатор множества E — функция, равная 1 на E и 0 вне E.
Равномерное распределение появляется в геометрической модели. Параметры равномерно-

го распределения — числа a, b или числа µ = a+b
2 , ∆ = b−a

2 .
Экспоненциальное распределение. Плотность экспоненциального распределение задается

формулой
pα(x) = αe−αxI[0,∞)(x).

Иногда в качестве параметра используется β = 1/α. Экспоненциальное распределение появи-
лось в задаче о времени жизни атома.

Стандартное нормальное распределение задается плотностью

p(x) =
1√
2π
e−x

2/2.

Неплохо было бы убедиться в том, что интеграл от этой плотности по R равен 1 и найти в
Демидовиче интеграл Эйлера — Пуассона.

Нормальное распределение с произвольными параметрами. Если ξ имеет стандартное нор-
мальное распределение, то случайная величина σξ + m имеет нормальное распределение с
параметрами m и |σ|. Надо научиться вычислять плотность распределения этой случайной
величины по плотности ξ.

Покажем, как это можно сделать, используя связь плотности с функцией распределения.
Пусть σ > 0.

P {σξ +m < x} = P
{
ξ <

x−m
σ

}
.

Дифференцируем это равенство по формуле сложной функции. Получаем

pσξ+m(x) =
1

σ
pξ

(
x−m
σ

)
,

pσξ+m(x) =
1

σ
√

2π
e
−1

2

(
x−m
σ

)2

.

Случай отрицательного σ аналогичен, но мы учитываем, что вероятность точки равна нулю.
Дифференцируется равенство

P {σξ +m < x} = P
{
ξ >

x−m
σ

}
= 1− P

{
ξ <

x−m
σ

}
.

Получаем ту же плотность, что и для параметров m, |σ|.

pσξ+m(x) =
1

−σ
√

2π
e
−1

2

(
x−m
σ

)2

.

Символ нормального распределения — N(m,σ2), стандартного нормального распределения —
N(0, 1). Нормальное распределение используется для моделирования многих ситуаций. Оно
используется также для приближения других распределений.
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Логарифмически-нормальное распределение. Это распределение случайной величины eξ, где
ξ имеет нормальное распределение. Плотность этой величины выводится выше описанным
способом:

P
{
eξ < x

}
= P {ξ < lnx} , x > 0.

peξ(x) =
1

x
pξ(lnx)I(0,∞).

Распределение χ2
1. Аналогично выводится плотность случайной величины ξ2, где ξ —N(0, 1).

Но
P
{
−
√
x < ξ <

√
x
}
, x > 0,

представляется как разность значений функции распределения ξ в двух точках —
√
x и
√
x.

Это распределение является частным случаем распределения χ2
n при n = 1. В следующем

параграфе мы рассмотрим распределение χ2
n и некоторые другие распределения, связанные с

наборами независимых нормальных случайных величин.
Распределение Коши.
Распределение Коши с параметрами a и µ имеет функцию плотности

p(x) =
1

π
· a

1 + a2(x− µ)2 .

Распределение константы a. Мы забыли рассмотреть распределение константы a. Его ча-
сто назыывают мерой Дирака и обозначают δ{a}. Физики предпочитают использовать это обо-
значение для функции Дирака — обобщенной функции, которая равна везде, кроме a, нулю, в
a равна +∞, а интеграл от нее по числовой прямой равен 1. В этих терминах они дискретному
распределению (P {xi} = pi) приписывают плотность (обобщенную !) p(x) =

∑
i

piδ{xi}(x). К

распределению константы сходятся (определение сходимости будет существенно позже) многие
непрерывные и дискретные распределения — Бернулли (когда p сходится к 0 или 1), равно-
мерное (когда b сходится к a), нормальное (когда σ сходится к 0) и др.

Наконец, кроме дискретных или непрерывных распределений возможны также сингуляр-
ные распределения. Вся вероятность сингулярного распределения сосредоточена на множестве
лебеговой меры нуль, но вероятность каждой отдельной точки равна нулю. Трудно представить
себе практическую ситуацию, где мы будем иметь дело с сингулярным распределением. Однако
сейчас мы построим теоретически интересный пример сингулярного распределения. Это образ
меры Лебега на отрезке [0,1] относительно отображения, переводящего любую точку 0....1...0...
этого отрезка в двоичной системе счисления в точку 0....2...0... в троичной системе счисления.
Отображение строится заменой каждой цифры 1 на цифру 2. Такое отображение переведет
меру Лебега на канторово совершенное множество. Хорошо известно, что мера Лебега этого
множества равна 0 (ее можно представить как limn

(
2
3

)n).
Симметричные распределения. Распределение случайной величины ξ называется симмет-

ричным, если распределение ξ совпадает с распределением случайной вепличины −ξ. В дис-
кретном случае это означает, что

Pξ{xn} = Pξ{−xn} для всех значений ξ,

а в непрерывном случае, что

pξ(x) = pξ(−x) для всех x ∈ R.

Легко видеть, что в случае симметричного распределения функция распределения F удовле-
творяет равенству

Fξ(x) = 1− Fξ(−x) для всех x ∈ R.
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Поэтому таблицы функций симметричных распределений обычно содержат лишь значения
x > 0. Примеры симметричных распределений — равномерное распределение на отрезке [−a, a],
нормальное распределение с m = 0, распределение Коши с µ = 0.

Вопрос. Для какой константы распределение константы симметрично? Докажите сформу-
лированные выше свойства функции плотности и функции распределения для симметричного
распределения.

13. Как сконструировать случайную величину с заданным распределением P, определен-
ным функцией распределения F?

Для этого мы должны определить некоторое вероятностное пространство (Ω,A,P), а на
нем определить случайную величину ξ : (Ω,A,P) → (R,B(R)), что Fξ = F .Очевидно, что не
всякое вероятностное пространство может подойти. Например, если Ω состоит из конечного
или счетного множества точек, то распределение любой случайной величины на нем может
быть лишь дискретным (Почему?).

Самый простой способ решения задачи тривиален — мы просто берем в качестве вероят-
ностного пространства (R,B(R),P) и определяем ξ соотношением ξ(x) = x, R. Другой способ
позволяет использовать более стандартное вероятностное пространство — в качестве Ω мы бе-
рем интервал (0, 1), в качестве σ-алгебры событий — σ-алгебру борелевских множеств в (0, 1),
а в качестве P мы берем сужение меры Лебега m на числовой прямой на борелевские множе-
ства (0, 1). Напомним, что мера m задается равенством m(a, b) = b − a для всех чисел a < b.
А теперь придумаем ξ. Дополним график функции распределения F (если эта функция имеет
разрывы), включив разрывы в график. Таким образом, если F (x) = a, F (x + 0) = b > a, то в
график включаются все точки (x, ω), где a < ω ≤ b. Далее через каждую точку ω ∈ (0, 1) на
оси y-в мы проводим прямую, параллельную оси x-ов плоть до пересечения x = x(ω) с нашим
расширенным графиком (если таких точек пересечения бесконечно много, мы возьмем среди
них самую левую точку). Итак, ξ(ω) := x(ω).

Упражнение. Покажите, что в пункте 13 действительно Fξ = F .
14. Таблицы вероятностей.
Для вычисления распределений служат таблицы вероятностей (напр. [30]). В них приво-

дятся значения либо функции распределения F (x) для большого числа x, функции 1 − F (x).
Для эффективного использования таблиц, нужно уметь сводить распределения данного вида,
но с произвольными параметрами, к табличным распределениям. Например, имеются таблицы
для нормального распределения со средним 0 и дисперсией 1. Так как функция плотности p
этого распределения симметрична,

−a∫
−∞

p(x)dx =

∞∫
a

для любого a,

т.е. функция распределения Φ в этом случае удовлетворяет соотношению Φ(x) = 1 − Φ(−x).
Поэтому многие таблицы функции Φ ограничиваются значениями x > 0. Функция распреде-
ления нормальной случайной величины ξ со средним m и дисперсией σ2 легко вычисляется по
таблицам Φ, так как случайная величина ξ−m

σ имеет функцию распределения Φ.
Упражнение 10. Дано, что P {ξ = 1} = 1/3, P {ξ = 2} = 1/2, P {ξ = 3} = 1/6. Найти

P {ξ ∈ R \ {1, 2, 3}} и построить график функции распределения Fξ.
Упражнения 11. a. Дано, что Φ(x)− Φ(−x) = 0.9. Найти Φ(x).
b. Как по таблице значений функции распределения стандартной нормальной случайной

величины ξ для всех x > 0 найти вероятности: P{ξ < −2}, P{|ξ| > 2}?
c. Найдите такое x, что P{|ξ| > x} = 0.1.
Упражнение 12. Случайная величина ξ нормальна с m = 1 и σ2 = 4. Найти по таблицам

Φ величину P{ξ ∈ (1, 2.5)}.
Задача. Как придумать случайную величину ξ такую, что Fξ = F , где F имеет свойства

1)-3)? В качестве вероятностного пространства мы берем отрезок [0, 1] с мерой Лебега λ, ξ(ω) =
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F−1(ω). Заметим, что если F (x) = ω для x, пробегающих интервал, F−1(ω) не существует, но
множество таких ω не более чем счетно. Поэтому мера λ таких ω равна 0. Также, если функция
распределения проскакивает x, то ξ(omega) = x для всеx ω в отрезке [F (x), F (x+ 0)]. Пример
другой случайной величины η с той же функцией распределения — η(ω) := ξ(1− ω).

Вопрос. Придумайте пример разных случайных величин с одинаковым распределением.
Намек. Прежде чем придумывать случайные величины, придумайте вероятностное про-

странство.

§6. Случайные векторы, наборы случайных величин

Рассматриваются случайные величины — числовые функции на пространстве всех элемен-
тарных исходов. Обозначения – ξ, η, ζ (мы будем использовать греческие буквы, в некоторых
книгах используются большие латинские буквы — X, Y , ...). Простейший пример случайной
величины – число гербов при n подбрасываниях монеты. В этом случае элементарные исходы
– это всевозможные наборы ..Г..Р.. из гербов и решек длины n. Наша случайная величина (ее
обычно обозначают Sn) сопоставляет каждому такому набору число гербов в наборе. Так как
мы умеем считать вероятность каждого набора (pSn(1−p)n−Sn), где p— вероятность выпадения
герба в одном испытании, то мы можем подсчитать вероятность любого значения k случайной
величины Sn, сложив вероятности всех наборов, на которых Sn принимает значение k. Как
мы уже знаем, получается Cknpk(1− p)n−k. Более того, мы можем для любого множества B на
числовой прямой найти вероятность P{Sn ∈ B} того, что Sn принадлежит B. Для этого нам
нужно сложить вероятности всех k, которые содержатся в B. Заметим, что если мы незна-
чительно изменим B, не включая в него новые точки k и не убирая их, то наша вероятность
не изменится. Вероятность P{Sn ∈ B}, заданная на всех B, называется распределением PSn
случайной величины Sn. Таким образом, мы меняем лишь обозначение:

PSn(B) = P{Sn ∈ B},

в частности,
PSn({k}) = P{Sn = k},

но вводя новое обозначение распределения PSn , мы забываем о случайных исходах – всех этих
наборах из гербов и решек, и сохраняем информацию лишь о вероятностях всех множеств
{Sn = k}. То же распределение, что и Sn, могут иметь и другие случайные величины, может
быть даже заданные на других пространствах элементарных исходов. С распределением Sn
связывается функция распределения

FSn(x) := PSn(−∞, x),

со значениями в отрезке [0, 1]. По этой функции легко восстанавливается само распределение.
Нетрудно видеть, что вероятность PSn(−∞, x) меняется лишь тогда, когда (−∞, x) захватывает
очередное k, при этом увеличивается на вероятность этого k. Таким образом, зная величины
скачков функции FSn , мы узнаем вероятности всех точек k, а по ним однозначно определяется
распределение PSn

Возможны и более сложные ситуации, когда мы знаем, что некоторые величины случайны,
но не можем построить пространство элементарных исходов, или же не можем его обозреть.
Пусть, например, мы рассматриваем координату vx скорости молекулы в газе. В рамках клас-
сической механики для нее используется следующая формула:

P {vx ∈ (a, b)} =

b∫
a

µ√
2π
e
−µ

2u2

2 du, (5)
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где µ характеризует свойства газа. В этой формуле функция распределения случайной вели-
чины vx имеет вид

Fvx(s) :=

s∫
∞

µ√
2π
e
−µ

2u2

2 du, (6)

(здесь мы не используем x, так как знак x указывает на направление координаты). Заметим,
что эта формула противоречит конечности числа N молекул газа, функция распределения не
растет скачками величины 1/N . Такие распределения мы называем распределения непрерыв-
ного типа (в отличие от распределений дискретного типа, у которых вероятность сосредото-
чена на конечном или счетном множестве точек). Подынтегральная функция в (5) или (6)
называется функцией плотности, для случайной величины vx она обозначается pvx .

Свойства функции плотности pξ случайной величины ξ очевидны. Во первых, pξ ≥ 0 (хоть
и бесконечно малая вероятность, но все же вероятность), во-вторых,

∫
R
pξ(x)dx = 1. Однако

в отличие от дискретного случая мы теперь уже не можем говорить о P {vx ∈ B} для всех
множеств B на числовой прямой, а только для таких B, для которых имеет смысл интеграл∫

B

µ√
2π
e
−µ

2u2

2 du = P {vx ∈ B} .

Однако для всех интересных для применений множеств B (обычно это интервалы) такой ин-
теграл имеет смысл.

Замечание 1. Современные физики предпочитают все вероятностные распределения запи-
сывать как распределения непрерывного типа, используя в качестве плотности обобщенную
функцию. Например, плотность дискретного распределения, заданного равенствами P{ai} =
pi, где

∑
i pi = 1, можно определить обобщенной функцией p(x) =

∑
i piδ(x − ai), где δ –

функция Дирака.
Из определений следует, что в случае непрерывного типа распределения функция распре-

деления Fξ и функция плотности pξ связаны соотношениями:

Fξ(x) =

∫ x

−∞
pξ(t)dt,

отсюда дифференцированием выводится обратное соотношение

pξ(x) =
dFξ
dx

(x).

1. Многомерные распределения.
Разумеется, мы можем иметь дело не только с одной случайной величиной (в примерах вы-

ше Sn или vx), но и одновременно с несколькими случайными величинами (например, при рас-
смотрении молекул газа мы одновременно иметь дело с тремя импульсами, px, py, pz (механики
обычно предпочитают скорости импульс как переменную) и тремя координатами qx, qy, qz).

Итак, мы рассматриваем несколько случайных величин ξ1, ..., ξn и их совместное распреде-
ление Pξ1,...,ξn , которое определяется соотношением:

Pξ1,...,ξn(B) = P{(ξ1, ..., ξn) ∈ B}.

Здесь B опять пробегает все полезные и хорошие множества, аналогами интервалов являются
n-мерные прямоугольные параллелепипеды, но кроме них для приложений полезны и шары,
пирамиды и другие множества.

Замечание. Как и в одомерном случае, мы используем обозначение

{(ξ1, ..., ξn) ∈ B} := {ω ∈ Ω : (ξ1(ω), ..., ξn(ω)) ∈ B}.
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Заметим также, что

{ξ1 ∈ B1, ..., ξn ∈ Bn} = {ξ1 ∈ B1}...{ξn ∈ Bn}

(
:=

n⋂
i=1

{ξi ∈ Bi}

)
.

Точнее, в качестве B мы можем использовать все элементы борелевской σ-алгебры – наи-
меньшей σ-алгебры, содержащей шары со всеми центрами и всеми радиусами. Впрочем, мно-
гомерную борелевскую σ-алгебру мы можем также интерпретировать как наименьшую σ-
алгебру, содержащую все множества вида

{(x1, ..., xn) : xi < x}, где i = 1, 2, ..., n, x пробегает R ,

то есть полупространства. Теоретико-множественными операциями мы можем получить из
полупространств многомерные параллелепипеды, а из них счетными объединениями открытые
шары.

Пример, иллюстрирующий целесообразность рассмотрения вместо случайной величины ее
распределения. Директор модного ателье должен иметь список клиентов, у каждого из ко-
торых свои параметры одежды. Таким образом, директор должен иметь вероятностное про-
странство, элементарными исходами которого являются клиенты. Случайные величины на
этом пространстве сопоставляют каждому клиенту его параметры (например, рост, размер,
полнота). Наконец, если все клиенты одинаково интересны для мастерской и заказывают при-
мерно одно и то же количество одежды, на множестве клиентов можно ввести классическую
вероятность, в которой все клиенты равновероятны.

Директора фабрики по производству одежды интересует только совместное распределение
вероятностей у его потребителей таких случайных величин, как рост, размер, полнота. Полного
списка клиентов он не знает, так как он слишком велик. Обычно директор имеет информацию
о вероятностях таких событий, как например

{3 рост, 46 размер, маленькая полнота}.

Но если одежды каких-то размеров в избытке, а других не хватает, это по-видимому объясня-
ется тем, что он использовал распределения вероятностей, справедливые для всего населения,
применительно к какой-то особой группе населения с другими распределениями вероятностей.

Итак, переход от случайной величины или вектора к распределению означает обезличива-
ние элементарных исходов.

Многомерные распределения могут быть как дискретными, так и непрерывными (а если
использовать язык обобщенных функций, то можно и все мыслить непрерывными).

В многомерном случае задается также совместная функция распределения следующим со-
отношением:

Fξ1,...,ξn(x1, ..., xn) = P{ξ1 < x1, ..., ξn < xn}.

Но эта функция не так интересна как в одномерном случае: в многомерном случае нет хоро-
шего порядка для точек, да и график такой функции нарисовать затруднительно. Совместная
функция распределения имеет те же (с учетом многомерности) свойства 1)-3), что и одномер-
ная функция распределения, но этих свойств недостаточно, чтобы определять многомерную
вероятность. Например, в двумерном случае нужно, чтобы Fξ,η имела дополнительное свой-
ство:

P{a1 ≤ ξ < a2, b1 ≤ η < b2} =

= Fξ,η(a2, b2)− Fξ,η(a1, b2)− Fξ,η(a2, b1) + Fξ,η(a1, b1) ≥ 0

для всех a1 < a2, b1 < b2.
Как и в случае одной случайной величины, совместное распределение может определяться

совместной функцией плотности
pξ1,...,ξn(x1, ..., xn),
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которая связана с распределением следующим соотношением:

Pξ1,...,ξn(B) =

∫
...

∫
B

pξ1,...,ξn(x1, ..., xn)dx1...dxn. (7)

Можно отметить также связь совместной функции распределения и совместной функции
плотности:

Fξ1,...,ξn(x1, ..., xn) =

∫ x1

−∞
...

∫ xn

−∞
pξ1,...,ξn(u1, ..., un)du1...dun.

Обратно,

pξ1,...,ξn(x1, ..., xn) =
∂nFξ1...ξn
∂x1...∂xn

(x1, ..., xn).

Вопрос. Пусть нам дана совместная плотность случайных величин x1, ..., xn, как найти сов-
местную плотность части этого набора – ξn1 , ..., ξnk , 1 ≤ ni ≤ n? Ответ следует из определения
совместной функции плотности. Пусть B — k-мерное борелевское множество из

∏
i∈{n1,...,nk}

Ri,

гдеRi числовая прямая под номером i (мы имеем в виду, чтоRn представляется в виде
∏
i≤n

Ri.)

Итак, ∫
...

∫
B

pξn1 ,...,ξnk
(xn1

, ..., xnk)dxn1
...dxnk = P{(ξn1

, ..., ξnk) ∈ B} =

= P{(ξ1, ξ2, ..., ξn) ∈ B ×
∏

i 6∈{n1,...,nk}

Ri} =

=

∫
...

∫
B×

∏
i6∈{n1,...,nk}

Ri

pξ1,...,ξn(x1, ..., xn)dx1...dxn.

Отсюда следует, что в качестве pξn1 ,...,ξnk
(плотность задается с точностью до множества меры

нуль) мы можем взять
pξn1

,...,ξnk
(xn1 , ..., xnk) =

=

∫
...

∫
∏

i6∈{n1,...,nk}
Ri

pξ1,...,ξn(x1, ..., xn)
∏

i 6∈{n1,...,nk}

dxi.

В многих ситуациях нужно переходить от совместной функции плотности pξ1,...,ξn(x1, ..., xn)
к совместной функции pη1,...,ηn(y1, ..., yn), где случайный вектор (η1, ..., ηn) получен в резуль-
тате преобразования (обычно непрерывного или кусочно непрерывного) случайного вектора
(ξ1, ..., ξn). Поэтому нужно уметь как-то записывать борелевское множество B̃ через B в ра-
венстве

P{(ξ1, ..., ξn) ∈ B} = P{(η1, ..., ηn) ∈ B̃},

(чтобы всегда, для всех вариантов совместных распределений, были равны вероятности, нуж-
но, чтобы были равны события) после чего записать это равенство как равенство интегралов
от соответстующих функций плотности:∫

...

∫
B

pξ1,...,ξn(x1, ..., xn)dx1...dxn =

∫
...

∫
B̃

pη1,...,ηn(y1, ..., yn)dy1...dyn.

Далее, используя замену переменных под знаком интеграла, можно попытаться выразить
pη1,...,ηn(y1, ..., yn) через pξ1,...,ξn(x1, ..., xn). Мы используем то соображение, что из равенства
интегралов для всех множеств B (интеграл как функцию области интегрирования B часто
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называют неопределенным интегралом) следует равенство (с точностью до множества лебего-
вой меры нуль) подинтегральных функций. Приведем пример такого перехода: пусть заданы
случайные векторы (ξ, η), (ϕ,ψ), где ϕ = ξ2η, ψ = ξ/η. Тогда чтобы обеспечить равенство

{(ξ,η) ∈ B} = {((ϕ,ψ)) ∈ B̃},

множество B̃ должно состоять из всех точек (u, v) таких, что ( 3
√
uv, 3

√
u/v2) ∈ B.

Замечание. Пусть ξ, η – случайные величины, заданные на вероятностном пространстве
(Ω,A,P) и имеющие совместное распределение Pξ,η. Рассмотрим функции x : (x, y) → x, y :
(x, y) → y. Эти функции являются случайными величинами, заданными на вероятностном
пространстве (R2,B(R2),Pξ,η). Очевидно (?), что Px,y = Pξ,η.

2. Независимые случайные величины.
Случайные величины ξ1, ..., ξn называются независимыми, если для любых борелевских

множеств B1, B2, ..., Bn имеет место равенство

P{ξ1 ∈ B1, ..., ξn ∈ Bn} = P{ξ1 ∈ B1}...P{ξn ∈ Bn}. (8)

Можно доказать, это довольно сложно (мы это сделаем ниже), что для независимости
случайных величин ξ1, ξ2, ..., ξn достаточно равенств

P{ξ1 < a1, ..., ξn < an} = P{ξ1 < a1}...P{ξn < an} (9)

для всех вещественных чисел a1, a2, ..., an, которые следуют из (8) при Bi = (−∞, xi).
Заметим, что как (8), так и (9) на деле означают независимость в совокупности входящих

в (8) или (9) наборов событий. В (8) некоторые из событий Bi мы можем заменить на R,
из определения случайной величины следует, что {ξn ∈ R} = Ω. Таким образом, некоторые
из сомножителей в правой части окажутся равными 1, а некоторые события в правой части
можно будет не писать, и мы получим равенство (8) для части набора событий. То же верно и
для (9).

Борелевские функции f(ξi) независимых случайных величин ξi сами независимы. Действи-
тельно, вместо (8) нам нужно доказать

P{f1(ξ1) ∈ B1, ..., fn(ξn) ∈ Bn} =

P{f1(ξ1) ∈ B1}...P{fn(ξn) ∈ Bn}. (8′)

Но {fi(ξi) ∈ Bi} = {(ξi) ∈ f−1
i (Bi)}. Таким образом, (3′) – это (3) при Bi = f−1

i (Bi).
Рассмотрим случай, когда ξ1, ξ2, ..., ξn – независимые случайные величины с дискретным

распределением, то есть для любого k мы имеем: P{ξk = ai} = p
(k)
i , где i ≤ r(k),

∑r(k)

i=1 p
(k)
i = 1.

Тогда
P{ξ1 = ai1 , ..., ξn = ain} = p

(1)
i1
p

(2)
i2
...p

(n)
in
.

Аналогично рассматривается случай независимых случайных величин ξ1, ξ2, ..., ξn с непре-
рывным типом распределения. Легко показывается, что в этом случае имеется совместная
функция плотности pξ1,...,ξn(x1, ..., xn), которая задается равенством

pξ1,...,ξn(x1, ..., xn) = pξ1(x1)...pξn(xn). (10)

Это легко выводится дифференцированием равенства (9) по всем переменным. Обратно, инте-
грированием равенства (10) по всем переменным мы получаем (8) или (9). Таким образом, если
совместная функция плотности случайных величин ξ1, ..., ξn и функции плотности отдель-
ных случайных величин связаны соотношением (10), то случайные величины ξ1, ..., ξn неза-
висимы. Почему-то вызывает затруднения важный для математической статистики случай
независимых случайных величин ξ1, ..., ξn с одинаковым распределением непрерывного типа с
функцией плотности p. Разумеется, совместная функция плотности не pn, а

pξ1,...,ξn(x1, ..., xn) = p(x1)...p(xn).
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Теорема 3. Следующие условия эквивалентны (каждое из них означает независимость
случайных величин): для любых борелевских множеств B1, ..., Bn имеет место равенство

P{ξ1 ∈ B1, ..., ξn ∈ Bn} = P{ξ1 ∈ B1}...P{ξn ∈ Bn}, (11)

для всех вещественных чисел a1, ..., an имеет место равенство:

P{ξ1 < a1, ..., ξn < an} = P{ξ1 < a1}...P{ξn < an}. (12)

Доказательство. Разумеется, (8) влечет (9). Обратное нужно доказывать, так как (9) означает
справедливость (8) лишь для интервалов вида (−∞, a).

Напомним, что из независимости в совокупности двух наборов событий:A1, A2, ..., An, Ã1, A2, ..., An
таких, что A1, Ã1 несовместны (т..е. A1Ã1 = ∅, следует независимость в совокупности и набо-
ра A1 + Ã1, A2, ..., An, аналогично проверяется, что если условие несовместности заменить на
условие A1 ⊃ Ã1, то независим в совокупности набор A1 \ Ã1, A2, ..., An. Разумеется, то же
верно и для пар Ai, Ãi с другими номерами.

Мы используем это простые утверждения для наборов событий вида {ξ1 < b1}, ..., {ξn < an}
и {ξ1 < a1}, {ξ2 < a2}, ..., {ξn < an}. Согласно (11) оба этих набора независимы в совокупности,
а поэтому при a1 < b1 независимы в совокупности и события {a1 < ξ1 < b1}, {ξ2 < a2}, ..., {ξn <
an}. Итак, из независимости прообразов относительно случайных величин ξ1, ..., ξn борелевских
множеств вида (−∞, a) следует независимость прообразов множеств вида [ai, bi). Аналогично,
но уже используя операцию сложения, мы получаем независимость прообразов множеств вида

ni∑
j=1

[a
(j)
i , b

(j)
i ). (13)

Такие множества составляют уже алгебру множеств в R (если предполагать, что одно из
чисел a(j)

i может равняться −∞, а одно из чисел b(j)i –∞). Заметим, что нам удалось избежать
операций пересечения и объединения множеств общего вида, при таких операциях (см. пример
Бернштейна) независимость может потеряться.

Но нам нужно доказать независимость прообразов любых борелевских множеств в R. Со-
гласно теореме о монотонных классах для их получения из множеств вида (*) нам не нужно
использовать операции счетного объединения или счетного пересечения, а достаточно исполь-
зовать операции предела возрастающей последовательности множеств (здесь это объединение)
или убывающей последовательности множеств (пересечение). Однако такие операции также
сохраняют независимость. Это легко проверяется: если для любого m события A(m)

1 , A2, ..., An
удовлетворяют соотношению

P(A
(m)
1 A2, ...An) = P(A

(m)
1 )P(A2)...P(An), (∗∗)

а A(m)
1 ↗ A1 или A(m)

1 ↘ A1, то переходом к пределу в (**) мы получаем

P(A1A2, ...An) = P(A1)P(A2)...P(An).

Теорема 4. Пусть случайные величины (все вместе) ξ1, ξ2, ..., ξn, η1, η2, ..., ηm незави-
симы, f(x1, x2, ..., xn) и g(x1, x2, ..., xm) — борелевские функции. Тогда случайные величины
f(ξ1, ..., ξn), g(η1, ..., ηm) независимы.

Замечание. Для упрощения обозначений я рассматриваю набор независимых случайных
величин, разделенный лишь на две пачки. Без изменений в доказательства все это верно и для
набора, разделенного на любого конечного числа пачек. К сожалению, нельзя ограничиться
случаем n = m = 1, для него все очевидно и уже доказано.

Доказательство аналогично доказательству теоремы 1. Из условий теоремы немедленно
следует независимость событий вида

{(ξ1, ξ2, ..., ξn) ∈ B1 × ...×Bn}, {(η1, η2, ..., ηm) ∈ C1 × ...× Cm},
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где множества Bi, Cj являются борелевскими множествами. Входящие в эти множества про-
изведения составляют полуалгебры множеств соответственно в Rn и Rm. Эти полуалгебры
порождают алгебры множеств. Как мы уже видели, их прообразы относительно отображений
(ξ1, ξ2, ..., ξn) и (η1, η2, ..., ηm) также независимы. Алгебры порождают борелевские σ-алгебры
соответственно в Rn и Rm (проверьте для себя, что на плоскости любой открытый круг можно
представить как объединение счетного числа открытых прямоугольников, открытые множе-
ства являются объединениями счетного числа шаров и т. д.). Таким образом, опираясь на тео-
рему о монотонных классах, используя как и выше сохранение независимости при некоторых
операциях с независимыми событиями, мы доказываем, что прообразы борелевских множеств
относительно рассмотренных отображений являются независимыми событиями. Осталось от-
метить, что для любых борелевских множеств B и C множества f−1(B) и g−1(C) принадлежат
борелевским σ-алгебрам в соответствующих пространствах.

Определение 5. Свертка функций распределения F1 и F2 — это функция распределения
F суммы независимых случайных величин c функциями распределения F1 и F2.

F (x) =

∞∫
−∞

F1(x− t)dF2(t). (14)

Доказательство. Это утверждение — следствие теоремы Фубини. Но в данном простом
случае имеется простое доказательство, использующее теорему Лебега. По определению

F (x) =

∫ ∫
u+t<x

dF1(u)dF2(t).

Мы представим множество A = {u+t < x} как предел возрастающей последовательности сумм
бесконечных тонких прямоугольников. Разобьем

R =
∑
k∈Z

[k/2n, k + 1/2n),

тогда An ↑ A, где

An =
∑
k∈Z

{(t, u) ∈ [k/2n, (k + 1)/2n)× (−∞, x− (k + 1)/2n)}.

По построению

F (n)(x) :=

∫ ∫
An

dF1(u)dF2(t) =

=
∑
k∈Z

F1(x− (k + 1)/2n)[F2((k + 1)/2n))− F2(k/2n)] =

=

∞∫
−∞

F
(n)
1 (x− t)dF2(t),

где F (n)
1 (x−t) = F1(x−(k+1)/2n) для t ∈ [k/2n, k+1/2n). Очевидно, что F (n)

1 (x−t)→ F1(x−t)
для всех t. Так как An ↑ A, F (n)(x) ↑ F (x), в то же время по теореме Лебега

∞∫
−∞

F
(n)
1 (x− t)dF2(t)→

∞∫
−∞

F1(x− t)dF2(t).

Сейчас мы введем очень важное для применений распределение — стандартное нормальное
n-мерное распределение. Пусть ξ1, ξ2, ..., ξn — независимые случайные величины со стандарт-
ным нормальным распределением, то есть с функцией плотности
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pξi(x) =
1√
2π
e
−x

2

2 .

Тогда

pξ1,ξ2,...,ξn(x1, x2, ..., xn) =

(
1√
2π

)n
e
−x

2
1 + x2

2 + ...+ x2
n

2 .

Очень важным для применений в математической статистике и любопытным является сле-
дующий факт:

6. Лемма о вращении стандартного нормального случайного вектора. Пусть
ξ1, ξ2, ..., ξn — независимые случайные величины со стандартным нормальным распределени-
ем, U — ортогональное преобразование (то есть вращение с центром в нуле) пространства
Rn. Тогда случайный вектор

(η1, η2, ..., ηn) = U(ξ1, ξ2, ..., ξn)

имеет ту же совместную функцию плотности, что и (ξ1, ξ2, ..., ξn), т. е. η1, η2, ..., ηn —
независимые случайные величины со стандартным нормальным распределением.

Мы будем исходить из определения (*).

P{(η1, η2, ..., ηn) ∈ B} = P{U(ξ1, ξ2, ..., ξn) ∈ B} =

= P{(ξ1, ξ2, ..., ξn) ∈ U−1(B)} =

=

∫
...

∫
U−1(B)

pξ1,ξ2,...,ξn(x1, x2, ..., xn)dx1dx2...dxn =

=

∫
...

∫
U−1(B)

(
1√
2π

)n
e
−x

2
1 + x2

2 + ...+ x2
n

2 dx1dx2...dxn.

Произведем в этом интеграле замену переменных:

(y1, y2, ..., yn) = U(x1, x2, ..., xn).

Тогда область интегрирования {(x1, x2, ..., xn) ∈ U−1(B)} перейдет в область {(y1, y2, ..., yn) ∈
B}. Хорошо известно из алгебры, что якобиан при ортогональном вращении равен 1, а сумма
квадратов координат переходит в сумму квадратов координат. Итак, мы имеем:

P{(η1, η2, ..., ηn) ∈ B} =

=

∫
...

∫
B

(
1√
2π

)n
e
−y

2
1 + y2

2 + ...+ y2
n

2 dy1dy2...dyn.

Таким образом, совместная функция плотности осталась прежней.
Замечание. Как мы видим, в наших выкладках полезным приемом является переход от

интеграла

=

∫
...

∫
B

pξ1,ξ2,...,ξn(x1, x2, ..., xn)dx1dx2...dxn

(с которым нам трудно работать) к вероятности события

P{(ξ1, ξ2, ..., ξn) ∈ B},

которое мы можем преобразовать, изменив вектор (ξ1, ξ2, ..., ξn) и борелевское множество B
так, чтобы событие осталось прежним.
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7. Следствие. Если ξ, η – независимые стандартные нормальные случайные величины,
то случайные величины ξ + η√

2
,
ξ − η√

2
тоже независимы и имеют то же распределение.

Упражнение и Пример. Все это верно лишь для одинаково распределенных нормаль-
ных случайных величин. В качестве контрпримера рассмотрим независимые ξ, η с равномер-
ным распределением на отрезке [−1, 1]. Вычислите и сравните вероятности событий {ξ + η ∈
[−1,+1]}, {ξ − η ∈ [−1,+1]}, {ξ + η ∈ [−1,+1], ξ − η ∈ [−1,+1]}

8. Невырожденное многомерное нормальное распределение.
Многомерное нормальное распределение можно определить как распределение случайно-

го вектор T (ξ1, ξ2, ..., ξn), где (ξ1, ξ2, ..., ξn) — стандартный нормальный случайный вектор с
совместной функцией плотности

pξ1,ξ2,...,ξn(x1, x2, ..., xn) =

(
1√
2π

)n
e
−x

2
1 + x2

2 + ...+ x2
n

2 ,

а T получен последовательным применением линейного преобразования S (cправа!) и сдвига
на вектор (m1, ...,mn). Таким образом, T (ξ1, ξ2, ..., ξn) = S(ξ1, ξ2, ..., ξn)+(m1, ...,mn). Вычислим
функцию плотности случайного вектора T (ξ1, ξ2, ..., ξn), если она существует. Сначала освобо-
димся от сдвига. Покажем, что

pξ1+m1,ξ2+m2,...,ξn+mn(x1, x2, ..., xn) =

= pξ1,ξ2,...,ξn(x1 −m1, x2 −m2, ..., xn −mn).

Это следует из определения функции плотности. С одной стороны

P {(ξ1 +m1, ξ2 +m2, ..., ξn +mn) ∈ B} =

=

∫
B

pξ1+m1,ξ2+m2,...,ξn+mn(x1, x2, ..., xn)dx1...dxn.

С другой стороны
P {(ξ1 +m1, ξ2 +m2, ..., ξn +mn) ∈ B} =

= P {(ξ1, ξ2, ..., ξn) ∈ B − (m1, ...,mn)} =

=

∫
B−(m1,...,mn)

pξ1,ξ2,...,ξn(x1, x2, ..., xn)dx1...dxn.

Далее будем считать, что сдвига уже нет, а преобразование S является невырожденным. Рас-
смотрим вероятность

P {(ξ1, ξ2, ..., ξn)S ∈ B} =

∫
B

pS(ξ1,ξ2,...,ξn)(x1, x2, ..., xn)dx1...dxn.

Имеем:
P {(ξ1, ξ2, ..., ξn)S ∈ B} = P

{
(ξ1, ξ2, ..., ξn) ∈ (B)S−1

}
=

=

∫
(B)S−1

(
1√
2π

)n
e
−x

2
1 + x2

2 + ...+ x2
n

2 dx1...dxn.

Производим преобразование (x1, ...xn) = (y1, ..., yn)S, нам также удобно использовать матрич-
ное обозначение для квадратичной формы — x2

1 + x2
2 + ...+ x2

n = [x1, ...xn][x1, ...xn]′. Имеем:

∫
(B)S−1

(
1√
2π

)n
e
−x

2
1 + x2

2 + ...+ x2
n

2 dx1...dxn =
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=

∫
(B)S−1

(
1√
2π

)n
e
− [x1, ...xn][x1, ...xn]′

2 dx1...dxn =

=

∫
B

|det(S)|
(

1√
2π

)n
e
− [y1, ...yn]SS′[y1, ...yn]′

2 dy1...dyn =

=

∫
B

det(A)1/2

(
1√
2π

)n
e
−

j∑
i

aijyiyj

2 dy1...dyn,

где A = SS′ = [aij ]i,j≤n.

Очень важное замечание. Если матрица [aij ] диагональна, то все случайные величины ξi
независимы.

Вопрос. aij = 0. Следует ли из этого независимость ξi и ξj?
В дальнейшем мы встретим также вырожденное многомерное нормальное распределение,

у которого нет функции плотности.
Интегрируя совместную функцию плотности по некоторым переменным (см. Вопрос) мы

опять получаем функцию того же вида. Итак, часть набора случайных величин с невырожден-
ным совместным нормальным распределением также имеет невырожденное совместное нор-
мальное распределение.

Распределение χ2
n.

Сейчас мы выведем распределение, очень важное для математической статистики. Пусть
снова ξ1, ξ2, ..., ξn — независимые случайные величины со стандартным нормальным распре-
делением, χ2

n = ξ2
1 +ξ2

2 + ...+ξ2
n. Найдем плотность распределения χ2. Мы опять воспользуемся

связью функции плотности и функции распределения и представим плотность как производ-
ную функции P

{
χ2
n < x

}
. Имеем:

P
{
χ2
n < x

}
= P

{
ξ2
1 + ξ2

2 + ...+ ξ2
n < x

}
Далее надо придумать такое множество B ⊂ Rn, что

P
{
ξ2
1 + ξ2

2 + ...+ ξ2
n < x

}
= P (ξ1, ξ2, ...ξn) ∈ B}

Очевидно, что
B = {(x1, x2, ..., xn) : x2

1 + x2
2 + ...+ x2

n < x}

Итак,
P
{
χ2
n < x

}
=

=

∫
...

∫
x2
1+x2

2+...+x2
n<x

(
1√
2π

)n
e
−x

2
1 + x2

2 + ...+ x2
n

2 dx1dx2...dxn.

Далее мы перейдем к n-мерной сферической системе координат:

x1 = r cosϕ1,

x2 = r sinϕ1 cosϕ2,

x3 = r sinϕ1 sinϕ2 cosϕ3,

...
xn−1 = r sinϕ1 sinϕ2... sinϕn−2 cosϕn−1,

xn = r sinϕ1 sinϕ2... sinϕn−2 sinϕn−1,
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У этой замены вычисляется якобиан, но мы попробуем эти вычисления обойти и использовать
лишь тот факт, что переменная r входит в якобиан в (n− 1)-й степени. Очевидно, что в новых
координатах

x2
1 + x2

2 + ...+ x2
n = r2.

Итак, мы приходим к следующему равенству:∫
...

∫
x2
1+x2

2+...+x2
n<x

(
1√
2π

)n
e
−x

2
1 + x2

2 + ...+ x2
n

2 dx1dx2...dxn =

=

∫
...

∫
r2<x

(
1√
2π

)n
e
−r

2

2 C(ϕ1, ϕ2, ..., ϕn−1)rn−1drdϕ1...dϕn−1.

Далее мы интегралы по всем угловым переменным и все коэффициенты записываем как одну
константу. В итоге мы приходим к равенству

P
{
χ2
n < x

}
= Const

∫
r2<x

e
−r

2

2 rn−1dr

Далее мы переходим к новой переменной r2 = u и еще раз при этом меняем константу:

P
{
χ2
n < x

}
= Const

∫
u<x

e
−u

2 u
n− 2

2 du

Итак, pχ2
n
(x) = Const e−x/2x(n−2)/2. Проинтегрировав по x, мы определим константу:∫ ∞

0

Const e−x/2x(n−2)/2dx = 1, Const =
1

2n/2Γ
(
n
2

) .
(Так как случайная величина χ2 неотрицательна, pχ2

n
(x) = 0 при x < 0). Таким образом,

pχ2
n
(x) =

1

2n/2Γ
(
n
2

) e−x/2x(n−2)/2I(0,∞)(x).

Распределение Коши – это распределение случайной величины ξ
η , где ξ и η – независимые

N(0, 1)-нормальные случайные величины. Доказывается, что

pξ/η(x) =
1

π(1 + x2)
.

Доказательство проводится так же, как и выше, с использованием замены y = u/v, z = v.
Нужно продифференцировать по x интеграл∫ ∫

u/v<x

1

2π
e
−u

2 + v2

2 dudv =

∫
y<x

∞∫
0

1

π
e
−z

2(1 + y2)
2 zdydz =

=

∫
y<x

1

π(1 + y2)
dz.

Замечание. Можно показать, что то же распределение имеет случайная величина ξ
|η| . Све-

дение этой задачи к предыдущей основано на симметричности распределений независимых
случайных величин ξ и η. Легко показать, что если ξ имеет симметричное распределение, а
ε — независимая от ξ случайная величина, принимающая значения +1 и −1 с вероятностью
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1/2 (случайный знак, кстати, ε = 1/ε), то распределения случайных величин ξ, ε · ξ, ε · |ξ|
совпадают. Пусть ε не зависит от ξ и η. Тогда распределения ξ

|η| ,
εξ
|η| ,

ξ
ε|η| ,

ξ
η совпадают.

Исключительно важным для статистики является распределение Стьюдента — распреде-
ление случайной величины

tn =
ξ√

1

n
(ξ2

1 + ...+ ξ2
n)

,

где ξ, ξ1,...,ξn независимые N(0, 1)-нормальные случайные величины. Для вывода мы можем
использовать функцию плотности распределения и записав совместную плотность независи-
мых случайных величин ξ и χ2

n, найти, рассуждая как и при выводе распределения Коши,
плотность случайной величины ξ√

1

n
χ2
n

. Мы этот вывод проводить здесь не будем.

9. Независимые случайные векторы. Введем независимые двумерные векторы. Для
многомерных векторов (которые могут иметь даже разные размерности) определение незави-
симости аналогично.

Определение. Случайные векторы (ξ1, η1), (ξ2, η2),...,(ξn, ηn) называются независимыми,
если для любых борелевских множеств Bi ⊂ R2 (i ≤ n) события {(ξi, ηi) ∈ Bi} независимы в
совокупности.

Упражнения. a) Сформулируйте определение независимости случайных векторов (ξ1, η1) и
(ξ2, η2, ζ2).

b) Покажите, что из независимости случайных векторов (ξ1, η1) и (ξ2, η2) следует независи-
мость пар случайных величин ξ1 и ξ2, ξ1 и η2, η1 и ξ2, η1 и η2. Какие четыре пары двумерных
борелевских множеств B1 и B2 нужно рассмотреть?

10. Как сконструировать набор (ξi) (i ≤ n) независимых случайных величин с
заданными распределениями Pi? Для этого надо использовать известную вам теорему
Фубини. Мы представляем Ω как Rn, на нем задаем как σ-алгебру событий σ-алгебру B(Rn)
всех борелевских множеств, а в качестве вероятности P на этой σ-алгебре вводим произведение
вероятностей соотношением

P

(
n∏
i=1

Bi

)
=

n∏
i=1

Pi(Bi).

Согласно теореме Фубини эта мера продолжается с произведений одномерных борелевских
множеств на произвольные борелевские множества в Rn. Случайные исходы — это точки n-
мерного пространства, а случайные величины ξi задаются соотношениями ξi(x1, ..., xn) = xi.

11. Независимые приращения. В теории случайных процессов часто возникают такие
наборы случайных величин ξ1, ξ2, ..., ξn, что ξ1, ξ2 − ξ1, ..., ξn − ξn−1 независимы и имеют
функции плотности p1,p2,...,pn. Как выразить через них совместную плотность pξ1,ξ2,...,ξn?

Пусть борелевское множество B ⊂ Rn произвольно, а B̃ связано с ним соотношением:

B̃ = {(y1, y2, ..., yn) : (y1, y1 + y2, ..., y1 + ...+ yn) ∈ B}.

Тогда
P {(ξ1, ξ2, ...ξn) ∈ B} = P

{
(ξ1, ξ2 − ξ1, ...ξn − ξn−1) ∈ B̃

}
=

∫
...

∫
B̃

p1(y1) · · · pn(yn)dy1 · · · dyn =

∫
...

∫
B

p1(x1)p2(x2 − x1) · · · pn(xn − xn−1)dx1 · · · dxn.

Отсюда и из определения совместной плотности следует

pξ1,ξ2,...,ξn(x1, ...xn) = p1(x1)p2(x2 − x1) · · · pn(xn − xn−1).
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Заметим, что якобиан использованного нами преобразования (x1, ..., xn) = (y1, y1 + y2, ..., y1 +
...+ yn) равен 1.

12. Симметризация. Используются два метода перехода от произвольной случайной ве-
личины ξn к случайной величине с симметричным распределением:

i) Вводится случайная величина ηn, которое имеет то же распределение, что и ξn и не
зависит от нее. Тогда случайная величина ξsn = ξn − ηn имеет симметричное распределение.

ii) Вводится случайный знак εn, который имеет распределение P{±1} = 1/2 и не зависит
от ξn. Тогда случайная величина εn · ξn имеет симметричное распределение.

Замечания. 1. Процедура симметризации обычно применяется к последовательностям слу-
чайных величин, этим объясняется обозначение. 2. Случайная величина |εn · ξn| имеет то же
распределение, что и |ξn|. Другая симметризация, ξsn, такого свойства не имеет.

Упражнение. Докажите все сформулированные в данном пункте утверждения.
Упражнения 13. a. Пусть n случайных величин ξi независимы и имеют одно и то же

экспоненциальное распределение с функцией плотности p(x) = e−xI(x). Записать совместную
функцию плотности pξ1,...,ξn .

b. Пусть ξ имеет стандартное нормальное распределение, P{ε = ±1} = 1
2 , случайные вели-

чины ε и ξ независимы. Покажите, что случайные величины ξ, ε · ξ и ε · |ξ| имеют одинаковое
распределение.

c. Пользуясь табицами квантилей распределения Стьюдента найдите x, для которого P{|ϕ| >
x} = 0.1, где ϕ имеет распределение Коши.

d. Почему в таблице распределения χ2
n отсутствует n = 1?

Решение задач. 1.

Некоторые хотят решать задачи по теории вероятностей по формулам, использовать какую-
нибудь формулу, подставить как-нибудь в эту формулу числа из условия задачи, и этим огра-
ничиться. Я хочу вас предостеречь, ваша задача на практических занятиях значительно слож-
нее. В задачах на классическую модель вы должны придумать пространство элементарных
исходов, убедиться (убедить себя), что элементы этого пространства равновероятны. Часто в
этом помогает воображение, вы должны подумать, что же происходит в предложенном в задаче
’эксперименте’, и представить себе все возможные исходы. При этом мы вынуждены идеализи-
ровать ситуацию, например, все карты равноправны, и их не раздает карточный шулер, орел
и решка равноправны (хотя картинки разные, и стороны монеты незначительно отличаются),
отталкиваясь от этих простейших симметрий, мы строим по ним более сложные симметрии.
Например, если результаты эксперимента записываются в виде (a, b), где возможны и явно
равноправны все варианты a ∈ A и b ∈ B, то мы можем считать равными вероятности всех
исходов (a1, b1), ..., (aN , bN ), где N = |A| × |B|. Если результаты экспериментов более сложные
— (a1, ..., an) где ai ∈ Ai, то, как я вам уже говорил, число элементарных исходов считается
по формуле |A1| × |A2| × ...× |An|, а если все Ai = A, то |A|n. Например, в некоторых задачах
вы подбрасываете монету несколько раз — n, но результат подбрасывания вы считаете не n
экспериментами, а одним сложным экспериментом. В этом случае возникает соблазн умень-
шить число элементарных исходов и считать одинаковыми наборы, состоящие из одинаковых
элементов (вне зависимости от порядка этих элементов). Как правило, это некорректно. Вы
заменяете множество на классы эквивалентности, не учитывая то обстоятельство, что клас-
сы эквивалентности состоят из разного числа элементов, то есть заведомо не равновероятны.
Лишь только в квантовой физике, в статистике Бозе – Эйнштейна это принято, и думаю,
что эту статистику физики много раз проверяли на эксперименте, прежде чем ей поверить.
Иногда ситуация проведения таких экспериментов усложняется, результат одного частного
эксперимента влияет на исход следующего эксперимента, например, они не могут повторять-
ся. Это происходит, когда вы используете модели, основанные на выборках без возвращения. У
вас появляется вполне корректная возможность расматривать вместо упорядоченных выборок
неупорядоченные. В этом случае нужно следить, чтобы и при подсчете числа благоприятству-

52



ющих исходов вы использовали выборки того же вида. В таких задачах возможны нюансы.
Например, в одной задаче можно рассматривать число разбиений четырехэлементного мно-
жества на две пары. Каждое разбиение задает выбор пары, число способов такого выбора -
6. Но каждое разбиение можно задать выбором двух пар, поэтому разбиений вдвое меньше -
3. Имеются задачи, казалось бы, на неклассическую модель, так как в них бесконечное число
исходов (например, мы бросаем монету не фиксированное заранее число раз). Однако часто в
таких задачах можно использовать классическую модель, например, для вычисления вероят-
ности каждого исхода надо строить свою конечную классическую модель и подсчитать таким
способом вероятность данного исхода.

Похожие трудности возникают также при использовании геометрической модели. И здесь
рекомендуется чертить для себя множество всех исходов.

Я как-то побывал на конференции в Тимишоаре (город, в котором служил армейским офи-
цером Больяи, математик, независимо от Лобачевского создавший неевклидову геометрию).
На улице Больяи имеется доска, на которой на нескольких языках, в том числе и на русском,
написана фраза из письма Больяи: ’Из ничего я создал мир’ (ничего - это отрицание пятого
постулата).

При решении каждой вероятностной задачи вы должны фантазировать и каждый раз со-
здавать новый мир - мир элементарных исходов, и попытаться разобраться, что же в этом
мире может произойти.

Пример 1. Ведущий говорит, что в одной из трех шкатулок приз, и предлагает выбрать
шкатулку. Играющий делает выбор, после чего ведущий, который знает, в какой из трех шка-
тулок находится приз, открывает одну из двух оставшихся шкатулок, показывает, что в ней
ничего нет, и провокационно справшивает: ’А может быть, Вы передумаете?’. Есть ли смысл
для играющего передумывать?

Решение. Эта задача рассматривалась в средствах массовой информации. Первая мысль —
какой смысл передумывать. Остались две неоткрытые шкатулки, которые по условиям задачи
равноправны. Поэтому замена одной из них на другую не изменит вероятность. Оказывает-
ся, это неверно. Чтобы понять ситуацию, полезно вспомнить, что вероятность события — это
предел частоты выпадения события. Ясно, что доля экспериментов, в которых выбранная иг-
рающим шкатулка содержит приз, равна примерно трети, и действия ведущего не могут в
экспериментах невидимым способом убрать или добавить приз в выбранную шкатулку. Таким
образом, вне зависимости от действий ведущего приз в выбранной играющим шкатулке на-
ходится лишь в третьей части экспериментов. В двух третях экспериментов приз находится
в двух невыбранных шкатулках. В показанной ведущим шкатулке приза нет, значит, в двух
третях экспериментов он находится в невыбранной играющим и не открытой ведущим шка-
тулке. Итак, если не передумывать, вероятность получить приз равна 1

3 , если передумать, эта
вероятность равна 2

3 .
Разумеется, все это верно, лишь если ведущий обязан по правилам игры открыть шкатулку

без приза. Если он этого делать не обязан, то он может вредничать и чаще показывать шка-
тулку в случае правильного первоначального выбора. Задача превращается в задачу из теории
игр с вероятностными стратегиями двух игроков.

Пример 2. Четыре человека сдали шляпы. Гардеробщик был не в форме и отдал их наугад.
Какова вероятность того, что ровно двое человек получили свои шляпы?

Решение. В этой задаче легко определяется пространство Ω. Оно состоит из множества
всех перестановок четырех шляп (или их хозяев). Итак, |Ω| = 4!. Теперь зададим множество
благоприятствующих перестановок. Каждая из них однозначно задана, если заданы два счаст-
ливых получателя своих шляп. Чтобы получилась перестановка с нужным свойством, другие
двое должны шляпами обменяться. Чтобы задать такую перестановку, достаточно задать пару.
Число вариантов выбора пары равно C2

4 . Ответ — 6
24 .

Пример 3. В карточной игре ’преферанс’ у играющего в выбранной им козырной масти
Туз, Король, 7, 8. Найти вероятность того, что у двух других игроков (у них по 10 карт) карты
Дама, Валет, 10, 9 распределились пополам.
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Решение. При решении этой задачи много вариантов выбора вероятностной модели. Самым
простым способом нам представляется нумерация 20 карт оставшихся игроков, причем такая,
что первый игрок имеет карты от 1-й до 10-й, а второй игрок — от 11-й до 20-й. Элементарный
исход — номера Дамы, Вальта, 10, 9. |Ω| = 20 · 19 · 18 · 17. Теперь найдем |A|. A = A12 +A13 +
A14 + A23 + A24 + A34, где A12 — исходы, в которых первый игрок получил Даму, Вальта,
а второй — 10,9, где A13 — исходы, в которых первый игрок получил Даму, 10, а второй —
Вальта, 9, и т. д. Очевидно, что

|A12|+ |A13|+ |A14|+ |A23|+ |A24|+ |A34|.

Поэтому |A| равно числу |A12|, умноженному на 6 — число пар двух карт из четырех, достав-
шихся первому игроку. Заметим, что произвольный ω ∈ A12 можно представить как

ω = (ω1, ω2),

где ω1 — номера Дамы и Вальта, доставшихся первому игроку, а ω2 — номера 10 и 9, до-
ставшихся второмупервому игроку. Рассуждая так же, как и при подсчете |Ω|, имеем: |A| =
10 · 9 · 10 · 9.

Ответ: 6 10·9·10·9
20·19·18·17 .

Пример 4. Монета подбрасывается до тех пор, пока не выпадет герб. Найти вероятность
того, что монета будет подбрасываться четное число раз.

Решение. Очевидно, что число элементарных исходов в этой задаче бесконечно, это — мно-
жество всех натуральных чисел. Но при вычислении числа P{n} мы используем временную
модель, в которой монета бросается лишь n раз, и общее число элементарных исходов равно
2n, но лишь один из них удовлетворяет условию {решка,решка,...,решка,герб} (решка выпа-
дала первые n − 1 раз). Итак, P{n} = 2−n, а искомая вероятность — сумма геометрической
прогрессии

1

4
+

1

16
+

1

64
+ ... =

1

3
.

Пример 5. Два автобуса ходят с интервалом движения 10 мин. Какова вероятность уехать
на одном из них за 5 минут?

Решение. В этой задаче мы используем геометрическую модель, элементарными исходами
в которой являются пары чисел (x, y), где x — время ожидания первого автобуса, y — время
ожидания второго автобуса. P(A) = m(A)

m(Ω) , m — площадь. Нельзя признать эту модель очень
разумной, так как время ожидания автобуса может и превысить 10 минут, мы ее используем
лишь ввиду отсутствия всякой дополнительной информацией, за неимением лучшей модели.
Такая модель лучше подходит для метро, где интервал движения выдерживается достаточно
точно. Итак,

Ω = {(x, y) : 0 ≤ x ≤ 10, 0 ≤ y ≤ 10}, A = {(x, y) : 0 ≤ x ≤ 5 или 0 ≤ y ≤ 5}.

P(A) =
75

100
.

Пример 6. Симметричная монета бросается до тех пор, пока не выпадет герб. Найти
вероятность того, что она бросалась нечетное число раз.

Решение. Задача эквивалентна примеру 4, но здесь решение будет использовать условные
вероятности. В этой задаче

Ω = {1, 2, 3, ...}, A = {1, 3, 5, ...}.

Однако число исходов бесконечно, поэтому неприменима классическая модель (в самом деле,
почему вероятность первого герба в первом испытании равна вероятности первого герба в деся-
том испытании). Тем не менее, классическая модель используется для подсчета P({n}), причем
для каждого n — своя. Итак, чему равна вероятность P({n}). Вводим модель Ωn, состоящую

54



из всех наборов гербов и решек длины n. Ωn = 2n. Из этих наборов лишь один соответствует
исходу {n}, — (решка, решка,...,решка, герб), в котором n − 1 решка, а на последнем месте
герб. Итак,

P(A) =
1

2n
,P(A) =

∞∑
k=0

2−2k+1 =
2

3
.

Любопытно, что эту задачу можно решить и без построения и анализа Ω, используя прием
из задач о разорении игрока и о распаде атома:

P(A) = P(A|герб в 1 бросании)P(герб в 1 бросании)+

+P(A|решка в 1 бросании)P(решка в 1 бросании).

Заметим, что
P(A|решка в 1 бросании) = P(Ā),

так как если в первом бросании выпадет решка, то второе бросание становится первым после
этой решки, каждое четно бросание становится нечетным, Ā превращается вA, P(A|герб в 1 бросании) =
1. Итак,

P(A) = 1 · 1

2
+ (1− P(A))

1

2
,P(A) =

2

3
.

Пример 7. В столе 7 ящиков, и в нем находится письмо с вероятностью p, при чем ве-
роятности нахождения письма в каждом из ящиков равны. Открыли 6 ящиков, письма нет.
Какова вероятность того, что письмо находится в седьмом ящике. Эта замечательная задача
заимствована из задачника Л.Д. Мешалкина (МГУ). Сама задача наталкивает на неправиль-
ный ответ — p. Мой опыт показывает, что даже после демонстрации решения бывает трудно
убедить в неверности этого ответа нематематиков (механиков, физиков, причем даже очень та-
лантливых, даже если они работают на математических кафедрах и преподают математику).
В то же время студенты мехмата быстро понимают, в чем дело. Для объяснения неверности
напрашивающегося ответа лучше всего рассмотреть частный случай: p = 7

12 , дробное p легко
моделируется. Давайте добавим к столу еще один стол с точно такими же 5 ящиками и будем
считать, что письмо находится в одном из 12 ящиков с вероятностью 1. Письма нет в шести
ящиках, значит, оно находится в одном из оставшихся 6 ящиков. Седьмой ящик нашего стола
— это один из оставшихся шести ящиков, поэтому, в нашем случае ответ должен быть равен 1

6

Решение. Представим интересующее наш число как

P({письмо в седьмом ящике}|{письма нет в первых шести ящиках}) =

P({письмо в седьмом ящике}{письма нет в первых шести ящиках})
P({письма нет в первых шести ящиках})

.

P({письма нет в первых шести ящиках}) = 1− 6

7
p,

P({письмо в седьмом ящике}{письма нет в первых шести ящиках}) =
1

7
p.

Пример 8. Имеются две урны, в одной 5 белых и 2 черных шара, в другой — 3 белых и
4 черных шара. Наугад (с вероятностью 1

2 ) выбрали урну и вытащили из нее шар, который
оказался белым. Этот шар положили на место и снова из той же урны вытащили шар. Какова
вероятность, что он окажется белым?

Решение. Казалось бы, правильный ответ:

5

7
· 1

2
+

3

7
· 1

2
=

4

7
.

Очевидно, что мы уже выбрали урну с вероятностью 1
2 , и ситуация не изменилась от того, что

мы из нее вытащили шар. Но это неверно, и чтобы убедиться в неверности такого решения,
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полезно рассмотреть крайний случай — во второй урне 7 черных шаров. В этой ситуации ясно,
что мы выбрали первую урну, вероятность выбрать из нее белый шар равна не 4

7 , а

5

7
=

5

7
· 1 +

3

7
· 0.

Итак, результат первого эксперимента меняет вероятности выбора урн, они становятся услов-
ными, и вычисляются по формуле Байеса.

P(1 урна |белый шар) =
5
7 ·

1
2

5
7 ·

1
2 + 3

7 ·
1
2

=
5

8
.

Далее в формуле полной вероятности мы используем вместо первоначальной 1
2 новые вероят-

ности выбора урн (которые так и хочется назвать виртуальными):

5

7
· 5

8
+

3

7
· 3

8
=

34

56
.

Процесс выбора шаров может продолжаться, и после каждого последующего результата мы
должны пересчитать вероятность выбора урны, используя при этом вероятность, сосчитанную
после предыдущего результата.

Пример 9. Два игрока играют в разную силу, у первого вероятность выигрыша партии
равна 2

5 , у второго — 3
5 . Результат игры определяется с учетом гандикапа — первому для

победы надо выиграть три партии, второму — две. Результат будет известен через четыре
партии. У кого из игроков вероятность выигрыша больше?

Решение. Событие ’выигрыш второго игрока’ представляется в виде суммы трех несовмест-
ных событий A2 + A3 + A4 (Ai — событие, означающее выигрыш i партий вторым игроком).
Вероятность каждого из них считается по формуле Бернулли: P(Ai) = Ci4( 2

5 )i( 3
5 )4−i.

Примечание. Может появиться соблазн после выигрыша второй партии вторым игроком
больше не играть. Но тогда общее число партий измениться и разные события Ai будут отно-
ситься к разным моделям. Такой путь решения лишь усложнит решение.

Пример 10. Посмотрите задачу о распаде атома.
Пример 11. Посмотрите задачу об электрической цепи.
Пример 12. Вероятности отметок (с учетом неявки и отказа) по философии и теории

вероятностей являются следущими (ξ — отметка по философии, η — отметка по теории веро-
ятностей).

P{ξ = 2, η = 2} =
1

10
,P{ξ = 2, η = 3} =

1

20
,P{ξ = 2, η = 4} =

1

20
,P{ξ = 2, η = 5} =

1

20
,

P{ξ = 3, η = 2} =
1

10
,P{ξ = 3, η = 3} =

1

20
,P{ξ = 3, η = 4} =

1

20
,P{ξ = 3, η = 5} =

1

20
,

P{ξ = 4, η = 2} =
1

20
,P{ξ = 4, η = 3} =

1

10
,P{ξ = 4, η = 4} =

1

10
,P{ξ = 4, η = 5} =

1

20
,

P{ξ = 5, η = 2} =
1

20
,P{ξ = 5, η = 3} =

1

20
,P{ξ = 5, η = 4} =

1

20
,P{ξ = 5, η = 5} =

1

20
.

Являются ли эти оценки независимыми случайными величинами.
Решение. Нет, так как например,

P{ξ = 2} =
1

10
+

1

20
+

1

20
+

1

20
=

5

20
,

P{η = 2} =
1

10
+

1

10
+

1

20
+

1

20
=

6

20
,
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P{ξ = 2, η = 2} =
1

10
6= 5

20
· 6

20
.

Доказывать независимость этих величин (если она есть) значительно сложнее, нужно прове-
рить независимость 12 пар событий (почему не 16?).

Пример 13. В предыдущем примере найдите распределение случайной величины ξ.
Пример 14. Совместная плотность pξ,η случайных величин ξ и η равна 1 в параллелограм-

ме ABCD с вершинами A = (0, 0), B = (1, 0), C = (1, 1), D = (1, 2), и равна 0 вне параллело-
грамма. a) Найти плотность pξ. b) Известно, что случайные величины ξ + cη, η независимы.
Найти константу c.

Решение. a) Легко подсчитать функцию распределения, S — площадь:

Fξ(t) = S({(x, y) : x < t} ∩ABCD) =

{
t2/2, если 0 ≤ t ≤ 1;
1− (2− t)2/2, если 1 ≤ t ≤ 2.

Чтобы найти плотность, надо продифференцировать. Задачу b) решите сами.
Пример 15. Распределение случайного вектора (ξ, η) таково, что вся вероятность находит-

ся на ломаной L, соединяющей точки (0, 0), (1, 1), (2, 0), причем вероятность попасть в часть
ломаной пропорциональна длине l этой части. Найти распределение случайной величины ξ.

Решение. Fξ(t) = l({(x,y):x<t}∩L)
l(L) = t/2. Плотность равна 1

2 · I[0,2].
Пример 16. Случайные величины ξ, η независимы и имеют показательное распределе-

ние с функцией плотности p(x) = e−xI[0,∞)(x). Доказать, что случайные величины ξ + η, ξ/η
независимы.

Решение. Чтобы доказать независимость в данной ситуации существования совместной
функции плотности достаточно проверить равенство

pξ+η,ξ/η(x, y) = pξ+η(x)pξ/η(y).

Для этого нужно вспомнить определение совместной функции плотности через вероятности
событий: для любого борелевского множества B ⊂ R2 должно быть верно

P{(ξ + η, ξ/η) ∈ B} :=

∫ ∫
B

pξ+η,ξ/η(x, y)dxdy. (∗)

Мы не знаем совместную функцию плотности pξ+η,ξ/η, но зато можем записать, используя
условия задачи, совместную функцию плотности:

pξ,η(u, v) = e−uI[0,∞)(u)e−vI[0,∞)(v).

Разумеется, нужно вспомнить еще раз определение совместной функции плотности: для любого
борелекского множества B̃ ⊂ R2

P{(ξ, η) ∈ B̃} :=

∫ ∫
B̃

pξ,η(u, v)dudv. (∗∗)

Связь между (*) и (**) можно осуществить лишь через вероятности событий. За счет выбора
B̃ нужно добиться того, чтобы

{(ξ + η, ξ/η) ∈ B} = {(ξ, η) ∈ B̃}.

Вспомним, что каждое множество определяется правилом, определяющим точки множества.
Очевидно, что

B̃ = {(u, v) : (u+ v, u/v) ∈ B}.

Итак,

P{(ξ + η, ξ/η) ∈ B} =

∫ ∫
{(u,v):(u+v,u/v)∈B}

e−(u+v)I[0,∞)(u)I[0,∞)(v)dudv.
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После напрашивающейся замены переменных x = u + v, y = u/v, выразив u, v через x, y и
вычислив якобиан, получим∫ ∫

B

pξ+η,ξ/η(x, y)dxdy =

∫ ∫
B

e−x)I[0,∞)(x)I[0,∞)(y)
x

(y + 1)2
dxdy,

что влечет независимость ξ + η, ξ/η. Наши выкладки содержат и логический элемент — мы
проверили, что переменные x, y неотрицательны тогда и только тогда, когда неотрицательны
u, v, и исходя из этого, преобразовали индикаторы.

Вопросы, на которые нужно отвечать сразу:
1) Определение независимых событий. Нужно понимать, что верно и обратное, если вероят-

ность произведения равна произведению вероятностей, то эти события независимы, даже если
на первый взгляд кажутся зависимыми. Верно и противоположное, если нужного равенства
вероятностей нет, то события зависимы.

2) События, независимые в совокупности. Вероятность произведения равна произведению
вероятностей для любого поднабора.

3) Несовместные события, их нельзя путать с независимыми. Нужно понимать, что для
несовместных A и B имеет место P(A∪B) = P(A) +P(B) (мы пишем, используя дополнитель-
ную нагрузку на символ, P(A + B) = P(A) + P(B)). Это частный случай формулы сложения,
используется при решении задач. Для независимых событий верна другая формула (ее помнить
не обязательно) P(A ∪B) = P(A) + P(B)− P(A)P(B).

Итак, формула P(A + B) = P(A) + P(B) будет использоваться в самых разных вариантах.
Например, P(A) = P(Ω) − P(A) — частный случай формулы P(A) = P(A + B) − P(B). Итак,
для вычисления (или оценки сверху) вероятности события его нужно разбить на несколько
несовместных событий, каждое из которых легче вычислить (или оценить).

4) Определение условной вероятности.
5) Вычисление вероятности попадания случайного вектора в множество в дискретном и

непрерывном случаях. Приведем алгоритм для двумерного случайного вектора (ξ, η). В дис-
кретном случае знание распределения означает знание всех вероятностей

P{(ξ, η) = (xi, yi)} = pi, где
∑
i

pi = 1.

Итак, для вычисления P{(ξ, η)}, надо сложить все числа pi, для которых (xi, yi) ∈ B. Например,
для вычисления P{ξ = x} надо сложить все числа pi, для которых xi = x (в этом случае
B = {x} ×R).

Аналогично, в непрерывном случае мы должны взять интеграл по B от совместной функ-
ции плотности. Обратно, это равенство является определением совместной функции плотности.
Поэтому в двумерном случае функция плотности ξ задается интегралом (точнее, может быть
задана интегралом, так как функция плотности задана с точностью до значений на множестве
лебеговой меры нуль)

pξ(x) =

∫
R

pξ,η(x, y)dy.

Действительно, при таком задании мы будем иметь тождество для любого борелевского B:

P{ξ ∈ B} =

∫
B

pξ(x)dx =

= P{(ξ, η) ∈ B ×R} =

∫
B×R

pξ,η(x, y)dxdy.
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6) Определение независимости случайных величин: ξ и η:

P{(ξ, η) ∈ B1 ×B2} = P{ξ ∈ B1} · P{η ∈ B2}.

В дискретном случае нужно проверить, что для всех возможных значений x и y случайных
величин ξ и η имеет место равенство

P{ξ = x, η = y} = P{ξ = x} · P{η = y}. (1)

Определение получается сложением этих равенств по всем возможным значениям x ∈ B1 и
y ∈ B2 случайных величин ξ и η. В непрерывном случае для независимости необходимо и
достаточно разложение

pξ,η(x, y) = pξ(x) · pη(y) (2)

для всех x и y, за исключением множества лебеговой меры нуль.
7) Как записывается совместная функция плотности независимых случайных величин ξ1,

ξ2,...,ξn, имеющих одну и ту же функцию плотности p.
8) Вычисление среднего в дискретном случае

Eξ =
∑
i

xiP{ξ = xi},

суммирование по всем возможным значениям xi случайной величины ξ. Соответственно, если
заданы вероятности значений случайного вектора (ξ, η), то

Eξ =
∑
i

xiP{ξ = xi, η = yi},

суммирование по всем возможным значениям (xi, yi) случайного вектора (ξ, η).
9) Вычисление среднего в непрерывном случае

Eξ =

∫
R

xpξ(x)dx.

Соответственно, если задана совместная плотность случайного вектора (ξ, η), то

Eξ =

∫
R

∫
R

xpξ,η(x, y)dxdy.

10) Аддитивность среднего, константа выносится из под знака среднего, среднее константы
равно этой константе, в частности E(Eξ) = Eξ (среднее значение — это константа).

11) Среднее произведения независимых случайных величин равно произведению средних.
12) Два определения дисперсии:

Dξ = E(ξ − Eξ)2 = Eξ2 − (Eξ)2.

13. Свойства дисперсии — дисперсия не меняется при сдвиге случайной величины на кон-
станту (Dξ = D(ξ + c)), при умножении случайной величины на константу ее дисперсия умно-
жается на квадрат константы, и, наконец, дисперсия суммы независимых случайных величин
равна сумме дисперсий.

14) Параметры нормального распределения: m — среднее, σ2 — дисперсия.
15) Определение функции распределения, ее связь с функцией плотности.
Требование отвечать на эти вопросы сразу вынужденно. Все это многократно используется,

и если не воспринимать эти вещи как очевидные, то вы не будете успевать понимать лекции в
следующем семестре. Так что рекомендуется несколько раз все это повторить, причем в конце
ваших занятий, когда вы устали. Спрашиваться это будет в конце экзамена.
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§7. Характеристики случайных величин

1. Среднее значение или математическое ожидание.
Еще раз о классической модели и общей ситуации.
Наша дальнейшая задача — научиться интегрировать случайные величины.
Наличие классической модели означает, что мы знаем элементарные исходы, т.е. мы пол-

ностью владеем ситуацией. Мы не знаем, какой элементарный исход сейчас произойдет. Во
многих случаях такой информацией у нас нет. Например, изучая длину растений (ее распре-
деление согласно многочисленным экспериментам нормально), мы не знаем и не можем учесть
всех факторов, от которых зависит длина растения. Грубо говоря, элементарный исход дол-
жен был бы представлять очень длинную цепочку типа (99 капель дождя, сухо с температурой
12%, кусочек навоза в 1 грамм, 73 капли дождя,...). Итак, пространство элементарных исходов
нам, как правило, неизвестно.

Нам известны два вида интеграла — Римана и Лебега. Процедура вычисления интеграла
Римана явно использует структурные свойства числовой прямой — например, порядок, ариф-
метические операции и т.д. Благодаря этому, вводится операция дифференцирования, а для
вычисления интеграла используется обратная операция. Мы только что поняли, что в про-
странстве всех элементарных исходов может не оказаться никакой понятной нам структуры.
Поэтому, естественно попытаться использовать здесь интеграл Лебега, для введения которого
нужно лишь одно понятие — мера.

E определяется для дискретной случайной величины
∑
n
anIξ=an равенством

E
∑
n

anI{ξ=an} =:
∑
n

anP {ξ = an} .

Это определение корректно, если ряд сходится абсолютно. Если ряд расходится, то среднее
значение не существует.

Это определение имеет ряд свойств интеграла, в частности, |ξ| ≤ C влечет |E(ξ)| ≤ EC =
C. Отсюда немедленно следует, что если последовательность случайных величин ξn сходится
равномерно к ξ (напомню, это означает, что sup |ξ−ξn| → 0, а это влечет sup |ξm−ξn| → 0, если
m,n→∞. Но тогда |E(ξm − ξn)| ≤ sup |ξm − ξn| → 0, то есть последовательность Eξn является
фундаментальной, а следовательно, имеет предел, который мы обозначаем через Eξ. Итак,
понятие среднего мы можем распространить с дискретных случайных величин на пределы
равномерно сходящихся последовательностей таких величин. Нам остается лишь представить
любую случайную величину в виде равномерного предела дискретных случайных величин.
Это делается просто. С каждой случайной величиной ξ мы связываем случайные величины

ξ(n) =
∑
k∈Z

k

n
I{

ξ∈
[
k
n ,
k+1
n

)}.
Очевидно, что ξ(n) равномерно сходится к ξ, более того, |ξ(n) − ξ| < 1/n.

Замечание. Равномерную сходимость ξn к ξ можно было бы назвать сходимостью в из-
вестном вам пространстве L∞(Ω,A,P). Но сами случайные величины ξn и ξ не обязательно
принадлежат пространству L∞(Ω,A,P) (они принадлежат L1(Ω,A,P)). Однако их разности
принадлежат L∞(Ω,A,P) и у них можно вычислять норму в этом пространстве.

2. Свойства среднего те же, что и у интеграла.
1. E(Const) = Const.
2. E(aξ + bη) = aEξ + bEη

для всех констант a, b и всех случайных величин ξ, η, имеющих среднее. В частности, среднее
суммы равно сумме средних.

3. ξ ≤ η влечет Eξ ≤ Eη, в частности,
4. Если |ξ| ≤ c, где c— константа, то |Eξ| ≤ c. Если ξ неотрицательная, Eξ = 0, то P {ξ = 0} =

1.
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Замечание. Легко видеть, что введенный нами интеграл Лебега – это и интеграл
∫
Ω

ξdP,

который в теории вероятностей чаще всего обозначается Eξ, но в ряде учебников обозначается
также Mξ. Используемые термины — среднее значение случайной величины ξ или математи-
ческое ожидание ξ.

Очень полезное замечание. Из свойства 4 следует, что равномерная сходимость случайных
величин влечет сходимость средних (то есть, интегралов). Это позволяет во многих случаях
сводить доказательства разного рода утверждений для среднего значения случайных величин
к случаю, когда эта случайная величина является дискретной. В этом случае среднее значе-
ние оказывается конечной линейной комбинацией (или бесконечной линейной комбинацией, то
есть суммой ряда) индикаторов событий. Поэтому для доказательства теоремы для случайных
величин общего вида часто бывает достаточно доказать эту теорему для индикаторов, а по-
том перейти к линейным комбинациям индикаторов и их пределам. Впрочем, ниже мы имеем
пример ситуации, когда равномерная сходимость такому переходу не помогает.

3. Формула замены переменной (ω ∈ Ω заменяется на x ∈ R).
Для дискретного типа распределения формула для среднего уже имеется. Теперь я хочу

доказать формулу для среднего в случае непрерывного типа распределения:

Eξ =

∫
R

xpξ(x)dx,

которую мы уже использовали. Но мне будет удобнее доказать более общую формулу:

Eg(ξ1, ..., ξn) =

∫
Rn

g(x1, ..., xn)pξ1,...,ξn(x1, ..., xn)dx1...dxn, (1)

где функцию g можем считать измеримой, хотя для приложений достаточно считать кусочно
непрерывной, но при этом мы предполагаем, что наш n-мерный интеграл сходится абсолютно
(в противном случае среднее не существует).

Дело в том, что функцию g мы также можем представить как равномерный предел дис-
кретных функций

g(n) =
∑
k∈Z

k

n
I{

g∈
[
k
n ,
k+1
n

)}.
Но тогда g(n)(ξ1, ..., ξn) сходится равномерно к g(n)(ξ1, ..., ξn). Поэтому достаточно проверить
формулу (1) для g(n)(ξ1, ..., ξn), а потом перейти к пределу. Имеем по определению среднего
для дискретных случайных величин:

Eg(n)(ξ1, ..., ξn) =
∑ k

n
Pξ1,...,ξn

{
g(n)(x1, ..., xn) =

k

n

}
=

∑ k

n

∫
g(n)(x1,...,xn)= k

n

pξ1,...,ξn(x1, ..., xn)dx1...dxn

=

∫
Rn

g(n)(x1, ..., xn)pξ1,...,ξn(x1, ..., xn)dx1...dxn.

В чем смысл доказанного утверждения. В анализе он называется совпадением интегралов
Римана и Лебега для функций, интегрируемых по Риману. Доказательство чрезвычайно про-
зрачно. Мы приближаем функцию ступенчатой, пользуемся совпадением интегралов Римана и
Лебега для ступенчатых функций, а потом переходим к пределу, устремляя ступенчатую функ-
цию к интегрируемой по Риману. Польза от утверждения для теории вероятностей бесспорна
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– мы умеем вычислять интеграл Римана, пользуясь техникой первообразных, и применяем эту
технику для вычисления среднего значения.

Точно так же доказывается и более общая формула для не обязательно непрерывного слу-
чая:

Eg(ξ1, ..., ξn) =

∫
Rn

g(x1, ..., xn)dPξ1,...,ξn(x1, ..., xn). (2)

Но для вычислений она используется редко.
Замечание. Из формулы замены переменной следует тривиальное (?) утверждение: если

Pξ = Pη, то Eg(ξ) = Eg(η) для любой измеримой функции g, для которой существует одна из
частей равенства.

Замечание. Интеграл Лебега
∫
f(x)dm(x), где m — мера Лебега, это по-существу интеграл∫

ydf · m(y), то есть интеграл от тождественной функции по мере f · m — образу меры m
относительно отображения f . В теории интегрирования одним из важнейших приемов явля-
ется замена переменной, которая позволяет упрощать вид интегрируемой функции. Как мы
видим, в теории интеграла Лебега мы до предела упрощаем интегрируемую функцию, зато
всю сложность переводим в меру.

Приведем нужные объяснения: обычный интеграл Римана является пределом интеграль-
ных сумм

∑n
i=1 f(θi)(xi−xi−1), где θi ∈ [xi−1, xi) — произвольные точки в интервале, используя

обозначение меры Лебега эту сумму можно записать в виде
∑n
i=1 f(θi)m([xi−1, xi)), где m —

мера Лебега, то есть длина соответствующего интервала. Интегральная сумма Лебега име-
ет вид

∑n
i=1 ηif · m([yi−1, yi)), ηi ∈ [yi−1, yi), а f · m([yi−1, yi)) = m{f−1[yi−1, yi)}. В хорошей

ситуации, когда функция f монотонна,

n∑
i=1

ηif ·m([yi−1, yi)) =

n∑
i=1

f(θi)m([f−1(yi−1(, f−1(yi)),

где f(θi) = ηi, а в правой части — сумма Римана.
В интеграле Лебега больший произвол интегральных сумм, разбиение области интегри-

рования не обязательно состоит из интервалов. Поэтому это более общее понятие. Однако
вычисление интеграла Лебега производится лишь в том случае, когда его можно записать в
виде интеграла Римана. Впрочем, имеется случай, когда интеграл Римана не нужен, это слу-
чай кусочно постоянной функции f ∈ {y1, ..., yn} или f ∈ {y1, ..., yn, ...}, в этом случае образ
меры m лежит на {y1, ..., yn} или {y1, ..., yn, ...}, причем f ·m({yi}) = m(f−1({yi}). Используя
фигурные скобки, мы обращаем внимание на то, что yi здесь не число, а одноточечное множе-
ство, прообраз этого множества тоже множество. В этой ситуации вместо интеграла Римана
для вычисления мы используем сумму

∑n
i=1 yim(f−1({yi}) или сумму ряда

∑
n ynm(f−1({yn}).

Точно так же вводится и, когда это возможно, вычисляется среднее значение или матема-
тическое ожидание

E ξ = Mξ =

∫
Ω

ξdP.

но в этой ситуации мера P не мера Лебега, а вероятность, и задана не на отрезках, а на
событиях, однако переход к образу вероятности P — распределению Pξ случайной величины ξ
позволяет в случае, когда распределение Pξ имеет плотность pξ, сводить среднее к интегралу
Римана, а когда распределение лежит на конечном или счетном множестве, — к конечной
сумме или сумме ряда.

Итак, вероятность (и интеграл по ней) — это некая абстракция, а распределение случайной
величины мы можем использовать для конкретных вычислений.

4. Представление среднего произведения независимых случайных величин.
Теорема. Пусть ξ, η – независимые случайные величины, Eξ и Eη существуют. Тогда

существует и Eξη и
Eξη = EξEη. (3)
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Это равенство очевидно для дискретных независимых случайных величин ξ =
∑
n
anI{ξ=an}

и η =
∑
m
bmI{η=bm}. Проверим:

Eξ =
∑
n

anP{ξ = an},

Eη =
∑
m

bmP{η = bm},

Eξη =
∑
n,m

anbmP{ξ = an, η = bm}.

Ввиду независимости,
P{ξ = an, η = bm} = P{ξ = an}P{η = bm},

поэтому двойной ряд по m и n является произведением однократных рядов. Общий случай
как-будто бы легко сводится к дискретному приближениями случайными величинами ξ(n) и
η(n). Легко видеть, что эти случайные величины являются функциями независимых случайных
величин ξ и η, поэтому сами являются независимыми, мы знаем, что ξ(n) и η(n) равномерное
сходятся соответственно к ξ и η. К сожалению, ввиду возможной неограниченности ξ и η, ξη
не обязательно является равномерным пределом последовательности (ξ(n)η(n)). Вместо равно-
мерной сходимости мы воспользуемся сохранением неравенств при интегрировании. Для этого
мы разложим

ξ = ξ+ − ξ−, η = η+ − η−,

где ξ+ = max{ξ, 0}, ξ− = −min{ξ, 0}, аналогично определяются η+ η−, причем опять эти
величины независимы как функции независимых величин. В силу аддитивности среднего, нам
достаточно проверить (3) лишь для неотрицательных случайных величин ξ и η. В этом случае

Eξ(n)Eη(n) = Eξ(n)η(n) ≤ E(ξη) ≤ E
(
ξ(n) +

1

n

)(
η(n) +

1

n

)
=

E
(
ξ(n) +

1

n

)
E
(
η(n) +

1

n

)
.

Переходя к пределу и учитывая, что

lim
n

Eξ(n) = lim
n

E
(
ξ(n) +

1

n

)
= E(ξ),

lim
n

Eη(n) = lim
n

E
(
η(n) +

1

n

)
= E(η),

получаем требуемое равенство.
Упражнение. Если ξ и η имеют совместное невырожденное нормальное распределение и

верно (3), то ξ и η независимы.
Замечание. Среднее значение случайной величины – это константа, поэтому E[Eξ] = Eξ.
5. Пример использования понятия математического ожидания.
Пусть ξ1,...,ξn,... — последовательность независимых одинаково распределенных случайных

величин Тогда при очень общих предположениях усредненная сумма ξ1 + ...+ ξn
n сходится к

математическому ожиданию случайных величин ξn. Это объясняет термин математическое
ожидание. Соответствующие теоремы законы больших чисел будут доказаны в конце курса
теории вероятностей. Ниже мы приведем пример из книги Феллера, когда само введение со-
ответствующего понятия приводит к значительной экономии средств.

Пример из книги Феллера. В американской армии кровь новобранцев проверяется на нали-
чие некоторого фактора, вероятность наличия которого примерно равна 0.1. Можно проверять
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кровь каждого человека (в этом случае для n человек проводится n анализов), а можно раз-
бить всех новобранцев на группы по k человек. В каждой группе часть отобранной крови
сливается, и если в группе нет людей с данным фактором, то это обстоятельство обнаружива-
ется в результате одного анализа. Если же такие люди в группе имеются, то проводится 1 + k
анализов. Как нужно разбивать на группы, чтобы минимизировать математическое ожидание
общего числа анализов? Решение заключается в нахождении минимума последовательности

E{среднее число анализов для одного человека} =
1× 0.9k + (k + 1)

(
1− 0.9k

)
k

.

Ответ: k = 4.
6. Пример из теории игр. Теорема фон Неймана о минимаксе.
Пример. Играют два игрока, у каждого из которых имеется r возможных стратегий игры.

Если 1-й игрок использует i-ю стратегию, а 2-й игрок использует против этой стратегию свою j-
ю стратегию, то выигрыш 1-го игрока составит xij (это число может быть как положительным,
так и отрицательным). Оба игрока знают матрицу [xij ]. Как должен играть 1-й игрок, чтобы
получить максимальный выигрыш при любой стратегии противника? Заметим, что пока в
условиях нет никаких вероятностей и все детерминировано.

Давайте рассмотрим конкретную матрицу:

[xij ] =

 1 2 3
3 2 3
4 3 2

 .
Как видно из матрицы, при выборе любой стратегии при правильной игре противника вы-
игрыш 1-го игрока не больше 2. Но давайте сделаем выбор стратегии случайным: каждую
из стратегий мы выбираем с вероятностью 1/3, и противник не знает, какую стратегию на
каждом шаге мы выбрали. Тогда выигрыш 1-го игрока становится случайной величиной: при
выборе 2-м игроком его 1-й стратегии математическое ожидание выигрыша 1-го игрока равно
1 + 3 + 4

3 = 8
3 , при выборе 2-м игроком его 2-й стратегии математическое ожидание выигрыша

1-го игрока равно 2 + 2 + 3
3 = 7

3 , при выборе 2-м игроком его 1-й стратегии математическое

ожидание выигрыша 1-го игрока равно 3 + 3 + 1
3 = 7

3 . Итак, вероятностная стратегия (в теории
игр такая стратегия называется смешанной) даже при первом попавшемся подборе вероятно-
стей оказывается более выгодной. Наименьший результат будет равен 7/3. Еще лучше будет
результат 1 игрока, если он выберет 1-ю стратегию с вероятностью p1 = 1/3, 2-ю стратегию
с вероятностью p2 = 4/15, 3-ю стратегию с вероятностью p3 = 2/5. Однако, 2-й игрок также
может выбрать смешанную стратегию, состоящую из вероятности q1 1-й стратегии, q2 — 2-й

стратегии, q3 — 3-й стратегии. Тогда общий выигрыш равен
3∑

i,j=1

xijpiqj . В более общей ситуа-

ции задача 1 игрока — выбрать такую смешанную стратегию {pi}, чтобы число min∑
qj=1

∑
i,j

xijpiqj

было бы максимально, а задача 2 игрока — выбрать такую смешанную стратегию {qj}, чтобы
число max∑

pi=1

∑
i,j

xijpiqj было бы минимально. Таким образом, при правильной игре 1-го игро-

ка он обеспечит себе выигрыш не меньше max∑
pi=1

min∑
qj=1

∑
i,j

xijpiqj , а при правильной игре 2-го

игрока он обеспечит себе проигрыш не больше min∑
qj=1

max∑
pi=1

∑
i,j

xijpiqj .

Замечательная теорема фон Неймана утверждает, что

max∑
pi=1

min∑
qj=1

∑
i,j

xijpiqj = min∑
qj=1

max∑
pi=1

∑
i,j

xijpiqj .

7. Дисперсия.
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Дисперсией случайной величины ξ называется

Dξ = E(ξ − Eξ)2.

Для дисперсии имеется и вторая формула

Dξ = Eξ2 − (Eξ)2.

Проверка очевидна:

E(ξ − Eξ)2 = Eξ2 − 2E(ξEξ) + E(Eξ)2 = Eξ2 − 2EξEξ + EξEξ.

Из определения следует: дисперсия — мера отклонения случайной величины от своего сред-
него.

8. Свойства дисперсии (предполагается, что дисперсия существует).
1. Dξ ≥ 0.
2. D(ξ + Const) = Dξ.
3. D(aξ) = a2Dξ.
4. Если ξ и η – независимые случайные величины, то

D(ξ + η) = Dξ + Dη.

Проверка очевидна.
E([ξ − Eξ] + [η − Eη])2 =

E(ξ − Eξ)2 + E(η − Eη)2 + 2E([ξ − Eξ][η − Eη]).

Но
E([ξ − Eξ][η − Eη]) = E[ξ − Eξ]E[η − Eη] = 0 · 0.

Разумеется, не всегда дисперсия суммы равна сумме дисперсий, например,

D(ξ + ξ) = D(2ξ) = 4Dξ 6= Dξ + Dξ.

Упражнения. 1. Если Pξ = Pη, то Eξ = Eη, Dξ = Dη. Обратное неверно — придумайте
пример.

2. Если ξ1,...,ξn — независимые одинаково распределенные случайные величины со средним
и дисперсией, то

E
(
ξ1 + ...+ ξn

n

)
= Eξ1 = ... = Eξn,

D
(
ξ1 + ...+ ξn√

n

)
= Dξ1 = ... = Dξn.

Будут ли верны эти равенства, если случайные величины ξ1,...,ξn попарно независимы, т. е.
ξi,ξj независимы для любых пар i 6= j?

9. Моменты.
n-м моментом случайной величины называется

αn(ξ) = Eξn.

Замена ξ случайной величиной ξ − E(ξ) делает среднее значение равным нулю и называется
центрированием случайной величины.

n-м центральным моментом случайной величины называется

µn(ξ) = E[ξ − Eξ]n.

Среднее значение – это первый момент. Дисперсия — второй центральный момент. Оче-
видно, что n-й момент при умножении случайной величины на a умножается на an, кроме
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того, n-й центральный момент не меняется при прибавлении к случайной величине кон-
станты.

10. Другие характеристики.
Медиана распределения P — это такое число d, что

P(−∞, d] ≥ 1

2
,P[d,∞) ≥ 1

2
.

Медиан у распределения может быть несколько.
В математической статистике постоянно используется квантиль случайной величины: кван-

тиль порядка α случайной величины ξ это любое такое число Kα, что

P{ξ < Kα ≤ α,P{ξ ≤ Kα ≥ α.

Впрочем, используются также таблицы чисел K1−α.
Модой дискретного распределения называется точка, вероятность которого — наибольшая.

Модой непрерывного распределения называется точка, в которой плотность — наибольшая.
Если у распределения мода единственна, оно называется унимодальным.

11. Среднее и дисперсия конкретных распределений.
Вычисление среднего и дисперсии можно проводить как непосредственно, в виде суммы или

интеграла, так и с использованием свойств среднего и дисперсии, в частности, для среднего
суммы случайных величин и для дисперсии суммы независимых случайных величин

Распределение Бернулли с параметром p.

Eξ =

∫
xdPξ(x) = 1 · P {ξ = 1}+ 0 · P {ξ = 0} = p.

D = Eξ2 − (Eξ)2 = p− p2.

Биномиальное распределение с символом B(n, p).

E =

∫
xdP(x) =

n∑
k=0

kP {k} =

n∑
k=0

kCknp
k(1− p)n−k =

=

n∑
k=0

k
n!

k!(n− k)!
pk(1− p)n−k = np

n∑
k=1

Ck−1
n pk−1(1− p)n−k = np.

Аналогичные выкладки позволяют подсчитать и второй момент. Однако наш ответ слиш-
ком прост, нельзя ли его получить проще. Вспомним, что биномиальное распределение — это
распределение числа гербов в n испытаниях. Эту случайную величину ξ мы можем представить
как сумму:

ξ = δ1 + ...+ δn,

где δi — число гербов в i испытании имеет среднее p и дисперсию p(1−p). Используем свойства
среднего и дисперсии (для независимых слагаемых), получаем, E = np, D = np(1− p).

Упражнение. Найдите моду биномиального распределения. Укажите алгоритм нахождения
для любого p.

Распределение Пуассона с параметром λ.

Eξ =

∫
xdPξ(x) =

∞∑
k=0

kP {ξ = k} =

∞∑
k=0

k
λk

k!
e−λ =

=

∞∑
k=1

λk

(k − 1)!
e−λ = λeλe−λ = λ.
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Eξ2 =

∞∑
k=0

k2P {ξ = k} =

∞∑
k=0

{k(k − 1) + k}λ
k

k!
e−λ =

=

∞∑
k=2

λk

(k − 2)!
e−λ +

∞∑
k=1

λk

(k − 1)!
e−λ = λ2 + λ.

Dξ = λ2 + λ− λ2 = λ.

Равномерное распределение на отрезке [a, b].

Eξ =

b∫
a

1

b− a
xdx =

b2 − a2

2(b− a)
=
a+ b

2
.

Eξ2 =

b∫
a

1

b− a
x2dx =

b3 − a3

3(b− a)
.

Dξ =
a2 + ab+ b2

3
− (a+ b)2

4
=

(b− a)2

12
.

12. Характеристики нормального распределения.
Проще всего все подсчеты сделать для стандартного нормального распределения N(0, 1),

общий случай свести к нему.

Eξ =

∞∫
−∞

1√
2π
xe−x

2/2dx = 0

как интеграл от нечетной функции. Второй момент интегрируем по частям.

Dξ = Eξ2 =

∞∫
−∞

1√
2π
x2e−x

2/2dx = −
∞∫
−∞

1√
2π
xde−x

2/2 =

= − 1√
2π
xde−x

2/2
∣∣∣∞
−∞

+

∞∫
−∞

1√
2π
e−x

2/2dx = 0 + 1 = 1.

Мода и медиана ξ равны 0. Подсчитаем высшие моменты. Для n = 2k + 1

Eξ2k+1 =

∞∫
−∞

1√
2π
x2k+1e−x

2/2dx = 0.

Для n = 2k интегрируем по частям:

α2k(ξ) = Eξ2k =

∞∫
−∞

1√
2π
x2ke−x

2/2dx =

= − 1√
2π
x2k−1de−x

2/2
∣∣∣∞
−∞

+(2k − 1)

∞∫
−∞

x2k−2 1√
2π
e−x

2/2dx =

α2k−2(ξ) = ... = (2k − 1)!!.

В случае η = σξ +m (т. е. в случае N(m,σ)) имеем:
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Eη = m, Dη = σ2, µ2k(η) = (2k − 1)!!σ2k.
Упражнение. Разложите по биному Ньютона ηn = (σξ + m)n. Сложив средние отдельных

слагаемых, выведите формулу для αn(η).
13. Среднее и дисперсия распределения χ2

n.
Для вычислений надо использовать не функцию плотности распределения χ2

n, а определе-
ние этого распределения χ2

n: χ2
n = ξ2

1 + ... + ξ2
n, где ξi — независимые случайные величины со

стандартным нормальным распределением. Поэтому

Eχ2
n = Eξ2

1 + ...+ Eξ2
n = n · 1.

Dχ2
n = Dξ2

1 + ...+ Dξ2
n = n ·

(
Eξ4

1 −
(
Eξ2

1

)2)
= n(3− 1) = 2n.

14. Случай распределения Коши.
Для распределение Коши мы имеем следующий интеграл для вычисления среднего:

∞∫
−∞

x
1

π(1 + x2)
dx.

Если бы интеграл сходился, то он был бы равен нулю, но он не сходится, среднее не существует.
15. Смешанные моменты
Для n случайных величин ξ1,..., ξn обычно выписывают вектор средних и матрицу вторых

центральных моментов (если существуют) [µi,j ], где

µi,j = E[ξi − E(ξi)][ξj − E(ξj)]

Матрица [µi,j ] неотрицательно определена. Действительно, для всех вещественных xi

∑
i,j

µi,jxixj = E

[∑
i

(ξi − Eξi)xi

]2

≥ 0.

Упражнения. a) Используя неравенство Коши — Буняковского для средних значений до-
кажите, что из существования дисперсий ξ и η следует и существование у них центрального
смешанного момента.

b) Обобщите свойство аддитивности для дисперсии независимых случайных величин: по-
кажите, что из независимости случайных векторов (ξ1, η1), (ξ2, η2) и существования вторых
смешанных моментов следует равенство

E [(ξ1 + ξ2 − E(ξ1 + ξ2)) (η1 + η2 − E(η1 + η2))] = E [(ξ1 − Eξ1) (η1 − Eη1)]+E [(ξ2 − Eξ2) (η2 − Eη2)] .

Можно ли доказать равенство

E [(ξ1 + ξ2 − E(ξ1 + ξ2)) (η1 + η2 − E(η1 + η2))] = E [(ξ1 − Eξ1) (η2 − Eη2)]+E [(ξ2 − Eξ2) (η1 − Eη1)]?

16. Коэффициент корреляции двух случайных величин ξ и η. Если случайные величины
ξ и η независимы, то смешанный центральный момент

µ(ξ, η) = E[ξ − Eξ][η − Eη]

равен 0. Но µ(ξ, η) не может характеризовать степень зависимости случайных величин, так как
сам зависит от внешних факторов (например, единиц измерения, изменение которых может во
много раз изменить этот коэффициент). Этого недостатка лишен коэффициент корреляции:

ρ(ξ, η) =
E[ξ − Eξ][η − Eη]√

D(ξ)D(η)
.
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Свойства коэффициента корреляции
1. ρ(aξ + b, cη + d) = sgn (ac)ρ(ξ, η) для всех вещественных a, b, c, d.
2. |ρ(ξ, η)| ≤ 1.
3. Если ξ и η независимы, то ρ(ξ, η) = 0, |ρ(ξ, η)| = 1 тогда и только тогда, когда ξ и η

линейно зависимы, т.е. aξ + bη + c = 0 для некоторых вещественных a, b, c.
Чтобы удобнее было доказать 1, мы введем операцию

ξ → ξ∗ =
ξ − Eξ√
D(ξ)

центрирования и нормирования случайной величины ξ. Легко проверяется, что

ρ(ξ, η) = Eξ∗η∗, (aξ + b)∗ = sgn aξ∗.

Это влечет 1. Свойство 2 следует из неравенства Коши — Буняковского

|Eξη| ≤
√
E|ξ|2E|η|2.

Первую часть 3 мы уже отметили. Чтобы доказать вторую часть, нужно вспомнить — когда
в неравенстве Коши – Буняковского достигается равенство. Тогда и только тогда, когда ξ и
η пропорциональны. В наших терминах это означает ξ∗ = Cη∗, это влечет утверждение в 3.
Обратно, из введенного соотношения между ξ и η следует sgn a ξ∗ = −sgn b η∗.

Равенство нулю коэффициента корреляции ρ(ξ, η) не влечет независимость ξ и η.
Пример. Ω = {1, 2, 3, 4} с классической вероятностью, ξ(1) = 1, ξ(2) = −1, ξ(3) = ξ(4) = 0,

η(1) = η(2) = 0, η(3) = 1, η(4) = −1. Тогда средние ξ и η равны 0, ξη = 0 тождественно.
Разумеется, случайные величины ξ и η зависимы.

Предложение. Если ξ и η имеют совместное нормальное распределение, ρ(ξ, η) = 0, то
ξ и η независимы.

Мы будем считать для простоты ξ и η центрированными, тогда их совместная функция
плотности имеет вид

pξ,η(x, y) =
|A|
2π

e−
1
2 (a11x2+2a12xy+a22y

2).

Чтобы доказать независимость, нам нужно показать, что a12 6= 0. Это можно сделать и непо-
средственно – вычислением ρ(ξ, η) = 0, а также анализом интеграла, который мы сейчас про-
демонстрируем. Числитель в ρ имеет вид∫ ∫

xy
|A|
2π

e−
1
2 (a11x2+2a12xy+a22y

2)dxdy.

Сравним этот интеграл с равным нулю интегралом∫ ∫
xy
|A|
2π

e−
1
2 (a11x2+a22y

2)dxdy.

Допустим, что a12 > 0. Разобьем оба интеграла на две области — {xy > 0} и {xy < 0}. Непо-
средственно проверяется, что на каждой из областей верхний интеграл строго меньше нижнего.
Поэтому оба интеграла не могут быть одновременно равны 0. Случай a12 < 0 рассматривается
аналогично.

Пример. Пусть Pξ,η имеет плотность, равную 1/π на круге {(x, y) : x2+y2 ≤ 1} и 0 вне круга.
Докажите, что ρ(ξ, η) = 0, тем не менее, случайные величины ξ и η зависимы. (Указание. Для
доказательства зависимости придумайте такие числовые множества A и B, что

P{ξ ∈ A} = Pξ(A) 6= 0,P{η ∈ B} = Pη(B) 6= 0,

P({ξ ∈ A}{η ∈ B}) = Pξ,η(A×B) = 0.)
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А что будет, если

pξ,η(x, y) =

 a, если x2 + y2 ≤ 1,
b если |x| ≤ 1, |y| ≤ 1, x2 + y2 > 1,
0 если |x| > 1 или |y| > 1?

Как связаны числа a и b?
Упражнение 14. Случайные величины ξ и η независимы, D(ξ) = 1,

E(ξ) = D(ξ) = E(η) = D(η) = 1.

Найти E(ξ − η), D(ξ − η).
Упражнение 15. Случайные величины ξ и η имеют совместное нормальное распределение,

D(ξ + η) = D(ξ) + D(η). Доказать, что ξ и η независимы.
Вопрос. Придумайте пример двух случайных величин с разными распределениеми и оди-

наковыми средним и дисперсией.
Вопрос. В каком классе распределений среднее и дисперсия совпадают у всех распределений

из класса?

§8. Задача регрессии

1. Функция регрессия.
Мы будем рассматривать задачу приближения одной случайной величины η функцией

f(ξ1, ξ2, ..., ξn) других случайных величин ξ1, ξ2,..., ξn. А именно, мы будем минимизировать
число E(η − f(ξ1, ξ2, ..., ξn))2 (см. объяснение задачи также в лекции о сходимости).

Сначала рассмотрим простейший случай, когда ξ одно и является константой. В этом слу-
чае решение очень просто. Если ξ = c, то функция f определена лишь на множестве, состоящем
из одной точки {c}. Оказывается, что минимум E(η − f(c))2 достигается при f(c) = Eη. Дей-
ствительно, предположим f(c) = d 6= Eη. Тогда

E(η − d)2 = E(η − Eη + Eη − d)2 = E(η − Eη)2 + E(Eη − d)2 + E(η − Eη)(Eη − d).

Заметим, что Eη − d является константой, поэтому

E(η − Eη)(Eη − d) = (Eη − d)E(η − Eη) = 0.

Последнее равенство основано на том, что E(Eη) = Eη. Это верно лишь при интегрировании
по вероятностной мере,

Ec =

∫
Ω

c = cP(Ω) = c.

Далее мы рассмотрим общую ситуацию дискретной случайной величины ξ:

ξ =
∑
n

anI{ξ=an}.

Минимизируемую величину E(η − f(ξ))2 нагляднее записать в виде интеграла

E(η − f(ξ))2 =

∫
Ω

(η − f(ξ))2dP =

∑
n

∫
{ξ=an}

(
η − f

(∑
n

anI{ξ=an}

))2

dP.

70



Как и выше, мы видим, что существенными являются лишь значения функции f на числах
an, то есть f задается набором чисел bn = f(an) и это значения случайной величины f(ξ) на
событиях {ξ = an}. Имеем

E(η − f(ξ))2 =

∫
Ω

(η − f(ξ))2dP =
∑
n

∫
{ξ=an}

(η − bn)
2
dP.

Сумма окажется минимальной, если каждое слагаемое минимально. Таким образом, нам нуж-
но минимизировать ∫

{ξ=an}

(η − bn)
2
dP. (1)

В результате, мы опять пришли к случаю константы, но интегрирование ведется по событию
{ξ = an}, а мера P этого события не равна 1 и ее сужение не является вероятностью. Чтобы
использовать результат для константы, мы должны разделить сужение меры P на множество

{ξ = an} на вероятность P({ξ = an}). Новая мера Pn(B) =
P(B{ξ = an})
P({ξ = an})

является вероятно-

стью. Поэтому минимум (1) достигается при

bn =

∫
{ξ=an}

ηdPn. (1).

Заметим, что мы можем записать новую вероятность как условную:

Pn(B) = P(B|{ξ = an}).

2. Случай совместного распределения непрерывного типа.
В этом случае имеется совместная функция плотности pξ,η случайных величин ξ, η, завися-

щая от двух вещественных аргументов x, y. Минимизируемое число E(η − f(ξ))2 выражается
через pξ,η по формуле замены переменной следующим образом:

E(η − f(ξ))2 =

∫
R×R

(y − f(x))2pξ,η(x, y)dxdy.

Как и в дискретном случае, мы хотим свести задачу минимизации к случаю константы, в
данном случае это означает фиксацию переменной x, что возможно переходом к повторному
интегралу: ∫

R×R
(y − f(x))2pξ,η(x, y)dxdy =

∫
R

dx

∫
R

(y − f(x))2pξ,η(x, y)dy.

Чтобы минимизировать этот интеграл, достаточно минимизировать внутренний интеграл при
любом фиксированном x. Но случай константы здесь не подходит, так как мера pξ,η(x, y)dy,
по которой мы интегрируем функцию, не является вероятностной. Давайте сделаем ее вероят-
ностной, разделив при данном x функцию pξ,η(x, y) на интеграл по этой функции. Заодно мы
введем условную плотность

pη(y|ξ = x) =
pξ,η(x, y)∫

R

pξ,η(x, y)dy

.

Теперь (применив случай постоянной к элементарным исходам y, где η(y) = y, ξ(y) = x), мы
получаем нужное решение:

f(x) =

∫
R

ypξ,η(x, y)dy∫
R

pξ,η(x, y)dy

=

∫
R

ypη(y|ξ = x)dy.
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3. Случай совместного нормального распределения.
В нормальном случае

pξ,η(x, y) =
|A|1/2

2π
e−

1
2 (a11(x−mx)2+2a12(x−mx)(y−my)+a22(y−my))

2

,

где A = [aij ], |A| — определитель A. Имеем:

f(x) =

∫
y
|A|1/2

2π
e−

1
2 (a11(x−mx)2+2a12(x−mx)(y−my)+a22(y−my))

2

dy∫
|A|1/2

2π
e−

1
2 (a11(x−mx)2+2a12(x−mx)(y−my)+a22(y−my))

2

dy

.

Мы сокращаем в числителе и знаменателе множители, не зависящие от y:

f(x) =

∫
ye−

1
2 (2a12(x−mx)(y−my)+a22(y−my))2dy∫

e−
1
2 (2a12(x−mx)(y−my)+a22(y−my))2dy

.

Далее мы делаем показатель экспоненты полным квадратом и, наоборот, добавляем слагаемые,
зависящие от x. Получаем:

f(x) =

∫
ye−

1
2a22(

a12
a22 (x−mx)+(y−my))

2

dy

∫
e
− 1

2a22(
a12
a22 (x−mx)+(y−my))

2

dy

.

Далее представляем числитель как сумму двух интегралов, первый из которых после замены
переменной оказывается интегралом от нечетной функции, и поэтому равен нулю, а второй
после выноса константы равен знаменателю.∫ (

a12

a22
(x−mx) + (y −my)

)
e−

1
2a22(

a12
a22 (x−mx)+(y−my))

2

dy∫
e−

1
2a22(

a12
a22 (x−mx)+(y−my))

2

dy

+

∫ (
−a12
a22

(x−mx) +my

)
e−

1
2a22(

a12
a22 (x−mx)+(y−my))

2

dy∫
e−

1
2a22(

a12
a22 (x−mx)+(y−my))

2

dy

.

Итак,
f(x) = −a12

a22
(x−mx) +my.

4. Обсуждение.
По-видимому, о применении функции регрессии говорилось в учебнике по истории для 4

класса в пятидесятые годы двадцатого века. В нем рассказывалось, что при бомбежках Моск-
вы немецкие летчики применяли противозенитный маневр, а советские математики придумали
метод организации стрельбы, учитывающий этот маневр. Скорее всего, речь шла о вычислении
функции f(ξ1, ξ2, ξ3) или f(ξ1, ξ2), наилучшим образом приближающее положение η в четвер-
тый или третий момент времени.

5. Метод наименьших квадратов
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Пусть задано несколько наблюдений
(
x

(i)
1 , ..., x

(i)
s ; y(i)

)
, i ≤ n. Задача состоит в приближе-

нии переменной y некоторой функцией f(x1, ..., xs). Решение строится методом Гаусса наимень-
ших квадратов, приписывая всем наблюдениям одинаковую меру 1/n (результат будет тот же,
если это будет считающая мера) мы приходим к задаче минимизации суммы квадратов

Sn =

n∑
i=1

(
f
(
x

(i)
1 , ..., x(i)

s

)
− y(i)

)2

. (∗)

К сожалению, использованная в п. 1-3 постановка задачи с произвольной функцией f ока-
зывается неразумной, так как векторы (x

(i)
1 , ..., x

(i)
s ), как правило, не повторяются, и поэтому

ничего лучше бессмысленного решения f
(
x

(i)
1 , ..., x

(i)
s

)
= y(i) мы не получим. Поэтому f нужно

выбирать из некоторого класса функций. Расширение класса увеличивает точности оценки, но
уменьшает доверие к этой точности. Если мы считаем, что совместное распределение наблю-
дений нормально, то, согласно пункту 4 имеет смысл рассмотреть самый простой вид функции
f(x1, ..., xs) = a1x1 + ...+ asxs + b, и все сводится к дифференцированию (*) по переменным ai
и b. В более сложной ситуации есть смысл попробовать в качестве f полином второго поряд-
ка. Если мы уверены в периодической зависимости y, надо попробовать тригонометрический
полином. В каждой из этой ситуации нужно дифференцировать по неизвестным параметрам,
а производные приравнивать нулю.

6. Обобщение условного математического ожидания на общий случай.
Итак, мы увидели что функция регрессии имеет следующие свойства: пустьB— σ-подалгебра

σ-алгебры A, на которой задана случайные величины ξ и η. Известно, что B — наименьшая
σ-алгебра, относительно которой измерима случайная величина ξ. Тогда функция регрессии
f(ξ) будет иметь следующие свойства:

i)
∫
B

f(ξ)dP =
∫
B

ηdP для любого множества B ∈ B.

ii) f(ξ) измерима относительно B.
Наша задача – доказать существование такой случайной величины, которую мы (в нашей

ситуации) будем называть условным математическим ожиданием η относительно B и обозна-
чать E(η|B).

Мы применяем для этого теорему Радона-Никодима, которая утверждает, что любой заряд
ν, непрерывный относительно конечной меры µ (то есть µ(A) = 0 влечет ν(A) = 0), пред-
ставим в виде неопределенного интеграла A →

∫
A

dν
dµ
dµ от некоторой измеримой функции dν

dµ

(которая называется производной Радона–Никодима), причем функция dν
dµ

определена един-
ственным образом с точностью до множества µ-меры 0. В нашем случае в качестве заряда
мы берем неопределенный интеграл A →

∫
A

ηdP, но считаем его определенным не на большой

σ-алгебре A, а на ее σ-подалгебре B. Эта функция множеств счетно-аддитивна и равна нулю
на множестве нулевой меры, но мерой, вообще говоря, не является, так как может принимать
и отрицательные значения. Итак, производная Радона–Никодима является условным матема-
тическим ожиданием.

Для полноты изложения мы обязаны доказать теорему Радона—Никодима.
Наиболее трудным моментом доказательства является доказательство следующего утвер-

ждения.
Теорема Хана. Пусть ν – ограниченный заряд на σ-алгебре A на Ω. Тогда существует

такое B ∈ A, что ν(B) = sup{ν(C) : C ∈ A}.
Доказательство. Очевидно, что существует последовательность измеримых (An) такая,

что ν(An) → sup ν (по определению супремума числового множества). С конечным набором
множеств (Ai)i≤n мы свяжем разбиение Ω на 2n попарно непересекающихся множеств Cj(n),
каждое из которых представимо в виде

⋂
iA
∗
i , где каждое A∗i равно либо Ai, либо его дополне-

нию. Разумеется, некоторые Cj(n) могут оказаться и пустыми. Определим теперь множество
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Bn — объединение всех Cj(n) положительной меры ν. Покажем, что можно принять в качестве
B множество

B =
⋂
m

⋃
m≤n<∞

Bn.

Для доказательства отметим сначала, что ввиду свойства непрерывности заряда, которая
доказывается так же, как и непрерывность вероятностной меры (см. Предложение 4.11), имеет
место сходимость

ν

 ⋃
m≤n<∞

Bn

→ ν(B).

Поэтому достаточно установить два неравенства:
i) ν(Bn) ≥ ν(An) для всех n,
ii) ν

(⋃
m≤n<∞Bn

)
≥ ν(Bm) для всех m.

И то и другое неравенство доказывается не выкладками, а логическими рассуждениями.
Неравенство i) следует из того, что как событие An, так и событие Bn являются объединения-
ми непересекающихся множеств Cj(n), причем в Bn входят все слагаемые An положительного
ν-заряда, убраны все слагаемые An отрицательного ν-заряда и добавлены все слагаемые допол-
нения An положительного ν-заряда. Точно так же для всех s ≥ m устанавливается неравенство

ν

 ⋃
m≤n≤s

Bn

 ≤ ν
 ⋃
m≤n≤s+1

Bn

 . (∗)

Действительно, множество в правой части (*) получается из множества в левой части добав-
лением некоторых множеств Cj(s + 1) положительного ν-заряда. Из (*) немедленно следует
ii).

Разложение Хана. Если ν — ограниченный заряд на σ-алгебре подмножеств Ω, то

Ω = Ω+ + Ω−,

где ν(A) ≥ 0 для любого подмножества A ⊂ Ω+ и ν(A) ≤ 0 для любого подмножества A ⊂ Ω−.
Очевидно (?), что Ω+ = B, Ω− = Bc.
Разложение Жордана. Если ν — ограниченный заряд на σ-алгебре подмножеств Ω, то

ν = ν+ − ν−,

где ν+ и ν− – меры.
Обозначим: ν+(A) = ν(Ω+ ∩A), ν−(A) = −ν(Ω− ∩A).
Теперь перейдем к доказательству теоремы Радона–Никодима. В силу разложения Жор-

дана достаточно доказать эту теорему для мер. Итак, ν — мера, непрерывная относительно
меры µ. Рассмотрим все возможные неопределенные интегралы

A→
∫
A

fdµ

от неотрицательных измеримых функций f на Ω, для которых∫
A

fdµ ≤ ν(A). (∗)

Очевидно (?), если f = f1 и f = f2 удовлетворяют (*), то и f = max{f1, f2}, также удовле-
творяет условию (*). Обозначим через F множество всех f , удовлетворяющих (*). Рассмотрим
такую последовательность функций (fn), удовлетворяющих (*), что∫

Ω

fndµ→ sup


∫
Ω

fdµ : f ∈ F

 .

74



Супремум этой последовательности по теореме Лебега и по сделанному замечанию также удо-
влетворяет (*). Обозначим этот супремум f . Имеем:

∫
Ω

fdµ = sup


∫
Ω

fdµ : f ∈ F

 .

Докажем, что ∫
A

fdµ = ν(A) ∀A ∈ A.

Предположим противное, и покажем, что тогда f можно увеличить с сохранением свойства
(*), это приведет нас к противоречию с выбором f . Для этого достаточно рассмотреть новую
меру

λ(A) = ν(A)−
∫
A

fdµ ∀A ∈ A,

предположить, что она не является нулевой, и доказать, что существует такая неотрицательная
не равная почти всюду нулю функция g, что

λ(A) ≥
∫
A

gdµ ∀A ∈ A.

Доказав это, мы можем увеличить f , добавляя к нему g.
Предположим, что

λ(Ω) = ε > 0. (∗∗)

Определим заряд

ρ(A) = λ(A)−
∫
A

ε

2µ(Ω)
dµ ∀A ∈ A.

Согласно (**) заряд ρ на некоторых A принимает строго положительные значения, поэтому
δ = sup ρ > 0. По разложению Хана существует такое измеримое множество Ω+, что ρ(A) ≥ 0
для всех A ⊂ Ω+. Это означает, что

λ(A) ≥
∫
A

ε

2µ(Ω)
dµ ∀A ⊂ Ω+.

Итак, мы можем положить
g =

ε

2µ(Ω)
· IΩ+ .

Теорема Радона–Никодима по-видимому доказана. Заметим, что производная Радона–Никодима
dν
dµ

задана лишь с точностью до множества µ-нулевой меры, ее определение не использует по-
рядок на числовой прямой (как обычная производная).

Упражнение. Докажите единственность dν
dµ

с точностью до множества µ-нулевой меры.

Теперь мы используем ее для случая µ = P и заряда ν(A) =
∫
A

ηdµ. Оба заряда пред-

полагаются заданными не на всей σ-алгебре событий A, а на ее σ-подалгебре B (в задаче
регрессии это – наименьшая σ-алгебра, относительно которой измерима случайная величина
(а в более общей ситуации случайный вектор) ξ). Итак, эта производная обозначается E(η|B)
или EBη. В частном случае, когда η = IA, условное математическое ожидание называется
условной вероятностью A при условии B и используется обозначение P(A|B). В отличие от
обычной вероятности (вероятность для нас уже привычное понятие!) условная вероятность –
это неотрицательная случайная величина.
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Упражнения.
a. Докажите, что 0 ≤ P(A|B) ≤ 1 почти наверное.

b. Докажите, что P
(∑
n
An|B

)
=
∑
n
P(An|B) почти наверное.

c. Докажите, что если A ∈ B, то P(A|B) = P(A) почти наверное.
Как определяется B в рассмотренных выше задачах регрессии? В дискретном случае ξ =∑

n
anI{ξ=an} в роли B выступает σ-подалгебра, состоящая из всевозможных объединений мно-

жеств вида {ξ = an}. В этом случае явно строится случайная величина P(A|B), которая на
каждом множестве {ξ = an} принимает значение P(A|ξ = an). В непрерывном случае мы
считаем, что Ω = R2, на нем задана вероятность P соотношением

P(B) =

∫
B

pξ,η(x, y)dxdy.

В роли σ-алгебры A используется σ-алгебра всех борелевских множеств в R2, а в роли B —
σ-алгебра всех множеств вида B ×R, где B пробегает все борелевские множества в R.

Упражнение. Покажите, что функция

pη(y|ξ = x) =
pξ,η(x, y)
∞∫
−∞

pξ,η(x, y)dy

(∗)

c точностью до значений на множестве меры нуль является функцией плотности вероятности
P(·|B).

Неполное решение. По определению P(·|B) определена с точностью до множества меры
нуль относительно первоначальной вероятности P на R2, задаваемой (?) функцией плотности
pξ,η. Имея дело с очень абстрактно задаваемыми условным средним и условной вероятностью,
трудно надеяться использовать какие-то вычисления. Надо идти от определения и показать,
что функция (*) удовлетворяет определению условной вероятности. Вспомним, что

P(A|B) := E(IA|B),

то есть любая функция, измеримая относительно σ-алгебры B, удовлетворяющая тождествен-
ному равенству ∫

B

P(A|B)dP =

∫
AB

dP

для всех B ∈ B.
Формулы умножения вероятностей, полной вероятности и Байеса для условной плотно-

сти. Мне неизвестен ответ на следующий
Вопрос. Пусть B — наименьшая σ-подалгебра, относительно которой измерима случайная

величина ξ. Существует ли такая борелевская функция f , что

E(η|B) = f(ξ) почти наверное?

Важное значение имеет вопрос о существовании регулярной условной вероятности, то есть
таких случайных величин π(A)(ω), что для каждого ω ∈ Ω функция A → π(A)(ω) является
вероятностью, и

P(A|B) = π(A)(ω) почти наверное

для любого A. Известны примеры, когда это неверно.
Условная плотность. Как ее интерпретировать с точки зрения условной вероятности? Рас-

пределение как интеграл по плотности. Иногда – это интеграл Римана (если плотность инте-
грируема по Риману, и множество также является хорошим).

76



Если имеется несколько вероятностей, то было бы удобно мыслить их как плотности от-
носительно одной меры. Например, на каких событиях вероятность P1 ,больше вероятности
P2. Казалось бы, это верно, если P1(A) ≥ P2(A). Но на некоторых подмножествах A может
быть справедливо обратное неравенство. В терминах плотности все просто. Что нужно, чтобы
P1(A) и P2(A) были абсолютно непрерывны относительно одной меры. Всегда ли такая мера
существует?

Упражнение 16. Покажите, что константой c, минимизирующей E|ξ − c| является не
среднее значение ξ, а медиана ξ.
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Часть 3. ПОСЛЕДОВАТЕЛЬНОСТИ СЛУЧАЙНЫХ ВЕЛИЧИН

Сходимость функций используется для замены сложных функций более простыми. Напри-
мер, для вычисления числа ex мы можем использовать разложение в ряд ex = 1+x+x2/2!+.... В
данном случае мы приближаем экспоненциальную функцию полиномом. Очень удобно в этом
случае, что мы всегда можем оценить величину ошибки, используя, например, остаточный
член в разложении в форме Лагранжа или Коши.

Для случайных величин нам важно не столько приблизить случайные величины, сколько
определить наилучшее приближение для данного ω. Но тогда мы можем использовать выбор:
либо добиться успеха и сделать маленькой ошибку либо сделать маленькой вероятность ошиб-
ки. Тогда мы сможем надеяться, что нам повезло и ошибка в результате замены ξ на ξn для
нашего ω невелика. Сходимость почти всюду означает, что мы можем быть уверены, что в
нашем случае (для нашего ω мы в пределе получим истинное значенике). Сходимость по ве-
роятности позволяет судить о том, что имеет практическое значение — о вероятности данной
ошибки. Впрочем, сходимость почти наверное влечет сходимость по вероятности. Сходимость
в среднем квадратическом тоже влечет сходимость по вероятности. Метод Монте-Карло позво-
ляет использовать вероятностные идеи для приближенного вычисления кратных интегралов.

§9. Сходимость случайных величин

Формально случайные величины являются функциями, заданными на пространстве Ω слу-
чайных исходов со значениями в R. Таким образом, для введения понятия сходимости по-
следовательностей случайных величин мы можем воспользоваться аналогичными понятиями,
известными нам для функций. Для последовательностей функций важнейшим является по-
нятие равномерной сходимости, используя его, мы можем добиться приближения неизвестной
функции f вычисляемой функцией fn, добиваясь того, что величина ошибки равномерна ма-
ла, то есть меньше определенного числа, с которым мы согласны мириться, для всех значений
аргумента. Дело в том, что функция f как правило является решением некоторой практиче-
ской задачи и зависимость f от значений аргумента (например, времени) говорит о поведении
системы.

Ситуация с последовательностями случайных величин несколько иная. Мы имеем дело со
сходимостью ξn(ω) к ξ(ω) на разных ω ∈ Ω, но зависимость ξ от ω интереса не представляет,
для нас важно, чтобы хорошее приближение получилось для того ω, который соответствует
нашему случаю. Но так как найти или приблизить это ω не представляется возможным, мы
готовы смириться с небольшой ошибкой не для всех ω, а лишь для ω с вероятностью очень
близкой к 1. При этом мы надеемся на то, что невезение не окажется очень сильным и мы не
попадем в ω, в котором приближение очень плохое.

Такой концепции соответствует сходимость по вероятности (в анализе она называется
сходимостью по мере).

1. Определение. Последовательность ξn сходится к ξ по вероятности (пишем ξn
P−→ ξ),

если для любого ε > 0
P{|ξn − ξ| > ε} → 0.

Свойства сходимости по вероятности

Если ξn
P−→ ξ, ηn

P−→ η, то

1) ξn + ηn
P−→ ξ + η,

2) ξnηn
P−→ ξη,

3) если дополнительно P{η 6= 0} = 1, то ξn/ηn
P−→ ξ/η.

Доказательство этих свойств довольно интересно, но я приведу лишь доказательство 1):

P{|ξn + ηn − ξ − η| > ε} ≤ P{|ξn − ξ| > ε/2}+ P{|ηn − η| > ε/2},
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так как
{|ξn + ηn − ξ − η| > ε} ⊂ {|ξn − ξ| > ε/2} ∪ {|ηn − η| > ε/2}.

Упражнение. Пусть P{ξn = xn} = 1, P{ξ = x} = 1. Проверьте, что

xn → x⇔ ξn
P−→ ξ.

Все эти свойства удобно также доказывать от противного, сводя рассмотрение к сходимо-
сти почти наверное, для которой все эти свойства немедленно следуют из свойств пределов
последовательностей.

2. Определение. Мы говорим, что последовательность случайных величин (ξn) сходится
к ξ почти наверное (пишем ξn

п.н.−→ ξ), если P{ω : ξn(ω) → ξ(ω)} = 1. Из анализа известно,
что из любой последовательности, сходящейся по вероятности, можно выделить подпоследо-
вательность, сходящуюся почти наверное. Кроме того, ввиду конечности вероятностной меры,
любая последовательность, сходящаяся почти наверное, сходится и по вероятности.

Мы предполагаем противное:

ξn
P−→ ξ, ηn

P−→ η,

но (ξn + ηn) не сходится по вероятности к ξ + η. Из определения следует, что для некоторого
δ > 0

P{|ξn + ηn − ξ − η| > δ} 6→ 0.

Тогда существует такое ε > 0, что для некоторой подпоследовательности nk

P{|ξnk + ηnk − ξ − η| > δ} > ε для всех k. (∗)

Выделим из nk подпоследовательностей nkm так, что

ξnkm
п.н.−→ ξ, ηnkm

п.н.−→ η.

Имеем:
P{ω : ξnkm (ω)→ ξ(ω), ηnkm (ω)→ η(ω)} = 1.

Следовательно,
ξnkm + ηnkm

п.н.−→ ξ + η,

но это по отмеченной выше связи двух сходимостей противоречит (*).
Аналогично можно доказать другие свойства сходимости по вероятности, но доказательства

с помощью вероятностных неравенств более поучительны.
3. Теорема (Слабый закон больших чисел). Пусть ξn – последовательность одинаково

распределенных независимых случайных величин со средним и дисперсией (поэтому все ξn
имеют одно и то же среднее, обозначим его m и одну и ту же дисперсию, обозначим ее σ2).
Тогда

ξ1 + ...+ ξn
n

P−→ m. (1)

Доказательство несложно и основано на классическом неравенстве Чебышева. Воспользо-
вавшись свойствами дисперсии, нетрудно подсчитать дисперсию левой части (1):

D
(
ξ1 + ...+ ξn

n

)
=

D(ξ1 + ...+ ξn)

n2 =
nσ2

n2 =
σ2

n
→ 0.

Точно так же
E
(
ξ1 + ...+ ξn

n

)
=

E(ξ1 + ...+ ξn)

n
=
nm

n
= m.
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Поэтому нам достаточно доказать следующее неравенство Чебышева:

P{|ξ − Eξ| > ε} ≤ Dξ
ε2 . (2)

Сначала доказывается неравенство для неотрицательной случайной величины η:

P{η > ε} ≤ Eη
ε
.

После переноса ε в левую часть оно становится очевидным (?):

εP{η > ε} ≤ Eη,

так как левая часть равна EεI{η>ε}, среднее большей величины больше, а εI{η>ε} < η (про-
верьте при обоих значениях индикатора). Далее остается подставить η = (ξ−Eξ) и проверить,
что {|ξ − Eξ| > ε} = {(ξ − Eξ)2 > ε2}. Подставив вместо ξ в (2) ξ1 + ...+ ξn

n , мы получим

P
{∣∣∣∣ξ1 + ...+ ξn

n
−m

∣∣∣∣ > ε

}
≤ σ2

n
. (3).

Это неравенство будет нам полезно и в других ситуациях.
4. Применение закона больших чисел — частотное определение вероятности
Мы начали наш курс с частотной интерпретации вероятности:

lim
n

nA
n

= P(A),

где nA — число экспериментов, в которых выпало событие A, n — общее число экспериментов,
все эксперименты проводятся в одинаковых условиях и каждый раз наблюдается одно и то
же событие A. Как построить вероятностную модель этого процесса. Событие A, наблюдае-
мое в i-м эксперименте, мы обозначим Ai. Проведение эксперимента в одинаковых условиях
можно интерпретировать как независимость в совокупности событий Ai (результат одного
эксперимента не влияет на исход других), так как наблюдается одно и то же событие, то все
вероятности P(Ai) должны быть равны одному и тому же числу — вероятности P(A) события
A.

Итак, случайные величины IAi имеют одно и то же распределение и независимы, E(Ai) =
P(A). Согласно закону больших чисел

nA
n

=
IA1 + IA2 + ...+ IAn

n

P−→ P(A).

Конечно, из этого рассуждения лишь следует, что с вероятностью близкой к 1 число nA
n

близко к P(A), но не следует, что именно у нас nA
n обязательно сходится к P(A). Этот факт

следует из сходимости не по вероятности, а почти наверное, т. е. для всех ω, за исключением ω
из множества с вероятностью 0. Закон больших чисел со сходимостью почти наверное доказан
Колмогоровым (при наших предположениях и даже более общих), но мы это доказательство
проходить пока не будем.

Упражнение 17. Как известно, случайная величина с распределением Стьюдента имеет
вид

tn =
ξ√

1

n
(ξ2

1 + ...+ ξ2
n)

.

Докажите, что если числитель в этой формуле один и тот же для всех n, то

tn
P−→ ξ.
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§10. Применение закона больших чисел — метод Монте-Карло

Метод Монте-Карло играет большую и все возрастающую роль в многих компьютерных вы-
числениях. В нем случайность моделируется искусственно. Используется имеющийся в многих
программных пакетах датчик случайных чисел. Предполагается, что этот датчик выплевыва-
ет числа x1, x2, ..., xn, которые являются наблюдениями независимых случайных величин с
равномерным распределением на отрезке [0, 1]. Это должно означать, что для любого боре-
левского множества B ⊂ [0, 1] доля чисел xi, попавших в B, должна стремится к длине B,
доля всех пар (xi, xi+1), попавших в подмножество B ⊂ [0, 1] × [0, 1], сходится к площади B,
аналогичные утверждения должны быть верны для последовательных троек и объемов, для
последовательных четверок и четырехмерных объемов, и т. д. На практике идеальную после-
довательность с таким свойствами получить невозможно, и строится последовательность не
случайных чисел, а чисел, называемых ’псевдослучайными’. Алгоритмы для создания псевдо-
случайных чисел создавались специалистами по теории чисел. Более того, они проверялись на
большом числе практических вычислений, некоторые из них были в конце концов отвергнуты
(см. замечательную брошюру И.М. Соболь...) Тем не менее, в теоретических рассуждениях мы
предполагаем, что независимость и одинаковая равномерная распределенность на [0, 1] имеют
место. Таким образом, мы считаем, что числа xi — наблюдения случайных величин ξi, которые
являются независимыми и с равномерным распределением. Мы обозначим также через ξ одну
эталонную случайную величину с равномерным распределением на [0, 1]. Рассмотрим теперь
функцию f с хорошими свойствами на [0, 1], тогда согласно закону больших чисел

f(ξ1) + f(ξ2) + ...+ f(ξn)

n

P−→ Ef(ξ) =

1∫
0

f(x)dx.

Последнее равенство следует из формулы замены переменной

Ef(ξ) =

∫
f(x)pξ(x)dx,

причем в случае равномерного распределения на [0, 1]

pξ(x) = I[0,1](x).

Так как xi мы считаем наблюденными значениями случайных величин ξi, то мы считаем, что
с вероятностью, близкой к 1, число

f(x1) + f(x2) + ...+ f(xn)

n

близко к
1∫

0

f(x)dx.

Можно даже оценить меру близости вероятности (к 1) и числа. Давайте потребуем, чтобы ве-
роятность нужной нам близости была бы не меньше чем 0.999. Для оценки мы будем исполь-
зовать простейшее неравенство Чебышева. Но чтобы его использовать, мы должны оценить
σ2 = Df(ξ). Пусть |f | ≤ C. Вы можете хотя бы на примере двухзначных случайных величин
убедиться, что Df(ξ) ≤ C2. Имеем:

P


∣∣∣∣∣∣f(ξ1) + ...+ f(ξn)

n
−

1∫
0

f(x)dx

∣∣∣∣∣∣ > ε

 ≤ C2

nε2
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Если мы будем считать допустимой ошибкой ошибку порядка одной тысячной от C, то правая
часть будет меньше 0, 001 при n = 109. Замечу, что имеются экспоненциальные оценки (на-
пример, неравенство Бернштейна), которые позволяют существенно уменьшить правую часть.
Итак, чтобы получить приличную точность с приличной вероятностью, нужен очень большой
объем вычислений. В известных вам приближенных методах вычисления интеграла, наклады-
ваются условия на f не только ограниченности, но и непрерывности и дифференцируемости.
Здесь этого не нужно. Но ясно, что для одномерного интеграла все это не интересно — для по-
лучения той же точности (при более ограничительных условиях) нужно вычислять функцию f
не более чем в тысяче точек. Так когда-то до создания компьютеров и считали. Однако метод
Монте-Карло можно использовать и при вычислении многомерных интегралов от функции
f(x1, x2, ..., xr) по r-мерному кубу [0, 1]× [0, 1]× ...× [0, 1]. Число точек в классических методах
вычисления интегралов растет как nr, стомерный интеграл такими методами не вычислишь.
А для вычисления методом Монте-Карло для получения той же точности нужно то же число
точек, как и в одномерном случае. Но каждая точка в области интегрирования будет теперь
задаваться не одним псевдослучайным числом, а r-кой псевдослучайных чисел. Еще эффектив-
нее метод Монте-Карло выглядит для более сложных областей интегрирования чем r-мерный
куб. Обычно такая область задается несколькими неравенствами (например, x2

1 + ...+ x2
r ≤ 1).

Заменой переменных мы загоняем область интегрирования в единичный r-мерный куб, но в
интегральной сумме

f(x
(1)
1 , x

(1)
2 , ..., x(1)

r ) + ...+ f(x
(n)
1 , x

(n)
2 , ..., x(n)

r )

n

мы берем лишь те слагаемые, которые заданы на точках (x
(i)
1 , ..., x

(i)
r ) из области интегрирова-

ния.
Метод Монте-Карло используется не только для вычисления интегралов, но и для числен-

ного решения дифференциальных уравнений, для моделирования молекул с использованием
методов квантовой химии. Он требует гигантского объема вычислений, но в многих ситуациях
является единственно возможным.

§11. Усиленный закон больших чисел

Теорема (Усиленный закон больших чисел Колмогорова) Пусть ξi — последовательность
независимых одинаково распределенных случайных величин, имеющих среднее значение. Обо-
значим E(ξi) = m. Тогда

ξ1 + ξ2 + ...+ ξn
n

п.н.−→ m. (1)

Замечу, что Колмогоров доказал и обратное утверждение: если для независимых одинаково
распределенных случайных величин ξn имеет место

ξ1 + ξ2 + ...+ ξn
n

п.н.−→ a,

где a — константа, то случайные величины ξn имеют среднее, и a совпадает со средним. Этот
факт мы доказывать не будем.

Замечание. Отмечу, что сходимость почти наверное (или почти всюду) отнюдь не означа-
ет сходимость всюду. Может быть расходимость на некотором событии, но вероятность этого
события равна нулю. Значит, мы должны научиться как-то выделять события нулевой веро-
ятности и доказывать равенство нулю вероятности для таких событий.

Приведу любопытный пример. Рассмотрим последовательность независимых случайных ве-
личин εn, принимающих с вероятностью 1/2 значения −1 и 1. Ясно, что такая последователь-
ность удовлетворяет условиям теоремы. Но чтобы все было убедительно, я должен представить
вам вероятностное пространство и на нем соответствующую последовательность случайных
величин. Оказывается, это легко сделать. Возьмем в качестве вероятностного пространства
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интервал [0, 1) с мерой Лебега, в частности, вероятность интервала — это длина этого ин-
тервала. И рассмотрим последовательность случайных величин, которые в данном случае —
измеримые функции:

ε1 =

{
1, если x ∈ [0, 1/2),
−1, если x ∈ [1/2, 1),

ε2 =

{
1, если x ∈ [0, 1/4) ∪ [1/2, 3/4),
−1, если x ∈ [1/4, 1/2) ∪ [3/4, 1),

ε3 =

{
1, если x ∈ [0, 1/8) ∪ [1/4, 3/8) ∪ [1/2, 5/8) ∪ [3/4, 7/8),
−1, если x ∈ [1/8, 1/4) ∪ [3/8, 1/2) ∪ [5/8, 3/4) ∪ [7/8, 1),

. . .

Думаю, что вы сообразили сами, как строятся случайные величины ε4, ε5 и т. д. Нетрудно
проверить, и вам придется это сделать самим, что случайные величины εn независимы (про-
верьте независимость для пар εn, εm, где m 6= n, потом для троек, думаю, этого хватит). По
теореме Колмогорова, которую мы с вами докажем,

ε1 + ε2 + ...+ εn
n

п.н.−→ 0.

Но это верно не для всех случайных исходов ω ∈ [0, 1]. например, при ω = 0, εn(1) = 1
для всех n и предел будет равен 1, а не 0. Легко видеть, что лишь конечное число нулей
будет у нашей последовательности в любой точке ω = k/2n, поэтому предел также равен 1.
А вот придумать такое (нерациональное) ω, что предел равен 0, я не могу. Тем более, не
могу вычислить меру Лебега таких точек и доказать, что она равна 1. Так что, убедиться
в справедливости теоремы ’на примерах’ не получается. Итак, будьте внимательны, а вдруг
теорема великого Колмогорова неверна.

В замечательной книге Пойа ’Математика и правдоподобные рассуждения’ в одной из глав
используется эпиграф: ’Убедившись, что теорема верна, начинаем ее доказывать. Традицион-
ный профессор математики.’

К нашей ситуации этот эпиграф неприменим.
Кстати, последовательность построенных функций, если добавить к ней функцию, тожде-

ственно равную 1, называется системой Радемахера, она ортонормирована, но не полна. Но
если взять все конечные произведения таких функций Радемахера, то получим ортонормиро-
ванный базис Уолша в пространстве L2[0, 1). Этот базис используется в разных прикладных
задачах. в частности, в задачах сжатия информации.

План доказательства. Сначала мы докажем усиленный закон больших чисел в иной си-
туации. Если бы у одинаково распределенных случайных величин ξn существовали дисперсии
D(ξn), которые также должны быть равны, то∑

n

D(ξn)

n2 <∞. (2)

Мы сделаем следующее: заменим в условиях теоремы независимые одинаково распределенные
случайные величины ξn, у которых существует среднее m; на независимые случайные величи-
ны ηn, у которых существуют дисперсии и сходится ряд∑

n

D(ηn)

n2 <∞. (2′)

a) Мы докажем, что для последовательности независимых случайных величин (ηn), удо-
влетворяющей условию (2′), ряд ∑

n

ηn − Eηn
n

. (3)

сходится почти наверное.
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b) Отсюда выводится

(η1 − Eη1) + (η2 − Eη2) + ...+ (ηn − Eηn)

n

п.н.−→ 0. (4)

c) Далее мы возвращаемся к формулировке теоремы и показываем, что после незначитель-
ного изменения случайные величины ξn из условий теоремы будут удовлетворять условию (2).
Из этого факта мы выведем доказательство теоремы.

Для доказательства a) нам нужно провести большую дополнительную работу.
i) Итак, мы хотим доказать, что при выполнении условия (2′)

P

{
ряд

∑
n

ηn − E(ηn)

n
расходится

}
= 0. (3′)

Однако сходимость для почти всех точек не означает сходимость для всех точек (постройте
пример, когда нет сходимости на множестве всех рациональных точек).

Поэтому нужно научиться выделять события вероятности нуль, и доказывать, что это —
событие вероятности нуль.

ii) Кроме того, нужен какой-то критерий сходимости п.н. ряда
∑
n
ηn случайных величин, т.

е. сходимости числового ряда
∑
n
ηn(ω) за исключением ω из множества меры нуль.

iii) Для этого нам понадобится, как это не странно, новый для вас критерий сходимости
числового ряда.

Перейдем к пункту i) доказательства a).
i) Лемма Бореля – Кантелли. Пусть (An) — последовательность событий,

∑
n
P(An) <

∞, тогда
P {ω : ω ∈ An бесконечное число раз} = 0. (5)

Доказательство. Проверим, что

A = {ω : ω ∈ An бесконечное число раз} =
⋂
n

⋃
m≥n

Am.

Действительно, если ω ∈ An бесконечное число раз, то для любого n найдется такое m ≥ n,
что ω ∈ Am, но тогда ω ∈

⋃
m≥n

Am для любого n. Так как остаток сходящегося ряда
∑
n
P(An)

сходится к 0, мы получаем

P(A) ≤ P

 ⋃
m≥n

Am

 ≤ ∑
m≥n

P(Am)→ 0.

Упражнение. Докажите, что если события An независимы в совокупности, то из (4) следует∑
n
P(An) <∞.

ii) Лемма 1. Критерий типа Коши п.н. сходимости ряда из случайных величин.
Ряд из случайных величин

∑
n
ηn сходится п. н. тогда и только тогда, когда для любых ε > 0

и δ > 0 существует N ∈ N такое что для любого натурального r > 0

P

{
ω : max

s≤r

∣∣∣∣∣
N+s∑
i=N+1

ηi(ω)

∣∣∣∣∣ > δ

}
≤ ε. (∗∗)

Теперь приведем нужный нам критерий сходимости числового ряда, который представляет
собой нечто среднее между критерием Коши сходимости ряда и свойством сходимости ряда,
сходящегося абсолютно.
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iii) Ряд
∑
n
xn сходится тогда и только тогда, когда существуют сходящийся ряд

∑
k

δk,

где δk ≥ 0 для всех k, и возрастающая последовательность натуральных чисел n1 < n2 <
... < nk < ..., такие, что для любого k

max
nk<s≤nk+1

∣∣∣∣∣
s∑

i=nk+1

xi

∣∣∣∣∣ ≤ δk. (∗)

Для наших целей нам достаточно знать, что (*) влечет сходимость ряда
∑
n
xn. Проверим

выполнение условий критерия Коши: пусть дано произвольное ε > 0, выберем такое k, что∑
s≥k

δs < ε.

Теперь в критерии Коши мы выберем N = nk. Проверим нужное равенство для куска ряда от
N + 1 до N + r. Пусть l ≥ k таково, что N + r > nl. Мы имеем нужную нам оценку:∣∣∣∣∣

N+r∑
i=N+1

xi

∣∣∣∣∣ ≤
∣∣∣∣∣
nk+1∑
i=nk+1

xi

∣∣∣∣∣+ . . .+

∣∣∣∣∣∣
nl∑

i=nl−1+1

xi

∣∣∣∣∣∣+

∣∣∣∣∣
N+r∑
i=nl+1

xi

∣∣∣∣∣ ≤
l∑

j=k

δj ≤ ε.

Перейдем к доказательству леммы. Так как ε > 0 и δ > 0 могут быть выбраны сколь угодно
малыми, мы выберем последовательности εk и δk, сходящиеся к нулю достаточно быстро, а
по ним последовательность натуральных чисел nk = N из соотношения (**). Мы должны
убить двух зайцев: с одной стороны сделать сходящимся ряд

∑
k

δk, а с другой стороны сделать

сходящимся ряд из вероятностей

P

{
ω : max

nk≤s≤nk+1

∣∣∣∣∣
s∑

i=nk+1

ηi(ω)

∣∣∣∣∣ > δk

}
≤ εk,

для этого мы выбираем сходящимся ряд
∑
k

εk. Из условия леммы следует, что это возможно.

Обозначим

Ak =

{
ω : max

nk≤s≤nk+1

∣∣∣∣∣
s∑

i=nk+1

ηi(ω)

∣∣∣∣∣ > δk

}
.

Согласно лемме Бореля — Кантелли, мера всех ω, принадлежащих бесконечному числу эле-
ментов последовательности (Ak), равна нулю. С вероятностью 1 элементарный исход ω не
попадает в Ak, начиная с некоторого k = k(ω). Но тогда начиная с k(ω) для ω верно обратное
неравенство:

max
nk≤s≤nk+1

∣∣∣∣∣
s∑

i=nk+1

ηi(ω)

∣∣∣∣∣ ≤ δk,
где ряд из δk сходится. В результате числовой ряд

∑
i

ηi(ω) удовлетворяет нашему критерию
сходимости, а следовательно, сходится.

Необходимость в лемме мы использовать не будем, ее доказательство является упражнени-
ем.

Теперь докажем a).
Теорема о п.н. сходимости ряда независимых случайных величин. Если последо-

вательность независимых случайных величин ηn удовлетворяет условию∑
n

D(ηn) <∞,
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то ряд ∑
n

(ηn − E(ηi))

сходится почти наверное.
Доказательство состоит в проверке условий в лемме 1, для чего достаточно доказать

следующее замечательное
Неравенство Колмогорова. Пусть случайные величины ζi, i ≤ r, независимы и имеют дис-

персию. Тогда

P

{
max
s≤r

∣∣∣∣∣
s∑
i=1

[ζi − E(ζi)]

∣∣∣∣∣ > δ

}
≤

r∑
i=1

D(ζi)

δ2 .

Перепишем неравенство в виде

δ2P

{
max
s≤r

∣∣∣∣∣
s∑
i=1

[ζi − E(ζi)]

∣∣∣∣∣ > δ

}
≤

r∑
i=1

D(ζi). (∗ ∗ ∗)

Событие A в левой части неравенства мы представим в виде суммы несовместных событий

A1 = {|ζ1 − E(ζ1)| > δ} ,

A2 = {|ζ1 − E(ζ1)| ≤ δ, |[ζ1 − E(ζ1)] + [ζ2 − E(ζ2)]| > δ} , · · · ,

Ar = {· · · , |[ζ1 − E(ζ1)] + · · ·+ [ζr−1 − E(ζr−1)]| ≤ δ,

|[ζ1 − E(ζ1)] + · · ·+ +[ζr − E(ζr)]| > δ}.

Используя свойство дисперсии (дисперсия суммы независимых случайных величин равна
сумме дисперсий), но в обратную сторону, мы перепишем правую часть (***):

r∑
i=1

D(ζi) = D

(
r∑
i=1

ζi

)
=

∫
Ω

{
r∑
i=1

[ζi − E(ζi)]

}2

dP ≥

≥
∫
A

=

r∑
s=1

∫
As

=

r∑
s=1

∫
As

{
s∑
i=1

[ζi − E(ζi)] +

r∑
i=s+1

[ζi − E(ζi)]

}2

dP =

=

r∑
s=1

∫
As

{
s∑
i=1

[ζi − E(ζi)]

}2

+

{
r∑

i=s+1

[ζi − E(ζi)]

}2

+

+2

{
s∑
i=1

[ζi − E(ζi)]

}{
r∑

i=s+1

[ζi − E(ζi)]

}
dP.

Теперь рассмотрим отдельно слагаемые в интеграле
∫
As

. Согласно определению события As

имеем: ∫
As

{
s∑
i=1

[ζi − E(ζi)]

}2

dP ≥ δ2P(As).

Очевидно, что ∫
As

{
r∑

i=s+1

[ζi − E(ζi)]

}2

dP ≥ 0.

86



Далее,∫
As

{
s∑
i=1

[ζi − E(ζi)]

}{
r∑

i=s+1

[ζi − E(ζi)]

}
dP =

∫
Ω

IAs

{
s∑
i=1

[ζi − E(ζi)]

}{
r∑

i=s+1

[ζi − E(ζi)]

}
dP =

= E

(
IAs

{
s∑
i=1

[ζi − E(ζi)]

}{
r∑

i=s+1

[ζi − E(ζi)]

})
= E

(
IAs

{
s∑
i=1

[ζi − E(ζi)]

})
E

{
r∑

i=s+1

[ζi − E(ζi)]

}
= 0.

Прокомментируем эту выкладку. По определению события As случайная величина

IAs

{
s∑
i=1

[ζi − E(ζi)]

}

является функцией случайных величин ζi, где i ≤ s, в то же время второй множитель под
знаком E — функция случайных величин ζi, где i ≥ s+ 1. (На всякий случай проверьте сами,

что по известным числам ζi, где i ≤ s, однозначно восстанавливается IAs

{
s∑
i=1

[ζi − E(ζi)]

}
.)

Таким образом, оба множителя независимы согласно теореме 4 §6 (как функции независимых
наборов случайных величин), среднее значение произведения равно произведению средних, но
среднее значение второго множителя равно 0.

Если просуммировать все полученные оценки, мы получим

r∑
i=1

D(ζi) ≥ δ2
r∑
s=1

P(As) = δ2P(A).

Теперь, если выполнены условия теоремы о п.н. сходимости ряда, мы легко можем про-
верить условия критерия Коши п.н. сходимости ряда. А именно, мы выбираем такое N , что∑∞
n=N+1 D(ηn) < δ2ε и подставляем в неравенство Колмогорова ζ1 = ηN+1,...,ζr = ηN+r (про-

верьте!).
Следствие 1. Если последовательность независимых случайных величин ηi, удовлетво-

ряет условию ∑
n

D(ηn)

n2 <∞,

то ряд ∑
n

ηn − Eηn
n

сходится почти наверное.
Дальше нам понадобится сходимость по Чезаро: последовательность sn называется сходя-

щейся по Чезаро к s, если

(s1 − s) + (s2 − s) + ...+ (sn − s)
n

→ 0.

Оправданием этого понятия является следующая
Теорема Чезаро. Если sn → s (в обычном смысле), то sn сходится к s по Чезаро.
Доказательство очевидно. Начиная с n > N верно |sn − s| ≤ ε, в то же время

(s1 − s) + (s2 − s) + ...+ (sn − s)
n

=

=
(s1 − s) + (s2 − s) + ...+ (sN − s)

n
+

(sN+1 − s) + ...+ (sn − s)
n

.
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В этом представлении первое слагаемое сходится к нулю, так как числитель фиксирован, а
второе слагаемое меньше n−Nn ε.

Сейчас мы установим b), для этого введем обозначение xn = ηn(ω) − Eηn, рассмотрим те
элементарные исходы ω, для которых ряд

∑
n
xn/n сходится к s и покажем, что тогда

x1 + x2 + ...+ xn
n

→ 0. (5)

Обозначим
sn =

x1

1
+
x2

2
+ ...+

xn
n
→ s.

Тогда левая часть (5) имеет вид

s1 + 2(s2 − s1) + ....+ n(sn − sn−1)

n
=
nsn − s1 − ....− sn−1

n
. (6)

Так как sn → s, из теоремы о том, что обычная сходимость влечет сходимость по Чезаро,
следует, что s1 + ....+ sn−1

n → s. Отсюда следует, что выражение в (6) сходится к 0.
Итак, мы по существу доказали следующее
Следствие 2. Если последовательность независимых случайных величин ηi удовлетво-

ряет условию ∑
n

D(ηn)

n2 <∞,

то
(η1 − Eη1) + (η2 − Eη2) + ...+ (ηn − Eηn)

n

п.н.−→ 0. (9)

с) Теперь мы наконец перейдем к доказательству основной теоремы, т.е. (1). рассмотрим
случай одинаково распределенных случайных величин ξn, у которых существует среднее. На-
помним, что для любой измеримой функции f∫

R

f(x)Pξ1(x) = ... =

∫
R

f(x)Pξn(x) = ...,

и что интегрируемость означает для интеграла Лебега абсолютную интегрируемость, т.е.

E|ξ1| =
∫
R

|x|Pξ1(x) <∞.

Рассмотрим новые случайные величины

ηn = ξnI{|ξn|≤n}.

Как функции независимых случайных величин, новые случайные величины тоже независимы,
но их распределения не обязательно одинаковы. Покажем, что они удовлетворяют условиям
пункта a): ∑

n

E(ηn)2

n2 <∞. (7)

Мы выразим эту сумму через (совпадающие) распределения случайных величин ξi, т. е., через
распределение ξ1. ∑

n

E(ηn)2

n2 =
∑
n

∫
|x|≤n

|x|2 1

n2 dPξ1(x) =

=
∑
n

∑
1≤i≤n

∫
i−1<|x|≤i

=
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=
∑
n

∫
n−1<|x|≤n

|x|2
(

1

n2 +
1

(n+ 1)2 + ...

)
dPξ1 ≤

≤
∑
n

∫
n−1<|x|≤n

|n|2C
n
dPξ1 ≤

∫
R

C(|x|+ 1)dPξ1 ≤ Const .

Так как дисперсии неотрицательны,

E(ηn)2 ≥ [E(ηn)]
2
.

Поэтому из
∑
n

E(ηn)2

n2 <∞ следует
∑
n

D(ηn)
n2 <∞.

Таким образом, условия следствия 2 выполнены, и для последовательности ηn справедлив
усиленный закон больших чисел в формулировке следствия 2. Дальнейшая наша задача —
доказать справедливость этой формулировки также для первоначальных случайных величин
ξn, а отсюда вывести справедливость и формулировки (1).

Докажем, что ∑
n

P {ξn 6= ηn} <∞. (10)

Здесь опять выгодно выразить сумму через интеграл по распределению ξ1.∑
n

P {ξn 6= ηn} =
∑
n

∫
(n,∞)

dPξ1 =

∑
n

∫
R

I(n,∞)dPξ1 =

∫
R

∑
n

I(n,∞)(x)dPξ1 ≤

≤
∫
R

|x|dPξ1 <∞.

В итоге, опять по лемме Бореля-Кантелли, с вероятностью 1 случайные величины ξn(ω) сов-
падают с ηn(ω), начиная с некоторого случайного n = n(ω). Причем нетрудно видеть, что для
всех таких ω ∈ Ω̃ (где PΩ̃ = 1) из сходимости

(η1(ω)− Eη1) + (η2(ω)− Eη2) + ...+ (ηn(ω)− Eηn)

n
→ 0.

следует сходимость

(ξ1(ω)− Eη1) + (ξ2(ω)− Eη2) + ...+ (ξn(ω)− Eηn)

n
→ 0.

Действительно, числители в обеих дробях отличаются лишь на фиксированное конечное число
слагаемых, а знаменатель сходится к нулю, поэтому разность дробей сходится к нулю. Итак,
из

(η1(ω)− Eη1) + (η2 − Eη2) + ...+ (ηn − Eηn)

n

п.н.−→ 0.

следует
(ξ1 − Eη1) + (ξ2 − Eη2) + ...+ (ξn − Eηn)

n

п.н.−→ 0. (11)

Для окончательного доказательства теоремы нам осталось заменить в (11) Eηi на Eξi для всех
i, а для этого достаточно доказать сходимость

(Eξ1 − Eη1) + (Eξ2 − Eη2) + ...+ (Eξn − Eηn)

n
−→ 0. (12)
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Но вспомним, что Eξn = Eξ1. Соотношение (12) следует из сходимости

Eηn =

∫
Ω

ξ1I{|ξ1|≤n}dP→
∫
Ω

ξ1dP = Eξ1,

которое само следует из теоремы Лебега для всюду сходящейся последовательности ξ1I{|ξ1|≤n}
(ограниченной интегрируемой функцией |ξ1|), и из теоремы Чезаро. Поэтому, чтобы придти к
формуле (1), нам достаточно перенести m в правую часть.

Теорема Леви и ее следствия для интегралов по распределению Распределение –
ограниченная мера, поэтому имеется сходимость интегралов по распределению от ограничен-
ных и даже интегрируемых функций. Дифференцирование под знаком интеграла.

Как записываются интегралы по распределению —
∫
dFξ, d

∫
Pξ.

§12. Слабая сходимость распределений

В теории вероятностей (в отличие от изучаемой в курсе функционального анализа теории
меры) кроме сходимости функций (они в теории вероятностей называются случайными вели-
чинами, а точки, на которых они заданы, называются элементарными исходами) изучается
также сходимость распределений вероятностей на числовой прямой или на многомерных про-
странствах. Каким условиям должна удовлетворять сходимость распределений вероятностей?

Первая мысль, которая кажется очень разумной — сходимость распределений Pn → P долж-
на означать, что

Pn(B)→ P(B) (?)

для любого ’хорошего’ (хорошо бы, любого борелевского) множества на числовой прямой. Что-
бы проверить эту идею, рассмотрим крайний случай – Pn – распределения случайных величин
ξn, чтобы все было проще, будем считать их постоянными, например, равными 1/n. Имеем:
1/n → 0 = ξ. Будет разумно, если и Pξn → Pξ. Но если мы выберем очень простое множество
A = {0}, мы будем иметь

Pξn(A) = 0,Pξ(A) = 1.

Итак, условие (?) оказывается слишком жестким. Мы введем другую значительно более слабую
сходимость, которая так и называется ’слабая сходимость’ вероятностных мер. Эта сходимость
тесно связана со сходимостью по вероятности.

Определение 1. Последовательность Pn вероятностных распределений на борелевской
числовой прямой R слабо сходится к P (мы пишем

Pn
сл−→ P),

если для любой непрерывной ограниченной функции f на R имеет место сходимость интегра-
лов ∫

R

f(x)dPn(x)→
∫
R

f(x)dP(x). (1)

Итак, мы ввели слабую сходимость и обещаем, что она будет подходящей для наших целей.
Мы покажем, что из сходимости

ξn
P−→ ξ

следует
Pξn

сл−→ Pξ.

Кроме того, будет показана возможность другого определения слабой сходимости — а именно,
на языке функций распределения Fξn и Fξ.

В терминах слабой сходимости в теории вероятностей среди множества всех распределений
на числовой прямой выделяются классы особенно важных распределений, которые являют-
ся пределами распределений встречающихся в приложениях последовательностей случайных
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величин. Одна из наших целей — доказательство теорем о сходимости. Для этого придется раз-
вить новый метод представления распределений случайных величин. В теории вероятностей
эти представления называются характеристическими функциями распределений или случай-
ных величин (не путать с характеристическими функциями множеств (событий), которые в
литературе по теории вероятностей предпочитают называть индикаторами событий). В клас-
сическом анализе такого рода представления называются преобразованиями Фурье функций.

2. Слабая сходимость на языке функций распределений
Теорема. Пусть задана последовательность Pn вероятностных распределений на число-

вой прямой R и одно распределение P. Напомним, что каждое вероятностное распределение
P на числовой прямой задает функцию распределения

F (x) = P(−∞, x)

и, в свою очередь, однозначно задается этой функцией распределения. Мы также обозначим
через Fn функции распределения, определяемые вероятностными распределениями Pn.

Имеем: Pn слабо сходится к P тогда и только тогда, когда

Fn(x)→ F (x)для любой x — точки непрерывности функции F. (2)

Комментарий. В этой теореме условие сходимости накладывается на вероятности некото-
рых хороших множеств A вида (−∞, x), но не для всех x. Это естественно, если x — точка
разрыва функции F , то задача формулировки соответствующего условия осложняется — что
считать значением F (x) – предел справа F (x+ 0) или предел слева F (x− 0).

Замечание. В определении в формулировке теоремы 1 мы упоминаем точки непрерывности
функции распределения F . Но существуют ли такие точки? Легко показать, что число точек
разрыва не более чем счетно (оно является объединением конечных множеств точек разрыва
не более 1/2 (таких точек не больше 2), 1/3,..., 1/n,... ). А мощность любого интервала в R
несчетна. Таким образом, в любой окрестности любой точки в R (как справа, так и слева)
имеются точки непрерывности функции F .

Доказательство. Как доказать, что (2) влечет (1)? Итак, нужно доказать сходимость∫
R

f(x)dPn(x)→
∫
R

f(x)dP(x).

Идея доказательства состоит в сведении доказательства сходимости интегралов к доказа-
тельству сходимости интегральных сумм.

Несколько раз используется следующее простое утверждение — аналог общеизвестного пра-
вила двух милиционеров:

Лемма 1. xn → x тогда и только тогда, когда для любого ε > 0 существует последова-
тельность yn → y такая, что |xn − yn| < ε, начиная с некоторого n0, и |x− y| < ε.

Лемма 2. Другой вариант правила двух милиционеров — наличие двух ε-милиционеров
для любого ε > 0:

yn ≤ xn ≤ zn, yn → y, zn → z, |x− y| < ε, |x− z| < ε.

Доказательства этих утверждений очевидны. Мы приведем доказательство первого факта,
но только для справок. Учить доказательство этого факта не нужно, (но надо самим уметь это
доказывать). Итак, выберем ε = ε

3 . Для n ≥ n0 имеем |xn − yn| < ε
3 . Кроме того, |x − y| < ε

3 .
По определению предела для n ≥ n1 имеем |yn − y| < ε

3 . В итоге,

|xn − x| ≤ |xn − yn|+ |yn − y|+ |y − x| <
3ε

3
для n ≥ max{n0, n1}.

Лемма 1 позволяет сводить задачу доказательства сходимости одной последовательности к
задаче доказательства сходимости другой последовательности.
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Вернемся к доказательству теоремы.
Напомним, что приближение интеграла Римана интегральной суммой оказалось возмож-

ным благодаря равномерной непрерывности непрерывной функции на отрезке. В нашем случае
мы интегрируем не по отрезку, а по бесконечной числовой прямой.

Итак, первая цель — заменить интегралы в (1) по числовой прямой интегралами по отрезку.
Делается это следующим образом: мы подбираем такие a < b, что

1− F (b) < ε/4C, F (a) < ε/4C, (∗)

где = sup{|f(x)|x ∈ R}. Сдвигая, если понадобится, a влево, а b – вправо, мы добьемся того,
что a и b будут точки непрерывности F .

В нашем критерии сходимости мы берем

xn =

∫
R

f(x)dPn(x), yn =

∫
[a,b]

f(x)dPn(x),

x =

∫
R

f(x)dP(x), y =

∫
[a,b]

f(x)dP(x).

Действительно, из условия теоремы 1 следует, что для n > n0

1− Fn(b) < ε/2C, Fn(a) < ε/2C,

|xn−yn|=

∣∣∣∣∣∣∣
∫
R

f(x)dPn(x)−
∫

[a,b)

f(x)dPn(x)

∣∣∣∣∣∣∣ ≤
∫

(−∞,a)∪[b,∞)

|f(x)|dPn(x)≤

≤ C (P(−∞, a) + P[b,∞)) = C{(1− Fn(b)) + Fn(a)} ≤ ε,
точно так же

|x− y| ≤ ε.
Теперь мы должны доказать yn → y. Мы опять используем лемму 1. Для доказательства

сходимости (yn) мы заменяем интегралы интегральными суммами. Используя равномерную
непрерывность f на [a, b], получаем такое разбиение a = u0 < u1 < ... < ur = b, что функция
f на любом из отрезков разбиения меняется меньше чем на ε, но при этом мы накладываем
на точки ui дополнительное условие, они должны быть точками непрерывности функции F .
Теперь нам нужно доказать

xn =

∫
[a,b)

f(x)dPn(x)→ x =

∫
[a,b)

f(x)dP(x).

Роль yn играют интегральные суммы

r−1∑
i=0

f(vi)[Fn(ui+1)− Fn(ui)],

где vi ∈ (ui, ui+1) фиксированы. Дальнейшее ясно:

r−1∑
i=0

f(vi)[Fn(ui+1)− Fn(ui)]→
r−1∑
i=0

f(vi)[F (ui+1)− F (ui)].

Но нужно еще проверить неравенства, связывающие xn, x и yn, y в этой части доказатель-
ства. Обозначим

f̃(x) =

r−1∑
i=0

f(vi)I[ui,ui+1), x ∈ [a, b].
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Из выбора разбиения следует, что |f − f̃ | < ε. Поэтому∣∣∣∣∣∣∣
∫

[a,b)

f(x)dP(x)−
r−1∑
i=0

f(vi)[F (ui+1)− F (ui)]

∣∣∣∣∣∣∣ =

=

r−1∑
i=0

∫
[ui+1,ui+1)

|f(x)− f̃(x)|dP(x) ≤ ε
r−1∑
i=0

[F (ui+1)− F (ui)] ≤ ε · 1.

То же верно для интегралов по Pn(x).
Импликация (1) ⇒ (2) доказывается путем подбора функций f . Теперь нужно для фикси-

рованной точки x непрерывности функции F доказать сходимость Fn(x) → F (x). Так как x
— точка непрерывности, существует окрестность [x − δ, x + δ] точки x, в которой функция F
меняется не больше чем на ε. Заметим, что ввиду монотонности F для этого достаточно

F (x+ δ)− F (x) ≤ ε, F (x)− F (x− δ) ≤ ε

По этой окрестности мы подберем две функции — f1 и f2:

f1(y) = 1 при y ∈ (−∞, x− δ], f1(y) = 0 при y ∈ [x,∞),

а между точками x− δ и x функция f1 убывает линейно.
Аналогично строится функция f2:

f2(y) = 1 при y ∈ (−∞, x], f2(y) = 0 при y ∈ [x+ δ,∞),

а между точками x и x+ δ функция f2 убывает линейно.
Легко проверяется, что последовательности интегралов∫

R

f1(x)dPn(x),

∫
R

f2(x)dPn(x)

являются ε-милиционерами для последовательности Fn(x) и числа F (x).
Действительно, очевидно, что

I(−∞,x−δ) ≤ f1 ≤ I(−∞,x) ≤ f2 ≤ I(−∞,x+δ).

Поэтому ∫
R

f1(y)dPn(y) ≤ Fn(x) ≤
∫
R

f2(y)dPn(y) для всех n,

∫
R

f1(y)dPn(y)→
∫
R

f1(y)dP,

∫
R

f2(y)dPn(y)→
∫
R

f2(y)dP(y),

F (x)− ε ≤ F (x−δ)≤
∫
R

f1(y)dP(y)≤F (x)≤
∫
R

f2(y)dP(y)≤F (x+δ)≤F (x)+ε.

Упражнение. Пусть Pn — нормальные распределения с параметрами N(mn, σn), P — нор-
мальное распределение с параметрами N(m,σ), Дано, что mn tom, σn → σ. Доказать

Pn
сл−→ P.
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Если mn = 0, σn → 0, то Pn слабо сходится к распределению, сосредоточенному в точке 0
(такое распределение часто называется функцией Дирака δ).

3. Теорема. Если ξn, ξ – случайные величины,

ξn
P−→ ξ,

то
Pξn

сл−→ Pξ.

Доказательство использует формулу (2) в качестве определения слабой сходимости. Надо
доказать:

Fξn(x)→ Fξ(x) для любой точки x непрерывности Fξ.

Мы опять фиксируем такое δ, что Fξ изменяется в окрестности [x− δ, x+ δ] не более чем на ε,
кроме того, фиксируем n0, начиная с которого

P {|ξn − ξ| ≥ δ} < ε.

Непосредственно проверяются два включения

{ξ < x− δ} ⊂ {ξn < x} ∪ {|ξn − ξ| ≥ δ} , (∗)

{ξn < x} ⊂ {ξ < x+ δ} ∪ {|ξn − ξ| ≥ δ} . (∗∗)

Проверим, например, первое включение: если

ξ(ω) < x− δ, ξn(ω) ≥ x, то |ξn(ω)− ξ(ω)| ≥ δ.

Далее мы видим: (*) влечет

Fξ(x)− ε ≤ Fξ(x− δ) ≤ Fξn(x) + P {|ξn − ξ| ≥ δ} ≤ Fξn(x) + ε,

(**) влечет
Fξn(x) ≤ Fξ(x+ δ) + P {|ξn − ξ| ≥ δ} ≤ Fξ(x) + 2ε.

Вместе эти неравенства ввиду произвольности ε означают нужную сходимость.
Пример. Очевидно, что из слабой сходимости распределений случайных величин Fξn к Fξn

не следует сходимость по вероятности случайных величин ξn к ξ. Приведем простой пример:

Ω = {0, 1},P {0} =
1

2
,P {1} =

1

2
, ξn(1) = 0, ξn(0) = 1, ξ(0) = 0, ξ(1) = 1.

Имеем:
P {|ξn − ξ| = 1} = 1,

в то же время
Pξn = Pξ,

и тем более имеет место сходимость
Pξn

сл−→ Pξ.

Этот пример основан на наличии случайной величины η, имеющих то же распределение,
что и ξ, но не равных ξ. Более того, любая такая пара {ξ, η} дает контрпример η, η, η, ... 6→ ξ.
Возможность выбора пары зависит также от вероятностного пространства. Например, если ве-
роятность одной точки равна 2/3, а другой — 1/3, такой пары не существует. Но если ξ = Const,
то есть постоянная случайная величина, то такой контрпример оказывается невозможным. В
этом случае верно обратное утверждение.
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Обозначения. Слабая сходимость — сходимость распределений, а не случайных величин.
Однако нам будет удобно следующее обозначение:

ξn
D−→ ξ ⇐⇒ Pξn

сл−→ Pξ,

при этом мы будем говорить, что ξn сходится к ξn по распределению (in distribution). Точно
так же мы будем использовать обозначение

ξ
D
= η ⇐⇒ Pξ = Pη,

и будем говорить, что случайные величины ξ и η совпадают по распределению.
4. Теорема. Если ξn, ξ – случайные величины, ξ = c,

Pξn
сл−→ Pξ,

то
ξn

P−→ ξ.

Доказательство. В этой ситуации все точки x 6= c являются точками непрерывности функ-
ции распределения Fξ. Пусть даны δ > 0 и ε > 0, возьмем x = c + δ и x = c − δ. Выберем по
ним такое n0, что для всех n > n0 имеют место неравенства

|Fξn( + δ)− Fξ( + δ)| < ε

2
, |Fξn(− δ)− Fξ(− δ)| <

ε

2
.

Так как
Fξ(− δ) = 0, Fξ( + δ) = 1,

это означает
Fξn( + δ) > 1− ε

2
, Fξn(− δ) < ε

2
.

Рассмотрим
P {|ξn − ξ| > δ} = P {ξn > c+ δ}+ P {ξn < c− δ} ≤

≤ (1− Fξn( + δ)) + Fξn(− δ) ≤ ε

2
+
ε

2
.

Мы получили сходимость по вероятности.
Комментарий. Итак, имеется связь между слабой сходимостью и сходимостью по вероятно-

сти. Но не нужно путать эти два понятия. Сходимость по вероятности относится к случайным
величинам, то есть к функциям, заданным на множестве элементарных исходов. Слабая сходи-
мость относится к распределениям, то есть к вероятностям, заданным на борелевских множе-
ствах вещественной прямой (которая, кстати, состоит из чисел, а не из элементарных исходов).
Добавим к этому то, что иногда мы создаем вероятностные модели, в которых элементарные
исходы — числа в R или векторы в Rn, события — борелевские множества, а вероятность —
распределение некоторой случайной величины или некоторого случайного вектора.

Упражнение 1. Возьмем в качестве вероятностного пространства (0, 1) с σ-алгеброй бо-
релевских множеств как σ-алгеброй собыий и вероятностью, равной мере Лебега. Покажите,
что для любой строго возрастающей непрерывной функции распределения F функция F−1 —
случайная величина на (0, 1) c функцией распределения F . Используя эту конструкцию, при-
думайте две разные случайные величины на (0, 1) c нормальным распределением со средним
0 и дисперсией 1.

Упражнение 2.Проверьте целесообразность введения в понятие слабой сходимости на языке
интегралов условий ограниченности и непрерывности произвольной функции.

a) Покажите, что если измеримая функция f на R неограничена, то существует такое од-
номерное распределение P, что

∫
R

f(x)dP(x) расходится. Намек. Распределение возьмите дис-

кретным, тогда интеграл превратится в ряд, нужно, чтобы этот ряд сходился к∞ или −∞. Из
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этого упражнения следует, что определение слабой сходимости оказывается неуниверсальным.
Поэтому для искомой вероятности даже утверждение

P,P,P, ... сл−→ P)

не имеет смысла.
b) Пусть f(x) = I(−∞,0], Pn{1/n} = 1 — распределения констант, сходящихся к нулю,

P{0} = 1 . Тогда
∫
R

f(x)dPn(x) = 0,
∫
R

f(x)dP(x) = 1.

Упражнение 18. Если f : R→ R — непрерывная функция,

Pξn
сл−→ Pξ,

то
Pf(ξn)

сл−→ Pf(ξ).

§13. Характеристическая функция

Для изучения слабой сходимости распределений эффективен аппарат характеристических
функций (преобразований Фурье распределений).

1. Характеристическая функция.
Определение. Характеристической функцией ϕ вероятностного распределения P на чис-

ловой прямой называется функция

ϕ(t) =

∫
R

eitxdP(x).

Если нет возможности путаницы, мы будем обозначать характеристическую функцию ϕP
или ϕF , если распределение задано функцией распределения (или ϕξ, если наше распределение
является распределением случайной величины ξ), в этом случае мы можем ее определить
соотношением

ϕξ(t) = E(eitξ),

то же соотношение в интегральных обозначениях записывается так:

ϕξ(t) =

∫
Ω

eitξdP.

Если использовать интеграл Римана – Стильтьеса, получается

ϕξ(t) =

∫
R

eitxdFξ(x).

Если имеется функция плотности распределения, мы имеем несобственный интеграл:

ϕξ(t) =

∫
R

eitxpξ(x)dx.

Наконец, в случае дискретного распределения, мы имеем сумму:

ϕξ(t) =
∑
n

eitanP {ξ = an} .

2. Свойства характеристических функций
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1. ϕ(0) = 1; ϕ(−t) = ϕ̄(t).
2. ϕ — непрерывная и даже равномерно непрерывная функция;
Непрерывность немедленно следует из теоремы Лебега и определения непрерывности на

языке последовательностей. Пусть tn → t, тогда |eitnx| = 1 ≤ 1 и eitnx → eitnx для всех x, а
функция f(x) = 1 интегрируется по вероятностной (!) мере dFξ(x). По теореме Лебега∫

R

eitnxdFξ(x)→
∫
R

eitxdFξ(x).

Равномерная непрерывность характеристической функции доказывается тоньше. Сначала
по данному ε > 0 (используя сходимость функций распределения на ±∞) мы выбираем такие
a, b ∈ R, что ∫

[a,b]

dF (x) > 1− ε

4
.

Так как функция u→ eiu непрерывна в нуле, то для некоторого δ1 > 0 верно
∣∣1− eiu∣∣ < ε/2

для всех |u| < δ1. Далее выберем 0 < δ < δ1/max |a|, |b|. Тогда из |t| < δ, x ∈ [a, b] следует∣∣1− eitx∣∣ < ε/2. Если теперь |t− t′| < δ, то

|ϕF (t)− ϕF (t′)| =

∣∣∣∣∣∣
∫
R

eitx − eit
′xdF (x)

∣∣∣∣∣∣ ≤
∫
R

∣∣∣eitx − eit′x∣∣∣ dF (x) =

=

∫
[a,b]

+

∫
R\[a,b]

≤
∫

[a,b]

ε/2dF (x) +

∫
R\[a,b]

2dF (x) ≤ ε.

3. Если случайные величины ξ и η независимы, то

ϕξ+η(t) = ϕξ(t)ϕη(t);

4.
ϕaξ+b(t) = eitbϕξ(at);

5. Если случайная величина ξ имеет среднее, то дифференцирование под знаком интеграла
дает нам

ϕ′ξ(0) = iE(ξ),

поэтому
ϕξ(t) = 1 + iE(ξ)t+ o(t).

Если случайная величина ξ имеет дисперсию, то

ϕ′′ξ (0) = −E(ξ2),

ϕξ(t) = 1 + iE(ξ)t− 1

2
E(ξ2)t2 + o(t2).

6. Теорема единственности. Характеристическая функция ϕF однозначно определяет
функцию распределения F (а следовательно, и распределение).

7. Теорема непрерывности. Последовательность распределений сходится слабо тогда
и только тогда, когда последовательность их функций распределения сходится поточечно.

Комментарий. Свойства 1-4 проверяются непосредственной проверкой. Причем свойство
3 – очевидное следствие свойства среднего – среднее произведения независимых случайных
величин равно произведению средних. Свойство 5 получается разложением Тейлора характе-
ристической функции с одновременным дифференцированием под знаком среднего. Прежде
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чем доказать свойство 6, выводится формула обращения, которая позволяет выражать че-
рез характеристическую функцию разность значений функции распределения в двух точках
непрерывности функции распределения. Доказательство теоремы непрерывности сложно и ис-
пользует теоремы о компактности некоторого расширения множества функций распределений,
критерий слабой компактности в пространстве функций распределения, а также одно неравен-
ство, позволяющее проверить этот критерий в терминах поведения функций распределения в
окрестности нуля.

3. Как вычислять характеристическую функцию?
Если ξ имеет дискретное распределение (

∑
n
anP {ξ = an} = 1), то

ϕξ(t) =
∑
n

eiantP {ξ = an} .

Если ξ имеет непрерывный тип распределения с функцией плотности pξ(x), то

ϕξ(t) =

∫
R

eitxpξ(x).

4. Примеры.
1. Характеристическая функция распределения Пуассона.

P {k} = λk

k!
e−λ ϕ(t) = eλ(e

it−1).
2. Характеристическая функция нормального распределения.

Сначала рассмотрим параметры N(0, 1), p(x) = 1√
2p
e−

x2

2 . Тогда

ϕ(t) =

∫
R

1√
2π
e−

x2

2 +itxdx = e−
t2

2 .

Этот интеграл можно найти в Демидовиче. Но можно вычислить и самостоятельно, представив
его как интеграл по прямой R на комплексной плоскости C и используя известную теорему о
независимости от пути интеграла от аналитической функции.

ϕ(t) =

∫
R

1√
2π
e−

z2

2 +itzdz = e
− t

2

2

∫
R

1√
2π
e−

(z−it)2
2 dz =

= e−
t2

2

∫
R−it

1√
2π
e−

z2

2 dz = e−
t2

2

∫
R

1√
2π
e−

z2

2 dz = e−
t2

2 .

Общий случай сводится к предыдущему: нормальное распределение с параметрами m и σ
имеет случайная величина σξ +m, где ξ имеет параметры 0, 1. По свойству 4

ϕσξ+m(t) = eitmϕξ(σt) = eitm−
1
2σ

2t2 .

Элементарным следствием из этих выкладок и теоремы единственности является устой-
чивость распределений Пуассона и нормального: сумма независимых случайных величин с
распределением Пуассона имеет распределение Пуассона, сумма независимых случайных ве-
личин с нормальным распределением имеет нормальное распределение.

3. Характеристическая функция распределения Коши.
Упражнение. Докажите, что ∫ ∞

−∞
eitx

1

π(1 + x2)
dx = e−|t|.
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Покажите, что если ξ1,...,ξn независимы и имеют распределение Коши, то

ξ1 + ...+ ξn
n

имеет распределение Коши.
5. Центральная предельная теорема. Пусть (ξn) — последовательность одинаково

распределенных независимых случайных величин со средним и дисперсией, обозначим

E(ξn) = m,D(ξn) = σ2.

Тогда последовательность распределений центрированных и нормированных сумм

ξ1 + ξ2 + ...+ ξn − nm
σ
√
n

слабо сходится к нормальному распределению с параметрами N(0, 1).
Доказательство основано на разложении (свойство 5), теоремах единственности и непре-

рывности, свойствах 3 и 4.
Запишем разложение 5 для характеристической функции случайной величины ξi −m

σ . У
этой случайной величины среднее равно нулю, а дисперсия — 1. Поэтому

ϕξi −m
σ

(t) = 1 + 0 · it− t2

2
+ o

(
t2
)
.

По свойству 3 имеем:

ϕξ1 + ξ2 + ...+ ξn − nm
σ

=

(
1− t2

2
+ o

(
t2
))n

.

По свойству 4

ϕξ1 + ξ2 + ...+ ξn − nm
σ
√
n

=

(
1− t2

2n
+ o

(
1

2n

))n
→ e−

t2

2 .

По теореме непрерывности мы имеем сходимости, а по теореме единственности идентифици-
руем распределение с данной характеристической функцией.

Упражнения 19. a. Докажите, что слабый предел нормальных распределений — нормаль-
ное распределение (здесь мы считаем распределение константы вырожденным нормальным
распределением).

b. Докажите, что слабый предел распределений Пуассона — распределение Пуассона (здесь
мы считаем распределение константы вырожденным распределением Пуассона).

c. Докажите, что слабый предел равномерных распределений — равномерное распределение
(здесь мы считаем распределение константы вырожденным равномерным распределением).

d. Может ли предел по вероятности случайных величин с нормальным распределением
иметь распределение, не являющееся нормальным? (Как и выше, здесь мы считаем распреде-
ление константы вырожденным нормальным распределением).

e. Даны распределения Pn, задаваемые равенствами Pn{k/n} = 1/n для k = 1, 2, ...,m.
Доказать, что распределения Pn слабо сходятся к равномерному распределению на отрезке
[0, 1].

Важнейшие свойства характеристических функций
Теорема единственности
Формула обращения
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Пусть a и b — две точки непрерывности функции распределения F . Тогда

F (b)− F (a) = lim
A→∞

1

2π

A∫
−A

e−ita − e−itb

it
ϕF (t)dt. (1)

Интеграл в правой части является интегралом в смысле главного значения, если заменить
предел на интеграл по всей числовой прямой, то возникнет неочевидный вопрос о сходимо-
сти интеграла, во многих случаях, например, для случая ϕF (t) = cos tb = eitb+e−itb

2 интеграл
по t ∈ R в обычном смысле расходится. В математическом анализе имеются понятия преоб-
разования Фурье и обратного преобразования Фурье, которое с точностью до нормирующего
множителя выглядит так:

p(x) =
1

2π

∫
R

e−itxϕF (t)dt,

где p – функция плотности для F , которая должна удовлетворять некоторым дополнительным
условиям. Формула (1) получается из предыдущей интегрированием от a до b, но выполняет-
ся при значительно более общих условиях. Плотности и ,тем более, ’хорошей плотности’ у
распределения может и не быть.

Для доказательства (1) мы заменим ϕF на свое определение и получим двойной интеграл:

lim
A→∞

1

2π

A∫
−A

e−ita − e−itb

it
dt

∫
R

eitxdF (x).

Нетрудно проверить, что подынтегральная функция ограничена на произведении [−A,A]×R,

проблемы возможны лишь в точке t = 0, но там предел e−ita − e−itb
it вычисляется по прави-

лу Лопиталя, т.е. существует. Обе меры, по которым мы интегрируем, и на [−A,A] и на R,
конечны. Мы вправе применить теорему Фубини и записать все следующим образом:

lim
A→∞

1

2π

∫
R

dF (x)

A∫
−A

e−ita − e−itb

it
eitxdt. (2)

Мы вводим дополнительное обозначение и сводим внутренний интеграл к следующему:

IA(x) =

A∫
−A

e−ita − e−itb

it
eitxdt = 2

A∫
0

sin((x− a)t)

t
− sin((x− b)t)

t
dt.

Теперь мы хотим перенести предел в (2), то есть доказать

lim
A→∞

1

2π

∫
R

IA(x)dF (x) =
1

2π

∫
R

lim
A→∞

IA(x)dF (x),

для этого мы воспользуемся теоремой Лебега. Чтобы быть вправе использовать теорему Лебега
(она формулируется для последовательностей), мы будем доказывать предельное соотношение
на языке последовательностей. Итак, нам достаточно доказать

i) сходимость lim
An→∞

IAn(x) для всех x,

ii) ограниченность функции IA(x) некоторой константой C (функция g(x) = C очевидно
интегрируема по мере dF ).

i) следует из известной вам сходимости интеграла
∞∫

0

sinαt

t
dx,
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к которому сходятся оба интеграла в определении IA(x), с α = (x− a) и с α = (x− b).

ii) следует из ограниченности всех интегралов вида
B∫
0

sin t
t dt, которая следует из сходимости

интеграла
∞∫
0

sin t
t dt (ограниченность в некоторой окрестности∞, то есть для всех B ∈ (B1,∞)),

и из непрерывности функции
B∫
0

sin t
t dt на отрезке [0, B1]. Итак,

∣∣∣∣∣∣
B∫

0

sin t

t
dt

∣∣∣∣∣∣ < C,∀B,

в то же время
A∫

0

sin(x− a)t

t
dt = sgn(A(x− a))

|A(x−a)|∫
0

sin t

t
dt.

Теперь мы можем завершить доказательство формулы обращения. Обозначим

I(x) =

∞∫
0

sin((x− a)t)

t
− sin((x− b)t)

t
dt =

=


0, если x > a, x > b;
π, если a < x < b;
0, если x < a, x < b;
π/2, если x = b;
−π/2, если x = b.

Заметим, что значения I в точках a и b не существенны, так как меры этих точек равны нулю
в силу непрерывности F . Пользуясь этим, мы подправим подинтегральную функцию в этих
точках. Итак,

lim
A→∞

1

2π

A∫
−A

e−ita − e−itb

it
ϕF (t)dt =

=

∫
R

1

2π
2I(x)dF (x) =

∫
R

I[a,b)(x)dF (x) = F (b)− F (a).

Доказательство теоремы единственности. Пусть F иG— две различные функции распре-
деления, имеющие одинаковую характеристическую функцию. Согласно формуле обращения,
для любых чисел x и y, которые являются точками непрерывности обеих функций – F и G,

F (y)− F (x) = G(y)−G(x).

Лемма. Множество точек разрыва у любой функции распределения F не более чем счет-
но.

Доказательство очевидно, так как

{множество всех точек разрыва F} =
⋃
n

{множество всех точек разрыва F больше 1/n},

каждое множество в правой части конечно (может содержать самое большее n − 1 точек).
объединение счетного числа конечных множеств счетно.

Следствия. В любом открытом интервале содержится бесконечное число точек непре-
рывности функций распределения F и G.
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Следствие влечет, что существует последовательность точек непрерывности (xn) функций
F и G, сходящаяся к −∞, и для любого y ∈ R существует последовательность точек непре-
рывности (zn) функций F и G, сходящаяся к y слева. Переходя к пределу, имеем:

F (z) = lim
n

(F (x)− F (xn)) = lim
n

(G(x)−G(xn)) = G(z)

для любой точки непрерывности z, а также

F (y) = lim
n
F (zn) = lim

n
G(zn) = G(y)

для любого y.
Суммирование нормальных и пуассоновских независимых случайных величин.
Из теоремы единственности следуют очень интересные свойства нормальных и пуассонов-

ских случайных величин.
Предложение. Пусть случайные величин ξ и η независимы. 1) Если ξ имеет распределе-

ние N(m1, σ1), а η – N(m2, σ2), то ξ+ η имеет распределение N(m1 +m2,
√
σ2

1 + σ2
2). 2) Если

ξ имеет распределение P (λ1), а η – P (λ2), то ξ + η имеет распределение P (λ1 + λ2)..
Доказательство. Представим характеристическую функцию ξ+η как произведение, по ней

восстанавливается вид распределения.
Доказательство теоремы непрерывности. В одну сторону утверждение уже доказано, по

теореме об эквивалентности определений слабой сходимости на языке функций распределе-
ния и на языке интегралов в качестве непрерывной ограниченной функции мы можем взять
функцию f(x) = eitx и из слабой сходимости Fn к F следует ϕFn(t) → ϕF (t) для всех t.
Мы воспользуемся этим фактом (прием Мюнхаузена), чтобы доказать обратную импликацию:
ϕFn(t) → ϕF (t) для всех t влечет слабую сходимость Fn к F . Но сначала надо доказать тео-
рему о свойстве компактности множества функций распределений. Под компактностью здесь
понимается возможность выделить из любой последовательности функций распределения сла-
бо сходящейся подпоследовательности. Такое утверждение неверно для множества (∆) всех
функций распределений, то есть функций, удовлетворяющих условиям 1)-3). Например, ка-
кую бы мы не выделяли подпоследовательность из последовательности I(n,∞), где n → ∞,
она в каждой точке будет сходиться к нулю. Таким образом, предел не будет удовлетворять
условию 2). Поэтому чтобы достигнуть компактности, мы должны расширить пространство
∆ и рассмотреть пространство ∆′ всех функций F на R, удовлетворяющих условиям 1) и 3),
а условие 2) мы заменим более слабым

2′) 0 ≤ F (x) ≤ 1 для всех x ∈ R. Возникшая в нашем контрпримере функция, тождественно
равная 0, этому условию удовлетворяет.

Теорема 1. Из любой последовательности (Fn) ⊂ ∆′ можно выделить подпоследователь-
ность (Fnk), которая сходится к некоторой функции F ∈ ∆′ в каждой точке непрерывности
некоторой функции F .

Доказательство. Как во многих таких доказательствах, мы должны сначала построить
подпоследовательность (Fnk) и функцию F , а после этого доказать требуемую сходимость.
Для построения мы воспользуемся знаменитой теоремой Больцано – Вейерштрасса о выделе-
нии сходящейся последовательности из ограниченной числовой последовательности (в нашем
случае она находится в [0, 1]). Мы введем в R некоторое всюду плотное счетное множество
S = (rn) (например, Q), потом выделим из числовой последовательности (Fn(r1)) сходящуюся
подпоследовательность (Fnk(r1)). Далее выделим подпоследовательность (Fnkl ), которая име-
ет предел в точке r2, из нее выделим подпоследовательность (Fnklm

), сходящуюся в точке r2

и т. д. Наконец, используя метод выделения диагональной последовательности, мы выделим
подпоследовательность Fn1 , Fnk2 , Fnkl3 ,... , которая сходится на всех точках rn. Для удобства
используем для этой последовательности обозначение (Fnk). Итак, (Fnk(r)) сходится для всех
r ∈ S к некоторому числу α(r).

102



Теперь нам нужно ввести функцию F . Заметим для будущего, что функция α монотонна
на S как предел последовательности монотонных функций. Итак,

F (y) = sup{α(r) : r < y}.

Очевидно, что значения F (как и α) лежат в [0, 1]. Монотонность F следует из определения
супремума. Воспользуемся определением супремума на языке ε: для любого ε > 0 существует
r < y такое, что α(r) > F (y) − ε. Имеем: для любого x ∈ (r, y] справедливо F (x) ≥ α(r) >
F (y)− ε. Это доказывает непрерывность слева в произвольной точке y.

Осталось доказать сходимость

Fnk(x)→ F (x)для всех x — точек непрерывности F .

Так как функция F монотонна, непрерывность в x эквивалентна существованию таких y <
x < z, что F (y) > F (z)− ε. Выберем некоторые r′, r′′ ∈ S так, что

y < r′ < x < r′′ < z.

Имеем по определению α:

F (x)− ε ≤ F (y) ≤ F (r′) = lim
k
Fnk(r′) ≤ lim inf

k
Fnk(x) ≤

≤ lim sup
k
Fnk(x) ≤ lim

k
Fnk(r′′) = F (r′′) ≤ F (z) < F (x) + ε.

Ввиду произвольности ε это означает

lim
k
Fnk(x) = F (x).

Теперь мы изложим план доказательства теоремы непрерывности. Предположим, что i)
ϕFn(t) → ϕF (t) для всех t, но для некоторой точки x непрерывности функции распределе-
ния F сходимости Fn(x) к F (x) нет. Мы хотим придти к противоречию с i). Всегда можно
выделить сходящуюся подпоследовательность Fnk(x). Однако эта подпоследовательность мо-
жет случайно оказаться сходящейся к F (x), и мы никакого противоречия не получим. Поэто-
му мы сначала выделим из (Fn(x)) подпоследовательность, которая находится вне некоторой
окрестности F (x), а уже из нее выделим сходящуюся подпоследовательность Fnk(x). Имеем:
Fnk(x) → a 6= F (x). Для этой подпоследовательности также верно i). Согласно доказанной
теореме о слабой компактности выделим из (Fnk) слабо сходящуюся

Fnkl
сл−→ G. (∗)

Согласно доказанному прямому утверждению

ϕFnkl
(t)→ ϕG(t) для всех t.

Но так как по условию
ϕFnkl

(t)→ ϕF (t) для всех t,

то ϕF = ϕG, по теореме единственности F = G. Но тогда согласно (*) Fnk(x) → F (x), что
противоречит нашему выбору подпоследовательности (Fnk).

Итак, казалось бы, теорема непрерывности доказана, но это не так. Прямое утверждение
в теореме непрерывности мы вывели из эквивалентности двух определений слабой сходимости.
А в доказательстве этого факта мы существенно использовали то, что предельная функция
также функция распределения, принадлежит ∆, на−∞ сходится к 0, а на +∞ сходится к 1. Это
пока ниоткуда не следует для функции G, так как теорему о слабой компактности мы доказали
для ∆′, а для ∆ она неверна. Итак, нам нужно показать, что предел любой подпоследователь-
ности (Fn) принадлежит ∆. Для этого мы должны получить критерий слабой компактности
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для последовательностей в ∆ и доказать, что из сходимости характеристических функций (Fn)
к характеристической функции распределения следует выполнение условий такого критерия.

Критерий слабой компактности в ∆. Последовательность (Fn) в ∆ слабо компактна в
∆, то есть из любой ее подпоследовательности (Fnk) можно выделить подпоследовательность
(Fnkl ), сходящуюся к элементу ∆, тогда и только тогда, когда ii) для любой ε > 0 существуют
N ∈ N и A > 0 такие, что для всех n > N имеет место

Fn(−A) < ε, Fn(+A) > 1− ε.

Доказательство очевидно. По теореме о слабой компактности в ∆′ существует такая под-
последовательность

Fnkl
сл−→ G ∈ ∆′.

С другой стороны по условию для точек непрерывности a < −A и b > A функции G выполня-
ется

G(a) ≤ ε,G(b) ≥ 1− ε, (∗∗)

G ∈ ∆ ввиду произвольности ε.
Далее мы докажем неравенство для характеристических функций, которое позволяет до-

казывать оценки для
∫

|x|≥A
dF (x) через характеристическую функцию ϕF , что позволит нам

проверить выполнение условия критерия слабой компактности.
Неравенство для характеристической функции.

∫
|x|≥A

dF (x) ≤ 1

1− sin 1

A

2

1/A∫
−1/A

(1− ϕF (t))dt.

Доказательство.

A

2

1/A∫
−1/A

(1− ϕF (t))dt =
A

2

1/A∫
−1/A

∞∫
−∞

(1− eitx)dtdF (x) =

= A

1/A∫
0

∞∫
−∞

(1− cos(tx))dtdF (x) =

∞∫
−∞

x/A− sin(x/A)

x/A
dF (x) ≥

≥ (1− sin(1))

∫
|x|≥A

dF (x).

Последнее неравенство следует из легко проверяемого неравенства

1− sin(1) ≤ x/A− sin(x/A)

x/A
, |x| > A.

Последний этап доказательства теоремы непрерывности — проверка слабой компактности
последовательности (Fn) в ∆.

Выберем по данному ε > 0 такое A > 0, что для всех t ∈ [−1/A, 1/A] имело бы место
1

1− sin 1 |1− ϕF (t)| < ε, тогда

1

1− sin 1

A

2

1/A∫
−1/A

|1− ϕF (t)|dt < ε.
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Так как ϕFn(t) → ϕFn(t) для всех t, по теореме Лебега мы будем иметь для всех n начиная с
некоторого N также

1

1− sin 1

A

2

1/A∫
−1/A

|1− ϕFn(t)|dt < ε.

Согласно неравенству для характеристических функций и критерию слабой компактности, мы
получили слабую компактность (Fn) в ∆, что и требовалось.

§14. Теорема Линдеберга

Используемые неравенства:

a)|eix − 1| ≤ |x|, b)|eix − ix− 1| ≤ x2/2.

Первое неравенство можно рассматривать как неравенство без i на отрезке комплексной плос-
кости от 0 до ix. Второе неравенство получается интегрированием первого по этому отрезку.
Третье неравенство следует из разложения в ряд Тейлора:

c)| ln(1 + z)− z| ≤ C|z|2

в окрестности 0 комплексной плоскости вида {|z| < 1/2}.
Теорема. (Линдеберг) Пусть ξnk, k ≤ k(n) — последовательность наборов случайных

величин, удовлетворяющая следующим условиям:
1) случайные величины ξnk независимы между собой для каждого n;
2) Eξnk = 0 для всех n и k;

3)
k(n)∑
k=1

Eξ2
nk = 1 для каждого n;

4) limn

k(n)∑
k=1

Eξ2
nkI{|ξnk|>C} = 0 для всех C > 0.

Тогда распределения случайных величин
k(n)∑
k=1

ξnk слабо сходятся к нормальному распреде-

лению с параметрами 0 и 1, т.е. N(0, 1).
Доказательство. Обозначим

ϕnk(t) := Eeitξnk = ϕξnk(t)

Ввиду независимости ξnk нам достаточно доказать сходимость

lim
n

k(n)∏
k=1

ϕnk(t) = e−t
2/2

или, что то же

lim
n

k(n)∑
k=1

ln(ϕnk(t)) = −t2/2. (1)

Доказательство разбивается на ряд этапов. Мы стремимся избавиться в (1) от ln и заменить
ln(ϕnk(t)) на ϕnk(t)−1. Для этого мы воспользуемся неравенством c), где x = ϕnk(t)−1. Чтобы
иметь право это сделать, нам надо доказать, что начиная с некоторого n все ϕnk(t)− 1 будут
меньше 1/2. Для этого мы докажем, что

max
k
|ϕnk(t)− 1| → 0. (2)
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Лемма 1.
lim
n

max
k

Eξ2
nk = 0. (3)

Доказательство.

max
k

Eξ2
nk ≤ max

k
Eξ2

nkI{|ξnk|≤C} + Eξ2
nkI{|ξnk|>C} ≤

max
k

Eξ2
nkI{|ξnk|≤C} +

k(n)∑
k

Eξ2
nkI{|ξnk|>C}.

Первое слагаемое оценивается числом C2, которое может быть выбрано сколь угодно малым,
а второе слагаемое, согласно условию c), сходится к 0. Это доказывает (3).

Теперь мы докажем (2):
Лемма 2.

max
k
|ϕnk(t)− 1| = max

k

∣∣Eeitξnk − 1
∣∣ =

(согласно 2) мы можем представить 0 как Eξnk)

= max
k

∣∣E (eitξnk − itξnk − 1
)∣∣ ≤

(согласно b))
≤ max

k

∣∣Eξ2
nk

∣∣→ 0

согласно Лемме 1. Итак, мы заменяем
k(n)∑
k=1

ln(ϕnk(t)) на
k(n)∑
k=1

(ϕnk(t)− 1), но нам надо доказать,

что ошибка, которая происходит от этой замены, сходится к 0:

k(n)∑
k=1

|ln(ϕnk(t))− (ϕnk(t)− 1)| ≤
k(n)∑
k=1

|ϕnk(t)− 1|2

(квадрат мы представим как произведение и оценим первый множитель максимумом)

≤ max
k
|ϕnk(t)− 1|

k(n)∑
k=1

|ϕnk(t)− 1| .

Согласно лемме 2, первый множитель сходится к 0, а второй множитель оценивается

k(n)∑
k=1

|ϕnk(t)− 1| =
k(n)∑
k=1

∣∣E (eitξnk − itξnk − 1
)∣∣ ≤ k(n)∑

k=1

Eξ2
nk = 1.

Итак, нам осталось доказать:

lim
n

k(n)∑
k=1

(ϕnk(t)− 1) = −t2/2. (4)

Опять мы используем представление 0 в 2):

k(n)∑
k=1

(ϕnk(t)− 1) =

k(n)∑
k=1

E
(
eitξnk − itξnk − 1

)
=
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(далее мы используем формулу замены переменной)

=

∫
R

(eitx − itx− 1)d

k(n)∑
k=1

Pξnk(x) =

=

∫
R

eitx − itx− 1

x2 x2d

n(k)∑
k

Pξnk(x) =

∫
R

eitx − itx− 1

x2 d

n(k)∑
k

Eξnk2I{ξnk<x}.

Над этими равенствами надо подумать. Функция f(x) = eitx − itx− 1
x2 сходится к 0 на ±∞ и

может иметь особенность лишь в 0. Но эта особенность легко раскрывается и предел limx→0 =
−t2/2. Второе равенство мы запишем для одного слагаемого:∫

R

g(x)x2dPξ =

∫
R

g(x)dEξ2I{ξ<x}, (5)

оно верно, если g непрерывна и ограничена, а Eξ2 < ∞. (Оба интеграла можно со сколь

угодно малой погрешностью заменить на
b∫
a

, а эти интегралы приблизить суммами Римана.)

Итак, равенство (5) достаточно доказать лишь для g(x) = I[a,b)(x). Но для этого случая оно
очевидно по формуле замены переменной:∫

R

I[a,b)(x)x2dPξ(x) = Eξ2I{a≤ξ<b} =

∫
R

I[a,b)(x)dEξ2I{ξ<x}.

Мы имеем последовательность функций распределения

Fn(x) =

n(k)∑
k

Eξnk2I{ξnk<x}.

Действительно, lim
x→∞

Fn(x) = 1 согласно 3), lim
x→−∞

Fn(x) = Eξnk2I∅ = 0. Осталось доказать, что

Fn слабо сходится к функции распределения вероятности δ{0}, сосредоточенной в точке 0. Эта
функция распределения равна 0 для x < 0 и 1 для x > 0. Имеем:

lim
n

k(n)∑
k=1

Eξ2
nkI{ξnk<x} ≤ lim

n

k(n)∑
k=1

Eξ2
nkI{|ξnk|>x} = 0

для x < 0, и

lim
n

k(n)∑
k=1

Eξ2
nkI{ξnk<x} = 1− lim

n

k(n)∑
k=1

Eξ2
nkI{ξnk>x} = 1

для x > 0. Резюмируем:∫
R

f(x)d

n(k)∑
k

Eξnk2I{ξnk<x} →
∫
R

f(x)dδ{0} = f(0) = −t2/2.

Следствие. Цпт для одинаково распределенных случайных величин является частным
случаем теоремы Линдеберга.

Для этого нам нужно рассмотреть в условиях Центральной предельной теоремы из §13
последовательность случайных серий

ξnk =
ξk −m
σ
√
n
, k ≤ n.
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Выполнение условий 1)-3) очевидно. Надо проверить выполнение условия 4).

lim
n

n∑
k=1

E
(ξk −m)2

σ2n
I{∣∣∣∣∣ξk −mσ

√
n

∣∣∣∣∣>C
} =

= lim
n

E
(ξ1 −m)2

σ2 I{∣∣∣∣∣ξ1 −mσ
∣∣∣∣∣>C√n

} → 0.

Здесь мы использовали одинаковость распределений и равенство слугаемых в сумме, а также{∣∣∣∣ξ1 −mσ
∣∣∣∣ > C

√
n

}
→ ∅(n→∞).

§15. Применения предельных теорем. Многомерные предельные теоремы

Нормальную аппроксимацию можно использовать для приближенного вычисления вероят-
ности P {Sn < k}, где Sn — число гербов в n подбрасываниях монеты с параметром p, близким
к середине интервала (0, 1). Если параметр p близок к 0, а k небольшое, то можно исполь-
зовать для приближений распределение Пуассона. Нормальное приближение можно исполь-
зовать также для распределений сумм различных независимых случайных величин (теорема
Линдеберга). Все это должно быть усвоено на практике. Нормальное приближение возможно
также для распределения χ2

n, причем для некоторых значений n можно проверить эффек-
тивность нормального приближения, сравнив с табличными значениями. Для распределения
Стьюдента также можно использовать нормальное приближение, но обосновывается это зако-
ном больших чисел, согласно которому знаменатель в представлении tn сходится к 1.

Если S – сумма большого числа случайных величин примерно одного порядка со средним
и дисперсией, то мы нормируем и центрируем эту случайную величину и используем таблицы
функции распределения (обычно обозначается Φ) стандартной нормальной случайной величи-
ны. А именно,

P {S < a} = P

{
S − E(S)√

D(S)
<
a− E(S)√

D(S)

}
= Φ

(
a− E(S)√

D(S)

)
.

Аналогично поступаем, если нас интересуют вероятности других событий, связанных с S. Таб-
лицы функции Φ как правило приводятся лишь для положительных x. Для вычисления значе-
ния функции Φ на отрицательной полуоси используйте четность функции плотности N(0, 1).

1. Моделирование нормального распределения.
Мы будем обозначать через r или rn псевдослучайные числа, моделируемые компьютером

с помощью программного пакета, предполагается, что они независимы для разных i и имеют
равномерное распределение на отрезке [0, 1].

В принципе, распределение случайной величины с любой функцией распределения F может
моделироваться случайной величиной F−1(r). Проверим:

P
{
F−1(r) < x

}
= P {r < F (x)} .

Но этот универсальный метод не очень хорош для нормального распределения, так как обрат-
ная функция к функции Φ не является элементарной, ее вычисление достаточно трудоемко.

Одним из способов моделирования нормального распределения является принятие в каче-
стве N(0, 1)-нормальной случайной величины ξ суммы r1 + ... + r12 − 6, где ri — случайные
числа, которые предполагаются равномерно распределенными на отрезке [0, 1]. По централь-
ной предельной теореме ξ примерно нормально, мы знаем, что среднее ξ равно 0, а дисперсия
— 1.

Другой способ позволяет одновременно моделировать пару N(0, 1)-нормальных случайных
величин ξ1 и ξ2. Точнее, мы моделируем координаты (ρ, ϕ) вектора (ξ1, ξ2) в полярной системе
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координат. Оказывается, что эти координаты независимы и обратная к функции распределе-
ния каждой из них легко вычисляется. Действительно, перейдем к полярным координатам в
интеграле

P {(ξ1, ξ2) ∈ B} =

∫ ∫
B

1

2π
e
−x

2 + y2

2 dxdy =

∫ ∫
B

1

2π
e
−ρ

2

2 ρdρdϕ.

Мы видим, что подынтегральная функция распадается в произведение функций от ρ и от ϕ, ϕ
имеет равномерное распределение на отрезке [0, 2π] и поэтому легко моделируется, а ρ имеет
функцию распределения

P {ρ < x} =

x∫
0

e
−ρ

2

2 ρdρ = 1− e−x
2/2.

Обратная функция выражается через элементарные функции.
Третий наиболее практичный способ предложил Knuth. Он рассмотрел график плотности

1√
2π
e−x

2/2 и покрыл почти всю площадь под этим графиком (она равна 1) несколькими пря-

моугольниками. В результате почти вся вероятность (за исключением очень маленького ε)
моделируется просто, каждому прямоугольнику соответствует отрезок в [0, 1], длина которого
равна площади прямоугольника, и в случае попадания r в этот отрезок мы выбираем соответ-
ствующую r точку на проекции прямоугольника на ось x-ов. Если не повезло, и компьютер
выбрал r, соответствующий остаточной вероятности величины ε, то компьютер проводит очень
трудоемкие вычисления обратных функций.

2. Многомерные характеристические функции.
Определение. Характеристическая функция ϕξ̄ случайного вектора ξ̄ = (ξ1, ..., ξn) или, что

то же, совместная характеристическая функция ϕξ1,...,ξn задается соотношением

ϕξ1,...,ξn(t1, ..., tn) = Eei(t1ξ1+...+tnξn).

У нее те же свойства, что и у одномерной характеристической функции, в том числе теоремы
единственности и непрерывности, но доказываются они сложнее, мы этого делать не будем.
Что касается используемой в доказательстве теоремы единственности многомерной формулы
обращения, то в ней речь идет об интегральном представлении меры

P{
n∏
i=1

[ai, bi)},

причем аналогом условия непрерывности функции распределения в точке служит свойство

P

{
n⋃
i=1

{(x1, ..., xn) : xi = ai}
⋃ n⋃

i=1

{(x1, ..., xn) : xi = biht}

}
= 0.

Как и в одномерном случае, показывается, что множество пар точек {(ai), (bi)}, для которых
это свойство нарушается, не более чем счетно.

Упражнение. Покажите, что из независимости случайных величин ξ1, ..., ξn следует

ϕξ1,...,ξn(t1, ..., tn) = ϕξ1(t1) · . . . · ϕξn(tn). (6)

используя многомерную теорему единственности, покажите, что обратно, из равенства (*) сле-
дует независимость ξ1, ..., ξn.

Как и в одномерном случае, слабая сходимость многомерных распределений означает схо-
димость интегралов от всех непрерывных ограниченных функций, заданных на пространстве
той же размерности.
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Как и в одномерном случае, мы говорим о сходимости по распределению ξ̄n к ξ̄ и будем
обозначать

ξ̄n
D−→ ξ̄,

если
Pξ̄n

сл−→ Pξ̄,

Замечание. Из упражнения следует, что если

ξ̄n
D−→ ξ̄,

ξ̄n =
(
ξ

(1)
n , ..., ξ

(d)
n

)
, ξ̄ =

(
ξ(1), ..., ξ(d)

)
, случайные величины ξ

(1)
n ,..., ξ(d)

n независимы для любого

n, то случайные величины ξ(1),..., ξ(d) независимы. Это тем более верно, если

ξ̄n
P−→ ξ̄.

Сходимость случайных векторов по вероятности

ξ̄n
P−→ ξ̄

означает
P
{∥∥ξ̄n − ξ̄∥∥ > ε

}
→ 0

для любого ε > 0, где ‖ · ‖ — норма в Rd.
Замечание. Если ξ̄n, ξ̄ — последовательность r-мерных случайных векторов, f — непрерыв-

ная функция на Rr, и имеет место сходимость

Pξ̄n
сл−→ Pξ̄,

то
Pf(ξ̄n)

сл−→ Pf(ξ̄).

Доказательство немедленно вытекает из определений.
Посмотрим, как меняется совместная характеристическая при линейном преобразовании

случайного вектора (ξ1, ..., ξn) — переходе от вектора (ξ1, ..., ξn) к вектору (ξ1, ..., ξn)A, где A =
[aij ] задается матрицей. Мы рассматриваем вместе с вектором (ξ1, ..., ξn) также (t1, ..., tn) и
представляем t1ξ1 + ...+ tnξn как произведение вектор-строки на вектор-столбец

t1ξ1 + ...+ tnξn = (ξ1, ..., ξn)(t1, ..., tn)′.

Если мы переходим к случайному вектору (ξ1, ..., ξn)A, то получаем

(ξ1, ..., ξn)A(t1, ..., tn)′ = (ξ1, ..., ξn)((t1, ..., tn)A′)′.

Итак,
ϕ(ξ1,...,ξn)A(t1, ..., tn) = ϕ(ξ1,...,ξn)((t1, ..., tn)A′).

Применим это преобразование к стандартному нормальному случайному вектору (ξ1, ..., ξn).
Характеристическая функция у этого вектора равна

ϕ(ξ1,...,ξn)(t1, ..., tn) = e−
1
2 (t1,...,tn)(t1,...,tn)′ .

Вспомним правилo транспонированных матрицы произведения, получаем

ϕ(ξ1,...,ξn)A(t1, ..., tn) = e−
1
2 (t1,...,tn)A′A(t1,...,tn)′ = .
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e
− 1

2
∑
k,l

µkltktl
,

где µkl =
∑
i

aikail, поэтому матрица [µkl] неотрицательно определена как произведение матри-

цы и ее транспонированной.
В нецентрированном случае мы имеем характеристическую функцию

ϕη1,...,ηn(t1, ..., tn) = e

∑
k

imktk− 1
2
∑
k,l

µkltktl
. (7)

Эта характеристическая функция дает самое общее определение многомерного нормального
распределения. Например, если матрица [µkl] является вырожденной, то мы имеем вырожден-
ное нормальное распределение, которое сосредоточено на некотором линейном многообразии,
а следовательно, не имеет плотности.

Как и в одномерном случае, частные производные характеристической функции в нуле
определяют средние E(ηk) случайных величин ηk, умноженные на i, а вторые производные
равны смешанным моментам с отрицательным знаком:

−E {(ηk − E(ηk))(ηl − E(ηl))} = µkl.

Упражнение 20. a. Используя предыдущее замечание, покажите, что в (7)

mk = E(ηk), µkl = E {(ηk − E(ηk))(ηl − E(ηl))} .

b. Дано разложение A1 + ... + Ar = Ω, где P(Ak) = pk. Случайные величины ξk задают-
ся соотношением ξk(ω) = IAk . Вычислите совместную характеристическую функцию вектора
(ξ1, ..., ξr), а также матрицы смешанных моментов и центральных смешанных моментов.

3. Многомерная центральная предельная теорема.
В многомерном случае не всегда можно нормировать случайные векторы некоторой матри-

цей, поэтому формулировка центральной предельной теоремы выглядит следующим образом:
Теорема. Пусть (ξ̄n) – последовательность независимых одинаково распределенных слу-

чайных векторов с нулевыми средними и матрицей вторых моментов [µkl]. Тогда распреде-
ление случайного вектора

ξ̄1 + ...+ ξ̄n√
n

слабо сходится к нормальному распределению с нулевыми средними и той же матрицей
вторых моментов [µkl].

Эта теорема работает и в случае сходимости к вырожденному нормальному распределению,
и именно в этой ситуации мы ее будем использовать. От средних надо избавляться в этой тео-
реме, так как при суммировании случайных величин средние складываются, величина суммы
пропорциональна n, а делим мы сумму лишь на

√
n, в результате нормированное числом

√
n

среднее стремится к бесконечности.
Доказательство теоремы мы опускаем.
Задача. Найти слабый предел последовательности распределений ξ1+...+ξn

η1+...+ηn
, где ξi, ηj неза-

висимы и имеют одинаковое распределение со средним 0 и дисперсией 1.
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Часть 4. МАТЕМАТИЧЕСКАЯ СТАТИСТИКА

Введение
Задача математической статистики — по результатам нескольких экспериментов (или на-

блюдений) максимально точно восстановить некоторые из условий проведения эксперимента.
Ниже я приведу определение из авторитетного источника, но заучивать это определение не
стоит.

Математическая статистика — раздел математики, посвященный математическим ме-
тодам сбора, систематизации, обработки и интерпретации статистических данных, а также
использованию их для научных или практических выводов. Правила и процедуры матема-
тической статистики опираются на теорию вероятностей, позволяющую оценить точность
и надежность выводов, получаемых в каждой задаче на основе имеющегося статистического
материала.

Из статьи Математическая статистика. И.А. Ибрагимов, Ю.В. Прохоров, Н.Н. Ченцов,
Д.М. Чибисов в энциклопедии "Вероятность и математическая статистика"(Изд-во БРЭ, 1999).

При работе с таблицами и доведения решения до числа часто используется термин p-
квантиль распределения. Так называется функция, обратная к функции распределения, Если
F — функция распределения, то p-квантиль — это такое число x, что F (x) = p. Причем p за-
даем мы сами (заказчик работы или преподаватель), а x используется для выработки ответа.

§16. Выборка.

1. Пример. Пусть имеется партия деталей из m деталей, содержащая m1 деталей 1-го сор-
та, m2 деталей 2-го сорта, m3 деталей 3-го сорта (m = m1 +m2 +m3). Эксперимент состоит в
выборе (с возвращением) из m деталей n деталей и проверке их качества. В i-м эксперименте
наблюдается число xi — сорт i-й детали. Задача состоит в максимально точной оценке чисел
m1, m2, m3. Очевидно, что для этой оценки мы имеет в нашем распоряжении лишь числа
x1, x2, . . . , xn, набор этих чисел называется выборкой из генеральной совокупности, генераль-
ная совокупность в этом примере — партия из m деталей. Очевидно, что хорошей оценкой
чисел m1, m2, m3 являются числа n1(m/n), n2(m/n), n3(m/n), столь же очевидно, что эти чис-
ла как правило не равны числам m1, m2 , m3 (более того, эти числа могут быть дробными).
Поэтому возникает вопрос о величине ошибки при нашей оценке, о вероятности ошибки.

2. Следуя статистической традиции, мы сохраним название выборка и в том случае, когда
результаты экспериментов x1, x2, . . . , xn получены по-другому, при этом под генеральной со-
вокупностью будет пониматься множество всех возможных значений эксперимента с заданной
на нем некоторой вероятностной мерой, вероятность нахождения результата эксперимента в
некотором подмножестве генеральной совокупности равна вероятности данного подмножества.
Описание указанной вероятности (или некоторых ее свойств) и является задачей математиче-
ской статистики. Генеральная совокупность в такой обобщенной трактовке — не обязательно
конечное множество (она может быть равна N, R, R2 и т.д. с какими-то неизвестными нам
вероятностями на подмножествах. Выборка принимает свои значения в генеральной совокупно-
сти). Почти везде мы будем считать, что генеральная совокупность — множество вещественных
чисел, на котором задана некоторая борелевская вероятность.

3. Выборочные характеристики.
С выборкой {x1, x2, . . . , xn} принято связывать ряд характеристик, которые называются

эмпирическими или выборочными:
Эмпирическое распределение — вероятность на R, которая получится, если каждому эле-

менту выборки мы припишем одну и ту же вероятность, равную 1/n (единица, деленная на
число элементов выборки), обозначаем эмпирическое распределение — Pэ.

Эмпирическая функция распределения — функция распределения эмпирического распреде-
ления, т.е.

112



Fэ(x) =
{число xi , меньших данного x}

n для всех x.
Эмпирическое среднее:

x̄ =

∫
xdPэ(x) =

x1 + x2 + . . .+ xn
n

.

Эмпирическая дисперсия:

s2( или s2
x) :=

∫
x2dPэ(x)−

(∫
xdPэ(x)

)2

=
1

n

n∑
i=1

x2
i − x̄2 =

1

n

n∑
i=1

(xi − x̄)
2
. (σ)

Обратите внимание на последнее равенство в (σ), которое мы будем использовать как тожде-
ство (следствие известного тождества

Dξ = Eξ2 − (Eξ)2 = E(ξ − Eξ)2

применительно к эмпирической вероятности).
Эмпирические характеристики имеют смысл и тогда, когда генеральная совокупность не

одномерна. Пусть, например, выборка — набор векторов {(x1, y1), (x2, y2). . ., (xn, yn)}, в этом
случае эмпирическое распределение задано на R2 формулой Pэ{(xi, yi)} = 1/n для всех i ≤
n, точно так же определяются x̄ = x1 + x2 + . . .+ xn

n , ȳ , s2
x и s2

y, в этом случае вводится
эмпирический коэффициент корреляции

rx,y =

1

n

n∑
i=1

(xi − x̄)(yi − ȳ)

(s2
x)1/2(s2

y)1/2

и т.д.
Упражнение. Запишите формулу для вычисления по выборке {x1, x2, . . . , xn} эмпирическо-

го третьего момента и эмпирического четвертого центрального момента.
Упражнение. Придумайте конкретную выборку, состоящую из четырех чисел, постройте

по ней эмпирическую функцию распределения, вычислите x̄ и s2
x.

§17. Вероятностная и статистическая модели

Обозначим через Pист истинное распределение вероятностей на данной одномерной гене-
ральной совокупности, наша задача — как-то, используя результаты экспериментов x1, x2, . . . , xn,
приблизить Fист. Стандартный прием (если мы знаем, что результатом эксперимента может
быть любое вещественное число) нарисовать эмпирическую функцию распределения Fэ и сгла-
дить ее, используя лекала. Очень давно статистики-практики так и поступали. Недостатки
этого приема (методом его назвать трудно) очевидны — необоснованность выводов, необходи-
мость большого числа наблюдений (иначе эмпирическая функция распределения будет иметь
слишком большие разрывы). Бывают случаи, когда в распоряжении статистика по-существу
нет иного приема. Ситуация существенно улучшается, если статистик имеет некую априорную
информацию о виде распределения Pист (например, что Pист – нормальное распределение,
или экспоненциальное, или равномерное, или является распределением Бернулли, например, в
примере в пункте 1 из условий задачи видно, что распределение Pист сосредоточено в точках
{1, 2, 3}). В такой ситуации задача существенно облегчается, мы можем считать, что Pист при-
надлежит некоторому классу распределений P, который называется вероятностной моделью
решаемой статистической задачи.

1. Примеры вероятностных моделей.
Нормальная модель P = {Pm,σ}, где Pm,σ — нормальное распределение с параметрами m

и σ, эта модель задается набором плотностей распределений

pm,σ(x) =
1

σ(2π)1/2
e−

1
2 (x−mσ )2 , x ∈ R, где m ∈ R, σ ≥ 0.
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Экспоненциальная модель

pλ(x) =

{
λe−λx, x ≥ 0,
0, x < 0.

Равномерная модель

pm,∆(x) =

{
1/(2∆), если x ∈ (m−∆,m+ ∆);
0 в противном случае.

Модель Коши
pa,m(x) =

a

π(a2 + (x−m)2)

Модель Пуассона

Pλ{k} = e−λ
λk

k!
, k = 0, 1, 2, ....

Модель Бернулли

Pp{1} = p, Pp{0} = 1− p.

Другие модели (некоторые из них представляют большой практический интерес) в курсе не
рассматривается.

В рамках используемой нами вероятностной модели результаты наблюдений x1, x2, . . . , xn
интерпретируются как наблюдения n независимых одинаково распределенных случайных ве-
личин, причем их одинаковое распределение есть P = Pист и оно нам неизвестно, но известно,
что оно принадлежит данному классу P. При этих предположениях по данному P можно
построить совместное распределение P(n) случайных величин x1, x2, . . . , xn, заданное на про-
странстве Rn. Напомним, что если x1, x2, . . . , xn — случайные величины, имеющие одинаковую
плотность p, то их совместная функция плотности равна

p(n)(x1, x2, . . . , xn) = p(x1)p(x2) . . . p(xn), xi ∈ R.

Итак, по вероятностной модели P строится класс распределений на n-мерном пространстве
P(n) = {P (n) : P ∈ P}, который называется статистической моделью.

2. Примеры статистических моделей.
Нормальная статистическая модель задается классом плотностей

p(n)
m,σ(x1, x2, . . . , xn) =

(
1

σ
√

2π

)n
exp

[
−1

2

n∑
i=1

(
xi −m
σ

)2
]
, xi ∈ R

где m пробегает R, а σ — (0,∞).
Пуассоновская статистическая модель задается классом распределений

P(n)
λ {k1, k2, . . . , kn} = exp(−nλ)

λk1+k2+...+kn

k1!k2!...kn!
, ki ∈ {0} ∪N,

где λ пробегает (0,∞).
Модель Бернулли задается классом распределений

P(n)
p {δ1, δ2, . . . , δn} = p

n∑
i=1

δi
(1− p)

n∑
i=1

(1−δi)
, δi ∈ {0, 1},

где p пробегает все числа в (0,1).
Упражнение. Постройте равномерную, экспоненциальную, Коши статистические модели.
Использование вероятностной и статистической модели позволяет придать точный смысл

понятию ’вероятность ошибки’, оценивать качества различных статистических критериев. В
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дальнейшем делать статистические выводы мы будем в рамках той или иной вероятностно-
статистической модели. При этом, конечно же, возникает опасность ошибиться в выборе мо-
дели (что приведет к неправильным статистическим выводам). В простейшей ситуации, когда
результаты наблюдений могут принимать лишь два значения — 0 или 1, такой опасности нет,
однозначно выбирается модель Бернулли, в более сложных ситуациях правильность выбора
модели зависит от искусства статистика, его опыта, кроме того, математическая статистика
предлагает методы проверки правильности выбора модели.

3. Параметрические модели. Все рассмотренные выше модели входят в класс пара-
метрических моделей, параметрическая модель имеет вид P = {Pθ : θ ∈ Θ}, где θ пробегает
некоторое множество значений параметра Θ (не обязательно R), если множество Θ двумерно
или трехмерно, то модель называется двухпараметрической или трехпараметрической.

Упражнение. Указать, какие из построенных моделей являются однопараметрическими, и
какие — двухпараметрическими.

Замечание. В более сложных задачах могут использоваться и более сложные вероятностные
модели. Например, если генеральная совокупность является двумерной, то и вероятностная
модель состоит из распределений вероятностей на R2, в этом случае статистическая модель
состоит из распределений на R2n.

4. Статистики.
Статистикой называется любое измеримое отображение T из пространства выборок в R.

Примеры статистик:

T (x1, x2, . . . , xn) = xi; T (x1, x2, . . . , xn) = x̄, s2,max(x1, x2, . . . , xn)

и т.д.
Обозначение: EθT =

∫
T (x1, x2, . . . , xn)dP

(n)
θ (x1, x2, . . . , xn).

Так как x1, x2, . . . , xn рассматриваются нами в рамках вероятностной модели как незави-
симые одинаково распределенные случайные величины, распределение которых неизвестно,
но принадлежит классу P, то T (x1, x2, . . . , xn) как функция случайных величин, также явля-
ется случайной величиной, распределение которой принадлежит некоторому классу, который
строится по классу P. В случае параметрической модели {Pθ}θ∈Θ используется обозначение
Pθ,T — распределение статистики T при условии, что значение параметра равно θ. Одной из
предварительно решаемых задач при статистическом выводе является вывод распределений
используемых нами статистик (разумеется, для всех возможных значений параметра).

Упражнение. a) Покажите, что распределение статистики

T (x1, x2, . . . , xn) = (x1 − x2)/(x3 − x4)

не зависит от значений параметров m и σ в нормальной модели. b) Найдите распределение
этой статистики.

5. Основные задачи математической статистики.
1) Задача оценки параметра в рамках параметрической вероятностной модели.
2) Задача сравнения двух гипотез (т.е. каждая из гипотез означает свою вероятностную

модель P1 или P2, нужно сделать выбор между этими моделями).
3) Задача проверки гипотезы (т.е., дана вероятностная модель P, мы должны проверить,

согласуются ли результаты эксперимента с этой моделью).
Возможны и другие задачи.
Давайте еще раз сформулируем, что такое — вероятностная модель, и что такое – стати-

стическая модель. Это будет не математическое, а словесное определение.
Итак, вероятностная модель — это класс вероятностных распределений на пространстве

возможных результатов наблюдений. Статистическая модель — это класс распределений на
пространстве выборок, который строится по вероятностной модели в предположении незави-
симости и одинаковости экспериментов. Как мы уже видели, пространство в статистической
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модели — это n-я степень пространства в вероятностной модели, а вероятность в статистиче-
ской модели получается из соответствующей вероятности в вероятностной модели по правилу
произведения одинаковых функций, но взятых в разных точках области определения.

Не всегда вероятностная модель —R, а статистическая —Rn. Выборки могут быть и много-
мерными, например, в двумерном случае пространство выборок имеет вид

(
R2
)n. В статистике

случайных процессов, если траектории непрерывны, то результаты наблюдений — элементы
пространства непрерывных функций с известной вам равномерной нормой супремума. А ес-
ли траектории процесса разрывны, то для пространства результатов наблюдений используется
метрика Скорохода, в которой функции с одинаковыми разрывами в близкие моменты времени
считаются близкими.

Наконец, пространство результатов наблюдений состоит из двух точек (как правило, это
{0, 1}) в случае наблюдения в каждом эксперименте одного и того же события A. Мы счи-
таем результат эксперимента равным 1, если событие A произошло, и равным 0, если оно не
произошло.

Заметим, что решение задачи 2) сравнения гипотез используется для задачи проверки ги-
потезы в ситуации, когда этой гипотезе сопоставляется некая альтернатива.

Для решения этих задач используются специально подобранные статистики. Они сами яв-
ляются случайными величинами и имеют распределение в условиях фиксированной вероят-
ностной модели. Важнейшей общей задачей математической статистики является нахождение
распределения статистики. В условиях параметрической модели для задачи проверки гипотезы
особый интерес представляют статистики, распределение которых не зависит от неизвестного
нам значения параметра θ. В задаче оценивания параметра статистика должна предоставлять
информацию о параметре, поэтому ее распределение наоборот должно зависеть от выбора
параметра модели, однако желательно наличие функции, f(T, θ), используемой статистики и
параметра, распределение которой не зависит от параметра. Обо всем этом мы поговорим в
дальнейшем.

§18. Оценка параметров

1. Оценкой параметра θ в параметрической модели {Pθ}θ∈Θ называется измеримое отоб-
ражение пространстве выборок в множество параметров. В простейшей ситуации, когда на-
блюдения являются одномерными, а множество параметров содержится в R, это — некоторая
статистика

θ̂ : Rn → Θ.

Оценкой можно назвать любую, в том числе и самую неразумную функцию (например, θ̂(x1, x2, . . . , xn) =
θ0, т.е. не зависит от результатов наблюдений). Ниже мы введем свойства оценок, наличие ко-
торых делают оценки разумными.

2. Несмещенная оценка. Мы приведем два определения несмещенной оценки, если вду-
маться в смысл этих определений, это одно и то же.

Определение 1. Оценка θ̂ называется несмещенной, если ее среднее значение совпадает
с истинным значением параметра Eθ̂ = θист.

Замечание 1. Напомним (см. лекцию 1, п . 6), что θ̂ — случайная величина, функция неза-
висимых одинаково распределенных случайных величин xi.

Определение 1′. Оценка θ̂ называется несмещенной, если для любого возможного значе-
ния параметра θ ∈ Θ справедливо равенство

Eθ θ̂ = θ, θ ∈ Θ (∗).

Давайте расшифруем равенство (*):
1) для непрерывной модели оно означает∫

· · ·
∫
θ̂(x1, x2, . . . , xn)dP

(n)
θ (x1, x2, . . . , xn) = θ для всех θ,
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.
2) для дискретной модели оно означает∑

i

θ(xi1, x
i
2, . . . , x

i
n)dP

(n)
θ (xi1, x

i
2, . . . , x

i
n) = θ для всех θ,

.
Оба определения по-существу эквивалентны. Действительно, как не зная θист — истинного

значения параметра, мы можем проверить, что Eθ̂ = θист. Только проверив справедливость
равенства (*) для всех θ, мы будем знать, что (*) будет справедливо и для θист.

Замечание 2. Утверждение о несмещенности оценки интересно лишь при условии адекват-
ности принятой нами вероятностной модели. Вполне возможна такая ситуация, что справед-
лива не модель {Pθ}θ∈Θ, а какая то другая модель {P̃θ}θ∈Θ с тем же множеством параметров),
и данная статистика θ̂ является несмещенной оценкой для модели {Pθ}, но не является несме-
щенной оценкой для модели {P̃θ}}θ, т.е.∫

· · ·
∫
θ̂(x1, x2, . . . , xn)dP̃

(n)
θ (x1, x2, . . . , xn) 6= θ для некоторого θ.

.
Впрочем, пока не объяснено, как вообще могут существовать такие функции θ̂ (не зависящие
от θ!!), что равенство (*) справедливо для всех θ.

Итак, мы рассмотрим примеры несмещенных оценок.
3. Несмещенная оценка среднего.

x̄ =
x1 + x2 + . . .+ xn

n
.

Действительно,

Ex̄ =
Ex1 + Ex2 + . . .+ Exn

n
=
nEx1

n
= Ex1.

Итак, — несмещенная оценка среднего случайных величин xi. Поэтому x̄ может служить несме-
щенной оценкой параметра, если в данной вероятностной модели параметр совпадает со сред-
ним распределения. Таким образом, функция является несмещенной оценкой для многих мо-
делей. В частности, в нормальной модели

m =

∫
xdPm,σ(x),

в модели Бернулли

p =

∫
xdPp(x),

в пуассоновской модели

λ =

∫
xdPλ(x)

(проверьте это непосредственным вычислением n-кратных интегралов!), таким образом, x̄ —
несмещенная оценка параметра m в нормальной модели, параметра p в модели Бернулли,
параметра λ в модели Пуассона.

4. Несмещенная оценка дисперсии. Сначала вычислим среднее эмпирической диспер-
сии (не будет ли эмпирическая дисперсия несмещенной оценкой дисперсии так же как эмпи-
рическое среднее x̄ — несмещенная оценка среднего). Здесь как и в дальнейшем будет приме-
няться тождество (σ):

1

n

∑
i=1

(xi − x̄)
2

=
1

n

∑
i=1

x2
i − x̄2. (1)
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Итак, (m = Exi)

Es2 = E
1

n

∑
i=1

(xi − x̄)2 = E
1

n

∑
i=1

[(xi −m)− (x̄−m)]2 =

1

n
E
∑
i=1

(xi − x̄)2 − E(x̄−m)2 =
1

n
nDxi − Dx̄ =

= Dxi −
Dx1 + Dx2 + . . .+ Dxn

n2
= Dxi −

Dxi
n

=
n− 1

n
Dxi.

Мы видим, что s2 не является несмещенной оценкой дисперсии, однако несмещенной оценкой
дисперсии является величина

S2 =
n

n− 1
s2. (2)

Так как σ2 — дисперсия нормального распределения, то S2 — несмещенная оценка квадра-
та параметра σ в нормальной модели (Отсюда не следует, что

√
S2 — несмещенная оценка

параметра σ!).
Замечание. Итак, x̄ — несмещенная оценка среднего, в любой модели, в которой среднее

является параметром, x̄ является несмещенной оценкой этого параметра (например, парамет-
ра m в нормальной модели, параметра lambda в модели Пуассона и т. д.). Точно так же,
S2 = n

n−1s
2 является несмещенной оценкой параметра, если этот параметр является диспер-

сией в соответствующей модели, например, параметра σ2 в нормальной модели. Вспомним,
что в модели Пуассона параметр λ является не только средним, но и дисперсией. Давайте
проверим еще раз это утверждение, но используя характеристическую функцию распределе-
ния Пуассона. Напомню сначала, что ϕ′ξ(0) = iEξ, ϕ′′ξ (0) = −Eξ2. Имеем для распределения
Пуассона:

ϕξ(t) = eλ(e
it−1), ϕ′ξ(t) = iλ

(
eit − 1

)
eλ(e

it−1).

Поэтому ϕ′ξ(0) = iλ, ϕ′′ξ (0) = −λ − λ2. Отсюда немедленно следует наше утверждение. Итак,
какая оценка, x̄ или S2, лучше для оценки параметра λ.

5. Эффективная оценка.
Определение. Несмещенная оценка θ̂ параметра θ называется эффективной, если для

любого θ дисперсия θ̂ минимальна в классе всех несмещенных оценок (другими словами, для
любой другой несмещенной оценки θ̂1 параметра θ и любого θ ∈ Θ справедливо неравенство

Dθ θ̂ ≤ Dθ θ̂1(∀θ ∈ Θ). (∗∗)

Обсудим это определение. Дисперсия — это ’мера отклонения случайной величины от своего
среднего’ (см. Курс теории вероятностей), а так как среднее несмещенной оценки совпадает
(по ее определению) с истинным значением параметра, то эффективная оценка — это оценка,
наименее отклоняющаяся от истинного значения параметра, и это должно быть верно при
любом значении параметра.

Замечание. Уменьшение дисперсии оценки без требования несмещенности бессмысленно.
Возьмем, например, постоянную оценку θ̂ ≡ θ0, ее дисперсия минимальна, равна нулю, но что
это дает.

Существование эффективных оценок — факт еще более неожиданный, чем существование
несмещенных оценок. На первый взгляд, даже построив эффективную оценку, мы не сможем
доказать ее эффективность, сравнить ее со всеми несмещенными оценками (как их все рас-
смотреть). Тем не менее, в некоторых случаях это удается осуществить благодаря неравенству
Рао — Крамера.
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Теорема. (Неравенство Рао — Крамера). Пусть θ̂ — несмещенная оценка параметра θ.
Тогда при выполнении ряда дополнительных условий (которые накладываются по ходу до-
казательства и читатель может восстановить самостоятельно) справедливо следующее
неравенство:

Dθ θ̂ ≥
1

Eθ

[
∂ ln p

(n)
θ

∂θ

]2 . (∗ ∗ ∗)

Условия, которые нужны для формулировки (***), очевидны: существование плотности
у распределения Pθ для всех θ, более того, непрерывность и дифференцируемость функции
плотности как функции θ при любом фиксированном x, существование дисперсии оценки θ̂
для всех θ ∈ Θ. Неравенство Рао — Крамера имеет место и для дискретной модели, когда рас-
пределение Pθ дискретно для всех θ и сосредоточено на одном и том же для всех θ счетном
(или конечном) подмножестве R. Как и в случае непрерывного типа распределения, вероят-
ность должна дифференцироваться по параметру и должна иметь смысл правая часть в
неравенстве Рао — Крамера.

Доказательство теоремы. Из определения несмещенности следует∫
. . .

∫
θ̂(x1, x2, . . . , xn)p

(n)
θ (x1, x2, . . . , xn)dx1dx2 . . . dxn = θ,∀θ ∈ Θ (1)

По определению плотности∫
. . .

∫
p

(n)
θ (x1, x2, . . . , xn)dx1dx2 . . . dxn = 1,∀θ ∈ Θ. (2)

Продифференцируем равенства (1) и (2) по θ. Будем считать, что дифференцирование инте-
гралов по параметру θ можно осуществить под знаком интеграла (это еще одно дополнительное
условие). Имеем:∫

. . .

∫
θ̂(x1, x2, . . . , xn)

∂p
(n)
θ (x1, x2, . . . , xn)

∂θ
dx1dx2 . . . dxn = 1,∀θ ∈ Θ. (1′)

∫
. . .

∫
∂p

(n)
θ (x1, x2, . . . , xn)

∂θ
dx1dx2 . . . dxn = 0,∀θ ∈ Θ. (2′)

Вычтем из (1′) равенство (2′), умноженное на θ. Мы получили∫
. . .

∫
(θ̂ − θ)

∂p
(n)
θ (x1, x2, . . . , xn)

∂θ
dx1dx2 . . . dxn = 1,∀θ ∈ Θ. (3)

Производная плотности не является плотностью вероятности. А в неравенстве Рао — Крамера
мы имеем характеристики случайных величин, то есть интегралы по вероятностям. Чтобы
привести (3) к такому виду, перепишем равенство (3) следующим образом:∫

. . .

∫
(θ̂ − θ)

∂p
(n)
θ (x1, . . . , xn)

∂θ

1

p
(n)
θ

p
(n)
θ dx1 . . . dxn = 1,∀θ ∈ Θ. (4)

или ∫
. . .

∫
(θ̂ − θ)

∂ ln p
(n)
θ

∂θ
p

(n)
θ dx1 . . . dxn = 1,∀θ ∈ Θ. (5)

Равенство (5) мы интерпретируем как интегрирование по мере p(n)
θ произведения двух функций

(θ̂ − θ) и ∂ ln(p
(n)
θ )/∂θ, согласно интегральному варианту неравенства Коши — Буняковского
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мы имеем:

1 ≤
∫
. . .

∫
(θ̂ − θ)2p

(n)
θ dx1 . . . dxn

∫
. . .

∫ (
∂ ln p

(n)
θ

∂θ

)2

p
(n)
θ dx1 . . . dxn = 1,

∀θ ∈ Θ, из чего немедленно следует неравенство Рао — Крамера, так как∫
. . .

∫
(θ̂ − θ)2p

(n)
θ dx1 . . . dxn = Dθ θ̂,

∫
. . .

∫ (
∂ ln p

(n)
θ

∂θ

)2

p
(n)
θ dx1 . . . dxn = Eθ

[
∂ ln p

(n)
θ

∂θ

]2

.

Замечание. Итак, чтобы проверить эффективность некоторой оценки, достаточно прове-
рить для всех θ равенство в неравенстве Рао — Крамера. Сделаем это для оценки x̄ параметра
m в нормальной модели. Вычислим отдельно левую и правую часть в (***). (По прежнему
результаты наблюдений xi предполагаются независимыми, и это мы сейчас используем для
упрощения выкладок в данной задаче (прием бывает полезен и для других моделей и других
параметров). А именно, для независимых случайных величин дисперсия суммы равна сумме
дисперсий. Поэтому удобно представить среднее квадрата суммы как дисперсию суммы, для
чего достаточно проверить равенство нулю среднего суммы.) Имеем

Dm,σx̄ =

(
1

n

)2

(Dx1 + Dx2 + . . .+ Dxn) =
σ2n

n2
. (7)

ln p(n)
m,σ(x1, x2, . . . , xn) = ln

(
1

σ(2π)1/2

)n
− 1

2

n∑
i=1

(
xi −m
σ

)2

. (8)

Дифференцируя ln p
(n)
m,σ по m, имеем:

∂ ln p
(n)
m,σ

∂m
=

1

σ2

(
n∑
i=1

xi − nm

)
.

Очевидно, что

Em,σ
1

σ2

(
n∑
i=1

xi − nm

)
= 0.

Поэтому

Em,σ

[
∂ ln p

(n)
m,σ

∂m

]2

= Dm,σ

(
1

σ2

n∑
i=1

xi

)
=
nσ2

σ4
=

n

σ2
,

что и требовалось.
Упражнение. Докажите эффективность оценки x̄ для параметра p в модели Бернулли и

для параметра λ в модели Пуассона. Для этого докажите аналог неравенства Рао — Крамера
для случая, когда распределение Pθ дискретно для всех θ и сосредоточено на одном и том
же для всех θ счетном (или конечном) подмножестве R. Таким, в частности, является случай
модели Бернулли и модели Пуассона.

Пример. Далее мы покажем, что оценка x̄ не для любой модели является эффективной
оценкой среднего. Рассмотрим равномерную модель, в ней число m — середина интервала,
на котором сосредоточено равномерное распределение, является средним значением. Действи-
тельно, ∫ ∞

−∞
xpm,∆(x)dx =

∫ m+∆

m−∆

x
1

2∆
dx =

(m+ ∆)2 − (m−∆)2

4∆
= m.
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Тем не менее, x̄ не является эффективной оценкой m, значительно меньше дисперсия следую-
щей оценки:

m̂(x1, x2, . . . , xn) =
max xi + minxi

2
.

(Читателю рекомендуется самостоятельно вычислить среднее максимума и минимума и про-
верить, что оценка m̂ — несмещенная оценка параметра m. Впрочем, в этом можно убедиться
и используя соображение симметрии. Действительно, преобразование (xi) → (2m − xi), полу-
ченное покоординатным применением преобразования x→ 2m− x, не меняет распределение в
пространстве выборок, и не меняет m̂. Следовательно, при этом преобразовании не должно ме-
няться и среднее оценки m̂. Но единственное число, остающееся на месте при преобразовании
x→ 2m− x — это m.)

Dx̄ =
σ

n

2
=

1

n

(∫ m+∆

m−∆

x2 1

2∆
dx−m2

)
=

∆2

3n
.

Далее мы воспользуемся следующим очевидным неравенством:

D(ξ + η) ≤ 2Dξ + 2Dη. (11)

Вычислим дисперсию случайной величины max xi. Удобнее вместо случайных величин xi рас-
смотреть случайные величины yi = (xi−m+∆)/2∆, которые имеют равномерное распределение
на отрезке [0, 1]. Имеем: Fmax yi(x) = P{max yi < x} = P{y1 < x, y2 < x, . . . , yn < x} = xn для
x ∈ [0, 1]. Поэтому

E[max yi] =

∫ 1

0

xdxn =
n

n+ 1
,

E[max yi]
2 =

∫ 1

0

x2dxn =
n

n+ 2
,

D[max yi] =
n

n+ 2
−
(

n

n+ 1

)2

=
n

(n+ 2)(n+ 1)2
.

D[max xi] = O
(

1
n2

)
. Ввиду симметрии равномерного распределения D[minxi] = O

(
1
n2

)
,

D[maxxi + minxi]/2 = O

(
1

n2

)
.

Итак, для равномерного распределения оценка m̂ значительно лучше чем x̄. Отметим, что до-
казательство неравенства Рао — Крамера в случае равномерной модели не проходит, функция
плотности принимает лишь два значения и меняется скачком, т.е. недифференцируема.

6. Оценка максимального правдоподобия. Оценка максимального правдоподобия опре-
деляется в случае, когда Pθ имеет плотность распределения (а также в дискретном случае).
Эта оценка задается равенством

θ∗(x1, x2, . . . , xn) = {θ : p
(n)
θ (x1, x2, . . . , xn) = max

θ
p

(n)
θ (x1, x2, . . . , xn)},

т.е. в качестве оценки параметра θ берется тот элемент θ∗(x1, . . . , xn) из множества параметров
Θ, что для θ = θ∗ значение плотности

p
(n)
θ (x1, x2, . . . , xn) = pθ(x1)pθ(x2) . . . pθ(xn) (∗ ∗ ∗∗)

максимально. Аналогично (вместо плотности берется вероятность точки) определяется оценка
максимального правдоподобия в случае, когда используется модель с дискретными распределе-
ниями Pθ{xi}, тогда ищется θ, для которого достигается максимум вероятности (а не плотности
вероятности).
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Замечание. При больших n вероятность, входящая в (****), может быть очень мала (в
случае модели с плотностью вероятности вероятность точки просто равна нулю ), тем не менее,
и это удивительно, выбор максимума из очень маленьких вероятностей при разных θ приводит
к хорошей оценке:

Теорема. Если существует эффективная оценка θ̂, для которой достигается равенство
в (***) (в условиях неравенства Рао — Крамера), то эта оценка является оценкой макси-
мального правдоподобия.

Доказательство. В доказательстве неравенства Рао — Крамера используется неравенство
Коши — Буняковского, вспомним, что в этом неравенстве равенство достигается лишь в случае
пропорциональности двух сомножителей под знаком среднего, итак,

θ̂(x1, x2, . . . , xn)− θ = Const(θ)
∂ ln p

(n)
θ (x1, . . . ., xn)

∂θ

для всех θ ∈ Θ и всех x1, x2, . . . , xn.
Подставим в (10) вместо θ оценку максимального правдоподобия θ∗(x1, x2, . . . , xn) для дан-

ных x1, x2, . . . , xn. Так как ln — монотонная функция, то ln p
(n)
θ также достигает максимума

при θ = θ∗, но тогда производная

∂ln p(n)
θ (x1, . . . ., xn)

∂θ
= 0 при θ = θ∗(x1, x2, . . . , xn),

поэтому
θ̂(x1, x2, . . . , xn) = θ∗(x1, x2, . . . , xn).

Алгоритм нахождения эффективной оценки. 1) Найти оценку максимального правдопо-
добия, приравняв производную по параметру от логарифма функции правдоподобия нулю. 2)
Проверить, что эта оценка является непсмещенной. 3) Проверить, что для дисперсии этой оцен-
ки и для среднего квадрата производной от логарифма функции правдоподобия выполняется
равенство в неравенстве Рао — Крамера.

Пример для нормальной модели.
1) Оценка параметра m. Дифференцируем вычисленную выше производную логарифма

функции правдоподобия и приравниваем нулю.

1

σ2

(
n∑
i=1

xi − nm

)
= 0.

Получаем m = x̄. Операции 2) и 3) мы проделали раньше. Заметим, что наш результат не
зависит от неизвестного нам параметра σ.

2) Оценка параметра σ2.

∂ ln p
(n)
m,σ

∂σ2
= −∂(n/2) lnσ2

∂σ2
− 1/2

∂
n∑
i=1

(
xi−m
σ

)2
∂σ2

= 0.

−(n/2σ2) + 1/2

n∑
i=1

(xi −m)2

σ4
= 0. (∗)

σ2 =
1

n

n∑
i=1

(xi −m)2.

В этой задаче результат, к сожалению, зависит от неизвестного нам параметра m. Вывод,
эффективная оценка может существовать лишь при известном m = m0 и нужно проверить
оценку

1

n

n∑
i=1

(xi −m0)2.
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Легко проверяется, что среднее этой оценки равно σ2 (в модели N(m0, σ)). Теперь вычислим
дисперсию этой оценки.

D

(
1

n

n∑
i=1

(xi −m0)2

)
=

1

n2

n∑
i=1

D
(
(xi −m0)2

)
=

n

n2
D
(
(x1 −m0)2

)
=

1

n

{
E(x1 −m0)4 −

(
E(x1 −m0)2

)}
=

1

n
{3σ4 − σ4} =

2σ4

n
.

Теперь считаем знаменатель правой части в неравенстве Рао — Крамера. Производную уже
сосчитали. Надо вычислить

E

(
−(n/2σ2) + 1/2

n∑
i=1

(xi −m)2

σ4

)2

.

Опять воспользуемся идеей сведения среднего квадрата к дисперсии. Легко проверяется, что

E

(
−(n/2σ2) + 1/2

n∑
i=1

(xi −m)2

σ4

)
= 0.

Поэтому среднее квадрата равно

D

(
1/2

n∑
i=1

(xi −m)2

σ4

)
= n/4D

(
(x1 −m)2

σ4

)
=
n2σ4

4σ8
.

Еще один пример оценки максимального правдоподобия. Рассматривается равномерная
модель p∆(x) = 1

∆I[0,∆](x). В этой модели равномерное распределение задано на отрезке [0,∆],
нужно оценить длину отрезка ∆. Ясно, что если результаты наблюдения — числа x1, x2,...,
xn, то ∆ ≥ max{xi}. Оценка максимального правдоподобия равна max{xi}, так как при ∆ =
max{xi} значение функции

p
(n)
∆ (x1, ..., xn) =

(
1

∆

)n∏
i

I[0,∆](xi)

максимально и равно
(

1
max{xi}

)n
.

7. Состоятельная оценка.
Во многих задачах оценка как функция n переменных задается формулой, имеющей смысл

для любого n. Более того, в сколь-нибудь общей теории оценок бессмысленно строить ее лишь
для некоторого фиксированного числа наблюдений. Итак, мы имеем полное право трактовать
оценку не как фиксированную функцию на Rn, а как набор функций θ̂(n), каждая из которых
задана на своем пространстве выборок Rn, при этой трактовке каждому n соответствует неко-
торое распределение Pθ,θ̂(n) (заданное на множестве Θ). Вот почему имеет смысл следующее
определение:

Определение. Оценка θ̂(n)(n→∞) называется состоятельной, если θ̂(n) P−→ θ (для любо-
го θ) или, что то же (см. теорему о совпадении слабой сходимости и сходимости по вероятности
в случае постоянства предельной случайной величины), если

Pθ,θ̂(n)

сл−→ δθ∀θ ∈ Θ,

где δθ — вероятность, сосредоточенная в точке θ, δθ{θ} = 1. Заметим, что в терминах стати-
стической модели мы должны предположить стремление размерности пространства выборок
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(например, Rn) к ∞, тогда говорить о сходимости случайных величин θ̂(n) некорректно, так
как эти случайные величины заданы на разных вероятностных пространств. Но говорить о
слабой сходимости распределений этих оценок мы имеем право, так как эти распределения
заданы на одном пространстве параметров.

Теорема. Оценка x̄ является состоятельной оценкой параметра m нормального распре-
деления.

Доказательство. По закону больших чисел

x̄ =
x1 + x2 + . . .+ xn

n

P−→ Exi = m.

Замечание. И в других моделях, где параметр θ является средним распределения с пара-
метром θ, x̄ является состоятельной оценкой параметра θ (в частности, x̄ — состоятельная
оценка параметра p в модели Бернулли и параметра λ в модели Пуассона).

Упражнение 1 (обязательное). Разобраться в примечании. Из какой теоремы это следует?
Упражнение 2 (обязательное). Доказать, что S2 — состоятельная оценка дисперсии σ2 в

нормальной модели. [Указание. Если ξ имеет нормальное распределение с параметрами 0 и
σ, то Eξ4 = 3!!σ4 = 3σ4.] Будет ли состоятельной оценкой дисперсии в нормальной модели
оценка s2? Можно ли утверждать, что S2 является состоятельной оценкой параметра θ, если
этот параметр совпадает с дисперсией в нашей модели?

Упражнение 3. Рассмотрим модель Коши, заданную набором распределений с плотностями
pµ(x) = a

π[a2(x− µ)2 + 1]
, a > 0. Доказать, что x̄ не является состоятельной оценкой параметра

µ. [Указание. Используя характеристическую функцию распределения Коши, вычислить ха-
рактеристическую функцию распределения случайной величины x̄, доказать, что это распре-
деление не зависит от n]. [Решение. Искомая характеристическая имеет вид ϕxk(t) = eiaµt−|at|

для всех k. Поэтому
ϕx̄(t) = (ϕx1

(t/n))
n

= ϕx1
(t),

то есть никакой сходимости к константе мы не имеем.] Разумеется, в этой модели параметр µ
не является средним, но находится посередине распределения, является медианой. Покажите,
что медиана эмпирического распределения сходится к µ.

Следующая теорема указывает общий путь получения состоятельных оценкок в нетриви-
альных ситуациях.

8. Теорема. Оценка максимального правдоподобия является состоятельной оценкой. Мы
будем считать, что распределения Pθ нашей модели имеют непрерывный тип.

При этом на модель {Pθ}θ∈Θ накладываются следующие условия (можно их не помнить,
они сами возникнут):

1) плотности pθ (задаваемые с точностью до множества лебеговой меры нуль) могут
быть заданы так, что множества {pθ 6= 0} не зависят от θ;

2) при всех возможных выборках {x1, x2, . . . , xn} функция θ → p
(n)
θ (x1, ..., xn) имеет един-

ственный локальный максимум.
Этот максимум, который мы обозначим θ̂, и называется (напомним это) оценкой макси-

мального правдоподобия.
Заметим, что нарушение условия 1) может даже облегчить ситуацию — если результат

наблюдения xi таков, что xi ∈ (a, b) и
b∫
a

pθ(x)dx = 0, то мы вправе исключить данное θ из
претендентов на нашу оценку.

Итак, нам нужно доказать, что

P(n)
θ {(x1, ..., xn) : θ̂ ∈ (θ − ε, θ + ε)} → 1 ∀ε > 0∀θ.

Введенное выше условие позволяет заменить событие в формуле на меньшее:

{θ̂ ∈ (θ − ε, θ + ε)} ⊃ {(x1, ..., xn) : p
(n)
θ (x1, ..., xn) > p

(n)
θ−ε(x1, ..., xn),
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p
(n)
θ (x1, ..., xn) > p

(n)
θ+ε(x1, ..., xn)}. (∗)

Действительно, если значения на границе интервала строго меньше значений на середине, то
в данном интервале имеется локальный максимум, который, согласно допущению, является
оценкой максимального правдоподобия. Обратная импликация, вообще говоря, неверна.

Итак, достаточно доказать две сходимости:

P(n)
θ {(x1, ..., xn) : p

(n)
θ (x1, ..., xn) > p

(n)
θ−ε(x1, ..., xn)} → 1,

P(n)
θ {(x1, ..., xn) : p

(n)
θ (x1, ..., xn) > p

(n)
θ+ε(x1, ..., xn)} → 1.

Оба соотношения доказываются одинаково, мы докажем только второе. Запишем событие дру-
гим способом:

{p(n)
θ > p

(n)
θ+ε} =

{
ln

(
p

(n)
θ+ε

p
(n)
θ

)
< 0

}
=

=

{
(x1, ..., xn) :

1

n

n∑
i=1

ln

(
pθ+ε(xi)

pθ(xi)

)
< 0

}
.

Это напоминает закон больших чисел. Действительно, случайные величины ln

(
pθ+ε(xi)
pθ(xi)

)
(те-

перь xi — это случайные величины, а не результаты наблюдений) независимы как функции
независимых случайных величин xi. Поэтому мы левую часть определяющего событие соотно-

шения заранее разделелили на n. Предположим дополнительно, что Eθ ln
pθ+ε(xi)
pθ(xi)

существует.

Если мы докажем, что это среднее строго отрицательно, то из слабого закона больших чисел
(но в условиях Колмогорова, в предположении существования лишь среднего, см. раздел ’Ха-

рактеристические функции’) будет следовать, что 1
n

n∑
i=1

ln
pθ+ε(xi)
pθ(xi)

сходится по вероятности к

строго отрицательному числу. Но тогда при n→∞ вероятность интересующегося нас события
будет сходиться к 1. Переходим к доказательству нужного неравенства

Eθ ln

(
pθ+ε(xi)

pθ(xi)

)
< 0.

Мы воспользуемся нужным нам и в дальнейшем неравенством выпуклости для среднего.
Лемма. (Неравенство для выпуклых функций.) Если g строго выпуклая функция, то для

любой случайной величины ξ, для которой правая и левая части в (1) имеют смысл, имеет
место неравенство

Eg(ξ) ≥ g(Eξ), (1)

причем равенство достигается лишь в случае константы ξ.
Мы не будем давать здесь подробного доказательства, но постараемся объяснить, почему

неравенство (1) верно.
Оно верно в случае двузначной случайной величины ξ: Pξ{x1} = p, Pξ{x2} = 1− p:

Eg(ξ) = pg(x1) + (1− p)g(x2) ≥ g(px1 + (1− p)x2) = g(Eξ),

где неравенство является определением выпуклости. Методом математической индукции легко
доказывается неравенство для ξ со значениями в любом конечном множестве {x1, ...xn}:

p1g(x1) + ...+ png(xn) ≥ g(p1x1 + ...+ pnxn), pi ≥ 0,
∑
i

pi = 1.

Переходом к пределу и использованием непрерывности получается неравенство для бесконеч-
ных сумм

∞∑
i=1

pig(xi) ≥ g

( ∞∑
i=1

pixi

)
, pi ≥ 0,

∑
i

pi = 1. (2)
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Последнее неравенство означает (1) для дискретных случайных величин, для которых все ряды
сходятся. Так как любая случайная величина является равномерным пределом дискретных
случайных величин, переходом к пределу в (2) для случайных величин, мы получаем (1) в
общем случае.

Заметим, что во всех этих равенствах при строгой выпуклости g, ненулевых значениях pi
и различных xi и равенства быть не может. Верно и более общее утверждение, что равенство
невозможно при строгой выпуклости g и случайной величине ξ, не равной константе.

Можно убедиться в справедливости неравенства выпуклости и из геометрических сообра-
жений. Для этого удобно рассмотреть случайный вектор (ξ, g(ξ)). Распределение этого вектора
лежит на выпуклой кривой {(x, y) : y = g(x)}, а среднее (Eξ,Eg(ξ)) находится в выпуклой обла-
сти, лежащей над этой кривой, это очевидно из механических соображений, среднее является
центром тяжести. Но тогда Eg(ξ) будет выше на графике чем g(Eξ).

Замечание. Для строго вогнутой функции ln из леммы следует справедливость обратного
неравенства:

Eθ ln

(
pθ+ε(xi)

pθ(xi)

)
< ln

(
Eθ
[
pθ+ε(xi)

pθ(xi)

)]
=

= ln

∫
R

pθ+ε(x)

pθ(x)
pθ(x)dx

 = ln

∫
R

pθ+ε(x)dx

 = ln 1 = 0.

Это завершает доказательство теоремы в предположении существования Eθ ln

(
pθ+ε(xi)
pθ(xi)

)
.

Но что делать, когда Eθ ln

(
pθ+ε(xi)
pθ(xi)

)
не существует. В этом случае из условия 1) следует,

что
Pθ

{
x : −∞ < ln

(
pθ+ε(x)

pθ(x)

)
< +∞

}
= 1.

Сейчас мы это используем.
Любую случайную величину ξ мы можем представить в виде суммы неположительной и

неотрицательной случайных величин:

ξ = ξ+ + ξ−, где ξ+ = max{ξ, 0}, ξ− = min{ξ, 0}.

Случайная величина ξ интегрируема тогда и только тогда, когда Eξ+ < ∞, Eξ− > −∞. Но
возможны другие варианты: Eξ+ < ∞, Eξ− неинтегрируема, тогда мы считаем, что Eξ =
−∞, или Eξ− > −∞, Eξ+ неинтегрируема, тогда мы считаем, что Eξ = ∞. Но Eξ не имеет
никакого смысла, если оба интеграла не существуют. (Заметим, что мы только что перебрали

все возможные варианты.) Мы должны доказать, что либо Eθ
(

ln

[
pθ+ε(x)
pθ(x)

])
существует, либо

Eθ
(

ln

[
pθ+ε(x)

pθ(x)

])+

<∞. (3)

Так как наша случайная величина не принимает значений ±∞, нам достаточно доказать, что
для любых Cn ↗∞, Dn ↘ −∞,

limnsup

∫
Dn<ln

[
pθ+ε(x)
pθ(x)

]
<Cn

ln

(
pθ+ε(x)

pθ(x)

)
pθ(x)dx <∞. (4)

(Если мы докажем (4), то (3) не может не выполняться. Действительно, если D < 0, то число

−
∫

D<ln

[
pθ+ε(x)
pθ(x)

]
<0

ln

(
pθ+ε(x)

pθ(x)

)
pθ(x)dx
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в принципе может быть сколь угодно большим для больших |D|, но это число всегда конечно
(интеграл по вероятностной мере по функции, которая не превосходит |D|). В то же время,
если неверно (3) и интеграл равен ∞, то

lim
C→∞

∫
0<ln

[
pθ+ε(x)
pθ(x)

]
<C

ln

(
pθ+ε(x)

pθ(x)

)
pθ(x)dx =∞.

Поэтому по любой последовательности Dn ↘ −∞ можно выбрать такую быстро сходящуюся
последовательность Cn ↗∞ , что

−
∫

Dn<ln

[
pθ+ε(x)
pθ(x)

]
<0

ln

(
pθ+ε(x)

pθ(x)

)
pθ(x)dx <

∫
0<ln

[
pθ+ε(x)
pθ(x)

]
<C

ln

(
pθ+ε(x)

pθ(x)

)
pθ(x)dx+ n

и тогда (4) будет неверно.) Дальше мы будем считать последовательности Cn ↗∞, Dn ↘ −∞
произвольными и для упрощения обозначений мы введем последовательность множеств

An =

{
x : Dn < ln

[
pθ+ε(x)

pθ(x)

]
< Cn

}
.

На множестве An функции pθ и pθ+ε не обязаны быть плотностями, эту ситуацию нужно
исправить. Обозначим ∫

An

pθ(x)dx = 1− λn,
∫
An

pθ+ε(x)dx = 1− µn,

и пронормируем функции так, что они станут функциями плотности на An:

p̃θ(x) =
pθ(x)

1− λn
, p̃θ+ε(x) =

pθ+ε(x)

1− µn
.

Очевидно, что λn → 0, µn → 0. Как и выше, доказывается, что∫
An

ln

(
p̃θ+ε(x)

p̃θ(x)

)
p̃θ(x)dx = π̃n ≤ 0.

В то же время

πn =

∫
An

ln

(
pθ+ε(x)

pθ(x)

)
pθ(x)dx =

=

∫
An

ln

(
(1− µn)p̃θ+ε(x)

(1− λn)p̃θ(x)

)
(1− λn)p̃θ(x)dx =

∫
An

{
[ln(1− µn)− ln(1− λn)] + ln

(
p̃θ+ε(x)

p̃θ(x)

)}
(1− λn)p̃θ(x)dx =

= π̃n(1− λn) + [ln(1− µn)− ln(1− λn)]

∫
An

pθ(x)dx.

Итак, πn никак не может сходится к +∞, так как π̃n неположительна, (1−λn) неотрицательна,
разность логарифмов сходится к 0, а интеграл ограничен 1.
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Завершая наши рассуждения, заметим, что закон больших чисел Колмогорова для неза-
висимых одинаково распределенных случайных величин ξn легко переписывается на случай
среднего значения ξn, равного −∞ (тогда интеграл от положительной части ξn — фиксиро-
ванное положительное число). Действительно, в этом случае мы представляем ξn = ηn + ζn,
где новые случайные величины также одинаково распределены и независимы при разных n,
ζn < 0, а случайные величины ηn имеют среднее, но это среднее может быть сделано (при
соответствующем выборе разложения ξn) сколь угодно маленьким (меньше −N). Чтобы этого
достигнуть, мы можем добавить к положительной части ξ достаточно большую долю отрица-
тельной части (это возможно, так как интеграл от отрицательной части сходится к −∞).

С вероятностью 1

limnsup
ξ1 + ...+ ξn

n
≤ lim

n

η1 + ...+ ηn
n

≤ −N.

для всех N . Итак, с вероятностью 1 усредненные суммы для ξi сходятся к −∞.
Комментарий. В завершение параграфа я объясню целесообразность введения понятия со-

стоятельной оценки. Рассмотрим, для примера, нормальную модель. x̄ — эффективная оценка
параметра m. Но в то же время утверждать, что x̄ точно равно m, мы можем лишь с нулевой
вероятностью. Это следует из непрерывности распределения x̄. Практикам хочется большей
определенности, пусть даже за счет отказа от точности нашей оценки. Немного размыв нашу
оценку, мы можем заменить неприятное утверждение

P{m = x̄} = 0

на весьма привлекательное утверждение

P{m ∈ (x̄− ε, x̄− ε)} → 1.

При больших n мы можем доверять утверждению m ∈ (x̄ − ε, x̄ − ε) с вероятностью, близкой
к 1. Это подводит нас к понятию доверительного интервала.

Вопрос. Выполняются ли условия теоремы в модели Коши? Очевидно, что в случае лишь
одного наблюдения выполняются. Но что будет в многомерном случае? Рассмотрите случай
двух наблюдений.

Замечание. Простой пример, в котором условия теоремы не выполняются, это — равномер-
ная модель с фиксированной длиной интервала и меняющейся серединой интервала m. Ясно,
что множества нулевой плотности для разных m разные, поэтому 1) неверно. Впрочем, и 2)
также не выполняется.

9. Некоторые универсальные оценки параметра θ
В этом пункте мы рассмотрим некоторые алгоритмы оценивания параметра, применимые

сразу для многих или даже для всех моделей.
Оценка максимального правдоподобия.
Метод моментов.
Метод минимума χ2.
Группировка данных и поправки Шеппарда.

§19. Доверительные интервалы

В прошлой лекции было введено понятие оценки, рассматривались наилучшие оценки, тем
не менее, даже самые хорошие оценки параметра для практиков не всегда приемлемы. Дей-
ствительно, им недостаточно утверждения ’θ̂ близко к истинному значению параметра θ’, а
хотелось бы утверждение типа ’θ̂ равно истинному значению параметра θ’ что, как прави-
ло, неверно, а в случае модели с непрерывным множеством значений параметра θ, равенство
θ̂ = θист может выполняться только с вероятностью 0 (проверьте это для нормальной модели).
Поэтому практики готовы пожертвовать точностью оценки, придать ей более расплывчатый
характер, но зато усилить достоверность этой расплывчатой оценки.
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1. Определение. Доверительным интервалом для параметра (в модели {Pθ}, θ ∈ Θ)
служит интервал

(θ̂1(x1, x2, . . . , xn), θ̂2(x1, x2, . . . , xn)),

задаваемый двумя функциями θ̂1 и θ̂2 от результатов наблюдений и такой, что

inf
θ∈Θ

P(n)
θ {(xi) : (θ̂1(x1, x2, . . . , xn), θ̂2(x1, x2, . . . , xn))} ≥ γ, (∗)

здесь γ — доверительный уровень - число между нулем и единицей (разумеется, близкое к 1),
которое задается заказчиком вашей статистической разработки.

Замечание 1. Как и в определении несмещенной или эффективной оценки, мы добиваемся
цели - достоверности оценки для вероятности при неизвестном нам значении параметра θ =
θист благодаря требованию справедливости этого неравенства для всех возможных значений
параметра.

Замечание 2. Для некоторых случаев удается построить такой доверительный интервал
(θ̂1, θ̂2), что тождественно для все θ ∈ Θ

P(n)
θ {(xi) : (θ̂1(x1, x2, . . . , xn), θ̂2(x1, x2, . . . , xn))} = γ, (∗∗)

Замечание 3. Обычно в основе определения доверительного интервала служит некоторая
статистика — функция T на пространстве выборок Rn такая, что распределение некоторого
простого преобразования T , использующего параметр θ (обычно это сложение, деление, умно-
жение или вычитание) не зависит от неизвестного нам значения параметра θ. Как правило,
распределение этой величины f(T, θ) отражено в математических таблицах. Итак, если рас-
пределение f(T, θ) не зависит от θ и равно Q, то доверительный интервал строится следующим
образом: сначала выбираются такие a1 и a2, что

P(n)
θ {(xi) : a1 < f(T, θ) < a2} = Q{x : a1 < x < a2} = γ∀θ ∈ Θ,

далее неравенства a1 < f(T, θ) < a2 решаются относительно θ. Можно сказать так, что сна-
чала доверительный интервал выбирается на области значений f(T, θ), в результате чего до-
стигается равенство а после простыми преобразованиями переносится на область значений
параметров. Заметим также, что в рассмотренных нами ниже задачах для нормальной модели
N(m,σ) распределение f(T, θ) будет стандартным нормальным, распределением Стьюдента
или χ2. Сначала мы покажем, что f(T, θ) — функция независимых стандартных нормальных
случайных величин xi−m

σ , в потом докажем, что ее распределение является табличным.
2. Доверительные интервалы в нормальной модели.
Напомним, что нормальная вероятностная модель задается набором распределений с функ-

цией плотности

pm,σ(x) =
1

σ(2π)1/2
exp

(
−1

2

(
x−m
σ

)2
)
, x ∈ R, где m ∈ R, σ ≥ 0,

нормальная статистическая модель задается набором n-мерных распределений с функцией
плотности

p(n)
m,σ(x1, x2, . . . , xn) =

(
1

σ(2π)1/2

)n
exp

(
−1

2

n∑
i=1

(
xi −m
σ

)2
)
, xi ∈ R,

Здесь m пробегает всю числовую прямую, σ — множество всех положительных чисел.
Пример. Хорошо известно, что результат измерения расстояния имеет нормальное распре-

деление, при этом, если нет систематической ошибки измерения, то m — это искомое рассто-
яние, σ характеризует ошибку измерения. Обычно интересует либо то, либо другое: либо мы
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хотим знать расстояние (и для нас несущественна точность прибора, ее мы определять не хо-
тим, хотя она конечно должна повлиять на длину доверительного интервала для m), если нас
интересует прибор, то, конечно же, нам не важно расстояние, мы занимаемся только исследо-
ванием прибора. Итак, возникают четыре статистические задачи при оценивании параметров
нормального распределения: 1) оценка среднего при известной дисперсии, 2) оценка среднего
при неизвестной дисперсии, 3) оценка дисперсии при известном среднем, 4) оценка дисперсии
при неизвестном среднем.,

Задача 1. Оценка среднего при известной дисперсии σ2
◦.

Так как xi — независимые нормальные N(m,σ0) случайные величины, то x1 +x2 + . . .+xn
нормальна N(nm, n1/2σ0) (см. устойчивость нормального распределения в разделе характери-
стическая функция), поэтому x̄ имеет параметры N(m,n−1/2σ0), случайная величина n1/2(x̄−
m)/σ0 имеет распределение стандартное N(0, 1). Пусть теперь нам нужно построить довери-
тельный интервал для m с доверительным уровнем γ = 0.9. Ищем такое εγ , что для случайной
величины ξ = n1/2(x̄ −m)/σ0, имеющей стандартное распределение N(0, 1), справедливо ра-
венство

P{|ξ| ≤ εγ} = 0, 9.

Так как распределение ξ симметрично, то P{ξ > t} = P{ξ < −t} для всех t, находим по таблице
стандартного нормального распределения (функция распределения обычно обозначается через
Φ) такое εγ , что

Φ(εγ) =

∫ εγ

−∞

1

(2π)1/2
exp(−1

2
x2)dx = 0, 95,

тогда

P{|ξ| ≤ εγ} =

∫ εγ

−εγ

1

(2π)1/2
exp(−1

2
x2)dx = 0, 9.

Легко видеть, что εγ = 1.65. Итак,

P{|n1/2(x̄−m)/σ0| ≤ 1.65} = 0.9.

Разрешая это неравенство относительно m, получаем доверительный интервал для m: m ∈
(x̄− (σ0/n

1/2)1.65, x̄+ (σ0/n
1/2)1.65).

Замечание 1. Иногда представляет интерес доверительный интервал, у которого один конец
равен +∞ или −∞. В данном случае доверительный интервал (−∞, x̄ + (σ0/n

1/2)1.65) будет
давать доверительный уровень не 0.9, а 0, 95.

Замечание 2. Иногда заказчик может сам задать длину доверительного интервала и дове-
рительный уровень. Вы тогда, зная σ0, можете определить необходимое число наблюдений.

Пример. При определении глубины моря в заданной точке σ0 = 20м, требуемый диаметр
доверительного интервала равен 30 м (радиус = 15м), определить количество наблюдений,
необходимых для построения доверительного интервала заданной длины и заданным довери-
тельным уровнем γ = 0.9.

Решение. Решаем неравенство относительно n:

20n−1/21.65 ≤ 15, n1/2 ≥ 2.2, n ≥ 4.84.

Хотя это вряд ли разумно, можно последнее 5-е наблюдение проводить с вероятностью 0,84
(или не проводить с вероятностью 0,16), используя для принятия решения о проведении на-
блюдения датчик случайных чисел.

Задача 2. Оценка дисперсии σ2 при известном среднем m0.

В этой задаче рассматривается статистика S2
m0

= 1
n

n∑
i=1

(xi −m0)2 (это новое обозначение).

Мы так преобразуем случайную величину S2
m0

, чтобы получилась новая, распределение кото-
рой не зависит от σ и более того, является табличным распределением χ2

n. Действительно, мы
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покажем, что случайная величина

T (x1, x2, . . . , xn) =
nS2

m0

σ2

имеет распределение χ2
n. Напомним, что распределение χ2

n — это распределение случайной ве-
личины ξ2

1 +ξ2
2 +. . .+ξ2

n, где ξ1, ξ2, . . . , ξn — независимые одинаково распределенные нормальные
N(0, 1) случайные величины. Имеем:

nS2
m0

σ2 =

n∑
i=1

(xi −m0)2/σ2

представляется в виде суммы χ2, где ξi = (xi −m0)/σ.
Используя таблицы распределения случайной величины χ2

n, строится доверительный ин-
тервал σ2. Чаще всего доверительный интервал строится в виде (α, β) (если нас интересует
наиболее точное задание дисперсии), (0, δ) (если нас интересует вопрос — может ли дисперсия
оказаться больше какого-то числа, быть слишком большой), и (τ,∞) (если нас интересует —
может ли дисперсия оказаться слишком маленькой). Доверительный интервал всех трех видов
строится одинаковым способом. Построим, например, доверительный интервал третьего вида:
выберем такое λ > 0, что

P
{
nS2

m0

σ2
< λ

}
= γ.

Мы получаем, что интервал
(
nS2

m0

λ
,∞
)

имеет доверительный уровень

P
{
nS2

m0

λ
< σ2

}
= γ.

Замечание 3. Как видно из задачи 1, знание дисперсии позволяет оценить точность оценки
x̄. Тогда доверительный интервал для дисперсии — это оценка точности точности. Интуитивно
ясно, что для такой оценки нужно существенно больше наблюдений чем в задаче 1. Однако
для больших n таблиц распределения χ2

n не существует. Нужно пользоваться нормальным
приближением — случайная величина χ2

n−n√
2n

имеет при больших n почти стандартное нормаль-
ное распределение. В таких ситуациях нужно (умеючи!) пользоваться таблицами нормального
распределения N(0, 1).

Задача 3. Оценка дисперсии σ2 при неизвестном среднем.
В этом случае мы не можем использовать центрирование случайных величин xi средним

m0, поэтому вместо статистики S2
m0

здесь используется несмещенная оценка дисперсии

S2 =
1

n− 1

n∑
i=1

(xi − x̄)2.

Теорема. Случайная величина

(n− 1)
S2

σ2
=

n∑
i=1

(xi − x̄)2/σ2

имеет распределение χ2
n−1.

Доказательство.Мы используем тождество (1) в §2, а также следующую лемму о вращении
нормального случайного вектора:

Лемма 1. Пусть (ξ1, ξ2, . . . , ξn) — стандартный нормальный случайный вектор (т.е. распре-
деления ξ1, ξ2, . . . , ξn нормальны N(0, 1), сами эти величины независимы). Пусть также U —
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ортогональное вращением, U = [uij ], i, j ≤ n, — матрица вращения, случайный вектор (ηi)
задан равенствами

ηi =
∑
i=1

uijξj , i ≤ n.

Тогда случайный вектор (η1, η2, . . . , ηn) также имеет стандартное n-мерное нормальное распре-
деление.

Вернемся к доказательству теоремы. Обозначим ξi = xi −m
σ , ξ̄ =

ξ1 + ξ2 + . . .+ ξn
n . Тогда

T (x1, x2, . . . , xn) =

n∑
i=1

(xi − x̄)2/σ2 =

n∑
i=1

[(xi −m)− (x̄−m)]2/σ2 =

=

n∑
i=1

(ξi − ξ̄)2 =

n∑
i=1

ξ2
i − nξ̄2.

Далее мы построим такое вращение U , матрица U которого имеет вид

U =

 1/
√
n · · · 1/

√
n

· · · · · · · · ·
· · · · · · · · ·

 .
Задана 1-я строка, в последующих строках стоят какие-то числа достаточно произвольно, но
так, чтобы матрица U была ортогональной (Напомним, строки и столбцы ортогональной мат-
рицы составляют ортонормированный базис. Любую ортонормированную систему, в частности,
даже один нормированный вектор, можно дополнить до ортонормированного базиса).

В этом случае η1 = n−1/2(ξ1 +· · ·+ξn). Так как при ортогональном вращении сумма квадра-

тов переходит в сумму квадратов, то
∑
i=1

ξ2
i −nξ̄2 =

n∑
i=1

η2
i −η2

1 =
n∑
i=2

η2
i , т.е. имеет распределение

χ2
n−1.
Задача 4. Оценка среднего при неизвестной дисперсии.
При решении задачи 1 мы использовали известность дисперсии и то, что распределение

случайной величины n1/2(x̄ − m)/σ есть N(0, 1). Теперь мы будем считать, что дисперсия
неизвестна, поэтому эту статистику при всем желании вычислить мы не можем. Естественно
попытаться заменить ее на

Tm(x1, x2, . . . , xn) = n1/2(x̄−m)/S,

где S2 — несмещенная оценка дисперсии. И действительно, можно определить распределение
статистики Tm, которое не зависит от неизвестной нам дисперсии и от m, и использовать Tm
для построения доверительного интервала для среднего m. Имеем:

Tm = n1/2 x̄−m
S

=

(x1 −m) + (x2 −m) + . . .+ (xn −m)

n1/2(
1
n

n∑
i=1

(xi − x̄)2

)1/2
=

=

1
n1/2

(
x1 −m
σ + x2 −m

σ + . . .+ xn −m
σ

)
(

1
n

n∑
i=1

[
xi −m)

σ
− x̄−m

σ

]2
)1/2

.

Обозначим ξi = xi −m
σ , тогда ξi независимы и имеют распределение N(0, 1),

Tm =
n1/2 (ξ1 + · · ·+ ξn)(

1
n

n∑
i=1

(ξi − ξ̄)2

)1/2
.
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Как и при решении задачи 3 проведем вращение нормального случайного вектора (x1, x2, . . . , xn),
мы уже видели, что

n1/2(ξ1 + ...+ ξn) = η1,
1

n

n∑
i=1

(ξi − ξ̄)2 = η2
2 + . . .+ η2

n.

Таким образом,

Tm =
η1(

1
n

n∑
i=2

η2
i

)1/2

имеет распределение Стьюдента с параметром n − 1, доверительный интервал определяется
из неравенства |Tm| < ε, где P{|Tm| < ε} = γ а ε определяется по γ и таблице распределения
Стьюдента.

Замечание 4. При больших n распределение Стьюдента хорошо аппроксимируется стан-
дартным нормальным распределением.

Замечание 5. Мы видим, что в этой задаче, так же, как и в задачах 2 и 3, длина довери-
тельного интервала случайна и зависит от результатов наблюдений. Это не очень соответству-
ет высказанной выше идее введения состоятельной оценки. В то же время оценка x̄ является
состоятельной согласно закону больших чисел. Для эмпирической дисперсии выше была сфор-
мулирована задача о состоятельности, которую сейчас есть смысл решить.

s2 =
1

n

n∑
i=1

(xi −m)2 − (x̄−m)2.

Первое слагаемое сходится к σ2 по вероятности в силу закона больших чисел, среднее второго
слагаемого сходится к нулю, а в силу неотрицательности слагаемого оно сходится к нулю по
вероятности.

Замечание 6. Из анализа примеров создается впечатление, что доверительный интервал с
одним и тем же доверительным уровнем для всех значений параметра θ существует редко и
лишь в особых ситуациях, в которых возникают инвариантные распределения, не зависящие
от неизвестного нам значения параметра. Оказывается, это не так, и аналог доверительного
интервала можно связать почти с любой статистикой T . Действительно, зафиксируем для
любого θ два числа — t1(θ) и t2(θ) такие, что

P(n)
θ {t1(θ) < T < t2(θ)} = γ. (∗)

(Гарантировать существование таких t1(θ) и t2(θ) можно лишь в том случае, когда функция
распределения статистики T непрерывна при любом значении параметра θ.) Тогда при любом
значении T в качестве аналога доверительного интервала мы можем взять множество всех θ
таких, что выполняется (*). Действительно, при любом θ это значение параметра с вероят-
ностью γ удовлетворяет условию (*) и попадает в выбранное множество. Разумеется, такое
множество в конкретной модели может быть не интервалом (и даже не одномерным), поэтому
множество таких θ корректнее называть доверительным множеством, но такого термина я не
встречал.

В случае многомерного параметра θ приведенная конструкция имеет смысл лишь если мы
оцениваем все координаты θ одновременно. Например, в нормальной модели при фиксирован-
ном m множество (*) будет разным при разных значениях σ.

3. Вывод функции плотности распределения Стьюдента. В теории вероятности мы
отложили вывод распределения Стьюдента. Сейчас самое время этим заняться, хотя для поль-
зователей математической статистики этот вывод не нужен, достаточно иметь таблицу функ-
ции распределения, а для составления таблиц нужно уметь хорошо приближать интегралы,
которые заведомо не берутся в явном виде.
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Итак, мы рассматриваем случайную величину

tn =
ξ√

ξ2
1 + ...+ ξ2

n

=
ξ√
1
nχ

2
n

,

где ξ и ξi — n+1 независимых нормальных N(0, 1) случайных величин. В частности, числитель
и знаменатель случайной величины tn независимы. При n = 1 величину tn можно представить
в виде ξ

|η| , где ξ и η независимы и нормальны N(0, 1). Заметим, что если произвольную слу-
чайную величину ζ умножить на независимую двузначную случайную величину ε, которая
задается соотношением P{ε = 1} = P{ε = −1} = 1/2, то получим новую случайную величину
εζ, распределение которой связано с распределением ζ соотношением

P{εζ ∈ [−x, x]} = 2P{εζ ∈ [0, x]} = P{ζ ∈ [−x, x]}.

Распределение со свойством P{[−x, x]} = 2P{[0, x]} называется симметричным. Для симмет-
ричных распределений (например, для нормального N(0, 1)) таблицу значений функции рас-
пределения F (x) достаточно задать лишь для x > 0. Если же случайная величина ζ сама имеет
симметричное распределение, то легко видеть, что умножение на случайный знак ε не меняет
распределение. Поэтому (объяснить!)

ξ

|η|
L
=
εξ

|η|
L
=

ξ

ε|η|
L
=
ξ

η
,

то есть имеет распределение Коши. Итак, при выводе распределения Стьюдента целесообразно
использовать преобразование координат, которое использовалось при выводе распределения
Коши. Но предварительно мы выпишем плотности распределения:

pχ2
n
(x) =

1

2n/2Γ
(
n
2

) e−
x
2 x

n
2−1I(0,∞)(x),

p 1
nχ

2
n
(x) =

(
n
2

)n/2
Γ
(
n
2

) e−
nx
2 x

n
2−1I(0,∞)(x),

p√ 1
nχ

2
n
(x) = 2

(
n
2

)n/2
Γ
(
n
2

) e−
nx2

2 xn−1I(0,∞)(x),

Далее запишем функцию распределения tn:

Ftn(x) =

∫ ∫
u/v≤x,v≥0

pξ(u)p√ 1
nχ

2
n
(v)dudv =

∫ ∫
u/v≤x,v≥0

1√
2π
e−

1
2u

2

2

(
n
2

)n/2
Γ
(
n
2

) e−
nv2

2 vn−1dudv =

Перейдем к новым координатам y = u/v, z = v, тогда ∂(u,v)
∂(x,y) = z:

=

∫ ∫
y≤x,z≥0

1√
2π

2

(
n
2

)n/2
Γ
(
n
2

) zne−
1
2 z

2(n+y2)dydz =

(w = 1
2z

2(n+ y2))

=

∫ ∫
y≤x,w≥0

1√
π

nn/2

Γ
(
n
2

)e−ww n−1
2 (n+ y2)−

n+1
2 dydw =

∫
y≤x

1√
nπ

Γ
(
n+1

2

)
Γ
(
n
2

) (
1 +

y2

n

)−n+1
2

dy.

§20. Достаточные статистики.
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При построении новых оценок обычно стараются использовать статистики, которые назы-
ваются достаточными.

Определение. Статистика T = T (x1, ..., xn) называется достаточной для статистической
модели P(n)

θ , θ ∈ Θ, если (в непрерывной модели) условная плотность p(n)
θ (x1, ..., xn|T = t) или

(в дискретной модели) условная вероятность P(n)
θ {x1, ..., xn|T = t} не зависит от θ. Объяснить

это определение можно следующим образом: если статистика достаточна, то в ней содержится
вся информация выборки относительно параметра θ.

Замечание 1. Разумеется, статистика T может принимать и векторные значения.
Теорема. Если (в непрерывной модели) совместная плотность pnθ допускает факториза-

цию
p

(n)
θ (x1, ..., xn) = gθ(T (x1, ..., xn))h(x1, ..., xn),

или (в дискретной модели) совместная вероятность P(n)
θ {x1, ..., xn} допускает факториза-

цию
P(n)
θ {x1, ..., xn} = gθ(T (x1, ..., xn))h(x1, ..., xn),

где функция gθ(t) зависит от θ, а функция h(x1, ..., xn) не зависит от θ, то статистика T
является достаточной.

Доказательство мы проведем лишь для дискретного случая, где оно наиболее просто. По
определению условной вероятности имеем:

P(n)
θ {x1, ..., xn|T = t} =

P(n)
θ {{x1, ..., xn} ∩ {T = t}}

P(n)
θ {T = t}

.

В этой дроби числитель равен нулю, если T (x1, ..., xn) 6= t, и равен

P(n)
θ {{x1, ..., xn} = gθ(t)h(x1, ..., xn),

если T (x1, ..., xn) = t. Знаменатель считается суммированием:

P(n)
θ {T = t} =

∑
T (xi)=t

P(n)
θ {x1, ..., xn} =

∑
T (xi)=t

gθ(t)h(x1, ..., xn).

В результате дробь имеет вид
h(x1, ..., xn)∑

T (xi)=t

h(x1, ..., xn)
,

то есть не зависит от θ.
Замечание 2. В вероятностной модели с плотности (такое распределение мы называем

непрерывным) возникает некоторая трудность при вычислении условной плотности, так как
совместная плотность вектора (x1, ..., xn) и статистики T (x1, ..., xn) не существует. Действи-
тельно, она должна была бы быть определена на n+ d-мерном пространстве, где d — размер-
ность T , но вся вероятность на этом пространстве сосредоточена на множестве лебеговой меры
нуль {(x1, ..., xn, t) : t = T (x1, ..., xn)}.

Пример 1. В нормальной модели

p(n)
m,σ(x1, x2, . . . , xn) =

(
1

σ
√

2π

)n
exp

(
−1

2

n∑
i=1

(
(xi −m)

σ

)2
)

=

=

(
1

σ
√

2π

)n
exp

−1

2

n∑
i=1

x2
i − 2m

n∑
i=1

xi + nm2

σ2

 .
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Легко видеть, что условиям теоремы удовлетворяет статистика

T (x1, ..., xn) =

(
n∑
i=1

xi,

n∑
i=1

x2
i

)
,

и что эмпирические среднее и дисперсию являются функциями этой статистики, в свою оче-
редь, двумерная статистика T является функцией двумерной статистики (x̄, s2).

Пример 2. Поучительный пример приведен в в книге И.Н. Володина. Рассмотрим равномер-
ное распределение на отрезке [0,∆], где ∆ > 0 — неизвестный параметр. Совместная функция
плотности задается формулой

p
(n)
∆ (x1, x2, . . . , xn) =

(
1

∆

)n
I[0,∆](x1) · · · I[0,∆](xn).

В этой модели достаточной статистикой является статистика

T (x1, ..., xn) = max
i≤n

xi.

Действительно, если T ≤ ∆, то

p
(n)
∆ (x1, x2, . . . , xn) =

(
1

∆

)n
,

если T > ∆, то
p

(n)
∆ (x1, x2, . . . , xn) = 0.

Все же оба этих примера являются примерами ’второго сорта’, в них функцию h можно
считать равной константе, например, 1. Иная ситуация в модели Пуассона:

Пример 3.

P
(n)
λ (k1, k2, . . . , kn) ==

λk1+k2+···kn

k1!k2! · · · kn!
e−nλ.

В этом примере T (k1, k2, . . . , kn) = k1 + k2 + . . .+ kn,

h(k1, k2, . . . , kn) =
1

k1!k2! · · · kn!
.

§21. Сравнение двух гипотез

Рассматриваются две гипотезы: гипотеза H0 — ’истинное распределение — P0 с функцией
плотности p0’, и гипотеза H1 — ’истинное распределение — P1 с функцией плотности p1’. На
основании выборки (x1, . . . , xn)(xi имеют распределение P0 или P1) нам следует выбрать одну
из гипотез — H0 или H1.

Естественно, что критерий различения двух гипотез имеет вид Rn = ∆0 +∆1 (Rn в данном
случае – пространство всех выборок), гипотеза H0 принимается, если выборка окажется в ∆0,
H1 принимается, если выборка окажется в ∆1. Нас интересует такое разбиение ∆0 + ∆1, при
котором минимальны вероятности ошибок. Отметим, что

P{принять гипотезу H1 при условии, что верна гипотеза H0} = α называется вероятностью
ошибки первого рода, α = P(n)

0 ∆1,
P{принять гипотезу H0 при условии, что верна гипотеза H1} = β называется вероятностью

ошибки второго рода, β = P(n)
1 ∆0.

Эта терминология придает разный смысл гипотезам H0 и H1, гипотеза H0 считается основ-
ной, а H1 — альтернативной, поэтому α — вероятность отвергнуть правильную гипотезу (т.е.
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H0), β — вероятность принять неправильную гипотезу (тоже H0). Оптимальность выбора раз-
биения ∆0 +∆1 обычно означает фиксацию вероятности α и минимизацию при фиксированном
α вероятности β.

Лемма Неймана — Пирсона. Если

P0

{
(xi) :

p
(n)
0 (x1, . . . , xn)

p
(n)
1 (x1, . . . , xn)

= C

}
= 0, (0)

где константа C определяется из равенства∫
· · ·
∫

∆1

p
(n)
0 (x1, . . . , xn)dx1 . . . dxn = α = P{H1|H0},

то оптимальный критерий имеет вид

∆0 =

{
(xi) :

p
(n)
0 (x1, . . . , xn)

p
(n)
1 (x1, . . . , xn)

> C

}
,∆1 = Rn\∆0. (∗)

Доказательство. Сравним с критерием (*) любой другой критерий Rn = ∆′0 + ∆′1, где
также

∫
· · ·
∫

∆′1

p
(n)
0 (x1, . . . , xn)dx1 . . . dxn = α. Имеем:

1− α = P(n)
0 ∆0 = P(n)

0 (∆0 ∩∆′0) + P(n)
0 (∆0\∆′0) = P(n)

0 ∆′0 = P(n)
0 (∆0 ∩∆′0) + P(n)

0 (∆′0\∆0).

Поэтому
P(n)

0 (∆0\∆′0) = P(n)
0 (∆′0\∆0).

Мы используем следующие очевидные равенства:

∆0 \∆′0 = ∆′1 \∆1,

∆′0 \∆0 = ∆1 \∆′1.

В итоге имеем:
P(n)

1 ∆0 = P(n)
1 (∆0 ∩∆′0) + P(n)

1 (∆0\∆′0) =

= P(n)
1 (∆0 ∩∆′0) +

∫
· · ·

∫
∆0\∆′0

p
(n)
1 dx1 . . . dxn =

= P(n)
1 (∆0 ∩∆′0) +

∫
· · ·

∫
∆0\∆′0

p
(n)
1

p
(n)
0

p
(n)
0 dx1 . . . dxn ≤

≤ P(n)
1 (∆0 ∩∆′0) +

∫
· · ·

∫
∆0\∆′0

1

C
p

(n)
0 dx1 . . . dxn =

= P(n)
1 (∆0 ∩∆′0) +

∫
· · ·

∫
∆′0\∆0

1

C
p

(n)
0 dx1 . . . dxn ≤

≤ P(n)
1 (∆0

⋂
∆′0) +

∫
· · ·

∫
∆′0\∆0

p
(n)
1

p
(n)
0

p
(n)
0 dx1 . . . dxn = P(n)

1 ∆′0,

что и требовалось.
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Эта простая лемма (если подумать, то она очевидна) используется при исследовании кри-
териев в задаче проверки гипотезы (см. следующую лекцию).

В ситуации, когда вероятность в (0) не равна 0, вероятность ошибки первого рода может
перескочить через заданное нами α. Поэтому задачу решает рандомизированный критерий
Неймана — Пирсона. Суть критерия состоит в том, что если имеет место событие в равенстве
(0), мы ’подбрасываем монету’ и в зависимости от результата эксперимента выбираем либо H0

либо H1. Монета ’изготавливается’ так, что при этом вероятность ошибки первого рода будет
в точности равна α.

Термин ’рандомизация’ в переводе с английского означает ослучайнивание.
Переставить лекции??

§22. Задача проверки гипотез.

В этой лекции будет идти речь о проверки вероятностных гипотез. Имеется в виду, что
по результатам наблюдений мы должны вынести суждение (для заказчика) — согласуются ре-
зультаты наблюдений с выдвигаемой им (или вами) гипотезой (или нет). Вначале для простоты
мы будем считать, что гипотеза заключается в задании распределения наблюдаемой случай-
ной величины. Итак, наблюдаются числа x1, . . . , xn, мы проверяем гипотезу о том, что это —
результаты наблюдений независимых случайных величин с одним и тем же распределением
P0. Критерий имеет вид ∆ ⊂ Rn, это множество называется критическим, гипотеза отверга-
ется, если мы (т.е. (x1, . . . , xn)) попадем в критическое множество (точнее, мы говорим, что в
этом случае результаты наблюдений не согласуются с выдвинутой гипотезой). Само критиче-
ское множество выбирается по уровню значимости α — вероятности попадания в критическое
множество при условии справедливости гипотезы (обычно α равно одному из чисел 0.001, 0.01,
0.05, 0.1), именно для этих значений α обычно составляются вероятностные таблицы. Итак,
при условии справедливости P0 вероятность попадания в критическое множество мала, при
проверке гипотез мы исходим из убеждения, что события с малой вероятностью как прави-
ло не происходят, если же такое событие произошло, то, скорее всего, наше первоначальное
предположение (о малости вероятности попадания в ∆) неверно, а следовательно, неверна и
гипотеза, при условии справедливости которой была сосчитана вероятность попадания в ∆.

Замечание. α = P(n)
0 (∆).

1. Примеры.
Пример (который должен заставить задуматься!). Пусть мы подбрасываем большое число

раз монету (например, 10000 раз), гипотеза состоит в том, что вероятность выпадения герба в
точности равна половине, т.е. монета симметрична. Как можно выбрать критическое множе-
ство (для простоты вычислений уровень значимости будет считаться равным 1/125 примерно).
Обозначим ν — частота выпадения герба. 1 вариант критического множества — ∆ = {ν > 1−ε},
где ε выбирается так, что

P(n)
0 {ν > 1− ε} = 1/125.

Второй вариант — ∆̃ = {ν < ε},
P(n)

0 ∆̃ = 1/125.

Можно также придумать симметричный критерий: ∆# = {|ν − 1/2| > δ}, где δ подбирается
так, что P(n)

0 ∆# ≈ 1/125.
Но оказывается возможен вообще парадоксальный критерий ∆′ = {ν = 1/2}, по формуле

Стирлинга P(n)
0 ∆′ ≈ 1/125.

Критерий ∆′ не противоречит формальному определению критерия, вероятность попада-
ния в ∆′ мала, в то же время получается, что мы отвергаем гипотезу, если она слишком хорошо
подтверждается: ν = 1/2. Итак критериев много, нужно не только уметь их придумывать, но и
уметь сравнивать, а для этого кроме основной гипотезы P0 нужен также набор альтернативных
гипотез (в данном случае это гипотезы Pp, где Pp{0} = p,Pp{1} = 1− p. Обозначим:

β(p) = Pp∆c,
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β̃(p) = Pp∆̃c,

β#(p) = Pp∆#c,

β′(p) = Pp∆′c.

Мы будем считать, что один критерий лучше другого, если функция β(p) для одного критерия
всегда больше чем аналогичная функция для другого критерия. При таком способе сравнения
выбор оптимального критерия зависит от выбора набора альтернатив {Pp}. Если этот набор
совпадает с {Pp : p > 1/2}, то, нетрудно видеть, что оптимальным является критерий ∆,
если {Pp : p < 1/2}, то оптимален критерий ∆̃, если {Pp : p 6= 1/2}, то вообще не будет
оптимального критерия (это легко проверить). Ни для одной из этих альтернатив критерий
∆′ не будет хорошим (это тоже легко проверяется).

Пример. 1000 раз подбрасывали монету, 550 раз выпал герб. Согласуется ли этот результат
с гипотезой p = 1/2? Критическое множество разумно выбрать в виде ∆ = {k ≥ 550}, где k —
число гербов в 1000 испытаниях, тогда

α = P(∆) =

1000∑
550

Ck1000p
k(1− p)1000−k =

1000∑
550

Ck1000

(
1

2

)1000

.

Эту вероятность можно явно вычислить на компьютере, но при этом надо избегать машин-
ных нулей и бесконечностей. Можно воспользоваться и нормальным приближением. Согласно
центральной предельной теореме, распределение случайной величины k примерно нормально,
нужно свести вопрос к таблицам нормального распределения N(0, 1) — функции Φ. Для этого
надо вычесть из k среднее и разделить разность на корень квадратный из дисперсии. Имеем

Ek = 1000 · 1

2
= 500,Dk = 1000 · 1

4
= 250.

Итак,
P{k ≥ 550} ≈ Φ(50/

√
250) ≈ Φ(3.164) ≤ 0.001.

Гипотеза не подтвердилась.
Задача выбора критического множества существенно усложняется, если наша гипотеза яв-

ляется параметрической. Нужно стремиться к тому, что вероятность попадания в критическое
множество была бы инвариантна — не зависела бы от неизвестных нам значений параметра.

Замечание. Чаще всего критическое множество имеет вид

∆ = {T > t},

где T — некоторая статистика (в параметрическом случае ее распределение не должно зависеть
от параметра). В такой ситуации процедура проверки приобретает другой вид — мы вычисляем
конкретное значение T и узнаем (обычно по таблице) уровень значимости, для которого наша
гипотеза не подтвердилась. В результате мы можем получить любое число между 0 и 1, которое
не обязательно равно 0.01, 0.05 или 0.1. Такой подход иногда удобнее. Результаты вычислений
становятся более информативными, кроме того, вместо таблиц мы можем иногда использовать
компьютерные вычисления (см. Ранговые критерии). Действительно, мы вычислили значение
T для нашей конкретной серии экспериментов, получили некоторое значение T̃ , и теперь нас
не интересует вся таблица значений функции распределения статистики T , а лишь конкретное
число P{T > T̃}.

2. Критерий Стьюдента.
Даны две выборки — (x1, ..., xn) и (y1, ..., yk). Мы предполагаем, что одна выборка получена

в ходе одних экспериментов, а другая — в ходе других экспериментов, но при этом измерялось
одно и то же. В результате мы получили, что среднее одной выборки, x̄ больше среднего
другой выборки ȳ, x̄ > ȳ. Возникает естественный вопрос, случайно это превышение или нет,
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не означает ли оно, что на самом деле в двух сериях экспериментов мы измеряли разные
характеристики.

Пример из истории химии.
Двумя способами измерялся удельный вес воздуха. В первой серии экспериментов воздух

фиксированного объема воздух сжижался и после этого взвешивался, были получены числа
(x1, ..., xn). Во второй серии отдельные химические вещества в воздухе измерялись благодаря
участию в химических реакциях и их вес складывался. Таким образом были получены числа
(y1, ..., yk). В итоге выяснилось, что x̄ − ȳ = ε > 0. Не означает ли это, что в воздухе присут-
ствуют вещества, не вступающие в химические реакции? В дальнейшем такие вещества были
открыты, это — инертные газы. Итак, возникает вопрос: чему равна вероятность P{x̄− ȳ ≥ ε},
где ε вычислена раньше из двух конкретных выборок, полученных в результате конкретного
эксперимента, а x̄ и ȳ — средние произвольных случайных выборок? Если эта вероятность
мала, то мы можем думать, что превышение x̄ над ȳ не случайно, и на самом деле среднее

mx = Exi > my = Eyi.

Но в вероятностной модели, в рамках которой мы считаем P{x̄ − ȳ > ε}, мы предполагаем,
что m = mx = my, σ2 = Dxi = Dyi, случайные величины xi, yj — независимые нормальные
случайные величины с одними и теми же параметрами m, σ. Если в рамках такой модели
вероятность P{x̄ − ȳ > ε} будет мала, то будет естественно предположить, что модель не
верна, а на самом деле mx > my. Все это проделал химик Стьюдент (псевдоним Госсета). К
сожалению, у меня нет данных Стьюдента, но по-видимому, не все xi были больше всех yj .
Иначе утверждение mx > my стало бы очевидным и без использования критерия Стьюдента.
Как и при построении доверительного интервала для среднего при неизвестной дисперсии,
число ε будет случайным. Точнее, малое событие имеет видC(n, k)

x̄− ȳ√∑n
i=1(xi − x̄)2 +

∑k
j=1(yj − ȳ)2

> δ

 .

Оказалось, что при некотором выборе константы C(m, k) случайная величина

C(n, k)
x̄− ȳ√∑n

i=1(xi − x̄)2 +
∑k
j=1(yj − ȳ)2

имеет распределение Стьюдента с параметром n + k − 2, то есть распределение случайной
величины

tn+k−2 =
ξ√√√√ 1

n+ k − 2

n+k−2∑
i=1

ξ2
i

,

в частности, распределение этой величины не зависит от параметров m и σ, а число δ мо-
жет быть найдено по таблице распределения случайной величины tn+k−2. Для доказательства
используются простые выкладки, к которым мы уже привыкли.

C(n, k)
x̄− ȳ√∑n

i=1(xi − x̄)2 +
∑k
j=1(yj − ȳ)2

=

C(n, k)
x̄−m
σ − ȳ −m

σ√√√√ n∑
i=1

(
[xi −m]− [x̄−m]

σ

)2

+

k∑
j=1

(
[yj −m]− [ȳ −m]

σ

)2
=
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далее мы введем независимые случайные величины с распределением N(0, 1):

ξi =
xi −m
σ

, ηj =
yj −m
σ

,

также
ξ̄ =

ξ1 + ...+ ξn
n

, η̄ =
η1 + ...+ ηk

k
.

Теперь мы продолжим наше равенство:

= C(n, k)
ξ̄ − η̄√∑n

i=1[ξi − ξ̄]2 +
∑k
j=1[ηj − η̄]2

=

= C(n, k)
ξ̄ − η̄√∑n

i=1 ξ
2
i − nξ̄2 +

∑k
j=1 η

2
j − kη̄2

.

Далее мы используем вращение, после которого первая координата имеет вид x1+...+xn√
n

, а вто-
рая координата имеет вид y1+...+yk√

k
, при этом случайный вектор (ξ1, ..., ξn, η1, ..., ηk) превратится

в вектор (
ζ1 =

ξ1 + ...+ ξn√
n

, ζ2 =
η1 + ...+ ηk√

k
, ζ3, ..., ζn+k

)
.

Числитель и знаменатель оказываются независимыми между собой. Числитель равен ζ1√
n
− ζ2√

k
,

а знаменатель —
√∑n+k

i=1 ζ
2
i − ζ2

1 − ζ2
2 . Знаменатель дает нам в C(n, k) множитель

√
n+ k − 2,

а числитель имеет дисперсию 1/n+ 1/k, поэтому дает множитель
√

nk
n+ k

.
Замечание. Критерий Стьюдента вошел в парадигму многих гуманитарных и естествен-

ных дисциплин. Вопросы ’Что дала проверка по Стьюденту?’, ’А Вы проверили эффектив-
ность Вашего метода по Стьюденту?’ часто задаются на защитах докторских и кандидатских
диссертаций по медицине, психологии, социологии и даже педагогике. Положительный ответ
вызывает одобрение. При этом имеется в виду сравнение результатов, полученных для одной
группы новым, предлагаемым диссертантом методом, со старым, испытанным методом для
контролькой группы. Попадание в критическую область интерпретируется как проверка эф-
фективности нового метода. Во многих случаях применение нормальной модели не только не
обосновано, но и заведомо неверно, поэтому при подсчете вероятности попадания в критиче-
ское множество можно ошибиться в несколько раз. Для малых выборок мы не вправе мыслить
и в рамках центральной предельной теоремы и вытекающей из нее нормальной модели. Но
если уровень значимости критерия близок к нулю, то это не страшно. Действительно, пусть
даже произошло событие с вероятностью не 0.01, а например 0.03. Все равно эта вероятность
мала и результаты проверки свидетельствуют о преимуществах новой методики. Математик
находится в таких случаях в худшем положении. Он прекрасно понимает, что использование
распределения Стьюдента некорректно, но ничего лучшего у него все равно нет.

Из сделанных выкладок следует знаменитая
Теорема Фишера. В нормальной модели эмпирическое среднее x̄ и эмпирическая диспер-

сия s2 — независимые случайные величины.
2. Критерий χ2.
Критерий χ2 проверяет гипотезу

P(A1) = p1, ...,P(Ar) = pr где Ω = A1 + ...+Ar.

Пусть мы провели n экспериментов, в ni экспериментах произошло событие Ai (n1+...+nr = n).
Из многомерной центральной предельной теоремы вытекает, что при больших n случайная
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величина

T =

r∑
j=1

(
nj − npj√

npj

)2

имеет распределение, близкое распределению случайной величины χ2
r−1. Критерий строится в

виде

∆ =

T =

r∑
j=1

(
nj − npj√

npj

)2

> ε

 , (∗)

где число ε определяется по уровню значимости по таблицам распределения χ2
r−1.

Важное замечание. Критерий χ2 применим и в ситуации, когда сами вероятности pi явля-
ются функциями s параметров α1, ..., αs. В этом случае надо предварительно оценить парамет-
ры αi так, чтобы сумма T оказалась бы минимальной (в сложных ситуациях это можно сделать
только приближенно). Доказывается (Крамер, гл. 30, п, 3), что при подстановке этих оценок
в выражение для T случайная величина T будет иметь распределение χ2

r−s−1. Заодно мы
сообщили также еще об одном универсальном методе оценивания параметров — методе мини-
мума χ2. В книге Крамера написано также об упрощенной процедуре вычисления минимума
χ2. Дело в том, что при дифференцировании системы (*) по параметрам может получиться
система уравнений, которую очень трудно разрешить. Предлагается упрощенная процедура,
в рамках которой мы дифференцируем в (*) лишь числители. Оказываеься (см. Крамер), это
приводит при больших n к небольшой ошибке. Там же доказывается теорема о существовании
и единственности при выполнении определенных условий решения возникающей системы и о
сходимости распределения вычисляемой после подстановки в (*) этих решений случайной ве-
личины к распределению χ2

r−s−1. Пример применения критерия χ2 будет дан ниже, в разделе
проверки на независимость.

Мы приведем обоснование критерия χ2 только в непараметрической ситуации. Сначала
рассмотрим случайный вектор

(ηj) =

(
nj − npj√

npj

)
.

Очевидно, что

E
(
nj − npj√

npj

)
= 0

для всех j. Введем n независимых при различных i ≤ n двузначных случайных величин

δ
(i)
j =

{
1 с вероятностью pj
0 с вероятностью 1− pj

таких, что
δ

(i)
j δ

(i)
k = 0 при j 6= k.

Тогда случайные величины nj можно представить в виде

nj =
∑
i

δ
(i)
j ,

а случайные величины ηj как

ηj =

n∑
i=1

δ
(i)
j − pj√

pj
√
n

.
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Итак, случайный вектор (ηj) можно представить как деленную на
√
n сумму n независимых

случайных векторов
δ

(i)
j − pj√

pj
с нулевым средним. При большом числе экспериментов мы мо-

жем считать вектор (ηj) имеющим совместное нормальное распределение. Действительно, со-
гласно многомерной центральной предельной теореме, распределение суммы сходится к нор-
мальному распределению с той же матрицей вторых центральных смешанных моментов, что и

у вектора
δ

(i)
j − pj√

pj
, где i— некоторый номер эксперимента, например, i = 1. Вычислим эту мат-

рицу, которую мы обозначим [µjk]nj,k≤=1. При k = j случайная величина δ(1)
j δ

(1)
k тождественно

равна 1, поэтому

µjj = E
(δ

(1)
j )2 − p2

j

pj
=
pj − p2

j

pj
= 1− pj .

При k 6= j случайная величина δ(1)
j δ

(1)
k тождественно равна 0, поэтому

µjk = E
δ

(1)
j δ

(1)
k − pjpk√
pjpk

= −√pjpk.

Резюмируем: (ηj) — случайные величины с нулевым средним, с выписанной выше матрицей
вторых центральных смешанных моментов и с совместным нормальным распределением. Нас

интересует распределение случайной величины
r∑
j=1

η2
j . Чтобы найти это распределение, не за-

нимаясь слишком много линейной алгеброй, мы используем искусственный прием. А именно,
мы рассмотрим вектор (ξj) независимых нормальных случайных величин N(0, 1), т.е. с еди-
ничной матрицей вторых центральных смешанных моментов и небольшим изменением этого
вектора получим другой вектор с той же матрицей вторых центральных смешанных моментов,
что и вектор (ηj), поэтому мы будем иметь право считать этот вектор вектором (ηj).

Для любого j положим

ηj = ξj −
√
pj (
√
p1ξ1 +

√
p2ξ2 + ...+

√
prξr) .

Заметим, что E
(√
p1ξ1 + ...+

√
prξr

)2
= p1 + ...+ pr = 1. Имеем:

Eη2
j =Eξ2

j − 2Eξj
√
pj (
√
p1ξ1 + ...+

√
prξr) + Epj (

√
p1ξ1 + ...+

√
prξr)

2
=

= 1− 2pj + pj = 1− pj .

Eηjηk = Eξjξk − Eξj
√
pk (
√
p1ξ1 + ...+

√
prξr)−

−Eξk
√
pj (
√
p1ξ1 + ...+

√
prξr) + E√pjpk (

√
p1ξ1 + ...+

√
prξr)

2
=

= 0−√pkpj −
√
pjpk +

√
pjpk = −√pjpk.

Далее мы рассмотрим сумму
r∑
j=1

η2
j , преобразуем ее с помощью ортогонального преобразования

(ζn) = U(ξn), где по лемме о вращении стандартного нормального вектора ζn независимы и
нормальны N(0, 1), а

ζ1 =
√
p1ξ1 + ...+

√
prξr.

Итак,
r∑
j=1

η2
j =

=

r∑
j=1

ξ2
j − 2

r∑
j=1

ξj
√
pj (
√
p1ξ1 +

√
p2ξ2 + ...+

√
prξr) +
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+ (
√
p1ξ1 + ...+

√
prξr)

2
=

r∑
j=1

ξ2
j − (

√
p1ξ1 + ...+

√
prξr)

2
=

=

r∑
j=1

ζ2
j − ζ2

1 =

r∑
j=2

ζ2
j .

§23. Обзор статистических критериев

Мы в основном приводим статистики, на которых основаны те или иные критерии. С вы-
водом распределений или предельных распределений этих статистик можно познакомиться в
специальной литературе.

1. Критерий Колмогорова — Смирнова.
Проверяет гипотезу о том, что выборка {x1, ..., xn} принадлежит генеральной совокупности

с распределением F , где функция распределения F непрерывна. Основан на статистике

T =
√
n sup

x
|Fэ(x)− F (x)| ,

где Fэ — эмпирическая функция распределения. Критерий обычно имеет вид {T > λ}, где λ
вычисляется по таблицам. Впрочем, для большого числа наблюдений известна асимптотиче-
ская формула Колмогорова: при x > 0

P{T < x} ≈ K(x) = 1 + 2

∞∑
k=1

(−1)ke−2k2x2

.

Впрочем, предпочтительнее использовать таблицы. Заметим, что распределение статистики T
не зависит от функции F . Легко показывается, что мы можем принять в качестве F (x) = x
(0 < x < 1), то есть функцию равномерного распределения на [0, 1]. Дело в том, что

P{F (xi) < x} = P{xi < F−1(x)} = F (F−1(x)) = x.

Таким образом, преобразование аргумента x→ F (x) приводит к равномерному распределению
величин xi (которые переходят в F (xi)). Очевидно, что это преобразование не меняет величину
T .

Можно в качестве популярного текста рассказать о выводе формулы Колмогорова. В сле-
дующем семестре мы будем изучать теорию случайных процессов и найдем распределение
максимума случайного блуждания. Точно так же, с помощью метода отражения, находится
распределение максимума процесса одномерного броуновского движения. Но нас интересует
распределение максимума аболютной величины, то есть вероятность захода движения вверх
за уровень x или вниз за уровень −x, то есть вероятность объединения двух событий, при
вычислении которой мы должны знать и вероятность пересечения этих событий. При этом
приходится иметь дело с многократными пересечениями обоих уровней, и это приводит к ря-
ду.

Имеется и другая тонкость: зависящий от времени x ∈ [0, 1] процесс
√
n {Fэ(x)− F (x)}

(после преобразования времени) сходится не к броуновскому процессу w(x), а к так называе-
мому броуновскому мосту w(x) − xw(1), который в момент времени x = 1 должен вернуться
в 0. Действительно, в случае равномерного распределения на [0, 1], к которому все сводится,
Fэ(1)− F (1) = 0.

2. ω2-критерий Крамера-Мизеса.
3. Проверка однородности
Пусть имеются две выборки {x1, x2, ..., xn}, {y1, y2, ..., yk}. Задача состоит в проверке одно-

родности объединения двух выборок, т.е. проверяется гипотеза о том, что обе выборки выбраны
из одной генеральной совокупности.
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Мы обсудим несколько возможных критериев проверки этой гипотезы.
Критерий Смирнова.
Основан на статистике

T =
√
n sup

u

∣∣Fэ,x(u)− Fэ,y(u)
∣∣ ,

где Fэ,x, Fэ,y — эмпирические функции распределения, построенные соответственно по ре-
зультатам наблюдений {x1, x2, ..., xn} и {y1, y2, ..., yk}. Критерий обычно имеет вид {|T | > λ},
где λ вычисляется по таблицам.

Критерий χ2

Основан на статистике

T =

r∑
j=1

(nj − npj)2

npj
+

r∑
j=1

(kj − kpj)2

kpj
. (1)

Здесь мы разбиваем множество исходов на r событий Aj , nj — число попаданий xi в собы-
тие Aj , kj — число попаданий yi в событие Aj , pj — неизвестные нам вероятности Aj , причем
p1+...+pr = 1. Проверяется гипотеза, что в обеих выборках мы наблюдали случайные величины
с одними и теми же вероятностями попадания в Aj . Неизвестные параметры pj (их r−1) нахо-
дятся по методу минимума χ2, (1) нужно продифференцировать по неизвестным параметрам
и производные приравнять нулю. Причем используется упрощенная процедура вычисления
минимума (т.е. дифференцируются по параметрам лишь числители в сумме). Проверьте сами,
что решением системы уравнений является следующая сумма

χ2 = nk

r∑
j=1

1

nj + kj

(
nj
n
− kj

k

)2

.

Заметим, что число параметров равно r− 1, точки минимума проще не вычислять, а угадать,
они равны pi = ni+ki

n+k . Согласно общему правилу предельное распределение имеет вид χ2
s, где

2r − 2 − (r − 1) = r − 1. (Как и выше, из 2r вычитается 2 ввиду зависимостей возводимых
в квадрат слагаемых:

∑
i ni = n,

∑
i ki = k.) Итак, критерий имеет вид {χ2 > λ}, где λ

вычисляется из таблицы распределения χ2
r−1.

Критерий серий
Объединим выборки {x1, x2, ..., xn}, {y1, y2, ..., yk} в одну и построим вариационный ряд.

Напомним, что вариационным рядом {x∗1, ..., x∗n} для выборки {x1, ..., xn} называется сама вы-
борка, но расположенная в порядке возрастания. Вариационный ряд для объединения состоит
из n + k чисел, расположенных в порядке возрастания. Запишем этот ряд как набор из n + k
символов x и y. Любой максимальный поднабор из расположенных рядом символов x мы будем
называть серией. Критерий серий основан на статистике — числе таких серий. В справочниках
можно найти инструкцию по вычислению функции распределения числа серий в предположе-
нии, что x и y имеют одно и то же распределение.

Критерий Вилкоксона
Рангом xi называется номер наблюдения xi в вариационном ряде {x∗1, x∗2, ..., x∗n}. Снова

рассмотрим вариационный ряд объединения выборок {x1, x2, ..., xn} и {y1, y2, ..., yk} в одну и
обозначим через Xi — ранг xi в этом ряду. Критерий Вилкоксона основан на статистике

T = X1 + ...+Xn

и имеет вид
{∣∣∣∣T − n(n+ k + 1)

2

∣∣∣∣ > λ

}
.

§24. Проверка независимости
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1. Критерий независимости в случае нормальной модели, основанный на эмпи-
рическом коэффициенте корреляции.

В нашей модели выборка имеет вид (x1, y1), (x2, y2), ..., (xn, yn), где xi — независимые нор-
мальные случайные величины N(mx, σx), . yi — независимые нормальные случайные величины
N(my, σy), мы проверяем гипотезу о независимости x-ов и y-ов между собой, то есть о ра-
венстве нулю коэффициента корреляции. Напомню формулу для вычисления эмпирического
коэффициента корреляции между переменными x и y (после очевидного сокращения):

r =

∑n
i=1 xiyi − nx̄ȳ√∑n

i=1 x
2
i − nx̄2

√∑n
i=1 y

2
i − nȳ2

.

Итак, мы ищем распределение случайной величины r в предположении, что векторы (xi) и
(yi) независимы, и компоненты каждого из них одинаково распределены и независимы. Мы
сначала сведем эту случайную величину к виду

r =
ξ2√√√√ n∑
i=2

ξ2
i

, (2)

где ξi независимы и нормальны N(0, 1). В свою очередь, легко проверяется, что случайная
величина вида (2) сводится к случайной величине с распределением Стьюдента преобразова-
нием tn−2 =

√
n− 2 r√

1−r2 . Итак, по таблицам распределения tn−2 мы строим критерий в виде
{|tn−2| > λ} и разрешаем это неравенство относительно r, получаем критерий вида {|r| > λ1}.

Теперь докажем что случайные величины в левой и правой частях (2) имеют одно и то же
распределение.

i) Заменой ξi = xi −mx
σx и ηi =

yi −my
σy мы приходим к представлению

r =

n∑
i=1

ξiηi − nξ̄η̄√√√√ n∑
i=1

ξ2
i − nξ̄2

√√√√ n∑
i=1

η2
i − nη̄2

. (3)

Из этого представления уже видно, что распределение r не зависит от неизвестных нам па-
раметров mx, my, σx, σy. Дальше мы хотим избавиться от ξ̄ и η̄ в (3). Это опять достигается
вращением на ортогональную матрицу U , первый столбец которой имеет вид 1/

√
n, ..., 1/

√
n.

Мы вводим случайные вектор-строки −→ϕ = (ϕ1, ..., ϕn) (−→ϕ ′ — вектор-столбец),
−→
ξ = (ξ1, ..., ξn),

−→
ψ = (ψ1, ..., ψn), −→η = (η1, ..., ηn), которые связаны соотношениями −→ϕ =

−→
ξ U ,

−→
ψ = −→η U . Имеем:√

nξ̄ = ϕ1,
√
nη̄ = ψ1. По правилам умножения матриц имеем также

n∑
i=1

ξiηi =
−→
ξ
−→
η′ =

−→
ξ U(−→η U)′ = −→ϕ

−→
ψ′ =

n∑
i=1

ϕiψi.

Поэтому
n∑
i=1

ξiηi − nξ̄η̄ =

n∑
i=2

ϕiψi.

Аналогично (и как и в выводах для доверительных интервалов), имеем:

r =

n∑
i=2

ϕiψi√√√√ n∑
i=2

ϕ2
i

√√√√ n∑
i=2

ψ2
i

. (4)
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ii) Теперь мы приведем (4) к виду (2). В терминах плотностей нам надо доказать, что

pr(u) = p ξ2√∑n
i=2 ξ

2
i

(u). (5)

Мы используем формулу для условной плотности (аналог формулы полной вероятности для
плотностей)

pr(u) =

∫
Rn−1

pr(u|ϕ2 = v2, ..., ϕn = vn)pϕ2,...,ϕn(v2, ..., vn)dv2...dvn. (6)

Дело в том, что условную плотность pr(u|ϕ2 = v2, ..., ϕn = vn) найти очень просто. Мы под-
ставляем вместо случайных величин ϕ2, ..., ϕn их значения v2,...,vn и получаем случайную
величину

r(v2, ..., vn) =

n∑
i=2

viψi√√√√ n∑
i=2

v2
i

√√√√ n∑
i=2

ψ2
i

=

n∑
i=2

λiψi√
n∑
i=2

ψ2
i

,

где

λi =
vi√√√√ n∑
i=2

v2
i

,

n∑
i=2

λ2
i = 1.

Итак,
pr(u|ϕ2 = v2, ..., ϕn = vn) = pr(v2,...,vn)(u).

Чтобы найти функцию плотности pr(v2,...,vn)(u), мы проведем вращение случайного вектора
U(ψi) = (ξ2) так, что первая строка (точнее, строка с номером 2) ортогональной матрицы u
совпадает с вектором (λi). После вращения случайная величина r(v2, ..., vn) приводится к виду

r(v2, ..., vn) =
ξ2√√√√ n∑
i=2

ξ2
i

.

Заметим, что плотность этой случайной величины не зависит от выбора (v2, ..., vn). Поэтому
в интеграле (6) первый множитель постоянен и равен p ξ2√∑n

i=2 ξ
2
i

(u), а интеграл по второму

множителю (плотность!) равен 1. Мы доказали (5).
iii) √

n− 2
r√

1− r2
=

ξ2√
1

n− 2
∑n
i=3 ξ

2
i

= tn−2. (7)

Как все это используется. По таблицам распределения Стьюдента находим такое число ε,
что

P{|tn−2| > ε} = α,

где α — запланированный нами уровень значимости. Далее решаем уравнение (7) относительно
r, то есть находим такое δ, что

|tn−2| = ε⇔ |r| = δ.

После этого вычисляем эмпирический коэффициент корреляции r и проверяем неравенство
|r| > δ.
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Замечание. Парадокс теории проверки гипотез. Допустим, что мы имеем не одну, а много
одинаковых выборок, например, 500 (мы разбили одну большую выборку на много средних).
Сделано это для того, чтобы быть более уверенным в справедливости гипотезы. Итак, мы
проверяем 500 раз гипотезу с уровнем значимости 0.05, и все 500 раз подтверждается гипотеза.
О чем это говорит? О том, что гипотеза неверна. Если бы она была верна, то примерно 25 раз
гипотеза должна была бы не подтвердиться.

Когда я рассказал этот парадокс одному очень умному практику и его сотрудникам, он
сказал: ’Не слушайте его, это означает, что подтверждается лучшая гипотеза’. И это разумно,
но, как мы сейчас увидим, не всегда. Контрпример – проверка на независимость в рамках
нормальной модели. Если гипотеза независимости все время подтверждается, то это указывает
на ошибочность исходной нормальной модели. Но если совместное распределение не является
нормальным, то даже равенство коэффициента корреляции нулю не влечет независимость.

2. Критерий независимости, основанный на методе χ2.
Если информации о нормальности совместного распределения у нас нет, то критерий неза-

висимости наблюдаемых случайных величин xx и y может быть основан на методе χ2. Для
этого мы должны разделить область значений x на s частей, Ω = A1 + ... + As, а область
значений y на t частей, Ω = B1 + ...+Bs. Мы также обозначим:

njk − число попадания вектора (x, y) в Aj ∩Bk,∑
j,k

njk = n,
∑
k

njk = nj·,
∑
j

njk = n·k.

Параметрами модели будут числа

pj· = P(Aj), p·k = P(Bk).

Так как суммы вероятностей по j и по k равны 1, общее число параметров равно t +
s − 2. Проверяется гипотеза P(AjBk) = pj·p·k. Оценки для параметров находятся с помощью
упрощенной процедуры минимума χ2 и имеют естественный вид: pj· = nj·/n, p·k = n·k/n. Итак,
для проверки независимости мы имеем статистику

T =
∑
j,k

(njk − nj·n·k/n)2

nj·n·k/n

с распределением χ2
st−s−t+1.

3. Ранговые критерии применяются в ситуации, когда у нас нет разумной модели (часто
это бывает в задачах психологии и педагогики), а сами величины наблюденных нами харак-
теристик не имеют существенного значения, важны лишь неравенства между этими числами.
Например, мы знаем, что оценка 5 лучше 4, а 4 лучше 3, но были бы очень странными утвер-
ждения ’5 лучше 4 в 5/4 раза’, ’4 лучше 3 в 4/3’. (Впрочем, если бы стипендия была прямо
пропорциональна сумме баллов, оценки превратились бы в рубли, и эти соотношения стали бы
очень даже разумными). Итак, в такого рода ситуации целесообразно заменить наблюденные
значения x1,...,xn на числа x̃1,...,x̃n из множества {1, 2, ..., n} по правилу: xi < xj влечет x̃i < x̃j
(для простоты мы будем рассматривать лишь случай, когда все значения чисел xi различны).
Аналогично мы заменяем числа y1,...,yn на числа ỹ1,...,ỹn из множества {1, 2, ..., n}. Напри-
мер, число 1 мы ставим на место самого маленького числа из всех xi и самого маленького
числа из всех yj , а число n мы ставим на место самого большого числа из всех xi и самого
большого числа из всех yj . Итак, мы имеем набор векторов (x̃1, ỹ1), ..., (x̃n, ỹn). Теперь мы
можем проверить независимость x-ов и y-ов. Для этого мы считаем эмпирический коэффици-
ент корреляции r̃ для двумерной выборки (x̃1, ỹ1), ..., (x̃n, ỹn). Если число |r̃| окажется велико,
то мы можем сказать, что ’гипотеза независимости не подтвердилась’. Но мы должны уметь
определять, что значит ’велико’. Гипотеза независимости означает, что все варианты наборов
(x̃1, ỹ1), ..., (x̃n, ỹn) равновероятны, то есть вероятность каждого набора в нашей модели равна
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квадрату числа перестановок множества {1, 2, ..., n}, то есть
(

1
n!

)2. Для каждого такого набора
легко считается свое |r̃[(x̃1, ỹ1), ..., (x̃n, ỹn)]|. Но как вычислить P{r̃ > r̃0}? Аналитическое (да-
же приближенное) построение функции распределения r̃ для конкретного n представляется
очень сложной задачей. Для этого нужно упорядочить n! чисел. Но вам эта функция распре-
деления не нужна. Для вашего конкретного случая вы вычислили эмпирический коэффициент
для рангов (обозначим результат r̃0). Далее перебрали на компьютере все возможные элемен-
тарные исходы и для каждого из них подсчитали r̃, подсчитали долю исходов, для которых
r̃ > r̃0 — это и будет нужная вам вероятность. Заметим, что общее число элементарных ис-
ходов можно считать равным не n!2, а лишь n!. Это следует из соображений симметрии. Мы
можем рассматривать лишь исходы вида [(1, ỹ1), (2, ỹ2), ..., (n, ỹn)] и лишь для них подсчитать
эмпирический коэффициент корреляции. Разумеется, нужна программа, перебирающая все
перестановки множества {1, 2, ..., n}.

Замечание. В русском переводе книги ’M. Kendall. Rank Correlation Methods’ (М. Кендэл.
Ранговые корреляции. М. Статистика. 1975) имеется таблица для n = 10, но разбираться в
книге не очень удобно — слишком много текста, книга написана для неспециалистов. Как мне
кажется,

P{|r̃| ≥ 91

165
} ≈ 0.104, P{|r̃| ≥ 93

165
} ≈ 0.096,

P{|r̃| ≥ 105

165
} ≈ 0.054, P{|r̃| ≥ 107

165
} ≈ 0.048,

но неплохо было бы проверить с помощью компьютерных вычислений — правильно ли я разо-
брался в таблицах, или самим разобраться в этой книге или в других книгах. Определение
используемого в таблице термина ’функция вероятности’ я не нашел. Впрочем, компьютерные
вычисления лучше со всех точек зрения, так как они дают точное значение уровня значимости
для данной выборки (не обязательно, рядом с 0.1 или 0.05).

4. Коэффициент конкордации.
Для измерений степени тесноты статитистической связи у более чем двух порядковых пе-

ременных r > 2 используется коэффициент конкордации Кендалла

12

r2(n3 − n)

n∑
i=1

 r∑
j=1

Ri(j)−
r(n+ 1)

2

2

,

где Ri(j) — ранг i-го наблюдения j-й случайной величины, r — число переменных, n — число
наблюдений.

5. Проверка нормальности.
Проверить гипотезу нормальности генеральной совокупности, из которой извлечена дан-

ная одномерная выборка (x1, ..., xn), можно, например, с помощью критерия χ2. Для этого
надо разделить числовую прямую на r частей, оценивание параметров m σ2 проводить мето-
дом минимума χ2. Другие критерии используют свойства моментов стандартного нормального
распределения. А именно, если ξ нормальна N(0, 1), то Eξ3 = 0. Третий центральный норми-
рованный момент случайной величины называется асимметрией . Эмпирическая асимметрия
имеет вид

A =

1

n

n∑
i=1

[xi − x̄]3

(
1

n

n∑
i=1

[xi − x̄]2

)3/2
.

Легко показывается, как мы уже делали неоднократно, что в случае нормальной модели рас-
пределение эмпирической асимметрии не зависит от параметров m и σ. Соответствующие таб-
лицы для распределения A имеются, используя их, вычисляется вероятность критического
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множества {|A| > ε}. Известно также, что четвертый центральный нормированный момент

нормального распределения равен 3. Характеристика E(ξ − Eξ)4[
E(ξ − Eξ)2

]2 − 3 называется эксцессом

распределения. Эмпирический эксцесс также используется для построения критерия нормаль-
ности.

6. Вывод распределения Фишера. Критерий Фишера.
В классической ситуации сравнения двух нормальных выборок (xi)

n
i=1 и (yj)

k
j=1 целесооб-

разно использовать с маленьким уровнем значимости α кроме самого критерия Стьюдента еще
проверку на нормальность и критерий Фишера, позволяющий проверить гипотезу о равенстве
дисперсий обеих выборок. Этот критерий основан на статистике Фишера

ϕ =
1
nχ

2
n,x

1
kχ

2
k,y

,

где
χ2
n,x =

∑
i

(xi − x̄)2, χ2
k,y =

∑
j

(yj − ȳ)2,

Очевидно, что ϕ сходится по вероятности к 1 (когда n, k →∞), поэтому критическое множество
Фишера состоит из значений ϕ, существенно отклоняющихся от 1, где понятие ’существенно’
определяется с помощью распределения Фишера статистики ϕ. Нам будет удобнее найти плот-
ность распределения случайной величины ψ = n

kϕ, выразить через нее плотность ϕ читатель
должен самостоятельно.

Функцию распределения ψ обозначим через Fn,k. Мы используем стандартную для отно-
шения двух независимых случайных величин замену: y = u/v, z = v. Имеем:

Fn,k(x) =

∫ ∫
u/v≤x,u≥0,v≥0

pχ2
n
(u)pχ2

k
(v)dudv =

=

∫ ∫
u/v≤x,u≥0,v≥0

1

2n/2Γ
(
n
2

) e−
u
2 u

n
2−1I(0,∞)(u) e−

v
2 v

k
2−1I(0,∞)(v)dudv =

=

∫ ∫
0≤y≤x,z≥0

1

2n/2Γ
(
n
2

)e− yz2 (yz)
n
2−1 1

2k/2Γ
(
k
2

) e− z2 z k2−1dydz =

=

x∫
0

1

2
n+k

2 Γ
(
n
2

)
Γ
(
k
2

)y n2−1dy

∞∫
0

e−( y+1
2 )zz

n+k
2 −1dz =

=

x∫
0

Γ
(
n+k

2

)
Γ
(
n
2

)
Γ
(
k
2

) y
n
2−1

(y + 1)
n+k

2

dy.

Отсюда немедленно получается функция плотности.

§25. Различение двух гипотез методом последовательного анализа Вальда

В отличие от всего предыдущего, в этом разделе число наблюдений не является постоян-
ным n, а является случайной величиной. Рассматривается задача различения двух гипотез:
гипотезы H0, состоящей в том, что случайная величина имеет распределение P0 с функцией
плотности p0(x), и гипотезыH1, состоящей в том, что случайная величина имеет распределение
P1 с функцией плотности p1(x). На каждом шаге n для полученной выборки (x1, ..., xn) вычис-
ляется отношение p(n)

0 /p
(n)
1 = p0(x1) · · · p0(xn)/p1(x1) · · · p1(xn) двух совместных плотностей.

Если p(n)
0 /p

(n)
1 > C0, то выбирается гипотеза H0, если p

(n)
0 /p

(n)
1 < C1, то выбирается гипотеза
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H1, если C1 ≤ p
(n)
0 /p

(n)
1 ≤ C0, то наблюдения продолжаются. Задача состоит в подборе чисел

0 и C1 при фиксированных вероятностях ошибок первого и второго рода α и β. Оказывается,
числа 0 и C1 вычисляются только по α и β и не зависят от распределений P0 и P1 (если прене-
бречь ошибками при подсчете вероятностей, которые получаются из за перескока за указанные
выше границы).

В этом подходе области ∆0 и ∆1 являются суммами соответствующих областей для раз-
личных n:

∆0 =
∑
n

∆
(n)
0 , ∆1 =

∑
n

∆
(n)
1 ,

где ∆
(n)
0 — событие, состоящее в принятии гипотезы H0 на n-ом шаге, ∆

(n)
1 — событие, состо-

ящее в принятии гипотезы H1 на n-ом шаге. Тогда

α =
∑
n

P0(∆
(n)
1 ), β =

∑
n

P1(∆
(n)
0 ).

По построению имеем для каждого n:

P0(∆
(n)
0 ) =

∫
∆

(n)
0

p
(n)
0 ≥

∫
∆

(n)
0

C0p
(n)
1 = C0P1(∆

(n)
0 )

P1(∆
(n)
1 ) =

∫
∆

(n)
1

p
(n)
1 ≥

∫
∆

(n)
1

1

C1
p

(n)
0 =

1

C1
P0(∆

(n)
1 ).

Суммируя эти неравенства, получаем

1− α = P0(∆0) ≥ C0P1(∆0) = C0β, 1− β = P1(∆1) ≥ 1

C1
P0(∆1) =

1

C1
α.

Итак,

C0 ≤
1− α
β

, C1 ≥
α

1− β
.

§26. Равномерно наиболее мощные критерии

1. Определение. Пусть проверяется гипотезаH0 (отвечающая распределению P0) со слож-
ной альтернативой P1 = {P1,θ}θ∈Θ, критерий ∆ таков, что

i) уровень значимости критерия равен α,
ii) для любого другого критерия ∆′ с тем же уровнем значимости

α = P0∆ = P0∆′,

справедливо неравенство
β(θ) = P1,θ∆ ≤ P1,θ∆

′ для всех θ.

Тогда критерий ∆ называется равномерно наиболее мощным.
Мы приведем простой пример, когда действительно существует равномерно наиболее мощ-

ный критерий, лучший других при всех альтернативах P1,θ и много примеров, когда такого
критерия не существует. Заметим, что лемма Неймана — Пирсона однозначно определяет такой
критерий (если он существует).

Пример 1. H0 — выборка принадлежит нормальной генеральной совокупности N(m0, σ0).
Альтернативой является набор распределений N(m,σ0), где m > m0. В этом случае критерий
вида ∆ = {x̄ > C} является равномерно наиболее общим. Это утверждение следует из леммы
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Неймана—Пирсона. Действительно, для любого m > m0 критерий, минимизирующий β(m)
при заданном α имеет вид

∆ =

{
p(n)
m0,σ0

(x1, ...xn)

p(n)
m,σ0

(x1, ...xn)
< C(m)

}
=

=


(

1

σ0

√
2π

)n
e
−1

2
n∑
i=1

(
xi −m0
σ0

)2

(
1

σ0

√
2π

)n
e
−1

2
n∑
i=1

(
xi −m
σ0

)2 < C(m)

 =

{
−

n∑
i=1

(
xi −m0

σ0

)2

+
n∑
i=1

(
xi −m
σ0

)2

< 2 lnC(m)

}
=

{
2

n∑
i=1

xim0 − 2

n∑
i=1

xim < 2σ2
0 lnC(m) + nm2

0 − nm2

}
.

Разделив это неравенство на 2(m0 − m)n и обозначив правую часть через C, мы получим
множество требуемого вида. Заметим, что C зависит только от α (и от m0 и σ0), но не зависит
от m. Действительно, находится из равенства

P(n)
m0,σ0

{x̄ > C} = α.

Пример 2. H0 — выборка принадлежит нормальной генеральной совокупности N(m0, σ0).
Альтернативой является набор распределений N(m,σ0), где m 6= m0. Действуя так же, мы
получим множество вида ∆ = {x̄ > C} для альтернатив m > m0, но множество вида ∆ =
{x̄ < C} для альтернатив m < m0. К сожалению, одно множество, которое минимизировало
бы β(m) и для m > m0 и для m < m0, мы получить не можем.

Замечание. В обеих задачах ничего хорошего не получается при неизвестной дисперсии, так
как константа C, определяющая множество ∆ по уровню значимости α зависит от параметра
σ.

2. Дополнение. Слова.
Если мы попали в критическое множество, то некорректно говорить, что наша гипотеза

неверна. Может так оказаться, что на самом деле гипотеза верна, но нам не повезло. Поэто-
му правильнее сказать, что гипотеза не подтвердилась, а если мы не попали в критическое
множество, то гипотеза подтвердилась. В ситуации, когда одновременно с основной гипотезой
мы рассматриваем альтернативную гипотезу, не совсем корректно утверждать при попада-
нии в критическое множества, что подтвердилась альтернативная гипотеза. Дело в том, что
(малую !) вероятность критического множества мы вычислили лишь в предположении спра-
ведливости основной гипотезы. Такое высказывание оказывается еще менее разумным, если
альтернативная гипотеза является сложной, тогда верояность критического множества зави-
сит от выбора параметра в рамках альтернативной гипотезы. В то же время в условиях леммы
Неймана — Пирсона такого рода утверждение может оказаться разумным, но тогда вероят-
ность β также должна быть мала, и критические множества для обеих гипотез, основной и
альтернативной, должны являться дополнениями друг друга.

3. Дополнение.
Напомним определение условной плотности

pξ(x|η = y) =
pξ,η(x, y)∫∞

−∞ pξ,η(x, y)dx
.
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Понятие условной плотности само является условным, так как изменение значения совместной
плотности на множестве нулевой меры (например, на прямой {x = x0}) не меняет совместно-
го распределения, но полностью меняет условную плотность. Однако рассмотрим случайную
величину f(ξ, η) и вычислим ее плотность следующим образом:

pf(ξ,η)(x) =

∫ ∞
−∞

pf(ξ,y)(x)pη(y)dy. (3)

Нетрудно видеть, что определенная так плотность действительно дает нам распределение слу-
чайной величины f(ξ, η). Действительно, по определению плотности мы должны иметь

P{f(ξ, η) ∈ B} =

∫
B

pf(ξ,η)(x)dx.

Подставим в это равенства вместо pf(ξ,η) выражение из (3) и получим тождество по теореме
Фубини: ∫

B

dx

∫ ∞
−∞

pf(ξ,y)(x))dy =

∫ ∞
−∞

pη(y)dy

∫
B

pf(ξ,y)(x)dx =

=

∫ ∞
−∞

pη(y)dy

∫
B

pf(ξ,y)(x)dx

Критерий Колмогорова-Смирнова. Критерий Спирмена. Является ли оценка максималь-
ного правдоподобия для параметра m логнормального распределения эффективной? Область
безразличия.

§27. Многомерный анализ (обзор)

Здесь мы не будем приводить какик-либо алгоритмы и формулы, а напишем лишь об из-
вестных в литературе постановках задач и подходах к их решениям. Более подробно с этим
материалом можно познакомиться, например, в книгах [11], [32] .

Наблюдается n раз r-мерный случайный вектор. Результаты наблюдения составляют вы-
борку (x

(1)
1 , ...x

(1)
r ),..., (x

(n)
1 , ...x

(n)
r ). По этим данным мы хотим получить некую информацию

о связи координат наблюдаемого вектора. Очевидно, что n должно быть не меньше r, иначе
координаты xi, которые являются векторами в n-мерном пространстве, связаны между собой
линейными соотношениями бесконечным числом способов. Для разумного статистического вы-
вода нужно, чтобы n было существенно больше r. Люди с гуманитарным образованием часто
пренебрегают этим требованием.

1. Регрессия.
Представляет большой практический интерес задача о наилучшем приближении значения

одной координаты, x1, функцией f(x2, ..., xr) других координат. Мы используем метод наи-
меньших квадратов, а именно, минимизируем число

∑
(x1 − f(x2, ..., xr))

2, где суммирование
производится по всем полученным в результате эксперимента выборкам. Заметим, что воз-
можна ситуация, когда ошибка эксперимента зависит от значения x1, тогда слагаемые в сумме
надо умножать на некоторые веса (если ошибка больше, вес наблюдения должен быть меньше).
В курсе теории вероятностей мы решали аналогичную задачу наилучшего приближения слу-
чайной величины η функцией f(ξ1, ..., ξr) других случайных величин. Под словом ’наилучшее’
имелся в виду выбор такой функции f , для которой минимально число E(η− f(ξ1, ..., ξr))

2. Ре-
шением этой задачи является условное математическое ожидание E(η|ξ1, ..., ξr). Обычно такое
решение неприменимо в задачах математической статистики. Дело в том, что если наблю-
дения проводить достаточно точно, то набор (x2, ..., xr) встречается лишь в одной выборке
(x1, x2, ..., xr) и наилучшей функцией оказывается f(x2, ..., xr) = x1. Разумеется, такая ’функ-
ция’ задана лишь на множестве результатов проведенных наблюдений и ничего не говорит о
наблюдениях, которые еще не проведены. Поэтому в математической статистике нужно ис-
кусственно ограничивать класс функций f и решать задачу регрессии лишь в этом классе.
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Возникает произвол в выборе класса, функции оказываются зависимыми от некоторого ко-
нечного числа параметров, и наша задача сводится к задаче нахождения минимума функции
нескольких переменных. Например, если мы ищем функцию f в классе всех линейных функций

l(x2, ..., xr) = a2x2 + ...+ arxr + b,

мы должны решить систему уравнений

∂
∂a2

n∑
i=1

(x
(i)
1 − [a2x

(i)
2 + ...+ arx

(i)
r + b])2 = 0,

· · ·
∂
∂ar

n∑
i=1

(x
(i)
1 − [a2x

(i)
2 + ...+ arx

(i)
r + b])2 = 0,

∂
∂b

n∑
i=1

(x
(i)
1 − [a2x

(i)
2 + ...+ arx

(i)
r + b])2 = 0.

Не всегда разумно искать f в классе линейных функций. Например, в случае, когда наблю-
дения y(i) мы стремимся приблизить функцией f наблюдений x(i), может оказаться правиль-

ным выбрать функцию f(x) = eax+b и минимизировать
n∑
i=1

(
y(i) − eax(i)+b

)2

. Однако удобнее

использовать линейную зависимость для логарифма y, но тогда мы придем к другому ре-
шению. Наконец, если возможна периодическая зависимость, целесообразно искать f в виде
a sin(x+ b) + c.

Замечание для практического применения. Гаусс, который предложил метод наименьших
квадратов, по-видимому, использовал его для уточнений траекторий (значительную часть жиз-
ни он был директором астрономической обсерватории). Наблюдения одним человеком прово-
дились в разные моменты времени, по-существу, наблюдался случайный процесс — реальная
кривая, зависящая от нескольких параметров, портилась случайным процессом помех. Для
оценки параметров использовался изложенный выше метод, но только выше x(ti), y(ti), z(ti)
приближаются результатами наблюдений xi, yi, zi и нужно найти параметры, для которых
сумма квадратов ошибок минимальна. По-видимому, Гаусс заменял координаты в простран-
стве на расстояния на небесной сфере, и через эти числа выражал сумму квадратов. Метод
наименьших квадратов можно применять для анализа случайных процессов, например, при
анализе изменения курса валют, но очень осторожно ввиду зависимости этого процесса от
правительственных решений.

2. Корреляция.
Кроме выборочного коэффициента корреляции (для которого в модели двух независимых

нормальных случайных величин нам удалось получить распределение) для векторных выбо-
рок размерности больше 2 рассматриваются две другие выборочные характеристики, которые
могут дать дополнительное представление об изучаемом объекте. Здесь мы дадим лишь гео-
метрическое объяснение для этих характеристик, вывод формул требует выкладок с матрица-
ми. Итак, мы имеем выборку (x

(1)
1 , ...x

(1)
r ),..., (x

(n)
1 , ...x

(n)
r ) длины n (наблюдений) из r-мерных

векторов (параметров) и матрицу [rij ]i,j≤r выборочных коэффициентов корреляции (диаго-
наль которой состоит из единиц). Таким образом, в пространстве параметров Rr определено
скалярное произведение

A ([xi]i≤r, [yi]i≤r) =

n∑
i,j=1

rijxiyj .

Сопоставляя i-му параметру вектор ei = [0, ..., 0, 1, 0...] (1 на i-м месте, остальные координаты
равны 0), мы имеем: rij = A(ei, ej). Напомним, что ортогональное проектирование P на линей-
ное подпространство L переводит элемент x линейного пространства в такой элемент Px ∈ L,
что A(x − Px, y) = 0 для всех y ∈ L. Разумеется, для проверки этого свойства достаточно
проверить его для всех y из некоторого базиса в L. Теперь введем частный (выборочный)
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коэффициент корреляции элементов e1 и e2 (для любых других ei, ej он определяется анало-
гично). Рассмотрим проекции ẽ1 и ẽ2 элементов e1 и e2 на линейное подпространство, порож-
денное всеми векторами e3, ..., er. Тогда частный коээффициент корреляции 1 и 2 координат
обозначается r12·34...r. Имеем:

r12·34...r :=
A(e1 − ẽ1, e2 − ẽ2)

A(e1 − ẽ1, e1 − ẽ1)1/2A(e2 − ẽ2, e2 − ẽ2)1/2
.

Частный коэффициент корреляции 1 и 2 координат можно интерпретировать как характе-
ристику зависимости этих координат после того, как убрали из них зависимости от других
координат, которые также связывают эти две координаты. Действительно, если x и y зави-
сят от одного и того же z, то очевидно они зависят друг от друга. При вычислении частного
коэффициента корреляции мы эти зависимости убираем.

Замечание.Из приведенной выше интерпретации не следует, что r12·34...r меньше по аб-
солютной величине чем r12. Пример для случайных величин, тогда коэфициент корреляции
обозначается буквой ρ. Пусть ξ, η независимы и нормальны с параметрами N(0, 1). Рассмотрим
x1 = ξ + η, x2 = ξ − η, x3 = ξ. Тогда

ρ12 = 0, ρ12·3 = −1.

Сводный коэффициент корреляции. Рассмотрим проекцию Pe1 элемента e1 на линейное про-
странство L, порожденное элементами e2, ..., er. Сводный коэффициент корреляции элемента
e1 и всех элементов e2, ..., er определяется равенством

r1(2...r) :=
A(e1, P e1)

A(e1, e1)1/2A(Pe1, P e1)1/2
.

Замечание. Как обычно, будем считать координаты x
(·)
k (i ≤ n) векторов выборки слу-

чайными величинами, заданными на вероятностном пространстве из n элементарных исходов
с вероятностью 1/n, каждый элементарный исход — элемент выборки. В этой ситуации бу-
дем решать задачу регрессии, аппроксимируя случайную величину x(·)

1 линейной комбинацией
l(x

(·)
2 , ..., x

(·)
r ) случайных величин x(·)

2 ,...,x(·)
r или аппроксимируя случайные величины x

(·)
1 и x(·)

2

линейными комбинациями l1(x
(·)
3 , ..., x

(·)
r ) и l2(x

(·)
3 , ..., x

(·)
r ) случайных величин x(·)

3 ,...,x(·)
r . Тогда

частный коэффициент корреляции r12·34...r равен коэффициенту корреляции случайных ве-
личин x(·)

1 − l1(x
(·)
3 , ..., x

(·)
r ) и x(·)

2 − l2(x
(·)
3 , ..., x

(·)
r ), а сводный коэффициент корреляции r1(2...r)

равен коэффициенту корреляции случайных величин x(·)
1 и l(x(·)

2 , ..., x
(·)
r ).

3. Факторный анализ
С помощью метода факторного анализа пытаются уменьшить число координат наблюдае-

мого вектора. А именно, делается попытка выявить скрытые факторы, влияющие не резуль-
таты экспериментов. В используемой вероятностной модели предполагается, что случайный
вектор (xi)i≤r наблюдаемых представим в следующем виде:

xi =

d∑
j=1

lijzj + ei,

где d < r (d не должно быть большим), случайные величины zj независимы, нормальны, цен-
трированы и имеют дисперсию 1, величины ei представляют собой шумы при наблюдениях,
поэтому они независимы между собой и с zj , нормальны. Задача состоит в наилучшей оценке
коэффициентов lij . Зная эти коэффициенты, мы можем выразить zj через xi, эти новые вели-
чины называются факторами. Как видите, в этом подходе число факторов задается заранее,
от выбора этого числа зависит результат.

Решение осуществляется методом максимального правдоподобия,то есть записывается сов-
местная плотность n наблюдений вектора (xi), которая зависит от параметров lij и дисперсий
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и средних величин ei, и вычисляется максимум (по неизвестным параметрам) этой плотности
для данных результатов наблюдений. В результате мы находим lij и дисперсии ei. Легко ви-
деть, что факторы восстанавливаются по матрице [lij ] неоднозначно, с точностью до вращения.
Практики (психологи и социологи) стараются с помощью такого вращения придать факторам
разумный смысл, например, линейная комбинация координат, отвечающих за трудолюбие, ма-
тематические способности, гуманитарные способности, память, выносливость, финансирование
и т. д. (см. [32]). Далее результатам придается гуманитарное звучание.

Для корректности нужно провести проверку самой модели с помощью какого-нибудь кри-
терия. Если в процессе проверки мы попали в критическое множество, то нужно увеличить
число факторов в модели.

4. Метод главных компонент.
Метод главных компонент также служит снижению размерности и выявлению факторов.

Использование этого метода имеет особенность в случае, когда все координаты можно сравнить
друг с другом (например, время, затраченное на одно, другое и т.д. ). Тогда мы рассматриваем
матрицу вторых центральных моментов и приводим ее к главным осям. Векторы, соответству-
ющие самым большим собственным векторам, называются главными компонентами, осталь-
ные считаются помехами. Чтобы вспомнить процедуру вычисления собственных чисел, надо
посмотреть курс линейной алгебры.

Немного отличная ситуация возникает тогда, когда координаты несравнимы между собой
(например, килограммы и метры). Тогда обычно наблюдаемые величины нормируются и мат-
рица смешанных центральных моментов заменяется на матрицу коэффициентов корреляции.

Заметим, что и в этой ситуации следует проверить незначимость проигнорированных нами
маленьких собственных значений. Для такой проверки разрабатываются критерии.
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Часть 5. СЛУЧАЙНЫЕ ПРОЦЕССЫ

Введение

Под случайным процессом понимается коллекция случайных величин, заданных на одном
вероятностном пространстве (Ω,A,P) — (ξt), где либо t ≥ 0, либо t ∈ R, либо t ∈ T ⊂ R
(процесс с непрерывным временем), (ξn), n ∈ {0} ∪N или n ∈ Z (процесс с дискретным вре-
менем). Случайные процессы бывают одномерными или многомерными (например, реальный
процесс броуновского движения). Более общее понятие случайной функции ξ, индексированной
точками произвольной природы, включает в себя также важнейшие для анализа изображений
случайные поля.

Изучение случайного процесса начинается с рассмотрения трех определяемых в терминах
процесса объектов:

i) среднее процесса mξ(t) = Eξt, t ∈ T ;
ii) ковариация процесса rξ(t, s) = E (ξt − Eξt) (ξs − Eξs), t, s ∈ T .
iii) совместные распределения процесса Pξt1 ···ξtn , где {t1, ..., tn} — произвольное конечное

подмножество области определения процесса T ;
Разумеется, среднее и ковариация процесса существуют не всегда, примером является класс

процессов Леви, которые в последнее время все чаще используются при моделировании про-
цессов в экономике. Впрочем, наболее часто используются гауссовские процессы, у которых все
совместные распределения нормальны. Как мы уже видели, совместные распределения такого
процесса однозначно определяются средним и ковариацией процесса.

Во многих ситуациях, и мы с этим неоднократно столкнемся, процесс задается не как за-
висящая от времени функция на вероятностном пространстве, а набором своих совместных
распределений. Знаменитая теорема Колмогорова доказывает, что в этом случае можно при-
думать вероятностное пространство и процесс на нем, который будет иметь заданный набор
совместных распределений.

Теория случайных процессов находит многочисленные применения: задачи прогнозирова-
ния, задача о разладке (определение момента внезапной смены одного наблюдаемого случай-
ного процесса другим), процессы массового обслуживания, финансовая математика. Теория
случайных процессов предоставляет модели для физики, механики, химии, биологии, метео-
рологии, практической статистики, гуманитарных наук.

Этот раздел теории вероятности использует многие глубокие факты теории меры, и, в
свою очередь, стимулирует развитие этой теории. Он теснейшим образом связан с функцио-
нальным анализом. Важнейшие для приложений процессы второго порядка. в частности, ста-
ционарные случайные процессы, интерпретируются как кривые в гильбертовом пространстве.
Другие важные процессы не имеют второго момента, развитие их теории связано с изучени-
ем других классов банаховых пространств. Случайные функции рассматриваются не только
на евклидовых пространствах, но и на различных геометрических многообразиях. На основе
теорий случайных процессов развивается важная для изучения процессов управления теория
стохастических дифференциальных уравнений.

После этого введения придется ограничить задачи нашего курса лишь изучением началь-
ных разделов этой теории и знакомством с рядом более продвинутых разделов.

Упражнение 1. Найти парные совместные распределения Pξtξs , а также функции среднего
и ковариации для процесса ξt, который задан соотношением

ξt(ω) = I[0,t](ω), t ∈ [0, 1], ω ∈ [0, 1],

на вероятностном пространстве [0, 1] с борелевской σ-алгеброй событий и вероятностной мерой
P, которая является обычной мерой Лебега, T = [0, 1].

§28. Случайное блуждание.
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Предварительные замечания
Один из способов вычисления вероятностей в классической модели интересующего нас со-

бытия A — это представления его в виде суммы или разности событий, вероятности которых
вычислить легче.

A = A1 +A2 + . . . An

или
A = A1 −A2

так, что вероятности событий Ai легко вычисляются.
Иногда имеет смысл представить Ω = Ω1 × Ω2, каждый случайный исход при этом пред-

ставляется ω = (ω1, ω2), где ω1 — траектория ω до некоторого фиксированного момента k
включительно, а ω2 — траектория ω от момента k+ 1 до n. Иногда наше событие, которое нас
интересует, можно представить в виде произведения A = A1×A2, где событие A1 формулиру-
ется в терминах условий на траектории до момента k включительно, а A2 в терминах условий
на траектории от момента k + 1 до n. Очевидно, что тогда |A| = |A1| × |A2|.

1. Модель симметричного случайного блуждания.
Элементарный исход — траектория, состоящая из отрезков, направленных вверх ↗ и на-

правленных вниз ↘. Эта модель по существу совпадает с моделью Бернулли, но некоторым
событиям можно сопоставить новый геометрический смысл. Начинается траектория с момента
времени 0 с точки 0 на числовой оси, то есть с точки (0, 0) на координатной плоскости. Итак,
если время движения равно n, то |Ω| = 2n. Ввиду симметричности движения вероятности всех
элементов Ω равны 2−n. Однако при изменении числа шагов случайного блуждания Ω меняет-
ся. Имеются задачи и для бесконечного числа шагов, тогда множество элементарных исходов
оказывается бесконечным и даже несчетным, точнее, оно совпадает с множеством всех дво-
ичных разложений чисел отрезка [0, 1]. Саму траекторию мы будем обозначать ω, а значение
случайного блуждания в момент времени n через ξn.

Физики любят такие простые модели, на простых примерах они стараются уловить эффек-
ты, которые могут произойти в более сложной ситуации.

Введем события An,k, состоящие из всех траекторий, кончающихся в точке (n, k). An,k =
{ξn = k}. Вычислим вероятность P(An,k), которая равна |An,k|/2n. Очевидно, что для попа-
дания в точку (n, k) наша траектория должна содержать n+ k

2 участков ↗ и n− k
2 участков

↘. Число таких траекторий мы можем отождествить с числом вариантов подбрасывания мо-

неты, где n+ k
2 гербов и n− k

2 решек. Оно равно C
n+k

2
n = C

n−k
2

n . Обратим внимание на одну
особенность модели — в точке (n, k) числа n и k имеют одинаковую четность.

2. Задача о пьяном гуляке.
Случайное блуждание мы будем считать как движение одномерного пьяного гуляки. Его

домом мы считаем точку 0, город кончается в точке r.
Задача. Найти вероятность того, что за n шагов пьяный гуляка хотя бы раз достигнет

границы города. Другая, менее приятная версия этой задачи — такая. Пьяный гуляка лежит в
канаве на расстоянии r шагов от оврага. Каждую минуту он делает шаг к оврагу или от него
с вероятностью 1

2 . Если он достигнет оврага, то обязательно в него упадет. Через n минут за
ним приедет машина. Какова вероятность, что пьяный гуляка упадет в овраг?

Замечу, что наше решение будет иметь вид не очень красивой формулы для подсчета ве-
роятности.

Введем обозначения для событий:

A = {событие, состоящее в том, что траектория коснулась уровня r}

Тогда
A =

∑
k≥r

An,k +
∑
k<r

AAn,k.
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Введем обозначение для k < r:

Bn,k = ABn,k = {событие, состоящее в том, что траектория

кончается в точке (n, k), но по дороге касается уровня r}.

2. Лемма об отражении. |Bn,k| = |An,2r−k|.
Доказывается путем построения взаимно-однозначного соответствия между множествами

Bn,k и An,2r−k. Оно осуществляется следующим образом: до момента первого касания уровня
r траекторию ω ∈ Bn,k мы оставляем неизменной, а после этого касания симметрично отобра-
жаем относительно прямой y = r.

Из этой леммы следует следующая формула для вычисления P(A):

P(A) =
∑
k≥r

P(An,k) +
∑
k<r

P(Bn,k) =

{
2
∑
k>r

C
n+k

2
n + C

n+r
2

n

}
2−n.

3. Независимость будущего от прошлого при фиксированном настоящем. Мар-
ковское свойство.

Марковское свойство процесса означает независимость будущего от прошлого при извест-
ном настоящем. Напомним, что события A и B называются условно независимыми при условии
C, если

P(AB|C) = P(A|C)P(B|C).

Для случайного процесса ξt это свойство должно выглядеть так: при s < t < u

P({ξu = x, ξs = y}|ξt = z) = P(ξu = x|ξt = z)P(ξs = y|ξt = z).

Однако если случайные величины ξu, ξt, ξs имеют непрерывный тип распределения, то все
выписанные вероятности будут равны нулю, также вероятность условия будет равна нулю, а
на нуль делить нельзя. Положение не спасает введение в рассмотрение событий вида {ξu ∈ A},
{ξs ∈ C}, {ξt ∈ B}. Действительно, если мы возьмем B = R, то событие {ξt ∈ R} будет
достоверным и из условной независимости будет вытекать обычная незавсимость.

Таким образом, введение понятия марковости требует использования тонких понятий услов-
ного среднего в самой общей ситуации. В нашем случае симметричного случайного блуждания
проблем с корректным определением не возникает, так как

P({ξn = k} =
C
n+k

2
n

2n
6= 0

при одинаковой четности n и k.
Упражнение. Независимость приращений случайного блуждания. Проверьте, что события

{ξn−ξm = i} и {ξk−ξl = j} независимы при l < k ≤ m < n. Для этого найдите число траекторий
в каждом из этих событий и в их пересечении.

Из этого упражнения следует, что вероятность P{ξu = x} зависит от положения случайного
блуждания в момент времени t, но не зависит от других свойств предшествющего пути.

Комментарий. Марковость случайного блуждания можно обосновать и по другому, более
строго. Будем использовать сохранение независимости при операции сложения несовместных
событий (см. пункт 4.7). Это полезно, так как удобно проверять независимость самых малень-
ких событий, являющихся элементарными исходами в соответствующих моделях.

Событие C = { набор шагов ↘ и ↗ за время от s до t }.
Событие D = { набор шагов ↘ и ↗ за время от m до n }.

P(C) = 2−(t−s),P(D) = 2−(n−m),P(CD) = 2−[(t−s)+(n−m)].
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В то же время случайные величины ξn и ξm при m < n, вообще говоря зависимы. Возьмем,
например, события {ξ10 = 6} и {ξ11 = 9}. Это события с ненулевой вероятностью, но они
несовместны. Следовательно, они зависимы.

Докажем независимость будущего случайного блуждания от прошлого при фиксированном
настоящем p (т. е. независимость его значений при n ≥ t > p от его значений при s ≤ p при
условии Ap,r = {ξp = r}). Это свойство случайного блуждания называется марковским. Мы
должны доказать равенство

P(CD|Ap,r) = P(C|Ap,r)P(D|Ap,r) (1)

для любого события C, означающего некое условие на значения процесса в моменты времени
s ≤ p и для любого события D, означающего некое условие на значения процесса в моменты
времени t : n ≥ t > p. Простым сложением показывается, что условная независимость (1) для
элементарных событий C = Ci и D = Dj при всех i и j, где события Ci попарно несовместны
между собой при разных i, событияDj попарно несовместны между собой при разных j, влечет
условную независимость (1) для пары сумм событий C = C1+C2+...+Ck иD = D1+D2+...+Dl.
Таким образом, условная независимость C и D следует из условной независимости всех пар
Ci и Dj . А в качестве этих событий мы можем взять самые маленькие события нужного нам
вида.

Минимальное событие Ci, зависящее от всех ξs : s ≤ p состоит из всех траекторий ω,
значения которых в промежутке s ≤ p составляют фиксированную траекторию ω1 (т. е. все
значения ω1(s) зафиксированы при s ≤ p).

Минимальное событие Dj , зависящее от всех ξt : n ≥ t > p состоит из всех траекторий,
значения которых в промежутке n ≥ t > p составляют фиксированную траекторию ω2 (т. е.
все значения ω2(t) зафиксированы при n ≥ t > p).

Возможны две ситуации. В первой ситуации либо траектория ω1 не кончается в точке (p, r),
либо траектория ω2 не продолжается на момент времени p со значением r. В этих случаях
события Ci или Dj несовместны с Ap,r и тогда либо P(Ci|Ap,r) = 0, либо P(Dj |Ap,r) = 0 и
равенство (1) очевидно, так как обе его части равны. 0.

Во второй ситуации обе траектории продолжаются на момент времени p со значением r.
Поэтому Ci ⊂ Ap,r, DjAp,r 6= ∅. Мы можем вычислить число траекторий в событиях CiAp,r и
DjAp,r и сосчитать условные вероятности. Начнем с числа |Ap,r|. Число траекторий из точки

(0, 0) в (p, r) мы уже сосчитали, оно равно C
p+r

2
p . Но число способов продолжения каждой

такой траектории на моменты времени от p+ 1 до n равно 2n−p. Таким образом,

|Ap,r| = C
p+r

2
p 2n−p,

P(Ap,r) = C
p+r

2
p 2n−p/2n = C

p+r
2

p 2−p.

Далее, |CiAp,r| равно числу способов продолжения траектории ω1 на 1, p на все моменты
времени n ≥ t > p. Число таких продолжений равно 2n−p. И, наконец, |DjAp,r| равно чис-
лу таких продолжений траектории ω2 на s < p, соединяющих (0, 0) и (p, r). Таким образом,

|DjAp,r| = C
p+r

2
p . Резюмируем,

P(Ci|Ap,r) =
2n−p2−n

C
p+r

2
p 2−p

, P(Dj |Ap,r) =
C
p+r

2
p 2−n

C
p+r

2
p 2−p

,

P(CiDj |Ap,r) =
2−n

C
p+r

2
p 2−p

= P(Ci|Ap,r)P(Dj |Ap,r).

Итак, (1) выполняется.
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4. Задача о баллотировке.
В рамках схемы случайного блуждания мы решим следующую задачу:
Задача. У двух кандидатов, A и B, имеется ровно по n голосов. Эти голоса были поданы

и происходит подсчет голосов. Какова вероятность события

A = {в течение подсчета A будет всегда опережать B}.

Уточним, что в начальный момент времени и в последний момент времени у них одинаковое
число голосов – по 0 и по n.

Элементарный исход ω ∈ Ω в этой задаче — это траектория, которая в каждый момент
времени показывает разность числа учтенных голосов за A и за B. Нарисуйте примерную
траекторию.

Каждая такая траектория начинается в точке (0, 0) и кончается в точке (2n, 0). Траектории
ω в интересующем нас событии A состоят из траекторий, которые всюду, за исключением 0 и
2n, находятся выше оси x-ов. Итак,

|Ω| = Cn2n,P(A) =
|A|
|Ω|

, |A| =?

Для подсчета |A| мы используем принцип отражения. Очевидно, что каждый ω ∈ A проходит
через точки (1, 1) и (2n− 1, 1). Легко считается число всех траекторий из (1, 1) в (2n− 1, 1) —
во всех этих траекториях имеется n− 1 участков ↘ и n− 1 участков ↗. Поэтому число таких
траекторий равно Cn−1

2n−2. Вычтем из него число траекторий из (1, 1) в (2n − 1, 1), по дороге
касающихся оси x-ов, разность равна |A|. По принципу отражения

{число траекторий из (1, 1) в (2n− 1, 1), по дороге касающихся оси x-ов} =

= {число траекторий из (1, 1) в (2n− 1,−1)} = Cn2n−2.

Итак, |A| = Cn−1
2n−2 − Cn2n−2.

Упражнение. Спички продаются по цене 50 копеек за коробку. 2n человек хотят купить по
одной коробке, причем у n из них имеются 50-копеечные монеты, а у остальных n — монеты в
1 рубль. У продавца в данный момент нет ни одной 50-копеечной монеты. Какова вероятность
того, что если наши 2n человек выстроятся в очередь случайным образом, продавец сможет
каждому из них в случае необходимости без задержки вернуть сдачу.

Указание. Очевидно, что первым в очереди должен оказаться человек с 50-копеечной мо-
нетой, а последним — с 1 рублем.

5. Задача о постоянном везении.
Два игрока играют совершенно одинаково и выигрывают друг у друга с вероятностью

1/2. Сыграно 2n партий. Доказать, что вероятность того, что один из них будет всегда не
позади другого равна вероятности того, что в 2n-й момент времени у обоих будет равное число
выигрышей, то есть равна числу Cn2n/22n.

Доказательство с помощью взаимно однозначного соответствия множества Ã всех траекто-
рий не ниже оси x-в и множества A всех траекторий, кончающихся в точке (2n, 0). Рассмотрим
траекторию ω ∈ A и разделим ее на два участка: ω1 – часть ω от начала до первого достижения
инфимума, ω2 – часть ω после первого достижения инфимума.

Часть ω2 мы осторожно сдвигаем и переводим начало в точку (0, 0), получаем часть ω̃1

траектории ω̃. Часть ω1, которая заканчивается в точке (r,−s), мы симметрично поворачиваем
вокруг оси x = r, а после этого осторожно и параллельно сдвигаем c началом в конце куска
траектории ω̃1, Получили кусок траектории ω̃2. Куски ω̃1 и ω̃2 составляют траекторию ω̃ ∈ Ã,
которая сопоставляется траектории ω ∈ A.

Обратное отображение строится в обратном порядке. Берем траекторию ω̃ ∈ Ã, которая
кончается в точке (2n, 2m) и лежит выше оси x-ов. Далее пересекаем ее прямой {y = m},
часть траектории ω̃ до момента последнего по времени пересечения {y = m} обозначим ω̃1,
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часть после этого момента обозначим ω̃2. Часть ω̃2 поворачиваем и сдвигаем в начало, получаем
часть ω1, к концу ω1 сдвигаем ω̃1, получаем часть ω2. Вместе ω1 и ω2 составляют ω.

6. Лемма о возврате в начало.
Новые обозначения.
Введем событие:
C2k,0 = {первое возвращение в начало 0 произошло в момент 2k},

напомним, что
A2k,0 = {возвращение траектории в начало 0 в момент 2k}.
Обозначим f2k = P(C2k,0), u2k = P(A2k,0), f0 = 0, u0 = 1.

Лемма. u2n =
n∑
k=0

f2ku2n−2k.

Мы представим событие A2n,0 в виде суммы несовместных событий. Очевидно, что

A2k,0 ⊃ C2k,0, A2n,0 ⊂
n∑
k=0

C2k,0.

Тогда

A2n,0 =

n∑
k=0

A2n,0C2k,0 =

n∑
k=0

A2n,0C2k,0A2k,0. (∗)

Здесь мы использовали C2k,0 ⊂ A2k,0. Событие A2n,0 относится к будущему процесса при
настоящем времени 2k, а событие C2k,0 — к прошлому процесса. Мы вправе использовать
утверждение об условной независимости прошлого и будущего (в нем p = 2k, r = 0). Используя
это и формулу умножения (3.3) по разу в каждой строчке следующей формулы, имеем:

P(A2n,0C2k,0A2k,0) = P(A2n,0C2k,0|A2k,0)P(A2k,0) =

= P(A2n,0|A2k,0)P(C2k,0|A2k,0)P(A2k,0) = P(A2n,0|A2k,0)P(C2k,0).

Теперь проинтерпретируем полученное выражение. Второй множитель в правой части — это
f2k. А первый множитель — вероятность попадания из 0 в момент времени 2k в 0 в момент
времени 2n. Так как свойства процесса не меняются со временем, то эта вероятность совпадает с
вероятностью попадания из 0 в момент времени 0 в 0 в момент времени 2n−2k, то есть с числом
u2n−2k. (Последнее утверждение можно проверить и непосредственно, подсчитать |A2n,0A2k,0|
(= Ck2kC

n−k
2n−2k), разделить на |A2k,0| (= Ck2k22n−2k) и разделить одно число на другое.) Далее

используем (*) и получаем

P(A2n,0) =

n∑
k=0

P(A2n,0C2k,0) =

n∑
k=0

f2ku2n−2k.

Эта лемма будет очень существенной в решении задачи о возвращении в начало и в следу-
ющем пункте.

Упражнение. Проверьте перебором эту лемму для случая n = 3.
7. Задача о продолжительном везении. Распределение арксинуса.
Теперь мы вычислим вероятность того, что ровно на 2k участках траектория находилась

выше оси x-в (где-то, может быть, ее касаясь), а на 2n − 2k участках траектория находилась
ниже оси x-в. Обозначим:

p2k,2n = P{ ровно на 2k участках траектория находилась выше оси x-в,

на 2n− 2k участках траектория находилась ниже оси x-в}.

Мы докажем следующее утверждение.
Теорема. p2k,2n = u2ku2n−2k.
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Лемма.

p2k,2n =
1

2

k∑
m=0

f2mp2k−2m,2n−2m +
1

2

n−k∑
m=0

f2mp2k,2n−2m.

Доказательство повторяет рассуждения леммы 5. Мы делим наше событие на куски, в
каждом из которых зафиксирован момент 2m первого касания оси x-в. При этом на первых
2m шагах траектория с равной вероятностью может быть выше оси x-в или ниже оси x-в,
поэтому в каждая сумма умножается на 1

2 .
Из лемм 5 и 6 методом математической индукции выводится утверждение теоремы. Пред-

положим, что для всех меньших n и всех k ≤ n утверждение теоремы верно. Тогда, используя
лемму 6, мы получаем

p2k,2n =
1

2

k∑
m=0

f2mp2k−2m,2n−2m +
1

2

n−k∑
m=0

f2mp2k,2n−2m =

=
1

2

k∑
m=0

f2mu2k−2mu2n−2k +
1

2

n−k∑
m=0

f2mu2ku2n−2k−2m =

=
1

2

(
k∑

m=0

f2mu2k−2m

)
u2n−2k +

1

2

(
n−k∑
m=0

f2mu2n−2k−2m

)
u2k =

=
1

2
u2ku2n−2k +

1

2
u2n−2ku2k,

что и требовалось. Заметим, что, используя индукцию, мы неявно используем и утверждение
пункта 5. Оно доказывает справедливость нашего утверждения при всех n и k = n. Благодаря
этому, вычисляется вероятность отсутствия пересечения оси x-ов после момента последнего
пересечения.

Теперь мы проанализируем полученный результат и рассмотрим, что получается в пределе.
Предложение. p2k,2n ≈ 1

π
√
k(n− k)

..

Мы используем формулу Стирлинга:

n! ≈
√

2πn
(n
e

)n
,

Поэтому

u2k = Ck2k2−2k ≈

(
2k
e

)2k√
2π2k(

k
e

)k√
2πk

(
k
e

)k√
2πk

2−2k =
1√
πk
,

p2k,2n ≈
1

π
√
k(n− k)

.

Случайная величина, которую мы рассмотрели, принимает значения 2k. Давайте переведем
эту величину в отрезок [0,1], заменив 2k на xk = 2k/2n. Тогда

Pn{xk} ≈
1

π
√
xk(1− xk)

(1/n).

Теперь вычислим ∫ 1

0

f(x)dPn(x) ≈
n∑
k=1

f(xk)
1

π
√
xk(1− xk)

(xk+1 − xk).
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Это очень напоминает интегральные суммы Римана для интеграла∫ 1

0

f(x)
1

π
√
x(1− x)

dx

(хотя интеграл является несобственным и это не совсем корректно). Здесь (по определению
слабой сходимости) f — непрерывная ограниченная функция на отрезке [0, 1]. Мы этого до-
казывать не будем, но при n → ∞ вероятность Pn будет слабо сходится к распределению с
плотностью 1

π
√
x(1− x)

на интервале (0, 1). Функция распределения будет выражаться через

арксинус, поэтому полученное распределение носит название ’закон арксинуса’.
8. Задача о возвращении в начало.
Теорема. Пьяный гуляка возвращается в начало с вероятностью 1 тогда и только тогда,

когда
∑
n
u2n =∞.

Мы введем две функции, связанные со случайным блужданием, которые называются произ-
водящими функциями.

Но прежде всего уточним постановку задачи. Вероятность возврата в начало за какое-
то число шагов мы можем представить как сумму вероятностей первого возвращения за 2,
4,... шагов. Эти вероятности мы обозначали f2n. Заметим, что в этой задаче у нас нет одной
на все случаи модели. Число шагов может стремиться к ∞, при увеличении числа шагов
увеличивается число элементарных исходов в вероятностной модели.

Итак, нужно выяснить, когда
∑
2n
f2n = 1. Введем две функции: F и U , заданные на (0, 1).

F (z) = f0 + f2z
2 + f4z

4 + ..., U(z) = u0 + u2z
2 + u4z

4 + ....

Замечание. Введенные функции похожи на производящие функции, которые часто исполь-
зуемые при изучений распределений случайных величин, равных 0, 1, 2,...,n,... с вероятностями
pn, где

∑
n pn = 1. Прозводящая функция задается формулой ψ(z) =

∑
n pnz

n и используется
вместо характеристической функции. Числа pn совпадают со значениями n-х производных в
нуле функции ψ(z). В нашем случае сумма un заведомо не равна 1, так как эти числа являются
вероятностями событий, не являющихся несовместными. А для чисел fn равенство суммы 1
является вопросом, ответ на который мы пытаемся получить.

Из леммы 5 непосредственно выводится сравнением коэффициентов при степенях z равен-
ство

F (z)U(z) = U(z)− 1.

Поэтому

U(z) =
1

1− F (z)
.

Устремим в этом равенстве z → 1. Имеем:

u0 + u2 + u4 + ... =
1

1− (f0 + f2 + f4 + ...)
.

Анализируя это равенство, мы получаем теорему: ряд в левой части расходится тогда и только
тогда, когда в правой части знаменатель сходится к 0.

9. Следствия.
Из расходимости ∑

n

u2n =
∑
n

1√
πn

=∞

следует, что в симметричном случайном блуждании размерности 1 пьяный гуляка с вероят-
ностью 1 вернется домой.
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В размерности 2 пьяный гуляка в каждый момент времени переходит из точки (x, y) в точки
(x+ 1, y), (x− 1, y), (x, y + 2), (x, y − 1), причем в каждую из них с вероятностью 1/4. Анализ
этого случая удобно провести сведением его к одномерному. Оказывается, двумерное движение
пьяного гуляки можно представить как два независимых одномерных движения. Речь не идет
о движении по координатам (движения по координатам x и y зависимы, двигаясь по одной,
мы не двигаемся по другой координате). Но мы можем рассмотреть два движения по прямым
y = x и y = −x. По каждой из них в любой момент времени мы двигаемся с вероятностью 1/2
в одну или другую сторону на расстояние 1/

√
2. В результате мы получим движение пьяного

гуляки на плоскости.
Чтобы вернуться в начало за 2n шагов, пьяный гуляка должен вернуться в начало по

каждой из прямых x = y и x = −y. Таким образом, вероятность возвращения равна

u2nu2n ≈
1

πn
.

Ряд из этих вероятностей по прежнему расходится, по теореме 8 пьяный гуляка на плоскости
с вероятностью 1 возвращается в начало.

Случай размерности 3 не сводится к одномерному и дает другой ответ. В трехмерном про-
странстве на каждом шаге пьяный гуляка имеет шесть вариантов: вверх или вниз по коорди-
нате x, то же – по y, то же – по z. Вероятность каждого направления мы считаем равной 1/6.
За 2n шагов общее число возможных траекторий равно 62n, вероятность каждой траекторий
равна 6−2n.

Легко видеть, что в событие {возврат в начало за 2n шагов} входят элементарные исходы,
содержащие i шагов по оси x вверх, i шагов по оси x вниз, j шагов по оси y вверх, j шагов по
оси y вниз, k шагов по оси z вверх, k шагов по оси z вниз, причем должно быть i+ j + k = n.
Число таких исходов было подсчитано в полиномиальной модели (шесть клеток, 2n кроликов).

Итак, наша вероятность u2n возврата в начало ровно за 2n шагов равна:

u2n = 6−2n
∑

i+j+k=n

2n!

i!i!j!j!k!k!
= 6−2n

∑
i+j+k=n

2n!

n!n!

(
n!

i!j!k!

)2

(2)

Если мы один из множителей в квадрате заменим на его максимальное возможное значение,
все выражение разве что увеличится. Имеем:

u2n ≤ 6−2n 2n!

n!n!
max

(
n!

i!j!k!

) ∑
i+j+k=n

(
n!

i!j!k!

)
= 2−2n3−n

2n!

n!n!
max

(
n!

i!j!k!

)
= O

(
1

n3/2

)
.

Здесь мы использовали формулу Стирлинга

n! ≈
(n
e

)n√
2πn.

Но предварительно полезно заметить, что максимум достигается, когда все три слагаемых i,
j, k примерно равны между собой, то есть примерно равны числу n/3. Ряд из полученных
оценок сходится.

Упражнение. Проверьте, что если i < n/3, j > n/3, то i!j!k! < (i−1)!(j+1)!k!. (Разумеется,
i+ j + k = n, i, j, k ∈ N.

§29. Цепи Маркова

Марковский случайный процесс — это процесс, для которого любое событие, записывающе-
еся через значения процесса в будущем, при условии фиксации значения процесса в настоящий
момент не зависит от события, записывающегося через значения процесса в прошлом.

Мы будем использовать для такого процесса η(·) следующие обозначения:
p(s, x; t, y) — условная плотность случайной величины ηt в точке y при условии, что ηs = x,
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P (s, i; t, j) = P {η(t) = j|η(s) = i}
1. Равенство Колмогорова — Чепмена.
Пусть s < u < t. Тогда

p(s, x; t, y) =

∫ ∞
−∞

p(s, x;u, z)p(u, z; t, y)dz.

В непрерывном случае для доказательства уравнения Колмогорова — Чепмена нужно при-
ложить определенные усилия. В дискретном случае счетного числа состояний все очень просто
и мы докажем дискретный аналог этого равенства:

P (s, i; t, j) =
∑
k

P (s, i;u, k)P (u, k; t, j) (1).

Но для этого нам придется вернуться к обозначениям в виде условных вероятностей, для
которых (1) выглядит следующим образом:

P {η(t) = j|η(s) = i} =
∑
k

P {η(u) = k|η(s) = i}P {η(t) = j|η(u) = k} (2).

Это равенство напоминает формулу полной вероятности, но отличается от нее тем, что все
вероятности являются условными, причем с разными условиями. Давайте запишем вместо (2)
формулу полной вероятности, но не по первоначальной вероятности P, а по условной вероят-
ности P {·|η(s) = i}. Имеем:

P {η(t) = j|η(s) = i} =

=
∑
k

P {η(t) = j|η(u) = k, η(s) = i}P {η(u) = k|η(s) = i} .

В этом равенстве единственная разница с нужным нам (2) состоит в том, что вместо P {η(t) = j|η(u) = k}
написано P{η(t) = j|η(u) = k, η(s) = i}. Но по нашему определению марковского процесса
вероятность будущего {η(t) = j} при фиксированном настоящем {η(u) = k} не зависит от про-
шлого {η(s) = i}. Поэтому

P {η(t) = j|η(u) = k, η(s) = i} = P {η(t) = j|η(u) = k} .

Кстати, для марковского процесса с совместными плотностями марковость выглядит следую-
щим образом: при s1 < s2 < ... < sn < u < t1 < t2 < ... < tm

pη(t1)...η(tm)(y1, ..., ym|η(s1) = x1, ..., η(sn) = xn, η(u) = z) = pη(t1)...η(tm)(y1, ..., ym|η(u) = z).

2. Однородная марковская цепь с дискретным временем.
Мы вернемся к более простой ситуации дискретного времени {0} ∪N и дискретного мно-

жества состояний N. Последнее носит довольно условный характер, числа выступают в виде
знаков и нумерация состояний не зависят от их свойств. Это не всегда удобно, например, при
изучении одномерного случайного блуждания состояния были целыми числами — элементами
Z, а в двумерном случае — элементами Z2. Мы будем рассматривать самый простой вариант
и считать, что свойства системы не меняются со временем. Посмотрим, какие задачи при этом
возникают.

Следующие обозначения совершенно естественны:
Изучаемый случайный процесс обозначим ξn, n = 0, 1, 2, ... и будем его называть однородной

цепью Маркова со счетным числом состояний.
pij – вероятность перехода системы за один шаг из состояния i в состояние j.
Другими словами, pij = P(ξn+1 = j|ξn = i).
pij(n) – вероятность перехода системы за n шагов из состояния i в состояние j, в таком

случае pij = pij(1). Очевидно. что должно выполняться
∑
j pij = 1 для любого i, так как из

состояния i система обязательно куда-нибудь перейдет.
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Как мы уже установили выше, для цепей Маркова справедливо равенство Чепмена — Кол-
могорова:

pij(m+ n) =
∑
k

pik(m)pkj(n).

Матрицу [pij(n)] переходных вероятностей за n шагов мы обозначим через P(n), P = P(1).
Из равенства Чепмена — Колмогорова следует (по индукции):

P(n) = Pn.

Действительно, в равенстве Чепмена — Колмогорова мы используем операцию произведения
матриц.

Важнейшим примером однородной цепи Маркова является одномерное случайное блуж-
дание, в этом случае множество состояний обозначается Z, а переходные вероятности имеют
вид: pi(i+1) = pi(i−1) = 1/2. Интересным вопросом теории однородных цепей Маркова явля-
ется вопрос о возвратных и невозвратных состояниях. Мы его по-существу рассмотрели при
изучении случайного блуждания. Вывод критерия использует лишь свойства цепей Маркова.
Итак, состояние i0 является возвратным (то есть вероятность возврата в него (хотя бы раз)
за неограниченное время равна 1) тогда и только тогда, когда∑

n

pi0i0(n) =∞.

Другой важный вопрос — о существовании стационарных вероятностей на множестве со-
стояний. Дело в том, что стандартная ситуация при изучении цепей Маркова — наличие лишь
переходных вероятностей. Но при этом не определены вероятности самих состояний в любой
момент времени n, то есть вероятностей

pi(n) = P {ξn = i} .

Очевидно, что нам достаточно знать эти вероятности лишь при n = 0. Будем обозначить
pi = pi(0).

Тогда по формуле полной вероятности (без использования марковости) мы имеем:

pj(n) =
∑
i

pipij(n), (7)

а вектор вероятностей [pj(n)] вычисляется по формуле

[pi(n)] = [pi]Pn.

Упражнение 2. Марковская цепь имеет три состояния {1, 2, 3}, вектор начальных веро-
ятностей имеет вид [1/2, 1/3, 1/6], матрица переходных выроятностей имеет вид

P =

 1/2 1/4 1/4
1/3 1/3 1/3
1/2 1/2 0


Используя определение цепи Маркова, вычислить P{ξ1 = 1, ξ2 = 2, ξ3 = 3}.

3. Существование стационарного распределения.
Вектор вероятностей [pi] называется начальным распределением. Напомним, что начальное

распределение для случайного блуждания сосредоточено в точке 0. Может так получиться,
что для некоторого начального распределения [pi] распределения в другие моменты времени,
вычисляемые по формуле (7), не меняются:

pi(n) = pi.
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Такое начальное распределение называется стационарным.
Имеется несколько интересных вопросов:
1) Существуют ли стационарные распределения?
2) Если существуют, то сколько их? Точнее, какова размерность множества стационарных

распределений? Значения скольких параметров однозначно задают распределение?
Приведем сначала примеры. Можно показать, что у процесса случайного блуждания ста-

ционарных распределений быть не может. Доказательство можно провести от противного: так
как pi → 0, когда i→∞ или i→ −∞, то существует максимальное pi0 , причем можно считать,
что оно крайнее справа среди максимальных, то есть pi0−1 ≤ pi0 > pi0+1. Тогда на следующем
шаге

pi0(1) =
pi0−1 + pi0+1

2
< pi0(0).

В то же время для систем с конечным числом состояний легко построить пример существова-
ния стационарного распределения. Пусть, например, система содержит два состояния, {0, 1},

p0,1 = 1, p1,0 = 1.

Тогда стационарным распределением является распределение

p0 = p1 = 1/2.

Имеется знаменитая теорема Брауэра, которая утверждает, что любое непрерывное отоб-
ражение конечномерного выпуклого компакта в себя имеет хотя бы одну неподвижную точ-
ку. Множество всех вероятностей на конечном (n) числе состояний очевидно выпукло и ком-
пактно. Более того, это множество является симплексом с n вершинами (1, 0, ..., 0), (0, 1, ..., 0),
(0, 0, ..., 1).

Таким образом, цепь Маркова с конечным числом состояний всегда имеет хотя бы одно
стационарное распределение.

Но можно привести нехитрый пример, когда число стационарных распределений бесконеч-
но:

{0, 1, 2, 3}, p0,1 = 1, p1,0 = 1, p2,3 = 1, p3,2 = 1.

Стационарные распределения —

p′0 = p′1 = 1/2; p′′2 = p′′3 = 1/2.

Другие стационарные распределения являются выпуклыми комбинациями данных двух.
В некоторых ситуациях (но не всегда, контрпримеры вы можете найти выше) любое на-

чальное распределение с ростом времени начинает сходиться к некоторому стационарному
распределению. Представляет интерес о скорости сходимости и о том, начиная с какого вре-
мени мы можем считать распределение приблизительно стационарным.

Интересный пример такой цепи представляет собой мешание колоды из 32 карт. За один
шаг мы берем случайным образом делим колоду на три части — A, B, C и переставляем части
в обратном порядке — C, B, A. Ясно, что таким способом мы можем получить не любые пере-
становки карт, т. е., нет перестановкок, вероятности перехода от любой другой перестановки
карт не нуль.

Множество состояний состоит из всех перестановок, то есть из 32! элементов. На каждом
шаге система из данного состояния может перейти примерно (точно считать долго) в c = C2

32

состояния, причем вероятности перехода мы считаем равными 1/c. Начальная вероятность
сидит в одной фиксированной перестановке. Но при n → ∞ вероятность сходится к стаци-
онарному распределению, для которого вероятность любой перестановки равна 1/32!. Пред-
ставляется совершенно очевидным, что такое стационарное распределение в данной ситуации
является единственным. Но из ниже приведенной теоремы немедленно это не следует, так как
в данном случае условия теоремы не выполняются. В качестве упражнения можно проверить
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существование достаточно большой итерации оператора P, которая удовлетворяет условиям
теоремы с очень маленьким λ и для любого из 32! состояний. Отсюда следует существование
единственного инвариантного стационарного распределения для P. (Это следует из равенства
PnP = PPn.) В этой задаче можно оценить коэффициент λ, очевидно, что он очень мал,
поэтому скорость сходимости к стционарному распределению очень мала. Надо очень долго
мешать карты.

В конце этого краткого экскурса я приведу (с двумя доказательствами, с выкладками,
другое, использующее идеи функционального анализа, но без выкладок) одно утверждение о
существовании и единственности стационарного распределения.

Теорема. Допустим, что существует особое состояние i0 со свойством:

inf
i
pi,i0 ≥ λ > 0.

Тогда стационарное распределение существует и оно единственно.
Первое доказательство состоит в применении принципа Банаха сжатых отображений к

преобразованию
P [pi] := [pi]P, (8)

пространства начальных вероятностей. Прежде чем применять принцип Банаха, надо ввести в
пространстве всех начальных вероятностей метрику и проверить полноту этого пространства
в данной метрике. Введем метрику следующим образом:

d(p′, p′′) =
∑
i

|p′i − p′′i | .

Проверка аксиом метрики и полноты соответствующего пространства вероятностей очевидна.
Теперь оценим

d(p′P, p′′P) =
∑
j

∣∣∣∣∣∑
i

(p′i − p′′i )pij

∣∣∣∣∣ =
∑
j 6=i0

∣∣∣∣∣∑
i

(p′i − p′′i )pij

∣∣∣∣∣+

∣∣∣∣∣∑
i

(p′i − p′′i )pii0

∣∣∣∣∣ .
Мы будем далее использовать, что∑

i

p′i =
∑
i

p′′i = 1,
∑
j

pij = 1 для всех i.

Займемся второй суммой:∣∣∣∣∣∑
i

(p′i − p′′i )pii0

∣∣∣∣∣ =

∣∣∣∣∣∑
i

(p′i − p′′i )(pii0 − λ+ λ)

∣∣∣∣∣ ≤
∣∣∣∣∣∑
i

(p′i − p′′i )(pii0 − λ)

∣∣∣∣∣+

∣∣∣∣∣∑
i

(p′i − p′′i )λ

∣∣∣∣∣ =

=

∣∣∣∣∣∑
i

(p′i − p′′i )(pii0 − λ)

∣∣∣∣∣+ 0 ≤ d(p′, p′′)(pii0 − λ) = d(p′, p′′)pii0 − d(p′, p′′)λ.

Теперь оцениваем все:
d(p′P, p′′P) ≤ (1− λ)d(p′, p′′).

Мы воспользовались очевидной оценкой∑
j

∣∣∣∣∣∑
i

(p′i − p′′i )pij

∣∣∣∣∣ ≤∑
j

∑
i

|p′i − p′′i |pij =
∑
i

∑
j

|p′i − p′′i |pij =
∑
i

|p′i − p′′i |.

Второе доказательство также состоит в применении принципа Банаха, но для оценок мы
используем экстремальные точки единичного шара в одном банаховом пространстве и оценива-
ем норму оператора P. В случае счетного множества состояний мы можем считать вероятности
элементами пространства l1, и

d(p′, p′′) = ‖p′ − p′′‖l1 .
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Это множество является пересечением конуса неотрицательных элементов {(xi) : x1 ≥ 0, x2 ≥
0, ...} со сдвинутым линейным подпространством {(xi) :

∑
n xn = 1}.

Упражнение. Проверьте, что и конус и сдвинутое линейное подпространство замкнуты в
l1.

Итак. множество вероятностей — замкнутое подмножество полного пространства l1, поэто-
му само является полным. Очевидно, что преобразование P является линейным оператором на
l1, а для любого линейного оператора T , действующего в банаховом пространстве B с нормой
‖ · ‖ и задаваемой ею метрикой d(x, y) := ‖x− y‖ имеет место неравенство:

d(Tx, Ty) = ‖T (x)− T (y)‖ = ‖T (x− y)‖ ≤ ‖T‖‖x− y‖ = ‖T‖d(x, y).

Итак, казалось бы достаточно вычислить норму линейного оператора P в пространстве l1 и
доказать, что ‖P‖ < 1. Но все не так просто. Во первых, любой линейный оператор имеет одну
неподвижную точку — 0, а по принципу Банаха, если его норма меньше 1, у него не может быть
других неподвижных точек, в частности, вероятности не могут быть неподвижными точками.
Впрочем, норма оператора P на самом деле равна 1, в чем нетрудно убедиться. Немедленно
проверяется, что ‖p‖ ≥ 1, так как

P (1, 0, ...) = [p1i]
∞
i=1,

∑
i

p1i = 1.

Таким образом, наша идея оказывается несостоятельной. Давайте уточним эту идею — на
самом деле нас интересуют лишь значения ‖P (p′ − p′′)‖, то есть норма значений оператора не
на всем l1. Нетрудно видеть, что

∑
i(p
′
i − p′′i ) = 0, таким образом, нам нужна норма P на под-

пространстве l1 — пространстве l1∩{(xi) :
∑
i xi = 0}. Это подпространство не содержит точку

(1, 0, ...), поэтому мы не потеряли шанс на то, что норма сужения P на это подпространство
окажется строго меньше 1.

Теперь займемся вычислением нормы. Хорошо известно, что для вычисления нормы линей-
ного оператора T достаточно рассмотреть сужение оператора на единичную сферу банахова
пространства:

sup
‖x‖≤1

‖T (x)‖ = sup
‖x‖=1

‖T (x)‖ = ‖T‖. (∗)

Более того, так как норма — выпуклая функция

‖λx+ µy‖ ≤ λ‖x‖+ µ‖y‖, λ+ µ = 1, λ ≥ 0, µ ≥ 0.

Поэтому (это важно, если ‖x‖ = ‖y‖ = 1)

‖T (λx+ µy)‖ ≤ λ‖T (x)‖+ µ‖T (y)‖ ≤ max{‖T (x)‖, ‖T (y)‖}, λ+ µ = 1, λ ≥ 0, µ ≥ 0.

Методом математической индукции это неравенство обобщается также на конечные и даже
счетные выпуклые комбинации. Таким образом, если у нас имеется счетное или несчетное
множество точек на единичной сфере, которые непредставимы в виде λx + µy, где ‖x‖ =
‖y‖ = 1, λ + µ = 1, λ ≥ 0, µ ≥ 0 (такие точки мы будем называть экстремальными), и все
точки единичного шара представляются как пределы выпуклых комбинаций экстремальных
точек, то супремум в определении нормы линейного оператора достаточно взять лишь по
множеству всех экстремальных точек. Нетрудно видеть, что в единичном шаре пространства
l1 экстремальными точками являются лишь точки вида ±en, en = (0, ..., 0, 1, 0, ...) (1 на n-
м месте, остальные — нули). Легко проверяется, что все остальные точки единичного шара
являются бесконечными выпуклыми комбинациями экстремальных точек. В единичном шаре
пространства l1∩{(xi) :

∑
i xi = 0} экстремальными точками являются точки вида 1

2 (em− en),
m 6= n. Итак. достаточно оценить∥∥∥∥P (1

2
(em − en)

)∥∥∥∥ =

∥∥∥∥∥1

2

(∑
i

pmiei −
∑
i

pniei

)∥∥∥∥∥ =
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=
1

2

∑
i

|pmi − pni| =
1

2

∑
i 6=i0

+
∑
i=i0

 ≤
≤ 1

2

∑
i 6=i0

(pmi + pni) +
∑
i=i0

|pmi − pni|

 ≤ 1

2

∑
i6=i0

(pmi + pni) +
∑
i=i0

(pmi + pni − 2λ)

 =

=
1

2

(∑
i

(pmi + pni)− 2λ

)
= 1− λ.

Итак, норма оператора P на пространстве l1∩{(xi) :
∑
i xi = 0} не превосходит числа 1−λ,

d(p′, p′′) = ‖P (p′ − p′′)‖ ≤ ‖P‖d(p′, p′′) ≤ (1− λ)d(p′, p′′).

Это доказывает теорему.
Замечание. В примере с 32 картами условия доказанной теоремы не выполняются. Действи-

тельно, при регулярном мешании карт из последовательности {a, b, c}, где каждая из букв —
некоторый набор карт в опрпделенном порядке, мы получаем последовательность {c, b, a}. Чис-
ло вариантов, которые можно получить за одно перемешивание, можно грубо оценить сверху
— оно не превосходит 322. Вероятности перехода в другие состояния равны 0. А общее число
состояний равно 32!. Однако некоторая большая итерация преобразования P удовлетворяет
условиям теоремы, а следовательно, является оператором сжатия. Итак, существует един-
ственное стационарное распределение. (Нетрудно проверить, что за 32 стандартные операции
мешания мы можем получить любой порядок карт. Таким образом, из начального состояния в
любое другое мы переходим с вероятностью, большей чем λ = 32322

.) Заметим, что из теоремы
Брауэра единственность не следует.

§30. Два замечательных процесса с непрерывным временем

После процесса случайного блуждания мы рассмотрим и найдем распределения двух важ-
нейших процессов с непрерывным временем.

Эти процессы, пока мы их обозначаем ηt (случайная величина — значение процесса в момент
времени t) очень сильно отличаются друг от друга, тем не менее, два первых условия на оба
процесса совпадают:

1) независимость приращений: для любых моментов времени t1 < t′1 ≤ t2 < t′2 ≤ ... случай-
ные величины

ηt′1 − ηt1 , ηt′2 − ηt2 , ...

независимы. В частности, среднее произведения указанных случайных величин равно произве-
дению средних, совместная плотность этих величин равна произведению плотностей, диспер-
сия суммы этих величин равна сумме дисперсий, характеристическая функция суммы этих
величин равна произведению характеристических функций.

2) стационарность распределений приращений (они не зависят от времени): распределения
случайных величин ηt+h − ηt не зависят от t. В частности,

Pηt+h−ηt = Pηh

для любых неотрицательных t и h. Так как среднее и дисперсия определяются только распре-
делениями,

E (ηt+h − ηt) = Eηh,D (ηt+h − ηt) = Dηh
для любых t и h.

Другие свойства двух процессов различаются, чтобы их сформулировать, мы должны рас-
сказать о явлениях, которые эти процессы описывают.
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1. Стандартный пуассоновский процесс можно представить как число ηt поломок
станка за время (0, t]. Но у этого станка имеются свойства 1) и 2), которые выполняются, если
станок является ткацким.

1) Приращения ηt′ − ηt — число поломок станка за время (t, t′] независимы. У реальных
приборов это не так, если прибор с браком или почти с браком (разрешенные допуски были
почти достигнуты), то прибор будет ломаться чаще, большое число поломок в начале работы
будет означать, что и дальше он должен ломаться чаще. Для ткацкого станка это не так,
поломки (обрывы нити) связаны со свойствами нити, а не станка.

2) означает, что станок не стареет, это условие будет разумно, если мы наблюдаем станок
не слишком продолжительное время.

Замечание. Мы можем использовать эту модель для других задач, например, числа по-
купок, телефонных звонков и т. д., но в зависимости от времени дня или дня недели нужно
менять масштаб времени, где-то оно должно течь медленно, а где-то – быстро.

3) аксиома процесса ηt также связана с интерпретацией процесса. Значения ηt являются
целыми неотрицательными числами, поэтому имеют смысл вероятности P{ηt = k}. Мы пред-
полагаем, что за малое время t:

P{ηt = 1} = λt+ o(t),

в то же время
P{ηt > 1} = o(t).

Теперь мы составим бесконечную систему дифференциальных уравнений для всех функций

pk(t) = P{ηt = k}.

Рассмотрим
pk(t+ ∆t) = P{ηt+∆t = k} = P{ηt = k, ηt+∆t − ηt = 0}+

+P{ηt = k − 1, ηt+∆t − ηt = 1}+ P{ηt = k − 2, ηt+∆t − ηt = 2}+ ...

Далее мы используем аксиомы 1) и 2) для представления

P{ηt = k − i, ηt+∆t − ηt = i} = P{ηt = k − i}P{η∆t = i}

и 3) для представления P{η∆t = 0}, P{η∆t = 1}, P{η∆t > 1}. Получаем:

pk(t+ ∆t) = pk(t)(1− λ∆t+ o(∆t)) + pk−1(t)(λ∆t+ o(∆t)) + o(∆t).

Составляем дифференциальное уравнение:

dpk(t)

dt
= −λpk(t) + λpk−1(t).

При k = 0 уравнение решается разделением переменных,

p0(t) = Ce−λt,

подстановка t = 0 дает C = 1. Для других k уравнения решаются методом вариации посто-
янной, при этом используется индуктивный процесс. Опирясь на знание pk(·), мы находим
pk+1(·)

pk(t) = (λt)ke−λt + C1,

подстановка t = 0 дает C1 = 0.
Итак, ηt имеет распределение Пуассона с параметром λ = λt.
2. Процесс Винера является частным случаем (при некоторых значениях параметров)

процесса одномерного броуновского движения. Норберт Винер внес большой вклад в мате-
матическую теорию броуновского движения, в частности, доказал непрерывность траекторий
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процесса броуновского движения. Итак, значением процесса (мы будем его обозначать ηt) яв-
ляется значение координаты x броуновской частицы в момент времени t, причем значение
координаты в момент времени 0 мы будем считать 0. Броуновские частицы двигаются в одно-
родной жидкости, свойства которой не зависят от времени и от координаты (однородность).
Кроме того, мы считаем, что число частиц бесконечно, и поэтому в любой, даже самый ма-
ленький, промежуток времени о частицу ударяется бесконечное число частиц жидкости.

Все это лишь наводящие соображения, которые мы должны превратить в аксиомы про-
цесса ηt на языке теории вероятностей. Итак, что означает независимость свойств жидкости
от времени. Разумеется, это не означает равенства ηt = ηs∀t, s даже с вероятностью 1 (то-
гда броуновская частица должна оставаться на месте). Передвижение частицы за промежуток
времени [t, t+h] равно ηt+h−ηt, но независимость от времени не должна означать также равен-
ства ηt+h−ηt = ηs+h−ηs∀t, s, h (это означало бы движение броуновской частицы с постоянной
скоростью). Независимость свойств жидкости от времени дает нам аксиому 2) (см. п. 1): при
данном h ≥ 0 распределение приращения Pηt+h−ηt одно и то же для всех t ≥ 0.

Мы будем предполагать, что случайные величины ηt также удовлетворяют аксиоме 1),
(незавимость приращений процесса в непересекающиеся промежутки времени [t1, t

′
1] и [t2, t

′
2]),

которая означает отсутствие у броуновских частиц какой-либо инерционности, то есть скоро-
сти. Согласно этой аксиоме путь, пройденный частицей за промежуток времени [t1, t

′
1] никак

не влияет на путь за промежуток [t2, t
′
2] (например, средняя скорость частицы может оказать-

ся большой в одном промежутке и маленькой в другом), Это возможно лишь при наличии
бесконечного числа соударений броуновской частицы с другими частицами за конечное время,
которые и определяют траекторию частицы. На деле, молекул в воде конечное число, но чрез-
вычайно большое. Таким образом, аксиома 1) вполне разумна. Аксиома 2) отнюдь не означает,
что само приращение процесса не зависит от времени (мы ни в коем случае не утверждаем, что
для любых t, s, h справедливо ηt+h − ηt = ηs+h − ηs!!), такое равенство означало бы движение
частицы с постоянной скоростью. Как мы видели раньше, это не соответствует броуновскому
движению. Аксиома 3) для броуновского движения, разумеется, отличается от соответствую-
щей аксиомы для пуассоновского процесса. В данном случае движение частицы должно носить
непрерывный характер, и приращение процесса за малое время должно быть малым. Тем бо-
лее, это должно быть верно для третьей степени приращения. Поэтому будет использоваться
следующая аксиома:

3) E|ηt|3 = o(t), в частности, E|ηt|3 существует.
Отсюда следует существование и непрерывность среднего винеровского процесса ηt (по

неравенству Гельдера

E|ηt+h − ηt| = E|ηh| ≤
(
E|ηh|3

)1/3
= o(h1/3)),

точно так же существование и непрерывность второго момента, а следовательно, и дисперсии.
3. Среднее значение ηt.
По аксиоме 2) и свойству среднего

Eηt+s = Eηt + Eηs,

то есть среднее – функция времени, удовлетворяющая условию аддитивности. Кроме того, эта
функция непрерывна. Отсюда методами элементарного математического анализа выводится
представление

Eηt = mt,

где m — некоторая константа. (Опишем для полноты доказательство. Надо доказать, что для
любого a

Eηat = aEηt. (1)

Используя 2), представления

ηt = ηt/n + (η2t/n − ηt/n) + ...+ (ηt − η(n−1)t/n),
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ηkt/n = ηt/n + (η2t/n − ηt/n) + ...+ (ηkt/n − η(k−1)t/n)

и аддитивность среднего, доказывается равенство (1) для a = k/n. Переходом к пределу мы
получаем (1) в произвольном случае).

4. Дисперсия ηt
Точно так же, но с использованием аддитивности дисперсии для независимых приращений

процесса (свойство 1)), доказывается

Dηat = aDηt, (2)

Поэтому
Dηt = σ2t.

Итак, мы ввели два параметра винеровского процесса – коэффициент сноса m и коэффициент
диффузии σ2.

5. Распределение случайной величины ηt.
Мы найдем характеристическую функцию

ϕt(u) = Eeiuηt ,

отождествим ее с известной нам характеристической функцией нормального распределения и
таким образом докажем, что ηt имеет нормальное распределение.

Из свойств характеристической функции и аксиом 1), 2) следует:

ϕt+∆t(u) = Eeiuηt+∆t = Eeiu(ηt+∆t − ηt)eiuηt = Eeiuη∆tEeiuηt =

= ϕ∆t(u)ϕt(u).

Далее мы используем разложение характеристической функции в ряд Тейлора в окрестности
нуля с представлением остаточного члена в форме Лагранжа:

ϕ∆t(u) = ϕ∆t(0) + ϕ′∆t(0)u+ ϕ′′∆t(0)
u2

2!
+ ϕ

(3)
∆t(θu)

u3

3!
.

Запишем это равенство, используя средние и дисперсии:

ϕ∆t(u) = 1 + iEη∆tu+ i2Eη2
∆t

u2

2!
+ E

(
eiθuη∆ti3η3

∆t

) u3

3!
.

Подставив значения для среднего и дисперсии, и учтя условие 3), оценку∣∣∣Eeiθuη∆ti3η3
∆t

∣∣∣ ≤ E
∣∣∣eiθuη∆ti3η3

∆t

∣∣∣ = E|η∆t|3 = o(∆t)

и формулу Eξ2 = Dξ + (Eξ)2, имеем:

ϕ∆t(u) = 1 + im∆tu− 1

2

(
σ2∆t+m2(∆t)2

)
u2 + o(∆t).

В итоге
ϕt+∆t(u) = ϕt(u)

(
1 + im∆tu− 1

2

(
σ2∆t+m2(∆t)2

)
u2 + o(∆t)

)
,

ϕt+∆t(u)− ϕt(u)

∆t
= ϕt(u)

(
imu− 1

2
σ2u2 +

o(∆t)

∆t

)
.

Мы пришли к уравнению в частных производных

∂ϕt(u)

∂t
= ϕt(u)

(
imu− 1

2
σ2u2

)
.
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Решение этого уравнения (константа определяется при t = 0) имеет вид

ϕt(u) = eimut−
1
2σ

2u2t.

Это — характеристическая функция нормального распределения N(mt, σ
√
t).

6. Ковариация процессов Пуассона и Винера.
Важнейшими характеристиками любого случайного процесса, ηt, являются среднее процес-

са Eηt и ковариация процесса

K(t, s) = E(ηt − Eηt)(ηs − Eηs).

Давайте подсчитаем эти характеристики для процессов Пуассона и Винера.
Процесс Пуассона.
Среднее распределение Пуассона совпадает с его параметром и с его дисперсией. Напомним

эти выкладки:

Eξ =
∑
k

kP{k} =

∞∑
k=1

k
λk

k!
e−λ =

∞∑
k=1

λk

(k − 1)!
e−λ = λ

∞∑
k=0

λk

k!
e−λ = λ,

Eξ2 =
∑
k

k2P{k} =

∞∑
k=1

{k(k − 1) + k}λ
k

k!
e−λ = λ2 + λ,

Dξ = Eξ2 − (Eξ)2 = λ.

Отсюда следует, что Eηt = λt, Dηt = λt.
Пусть s < t. Имеем (мы используем независимость приращений процесса):

K(t, s) = E(ηt − Eηt)(ηs − Eηs) = E[(ηt − Eηt)− (ηs − Eηs)](ηs − Eηs)+

E(ηs − Eηs)(ηs − Eηs) =

= E[(ηt − Eηt)− (ηs − Eηs)]E(ηs − Eηs) + D(ηs) = D(ηs).

Итак, в случае процесса Пуассона K(t, s) = λmin(t, s).
В случае процесса Винера точно так же K(t, s) = σ2 min(t, s).
7. Оценка параметров процесса Винера
Оценка параметра m

ηt/t→ m в среднем квадратическом, т. е. E|ηt/t−m|2 → 0.

Для проверки сходимости в среднем квадратичном ξt к константе a достаточно:
i) равенство или даже сходимость средних,
ii) сходимость дисперсий к нулю.
Действительно,

E|ξt − a|2 = E|(ξt − E(ξt)) + (E(ξt)− a)|2 ≤ 2E|ξt − E(ξt)|2 + 2E|E(ξt)− a|2 =

= 2D(ξt) + 2E|E(ξt)− a|2 → 0.

Теперь посмотрим наш случай: E(ηt/t) = m, D(ηt/t) = σ2t/t2 → 0.
Оценка параметра σ2 винеровского процесса
Теорема. Допустим, что мы наблюдаем винеровский процесс до момента времени T .

Рассмотрим последовательность разбиений интервала наблюдения на мелкие куски:

∆(n) = 0 = t
(n)
1 < t

(n)
2 < ... < t

(n)
m(n) = T, diam(∆(n)) = max

{
t
(n)
i+1 − t

(n)
i

}
→ 0.
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С каждым таким разбиением связывается оценка

σ̂2
(n)

=
∑
i

∣∣∣ηt(n)
i+1
− η

t
(n)
i

∣∣∣2 /T,
которая сходится по вероятности к параметру σ2.

Доказательство. Напомним, что такие оценки мы называли состоятельными. Проверим,
что

σ̂2
(n) P−→ σ2.

i) Сходимость среднего к оцениваемому параметру:

E
(
σ̂2

(n)
)
/T =

∑
i

E
(
η
t
(n)
i+1
− η

t
(n)
i

)2

/T =

=
∑
i

{
D
(
η
t
(n)
i+1
− η

t
(n)
i

)
+
(
E
(
η
t
(n)
i+1
− η

t
(n)
i

))2
}
/T =

=
∑
i

(
σ2
(
t
(n)
i+1 − t

(n)
i

)
+m

(
t
(n)
i+1 − t

(n)
i

)2
)
/T =

= σ2T/T +
∑
i

m
(
t
(n)
i+1 − t

(n)
i

)2

/T → σ2.

Здесь мы использовали очевидную оценку∑
i

(
t
(n)
i+1 − t

(n)
i

)2

≤ max
i

(
t
(n)
i+1 − t

(n)
i

)∑
i

(
t
(n)
i+1 − t

(n)
i

)
=

= diam(∆(n))T → 0. (3)

ii) Для проверки сходимости дисперсий к нулю нам будет удобно ввести вместо процесса ηt
центрированный процесс ξt = ηt −mt. Нам нужно доказать, что

D

(∑
i

∣∣∣ξt(n)
i+1

+mt
(n)
i+1 − ξt(n)

i
−mt(n)

i

∣∣∣2)2

→ 0.

Мы воспользуемся следующим тривиальным неравенством D(ξ+η) ≤ 2Dξ+ 2Dη — следствием
неравенства (x + y)2 ≤ 2x2 + 2y2. Также мы используем формулы для второго и четвертого
момента стандартной нормальной случайной величины ξ: Eξ2 = 1, Eξ4 = 3, в результате
Dξ2 = 3− 1 = 2, тогда Eξ2

t = t, Eξ4
t = 3t2, в результате D(ξ2

t ) = 2t2.
Имеем:

D (ξt +mt)
2

= D
(
ξ2
t + 2mtξt

)
.

Теперь мы можем все подсчитать:

D

(∑
i

[
(ξ
t
(n)
i+1
− ξ

t
(n)
i

)2 + 2m(t
(n)
i+1 − t

(n)
i )(ξ

t
(n)
i+1
− ξ

t
(n)
i

)
])

=

∑
i

D
(

(ξ
t
(n)
i+1
− ξ

t
(n)
i

)2 + 2m(t
(n)
i+1 − t

(n)
i )(ξ

t
(n)
i+1
− ξ

t
(n)
i

)
)
≤

≤ 2
∑
i

D
(

(ξ
t
(n)
i+1
− ξ

t
(n)
i

)2
)

+ 2
∑
i

D
(

2m(t
(n)
i+1 − t

(n)
i )(ξ

t
(n)
i+1
− ξ

t
(n)
i

)
)
≤
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≤ 2
∑
i

2 · 2σ2(t
(n)
i+1 − t

(n)
i )2 + 2

∑
i

4m2(t
(n)
i+1 − t

(n)
i )2(t

(n)
i+1 − t

(n)
i ).

Наше утверждение следует из (3).
Резюмируем. Для хорошей оценки параметра m процесса Винера надо наблюдать процесс

как можно дольше. Для хорошей оценки параметра σ2 достаточно наблюдать процесс конечное
время, но измерять его как можно чаще и точнее.

Заметим, что из усиленного закона больших чисел следует сходимость почти наверное
ηnt/nt → m, n → ∞. Позднее мы докажем чрезвычайно любопытным способом сходимость
ηt(ω)/t→ m, где t→∞, для почти всех элементарных исходов ω. Впрочем, если быть точны-
ми, предварительно процес ηt нужно будет заменить на стохастически эквивалентный про-
цесс. Ниже мы определим это понятие, без введения которого невозможно изучать свойства
траекторий случайного процесса.

8. Совместные распределения процессов.
Считается, что мы знаем процесс ηt, если знаем все совместные распределения Pηt1 ,ηt2 ,...,ηtn

для всех наборов моментов времени {t1, t2, ..., tn}. Эта задача легко решается для описанных
выше процессов – пуассоновского и винеровского.

Рассмотрим пуассоновский процесс ηt и {t1, t2, ..., tn}. Упорядочим эти моменты, без огра-
ничения общности мы можем считать, что это уже сделано и t1 < t2 < ... < tn. Так как
ηt принимают целочисленные неотрицательные значения, знание совместного распределения
означает знание всех вероятностей вида

P{ηt1 = k1, ηt2 = k2, ..., ηtn = kn}. (∗)

Очевидно, что k1 ≤ k2... ≤ kn. Перепишем событие в вероятности (*) в другом виде:

P{ηt1 = k1, ηt2 = k2, ..., ηtn = kn} =

= P{ηt1 = k1, ηt2 − ηt1 = k2 − k1, ..., ηtn − ηtn−1
= kn − kn−1}.

Далее мы учтем стационарность распределений приращений процесса и независимость прира-
щений. Имеем:

P{ηt1 = k1, ηt2 − ηt1 = k2 − k1, ..., ηtn − ηtn−1 = kn − kn−1} =

= P{ηt1 = k1}P{ηt2 − ηt1 = k2 − k1}...P{ηtn − ηtn−1
= kn − kn−1} =

P{ηt1 = k1}P{ηt2−t1 = k2 − k1}...P{ηtn−tn−1
= kn − kn−1} =

(λt1)k1

k1!
e−λt1

(λ(t2 − t1))k2−k1

(k2 − k1)!
e−λ(t2−t1) · · · (λ(tn − tn−1))kn−kn−1

(kn − kn−1)!
e−λ(tn−tn−1).

Аналогично получаются совместные распределения в случае, когда ηt — винеровский про-
цесс, но теперь нам надо получить совместную плотность

pηt1 , ηt2 , ..., ηtn (x1, x2, ..., xn).

Для упрощения записей, мы упростим ситуацию и будем рассматривать лишь процессы с ну-
левым сносом (m = 0). Опять используя стационарность распределений приращений процесса
и независимость приращений, имеем:

pηt1 , ηt2 − ηt1 , ..., ηtn − ηtn−1
(x1, x2, ..., xn) =

=

(
1

σ
√

2π

)n
1√

t1(t2 − t1) · · · (tn − tn−1)
×
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×e
−1

2

(
x2

1

σ2t1
+

x2
2

σ2(t2 − t1)
+ · · ·+ x2

n

σ2(tn − tn−1)

)
.

Далее производим преобразование координат и находим совместную плотность

pηt1 ,ηt2 ,...,ηtn (x1, x2, ..., xn).

Чтобы все это проделать осмысленно, мы вспомним определение совместной плотности:

P{(ηt1 , ηt2 , ..., ηtn) ∈ B} =

∫
...

∫
B

pηt1 ,ηt2 ,...,ηtn (x1, x2, ..., xn)dx1...dxn.

Мы можем выразить событие {(ηt1 , ηt2 , ..., ηtn) ∈ B} в терминах случайных величин ηt1 , ηt2 −
ηt1 , ..., ηtn − ηtn−1

, точнее,

{(ηt1 , ηt2 , ..., ηtn) ∈ B} = {ηt1 , ηt2 − ηt1 , ..., ηtn − ηtn−1 ∈ B̃},

где B и B̃ связаны следующим соотношением: (x1, x1 + x2, ..., x1 + x2 + · · · + xn) ∈ B тогда и
только тогда, когда (x1, x2, ..., xn) ∈ B̃. Теперь вспомним определение функции плотности:∫

...

∫
B

pηt1 ,ηt2 ,...,ηtn (x1, x2, ..., xn)dx1...dxn =

= P{(ηt1 , ηt2 , ..., ηtn) ∈ B} = P{ηt1 , ηt2 − ηt1 , ..., ηtn − ηtn−1 ∈ B̃} =

=

∫
...

∫
B̃

pηt1 ,ηt2−ηt1 ,...,ηtn−ηtn−1
(x1, ..., xn)dx1...dxn =∫

(x1,x1+x2,...,x1+···+xn)∈B

pηt1 ,ηt2−ηt1 ,...,ηtn−ηtn−1
(x1, x2, ..., xn)dx1...dxn=

=

∫
(y1,y2,...,yn)∈B

pηt1 ,ηt2−ηt1 ,...,ηtn−ηtn−1
(y1, y2 − y1, ..., yn − yn−1)dy1...dyn.

В предпоследнем интеграле мы заменили yk = x1 + x2 + · · ·+ xk.
Окончательно получаем

pηt1 ,ηt2 ,...,ηtn (x1, x2, ..., xn) =

=

(
1

σ
√

2π

)n
1√

t1(t2 − t1) · · · (tn − tn−1)

×e
−1

2

 x2
1

σ2t1
+

(x2 − x1)2

σ2(t2 − t1)
+ · · ·+ (xn − xn−1)2

σ2(tn − tn−1)


.

9. Согласованность совместных распределений.
Мы не заметили того, что отошли от первоначально предложенного определения случай-

ного процесса. При определении как пуассоновского, так и винеровского процесса мы не ис-
пользовали и не вводили никакого вероятностного пространства. Используя аксиомы, мы лишь
вывели совместные распределения обоих процессов. Разумеется, если случайный процесс за-
давать на вероятностном пространстве, то для любого конечного набора моментов времени
мы будем иметь совместное распределение соответствующих случайных величин ξt. Более то-
го, эти распределения будут иметь свойство согласованности: вероятность Pξt1 ,...,ξtn можно
получить проектированием распределения Pξt1 ,...,ξtn ,ξt , а именно:

Pξt1 ,...,ξtn (B) = Pξt1 ,...,ξtn ,ξt(B ×R).
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Обратное нужно обосновывать. Но для этого сначала нужно проверить согласованность рас-
пределений, полученных нами выше. Мы ограничимся рассмотрением лишь стандартного ви-
неровского процесса w(t) (см. ниже) и лишь случаем трех моментов времени. Мы покажем, как
осуществляется проверка согласованности лишь для совместных распределений Pw(s),w(t),w(u)

и Pw(s),w(u), где s < t < u. Как мы уже знаем, для этого достаточно проверить тождество

∞∫
−∞

pw(s),w(t),w(u)(x, y, z)dy = pw(s),w(u)(x, z).

Наша задача упрощается тем, что мы имеем дело с функциями плотности, поэтому доста-
точно проверить равенство лишь для двух функций переменных x и z без учета постоянных
множителей. Итак, займемся квадратичной формой под знаком экспоненты:

(x− y)2

t− s
+

(z − y)2

u− t
=

x2

t− s
+

z2

u− t
+

(u− s)y2

(u− t)(t− s)
+ 2

xy

t− s
+ 2

zy

u− t
=

=
x2

t− s
+

z2

u− t
+

u− s
(u− t)(t− s)

(
y − u− t

u− s
x− t− s

u− s
z

)2

−

− u− t
(u− s)(t− s)

x2 − t− s
(u− s)(u− t)

z2 − 2
1

u− s
xz.

После интегрирования по переменной y − u−t
u−sx−

t−s
u−sz под знаком экспоненты остается лишь

квадратичная форма

x2

t− s
+

z2

u− t
− u− t

(u− s)(t− s)
x2 − t− s

(u− s)(u− t)
z2 − 2

1

u− s
xz =

= x2

(
1

t− s
− u− t

(u− s)(t− s)

)
+ z2

(
1

u− t
− t− s

(u− s)(u− t)

)
− 2

1

u− s
xz =

=
(z − x)2

u− s
,

что и требовалось. (Рекомендуется выкладки с интегралом провести самим.)
10. Теорема Колмогорова.
Теорема. Пусть дано множество T и для каждого конечного набора {t1, ..., tn} ⊂ T зада-

но распределение вероятностей Pt1,...,tn на борелевской σ-алгебре пространства Rn (которое
правильнее обозначать R{t1,...,tn}), причем набор распределений согласован (в смысле преды-
дущего пункта). Тогда на пространстве RT задана σ-алгебра, а на ней такая вероятностная
мера P, что совместное распределение случайных величин (xt) → xti , i ≤ n, совпадает с
Pt1,...,tn для каждого набора {t1, ..., tn} ⊂ T .

Нам понадобится одно свойство (регулярность) любой вероятностной меры P на борелев-
ской σ-алгебре пространства Rn. Вероятностная мера P называется регулярной, если для лю-
бого борелевского множества B и любого ε > 0 существуют замкнутое, F , и открытое, G,
множества, такие, что

F ⊂ B ⊂ G, P(G \B) < ε,P(B \ F ) < ε. (∗)

Для доказательства мы введем класс всех регулярных множеств B, которые удовлетворяют
(*) для всех ε > 0 и докажем, что этот класс совпадает с σ-алгеброй борелевских множеств.
Легко показывается, что каждое замкнутое множество F является регулярным.

Действительно (разберитесь !),

F =
⋂
n

{x : d(x, F ) < 1/n}, P{x : d(x, F ) < 1/n} ↘ P(F )
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и все множества {x : d(x, F ) < 1/n} открыты. Свойство регулярности сохраняется при переходе
к дополнениям. Покажем, что это свойство сохраняется при переходе к счетному объединению:
если все Bn регулярны, то

⋃
n
Bn регулярно. Легко строится открытое G для

⋃
n
Bn: пусть Gn ⊃

Bn и P(Gn \ Bn) < ε/2n, тогда в качестве G можно взять
⋃
n
Gn. Построение F сложнее (так

как объединение замкнутых множеств не обязано быть замкнутым): сначала мы берем такое
n, что

P

(⋃
n

Bn \
n⋃
i=1

Bi

)
< ε/2,

потом для каждого i ≤ n берем такое замкнутое Fi ⊂ Bi, что

P(Bi \ Fi) < ε/2i+1.

Мы можем положить F =
n⋃
i=1

Fi.

Заметим, что теорема о регулярности верна для любого метрического пространств. Более
того, множества F мы можем считать компактными, пересекая их, если нужно с шарами
{x : ‖x‖ ≤ n} и используя то, что P({x : ‖x‖ ≤ n})↗ 1.

Теперь перейдем к доказательству самой теоремы Колмогорова. Введем в RT алгебру ци-
линдрических множеств, для этого будет удобно представление

RT = R{t1,...,tn} ×RT\{t1,...,tn}.

Каждое цилиндрическое множество представляется в виде

C(t1, ..., tn;B) = B ×RT\{t1,...,tn},

где B — борелевское множество в R{t1,...,tn}. Используя язык элементарной геометрии, мы
будем называть B основанием цилиндра, а RT\{t1,...,tn} — образующими. Очевидно, что ци-
линдры образуют алгебру множеств, например, мы можем представить

C(t1, ..., tn;B1) ∪ C(s1, ..., sm;B2) = C(t1, ..., tn, s1, ..., sm;B3).

На этой алгебре функций множеств (пока это не вероятностная мера) P задается соотношением

P(C(t1, ..., tn;B)) := Pt1,...,tn(B).

Аддитивность этой функции множеств следует из согласованности системы конечномерных
мер, так как два цилиндра с разными образующими представляются как цилиндры с одним
образующим:

C(t1, ..., tn;B1) = C(t1, ..., tn, s1, ..., sm;B1 ×R{s1,...,sm}),

C(s1, ..., sm;B2) = C(s1, ..., sm, t1, ..., tn;B2 ×R{t1,...,tn}),

после этого используется аддитивность Pt1,...,tn,s1,...,sm .
Итак, нам нужно доказать счетную аддитивность P, которая, как мы знаем, эквивалентна

непрерывности. Рассмотрим последовательность цилиндров Cn ↘ ∅, которую нам будет удобно
задать в виде Cn = C(t1, ..., tn;Bn). Предположим противное:

P(C(t1, ..., tn;Bn))↘ ε > 0.

Далее в силу регулярности выберем внутри каждого основания Bn компактное основание Kn

так, что
P[C(t1, ..., tn;Bn) \ C(t1, ..., tn;Kn)] < ε/2n+1.
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Однако последовательность цилиндров с компактными основаниями Kn не обязательно явля-
ется убывающей. Сделаем из нее убывающую последовательность:

C(t1, ..., tn; K̃n) :=
⋂
i≤n

C(t1, ..., ti;Ki).

Имеем:

P[C(t1, ..., tn;Bn) \ C(t1, ..., tn; K̃n)] ≤
∑
i≤n

P[C(t1, ..., tn;Bi) \ C(t1, ..., tn;Ki)] ≤
∑
i≤n

ε/2i+1 ≤ ε/2.

Поэтому P[C(t1, ..., tn; K̃n)] > ε/2, а это влечет, что все множества C(t1, ..., tn; K̃n) непусты.
Далее доказывается, что пересечение этих множеств непусто, что приводит нас к противо-
речию. Для доказательства в каждом компакте K̃n выберем по элементу (x

(n)
t1 , ..., x

(n)
tn ) ∈

R{t1,...,tn}. Превратим эту точку в элемент RT , считая функцию на остальных элементах T
равной 0. По построению сужение элементов x(m), m ≥ n, на {t1, ..., tn} принадлежит K̃n.
Ввиду компактности K̃1, из последовательности (x

(n)
t1 ) выделим сходящуюся подпоследова-

тельность (x
(nk)
t1 ), далее из подпоследовательности (x

(nk)
t1 , x

(nk)
t2 ) выделим сходящуюся подпо-

следовательность (x
(nkl )
t1 , x

(nkl )
t2 ). Повторяя эту процедуру счетное число раз для векторов все

большей размерности, а потом используя метод выделения диагональной последовательности,
мы получим подпоследовательность (x(ns)), сужение которой на каждое множество {t1, ..., tn}
сходится. Обозначим поточечный предел нашей подпоследовательности через x. Тогда в силу
компактности всех K̃n, x ∈ C(t1, ..., tn; K̃n) для всех n.

11. Парадоксы пуассоновского процесса. Случайные моменты остановки. Мар-
ковость.

В теории пуассоновского процесса большое значение имеют случайные величины τn — мо-
менты n-й поломки станка. Из вероятностных соображений становится ясной независимость
случайных величин τ1, τ2 − τ1,..., τn − τn−1. Но как строго обосновать этот интуитивно оче-
видный факт, ведь случайные величины τn − τn−1 вроде бы зависят от значений процесса в
континуальное число моментов времени. Для упрощения обозначений мы ограничимся дока-
зательством независимости двух первых случайных величин. Сначала вычислим совместную
плотность pτ1,τ2 . Для упрощения записи будем считать λ = 1. Имеем:

P({τ1 > x, τ2 > y}) = P[{ηx = 0}{ηy = 0}+ {ηy = 1}] =

= P[{ηy = 0}] + P[{ηx = 0}({ηy − ηx = 1})] = e−y + e−x(y − x)e−(y−x) =

= e−y(1 + y − x).

Тогда

pτ1,τ2(x, y) =
∂2

∂x∂y
e−y(1 + y − x)I{0<x<y} = e−yI{0<x<y}

Далее с помощью замены переменных мы посчитаем совместную плотность случайных величин
τ1 и τ2 − τ1, она имеет вид

pτ1,τ2−τ1(x, y) = e−(x+y)I{x>0}I{y>0} = pτ1(x)pτ2−τ1(y).

Отсюда следует независимость и одинаковая распределенность случайных величин τ1 и τ2−τ1.
Аналогично проверяется, что все случайные величины τk − τk−1 имеют одно и то же распре-
деление и независимы.

Парадокс, связанный с пуассоновским процессом. Если мы зафиксируем большой момент
времени t (так что с большой вероятностью он больше момента τ1 и рассмотрим следующий
момент поломки τ , то случайная величина τ − t в силу однородности по времени имеет то же
распределение, что и любое τk− τk−1. Обозначим через τ̃ момент поломки, предшествующий t
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(или 0, если ранее поломок не было). Ясно, что случайная величина t− τ̃ неотрицательна и не
тождественный ноль. Поэтому распределение случайной величины τ − τ̃ сдвинуто в положи-
тельную сторону по сравнению с распределением τk−τk−1. В частности, у этого распределения
больше среднее (при больших t оно почти вдвое больше). Между тем τ − τ̃ — это тоже время
между двумя последовательными поломками, между моментами которых находится фиксиро-
ванный момент времени t.

§31. Процессы массового обслуживания

1. Процессы массового обслуживания. Общая модель.
Обозначим снова через pn(t) вероятность наличия n элементов, описываемых нашим про-

цессом. Классический однородный по времени процесс массового обслуживания задается бес-
конечной системой дифференциальных уравнений

pn(t)′ = −(λ+ µ)pn(t) + λpn−1(t) + µpn+1(t), n = 0, 1, 2, ..., (∗)
где характеристика λ называется интенсивностью заказов, а
mu— интенсивностью исполнения заказов. В самой общей ситуации эти характеристики зави-
сят от t и n. Метод исследования вероятностей pn(t) основан на использовании производящих
функций. Эта задача лучше решается в следующем пункте, но лишь для частного случая.
В общем случае системы уравнений (*) для производящей функции получаются уравнения в
частных производных, содержащие производные высших порядков.

2. Преобразование Лапласа и производящая функция.
Преобразование Лапласа распределения P неотрицательной случайной величины — функ-

ция неотрицательного параметра λ, задаваемая соотношением

ψP(λ) =

∫
[0.∞)

e−λxdP(x).

Заметим, что для не обязательно неотрицательной величины интеграл может расходиться.
Как и для характеристической функции, мы оперируем также с преобразованием Лапласа
неотрицательной случайной величины — ψξ(λ) = Ee−λξ. Очевидны свойства преобразования
Лапласа: i) ψ(0) = 1, ii) сама функция и все ее производные монотонны (такие функции
называются строго монотонными), причем четные производные неотрицательны, нечетные
производные неположительны, iii) преобразование Лапласа суммы независимых случайных
величин является произведением преобразований Лапласа слагаемых. Замечательная теорема
Бернштейна утверждает, что любая функция на [0,∞) со свойствами i), ii) является преобра-
зованием Лапласа некоторого распределения вероятностей на [0,∞) и однозначно определяет
это распределение.

Пример использования преобразования Лапласа. Как показать, что равномерное распре-
деление на [0, 1] не является сверткой двух одинаковых распределений? Надо вычислить пре-
образование Лапласа равномерного распределения (ψξ(λ = 1

λ

(
1− e−λ

)
), взять корень этого

выражения и дифференцировать много раз с помощью пакета ’Математика’, 12-я производ-
ная будет принимать не только положительные, но и отрицательные значения.

Для целочисленных неотрицательных случайных величин вместо преобразования Лапласа
предпочитают использовать производящую функцию πP(z), заданную на [0, 1) соотношением:

πP(z) =

∞∑
n=0

P{n}zn.

Это преобразование получается из преобразования Лапласа подстановкой z = eλ. Она так-
же однозначно определяет распределение (здесь это очевидно) и удовлетворяет условию iii),
однако πP(0) = P{0}, lim

z↘1
πP(z) = 1 (в этом можно легко убедиться).
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В следующем пункте мы будем использовать производящую функцию геометрического рас-
пределения

πg(z) = p+ p(1− p)z + p(1− p)2z2 + ... =
p

1− (1− p)z
.

3. Процессы гибели и рождения.
Классический однородный по времени и по свойствам процесс гибели и рождения задается

бесконечной системой дифференциальных уравнений

pn(t)′ = −n(λ+ µ)pn(t) + (n− 1)λpn−1(t) + (n+ 1)µpn+1(t), n = 0, 1, 2, ...,

где характеристика λ называется интенсивностью рождения, а µ — интенсивностью гибе-
ли. Предполагается, что вероятности перехода из состояния n в несоседние состояния мала по
сравнению с вероятностями сохранения состояния или перехода в соседние состояния. Извест-
но, что в ядерной реакции это не так, так как при распаде образуется от 1 до 3 нейтронов
(состояние — число свободных нейтронов). Эту систему уравнений можно собрать с помощью
понятия производящей функции —

π(z, t) =
∑
n

pn(t)zn, 0 < z < 1.

Мы получаем следующее уравнение для производящей функции

∂

∂t
π(z, t) =

(
µ− (λ+ µ)z + λz2

) ∂
∂z
π(z, t). (∗)

Решение уравнения ищется в виде произведения π(z, t) = ϕ(t)ψ(z). Получаем дифференциаль-
ные уравнения для обеих функций:

ϕ(t)′

ϕ(t)
= C,

ψ(z)′

ψ(z)

(
µ− (λ+ µ)z + λz2

)
= C.

Оба уравнения решаются, но общее решение получается в виде выпуклой комбинации этих
решений, зависящих от C, возможно даже в виде интеграла по C по некоторой плотности
от C. Впрочем, для получения значений вероятностей pn(t) производящую функцию нужно
дифференцировать n раз по z. Это непросто, так как интерес (например, в задачах взрыва)
представляют как раз вероятности больших n.

В данном простом случае общее решение получается даже без использования теории урав-
нений в частных производных. Действительно, уравнение

∂

∂x
f(x, y) =

∂

∂u
f(x, y) (∗∗)

заменой переменных u = x + y, v = x − y. Представляя f(x, y) = g(u, v) мы приходим к урав-
нению ∂

∂v g(u, v) = 0, решением которого является произвольная дифференцируемая функ-
ция g(u, v) = h(u), отсюда получаем f(x, y) = h(x + y). Заметим для будущего, что, так
как экспонента является взаимно однозначной функцией, мы можем представить h(x + y) =
ϕ(C1·eC2(x+y). Уравнение (*) сводится к (**) заменой переменных: π(t, z) = π̃(t, w), где w = w(z)
выбирается так, что w′(z) = 1

(λz−µ)(z−1) , тогда (λz − µ)(z − 1) ∂∂zπ(z, t) = ∂
∂w π̃(z, t). Вычисляя

неопределенный интеграл, с учетом сделанного выше замечания, получаем:

π(z, t) = ψ

(
λz − µ
z − 1

e−(µ−λ)t

)
.

Функцию ψ мы вычисляем исходя из начального условия. А именно, если в момент t = 0
имеется n0 особей, то π(z, 0) = zn0 . Предварительно нужно убедиться в том, что

µ− λz−µ
z−1

λ− λz−µ
z−1

= z.
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Поэтому

ψ(u) =

(
µ− u
λ− u

)n0

.

В результате имеем:

π(z, t) =

(
µ− λz−µ

z−1 e
−(µ−λ)t

λ− λz−µ
z−1 e

−(µ−λ)t

)n0

=

(
(µz − µ)− (λz − µ)e−(µ−λ)t

(λz − λ)− (λz − µ)e−(µ−λ)t

)n0

=

=

(
µ(e−(µ−λ)t − 1) + z(µ− λe−(µ−λ)t)

(µe−(µ−λ)t − λ)− λz(e−(µ−λ)t − 1)

)n0

.

Полное описание распределений мы можем получить при n0 = 1, в этом случае наше рас-
пределение будет сверткой геометрического распределения с некоторым параметром p1(t) и
распределения Бернулли с параметром p2(t). Для вычисления параметров представим произ-
водящую функцию как произведения производящей функции πg(z) = p1(t)

1−(1−p1(t))z геометри-
ческого распределения и производящей функции πb(z) = (1 − p2(t)) + p2(t)z распределения
Бернулли. Вычисления проводятся в предположении µ 6= λ. Сначала находим такое C, что

Cµ(e−(µ−λ)t − 1) + C(µ− λe−(µ−λ)t) = 1.

Имеем:

C =
1

µ− λ
e(µ−λ)t, p2(t) =

µ(e(µ−λ)t − λ
µ− λ

,

Деля π(z, t) на (1− p2(t)) + p2(t)z и используя представление для πg(z), мы получаем

p1(t) =
(µ− λ)e−(µ−λ)t

µe−(µ−λ)t − λ
.

Теперь запишем вероятность n частиц в момент времени t:

pn(t) = p2(t)p1(t)(1− p1(t))n−1 + (1− p2(t))p1(t)(1− p1(t))n =

pn(t) =
µ(e(µ−λ)t − λ

µ− λ
· (µ− λ)e−(µ−λ)t

µe−(µ−λ)t − λ

(
1− (µ− λ)e−(µ−λ)t

µe−(µ−λ)t − λ

)n−1

+

+

(
1− µ(e(µ−λ)t − λ

µ− λ

)
(µ− λ)e−(µ−λ)t

µe−(µ−λ)t − λ

(
1− (µ− λ)e−(µ−λ)t

µe−(µ−λ)t − λ

)n
.

§32. Свойства траекторий винеровского процесса

Для удобства мы в дальнейшем введем специальное обозначение для процесса броуновского
движения с параметрами m = 0 и σ = 1. Такой процесс (в момент времени t) мы будем
обозначать wt, а иногда и w(t).

1. Непрерывность траекторий винеровского процесса.
Этот факт является следствием более общей теоремы Колмогорова, дающей достаточное

условие непрерывности почти всех траекторий случайного процесса.
Теорема. Пусть случайный процесс ξt удовлетворяет соотношению

E |ξt − ξs|β ≤ C|t− s|1+λ ∀t, s, где λ > 0, β > 0. (1)

Тогда существует процесс ξ̃t, стохастический эквивалентный ξt, с п.н. непрерывными
траекториями.

184



Напомним, что траекторией процесса называется отображение

ω̃ : t→ ξt(ω).

Свойство траекторий почти наверное означает, что вероятность множества всех ω, для которых
это свойство выполняется, равна 1. При несчетном множестве значений времени t свойство
траекторий может испортиться, если для каждого момента t процесс ξt изменится даже лишь
на множестве вероятности 0. Разумеется, верно и обратное, в результате такого изменения
траектории процесса могут стать хорошими.

Пример. Используем в качестве вероятностного пространство отрезок [0, 1], причем собы-
тия — борелевские подмножества [0, 1], а вероятность — сужение на отрезок меры Лебега λ.
Введем процесс

ξt = 0, 0 ≤ t ≤ 1.

Разумеется, у такого процесса все траектории непрерывны. Рассмотрим эквивалентный про-
цесс ξ̃t(ω) = I{t}(ω). Для каждого ω ∈ [0, 1] траектория этого процессе везде нуль и непрерывна,
за исключением точки t = ω. Впрочем, в данном примере свойство непрерывности наруша-
ется не очень сильно. Мы можем сделать траектории всюду разрывными, рассмотрев другой
эквивалентный процесс

˜̃
ξt(ω) = I[0,1]∩tQ(ω).

Поэтому для достижения нужного качества траекторий мы должны зарезервировать для
себя право менять каждую случайную величину ξt на множестве вероятности 0, причем это
множество зависит от t. Получающийся при этом формально новый процесс ξ̃t называется
стохастически эквивалентным ξt. Важнейшее связывающее эти процессы свойство состоит в
том, что эти процессы имеют одинаковые совместные распределения, т.е.

Pξt1 ,ξt2 ,...,ξtn = Pξ̃t1 ,ξ̃t2 ,...,ξ̃tn .

Действительно, при переходе от процесса к эквивалентному процессу на множествах нуле-
вой вероятности меняются лишь случайные величины ξt1 , ξt2 , ..., ξtn , вероятность объединения
нулевых множеств также равна нулю. Для простоты мы будем считать, что t ∈ [0, 1].

Доказательство теоремы Колмогорова. Идея конструкции состоит в следующем: мы рас-
сматриваем процесс ξt лишь для t = k

2n
, где k, n — натуральные числа. Такие числа t на-

зываются двоично-рациональными, их множество мы обозначим через S. Далее мы считаем
траектории

ω̃ : s→ ξs(ω), s ∈ S.

заданными пока только на S. Потом доказываем, что для всех ω ∈ Ω1, где PΩ1 = 1, эти
функции равномерно непрерывны на S. Далее продолжаем каждую такую ω̃ на все [0, 1], а
значение этой функции в точке t обозначаем ξ̃t(ω) (теперь это обозначение относится и к
двоично рациональным t). Очевидно, что у нового процесса ξ̃t траектории непрерывны для
всех ω ∈ Ω1. Но нужно показать, что

P
{
ξ̃t = ξt

}
= 1 ∀t, (2)

одновременно мы покажем измеримость функций ξ̃t. Выберем последовательность sn ∈ S,
сходящуюся к t. По неравенству Чебышева и (1)

ξsn
P−→ ξt.

Согласно известному соотношению между сходимостью по вероятности и почти наверное, неко-
торая подпоследовательность ξsn сходится почти наверное. Будем считать, что

ξsn
п.н.−→ ξt.
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Таким образом, ξsn(ω)→ ξt(ω) для всех ω из некоторого множества Ω1 вероятности 1. В то же
время по построению

ξsn(ω)→ ξ̃t(ω) для ω ∈ Ω2,

где множество Ω2 имеет вероятность 1. Таким образом, ξ̃t(ω) = ξt(ω) для всех ω из пересечения
Ω1 ∩ Ω2 двух множеств с единичной вероятностью.

Теперь займемся процессом на S. Мы будем использовать лемму Бореля — Кантелли, со-
гласно которой сходимость ряда вероятностей PAn влечет принадлежность ω ∈ Ω с вероятно-
стью 1 лишь конечному числу An.

Применим к (2) неравенство Чебышева, имеем:

P
{∣∣ξ(k+1)/2n − ξk/2n

∣∣ ≥ qn} ≤ C · 2−n−nλq−nβ .
Выберем q = 2−λ/2β < 1, тогда

P
{∣∣ξ(k+1)/2n − ξk/2n

∣∣ ≥ qn} ≤ C · 2−nrn, (3)

где r = 2−λ/2 < 1.
Из (3) следует, что при любом n

P
{

max
k

∣∣ξ(k+1)/2n−ξk/2n
∣∣ ≥ qn} = P

{⋃
k

{∣∣ξ(k+1)/2n − ξk/2n
∣∣ ≥ qn}} ≤

≤
2n−1∑
k=0

P
{∣∣ξ(k+1)/2n − ξk/2n

∣∣ ≥ qn} ≤ 2n · C · 2−nrn = C · rn.

Ряд из этих вероятностей сходится, по лемме Бореля — Кантелли с вероятностью 1, начиная
c некоторого n = n(ω) имеем ∣∣ξ(k+1)/2n(ω)− ξk/2n(ω)

∣∣ < qn. (4)

Итак, будем считать, что ω удовлетворяет условию (4), и докажем равномерную непрерыв-
ность функции t → ξt(ω) на множестве двоично рациональных t. Так как q < 1, то qn → 0,
более того, ряд

∑
n
qn сходится. Пусть теперь нам дано число ε > 0, мы должны выбрать для

него δ > 0 так, что |s − t| ≤ δ влечет |ξs(ω)− ξt(ω)| < ε. Выберем сначала такое натуральное
n, что n > n(ω) и ∑

i≥n

qi < ε/4.

Примем δ = 1/2n, и пусть |s− t| ≤ 1/2n. Если бы s и t были двоично рациональными точками
вида k/2n, то мы имели бы либо s = t, либо s = m/2n, t = (m+ 1)/2n (если t > s), согласно (4)
мы получили бы

|ξs(ω)− ξt(ω)| < qn < ε/4.

Но возможна ситуация, когда s и t имеют вид l/2m и r/2p, где m > n и p > n. Тогда мы
приближаем точку s соседним числом s1 в разбиении на 2m отрезков, которое имеет уже вид
u/2m−1, где 2u = l ± 1 (при этом |ξs(ω) − ξs1(ω) < qm|), далее s1 приближаем числом s2 вида
v/2m−2 и т. д., вплоть до числа s̃ вида k/2n. Очевидно, что |s− s̃| < 1/2n и (s = s0)

|ξs(ω)− ξs̃(ω)| ≤
x∑
i=1

∣∣ξsi(ω)− ξsi−1(ω)
∣∣ ≤ ∞∑

i=n

qi < ε/4.

Аналогичное приближение t̃ мы находим для t: |t− t̃| < 1/2n и |ξt(ω)− ξt̃(ω)| ≤ ε/4. Также по
построению |s̃− t̃| ≤ 2/2n. В итоге

|ξs(ω)− ξt(ω)| ≤ |ξs(ω)− ξs̃(ω)|+ |ξt(ω)− ξt̃(ω)|+ |ξs̃(ω)− ξt̃(ω)| ≤
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≤ ε/4 + ε/4 + ε/2 = ε,

что и требовалось. Дальнейшие рассуждения в доказательстве теоремы Колмогорова приве-
дены выше.

Следствие. Винеровский процесс эквивалентен процессу (этот процесс мы и будем обо-
значать w) с почти наверное непрерывными траекториями.

Проверим выполнение неравенства (1) для процесса w. Любопытно, что нас не устраивает
β = 2, так как E |w(t)− w(s)|2 = |t − s|. Но β = 4 нас устраивает: E |w(t)− w(s)|4 = 2|t − s|2,
(1) выполняется.

2. Сходимость почти наверное для оценки параметра m
Теперь мы можем доказать сходимость почти наверное ηt/t к параметру m броуновского

движения почти наверное при t→∞.
Для этого достаточно перейти к процессу w(t) и доказать п.н. сходимость w(t)/t к 0 (t→∞).
Оказывается, п.н. сходимость на ∞ следует из непрерывности траекторий в 0! Дело в том,

что мы проведем в процессе w(t) замену времени и рассмотрим вместо него процесс tw(1/t).
Очевидно, этот процесс также является центрированным. Проверим, что ковариация этого
процесса совпадает с ковариацией винеровского процесса:

E(tw(1/t)sw(1/s)) = tsmin{1/t, 1/s} = min{t, s}.

Но мы знаем (см. многомерные характеристические функции), что совместное нормальное
распределение однозначно определяется средними и вторыми моментами. Таким образом, сов-
местные распределения нового процесса те же, что и у винеровского процесса w(·). Такое
свойство винеровского процесса называется авторегрессионностью. Но тогда tw(1/t) — вине-
ровский процесс, и его траектории непрерывны, в частности, в нуле. Поэтому tw(1/t) почти
наверное сходится к нулю при t→ 0 (т. е. при 1/t→∞).

Замечание 1. Свойство авторегрессионности разумеется не имеет общий процесс броунов-
ского движения ξt с ненулевым m. Действительно,

E(tξ1/t) = t · m
t

= m 6= mt = Eξt.

Замечание 2. Заметим, что для п.н. сходимости случайного процесса нет эквивалентности
двух определений предела – на языке ε− δ и на языке последовательностей. При доказатель-
стве ε − δ определения мы имеем дело с несчетным набором множеств нулевой меры, мера
объединения которых может быть не нуль.

Замечание 3. ’Улучшить’ теорему Колмогорова, убрав в формулировке строго положитель-
ное λ, нельзя. Центрированный пуассоновский процесс ηt, как и винеровский процесс, удовле-
творяет соотношению E |η(t)− η)|2 = |t − s|, но его трактории не могут быть непрерывными,
они терпят разрыв в момент каждой поломки.

3. Случай сходимости почти наверное к параметру σ2.
4. Недифференцируемость траекторий винеровского процесса.
В доказательстве мы опять используем свойство авторегрессионности винеровского процес-

са: оказывается процесс tw
(

1
t

)
стохастически эквивалентен процессу w(t).

Далее мы выясним, что означает дифференцируемость функции хотя бы в одной точке.
Если w(t)(ω) дифференцируема в точке s, то

|w(t)− w(s)| < C(s)|t− s|

для всех t ∈ (s, s+ε(s)) в некоторой окрестности s. Разобьем отрезок, на котором задан процесс,
на n частей, где 1/n меньше ε/5. Тогда для некоторого l = l(s) > C(s), которое нам удобно
считать натуральным (множество наших усилий должно быть счетным), для наименьшего
i
n ≥ s мы имеем:∣∣∣∣w( in

)
− w(s)

∣∣∣∣ ≤ l

n
,

∣∣∣∣w( i+ 1

n

)
− w(s)

∣∣∣∣ ≤ 2l

n
,

∣∣∣∣w( i+ 2

n

)
− w(s)

∣∣∣∣ ≤ 3l

n
,
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∣∣∣∣w( i+ 3

n

)
− w(s)

∣∣∣∣ ≤ 4l

n
.

Отсюда следует, что ∣∣∣∣w(j + 1

n

)
− w

(
j

n

)∣∣∣∣ ≤ 7l

n
,

для всех j = i, i+1, i+2. Отсюда мы выводим следующее описание множества всех траекторий,
дифференцируемых хотя бы в одной точке отрезка [0, 1]:

M =

ω :
⋃
l∈N

⋃
m∈N

⋂
n≥m

⋃
0<i<n

⋂
i≤j≤i+2

{∣∣∣∣w(j + 1

n

)
− w

(
j

n

)∣∣∣∣ ≤ 7l

n

}
Нам нужно доказать, что
P(M) = 0. Нетрудно видеть, что для этого достаточно показать

P(Ml,m) = 0 для всех l,m ∈ N,

где

Ml,m =

ω :
⋂
n≥m

⋃
0<i<n

⋂
i≤j≤i+2

{∣∣∣∣w(j + 1

n

)
− w

(
j

n

)∣∣∣∣ ≤ 7l

n

} .

Для этого достаточно показать

P

ω :
⋃

0<i<n

⋂
i≤j≤i+2

{∣∣∣∣w(j + 1

n

)
− w

(
j

n

)∣∣∣∣ ≤ 7l

n

}→ 0 (n→∞).

Имеем:

P

ω :
⋃

0<i<n

⋂
i≤j≤i+2

{∣∣∣∣w(j + 1

n

)
− w

(
j

n

)∣∣∣∣ ≤ 7l

n

} ≤
≤ nP

ω :
⋂

i≤j≤i+2

{∣∣∣∣w(j + 1

n

)
− w

(
j

n

)∣∣∣∣ ≤ 7l

n

} =

= nP
{
ω :

{∣∣∣∣w( 1

n

)∣∣∣∣ ≤ 7l

n

}}3

= nP
{
ω :

{
|w(1)| ≤ 7l√

n

}}3

≤

≤ n · Const
n3/2

→ 0,

что и требовалось.
5. Функциональные предельные теоремы для процесса w.
Итак, процесс w, где 0 ≤ t ≤ 1 можно рассматривать как случайный элемент ω → w(·)(ω)

со значениями в пространстве C[0, 1]. В таком случае распределение Pw — это вероятностная
мера на борелевской σ-алгебре в пространстве C[0, 1]. В пространстве всех вероятностных мер
на этой σ-алгебре вводится понятие слабой сходимости точно так же, как и в пространствах ве-
роятностных мер на борелевских σ-алгебрах конечномерных пространств. А именно, Pn слабо
сходится к P тогда и только тогда, когда∫

C[0,1]

f(x)dPn(x)→
∫
C[0,1]

f(x)dP(x)
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для всех непрерывных ограниченных функций f на C[0, 1]. В рамках этой теории мы кратко
изложим результаты, которые в научной литературе называются принципом инвариантности
Донскера — Прохорова о слабой сходимости к распределению винеровского процесса распре-
делений случайных ломаных. В более общей теореме Прохорова рассматриваются серии ξni,
i ≤ k(n), независимых случайных величин из теоремы Линдеберга.

2) Eξni = 0 для всех n и k;

3)
k(n)∑
i=1

Eξ2
ni = 1 для каждого n;

По каждой серии вводится процесс S(n) на [0, 1], который называется случайной ломаной.
Обозначим

t
(n)
k =

k∑
i=1

Eξ2
ni, k ≤ k(n),

η
(n)
k =

k∑
i=1

ξni.

Процесс S(n) задается следующими соотношениями:

S(n)(t) =

{
η

(n)
k , если t = t

(n)
k , k = 0, 1, ..., k(n)

линеен на каждом отрезке
[
t
(n)
k , t

(n)
k+1

]
.

На всякий случай напомним, что функция f задается линейно на отрезке [a, b], если для всех
λ ∈ (0, 1) имеет место равенство

f(λa+ (1− λ)b) = λf(a) + (1− λ)f(b).

Как видите, мы построили действительно случайную ломаную, траектории которой безуслов-
но непрерывны, то есть принадлежат пространству C[0, 1]. Ю.В. Прохоров доказал теорему:
распределения процесса S(n) на пространстве C[0, 1] слабо сходятся к распределению вине-
ровского процесса. Заметим, что процесс случайного блуждания на {0, 1, ..., n} также можно
интерпретировать как случайную ломаную на отрезке [0, 1], если процесс нормировать так,
чтобы он в момент времени 0 имел дисперсию 1, траектории процесса нарисовать как лома-
ные, как мы это делали на лекции, точки k перевести в точки k/n,

Из теоремы Прохорова и следующей из нее сходимости интегралов от непрерывных функ-
ций можно вывести также результаты о сходимости вероятностей. Например, вероятность пе-
ресечения уровня для процесса случайного блуждания сходится к соответствующей вероят-
ности для винеровского процесса. В частности, так можно доказать следующее любопытное
равенство

P{max
0≤t≤1

w(t) ≥ x} = 2P{w(1) ≥ x}. (1)

6. Броуновский мост и его использование в математической статистике.
Большой интерес для математической статистике представляет броуновский мост, который

называется также условным винеровским процессом. Этот процесс можно ввести не совсем
строго как

w̃(t) := E{w(t)|w(1) = 0}.

Таким образом броуновский мост начинается в 0 и кончается в 0. Совместные распределения
броуновского моста нормальны и их можно определить следующим соотношением:

pw̃(t),w̃(s)(x, y) =
pw(t),w(s),w(1)(x, y, 0)

pw(1)(0)
.
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Упражнение 3. Вычислите корреляционную функцию процесса w̃. Докажите, что она
совпадает с корреляционной функцией процесса w(t)− tw(1).

Особый интерес представляет вопрос о распределении случайной величины max
0≤t≤1

| ˜w(t)|. Это
распределение является предельным для распределения статистики Колмогорова — Смирнова
(при числе наблюдений, сходящемся к ∞).

7. Сильно марковское свойство винеровского процесса.
В этом пункте мы хотим доказать формулу (5.1) без использования функциональной пре-

дельной теоремы. Для этого мы хотим доказать аналог принципа отражения для случайного
блуждания, однако в данной ситуации неприменимы рассуждения типа взамно однозначно-
го соответствия между двумя множествами. Вместо функциональных предельных теорем мы
применим теоремы о слабой сходимости многомерных распределений, которые были постули-
рованы в 14.2 со ссылкой на одномерные аналоги, но не доказаны. Начнем со определений
фильтрации случайного процесса и момента остановки случайного процесса, которые нам по-
надобится и в других параграфах. Эти определения мы вводим для процессов с непрерыв-
ным временем [0,∞). Аналогично эти понятия вводятся для процессов с дискретным временем
{0} ∪N и для процессов c прошлым, заданных на (−∞,∞).

Определение 1. Пусть для каждого t ≥ 0 задана σ-алгебра Ft ⊂ A, причем Ft ⊂ Fs при
t ≤ s. Такой набор σ-алгебр называется фильтрацией.

Определение 2. Случайный процесс ξt называется согласованным с фильтрацией (Ft),
если для любого t случайная величина ξt измерима относительно Ft.

Определение 3. Фильтрация (Ft) называется естественной фильтрацией случайного про-
цесса ξt, если Ft для каждого t является наименьшей σ-алгеброй, относительно которой изме-
римы все случайные величины ξs (s ≤ t).

Определение 4. Отображение τ : Ω → [0,∞) называется моментом остановки относи-
тельно фильтрации (Ft), если {τ ≤ t} ∈ Ft для любого t ≥ 0.

Пример. Рассмотрим случайное блуждание с бесконечным временем. В качестве Ω возьмем
пространство всех бесконечных последовательностей из знаков + и −. На Ω строится σ-алгебра
множеств, порожденная всеми цилиндрами, состоящими из последовательностей (, , ..., rm...),
в каждом цилиндре фиксированы первые n знаков, а остальные знаки произвольны. Мера
каждого цилиндра с фиксированными первыми n-знаками принимается равной 1/2n. Мы мо-
жем заменить знаки числами 1, тогда Ω ⊂ RN, конечномерные меры согласованы и по теореме
Колмогорова существует вероятность на σ-алгебре, порожденной алгеброй

⋃
n
Fn.

Предложение 1. Пусть τ : (Ω,A,P)→ [0,∞) — момент остановки относительно есте-
ственной фильтрации (Ft) винеровского процесса wt, 0 ≤ t < ∞. Тогда функция wτ : ω →
wτ(ω)(ω) является случайной величиной, т.е. измерима относительно σ-алгебры событий A.

Доказательство. Представим τ как предел дискретных случайных величин τ (n) (см. обо-
значение в §7. п.1). Напомним, что

τ (n) =
∑
k∈Z

k

n
I{

τ∈
[
k
n ,
k+1
n

)}.
и τ (n) равномерно сходится к τ . Проверим, что wτ(n) является случайной величиной:

{wτ(n) ∈ B} =
∑
k

{wk/n ∈ B}
{
τ (n) =

k

n

}
∈ A,

так как все множества под знаком суммы являются событиями. Согласно теореме Винера из
п. 1 мы можем считать, что функции ω : t→ wt(ω) являются непрерывными. Поэтому

wτ(n)(ω)→ wτ (ω) для всех ω при n→∞.
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Замечание. В доказательстве использовалось лишь, что τ — неотрицательная случайная
величина.

Предложение 2. Моментом остановки для винеровского процесса w на [0,∞) для любого
y > 0 является

τy(ω) =

{
inf{t : wt(ω) ≥ y}, если такие t > 0 существуют,
∞, если таких t > 0 не существует.

Доказательство. Очевидно, что ввиду непрерывности траекторий

{τy ≤ t} = {sups≤tws ≥ y} = {sup{ws : s ∈ Q ∩ [0, t]} ≥ y} ∈ Ft

для всех t ≥ 0. Теперь покажем, что P{τy =∞} = 0.
Предположим противное: P{τy = ∞} = ε > 0. Построим ряд из строго положительных

чисел
∑
n λn < ε/2. По этому ряду построим по индукции последовательность положительных

чисел tn ↑ ∞ и последовательность отрицательных чисел xn ↓ −∞. Число xn выбираются по
tn−1 и tn так, что

P{wtn − wtn−1
≤ xn} < λn,

а tn+1 выбирается из условия |x1|+ ...+ |xn|+y <
√
tn+1 − tn. Обозначим A =

⋃
n{wtn−wtn−1 ≤

xn}, P(A) < ε/2. Легко видеть, что

{sup
t
wt ≤ y} ⊂ {sup

n
wtn ≤ y} ⊂ A ∪

⋂
n

{wtn+1
− wtn ≤ |x1|+ ...+ |xn|+ y}.

Поэтому

P{τy =∞} ≤ P(A) +
∏
n

P{wtn+1
− wtn ≤ |x1|+ ...+ |xn|+ y} ≤ P(A) +

∏
n

P
{
wtn+1

− wtn√
tn+1 − tn

< 1

}

≤ P(A) +
∏
n

P{w1 < 1} < ε/2,

что противоречит нашему предположению.
Далее мы докажем принцип отражения, позволяющий решать многие задачи в теории

винеровского процесса. Мы опять будем использовать представление момента остановки τ как
предела τ (n) со значениями вида k/n.

Теорема 1. Пусть τ — момент остановки винеровского процесса wt, 0 ≤ t < ∞, тогда
новый процесс

w(τ)t(ω) =

{
wt(ω), если t ≤ τ(ω),
2wτ(ω) − wt(ω), если t > τ(ω).

также является винеровским.
Доказательство. Доказать, что w(τ)

t является винеровским означает доказать, что совмест-
ные распределения случайных величин w(τ)t1 , ..., w(τ)tm те же, что и у винеровского процесса.

В силу непрерывности траекторий процесса w имеет место п.н. сходимость w(τ(n))
t → w

(τ)
t для

любого t. Поэтому достаточно доказать теорему для любого дискретного момента остановки
τ (n). Добавим к уже упорядоченному набору {t1, ..., tm} все дроби k/n ≤ tm, получим набор
S = {s1, ..., sp}, который мы также будем считать упорядоченным по возрастанию. Заметим,
что нам достаточно доказать совпадение совместных распределений наборов(

ws1 , ws2 − ws1 ..., wsp − wsp−1

)
,(

w(τ(n))
s1 , w(τ(n))

s2 − w(τ(n))
s1 ..., w(τ(n))

sp − w(τ(n))
sp−1

)
.
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Обозначим Ak = {τ (n) = k
n}. Так как произведения одномерных множеств в пространстве

Rp порождают σ-алгебру (см. доказательство теоремы 6.4) нам достаточно проверить совпа-
дение вероятностей событий.

Теорема 2.
Доказательство.

§33. Диффузионные процессы

1. Введение. Условные вероятности перехода.
Мы уже говорили о том, что марковские процессы η(t) – это процессы, будущее которых

при фиксированном настоящем не зависит от прошлого процесса. Таким образом, зная значе-
ние процесса η(t), мы можем вычислить вероятности событий {η(t + h) ∈ B}, которые явля-
ются условными вероятностями P {η(t+ h) ∈ B|η(t) = x}. Марковскими процессами являются
случайное блуждание, пуассоновский и винеровский процессы. Для пуассоновского процесса
смысл условной вероятности прозрачен и мы имеем

P {η(t+ h) ∈ B|η(t) = k} =
P {η(t+ h) ∈ B, η(t) = k}

P {η(t) = k}
= f(t, x, t+ h,B).

Для винеровского процесса такая формула не подходит, так как

P {η(t) = x} = 0 для любого x.

Но у винеровского процесса можно ввести условную плотность. Сейчас мы введем это по-
нятие. Пусть pξ,η(x, y) — совместная плотность случайных величин ξ, η. Тогда у случайной
величины ξ также имеется плотность, записываемая формулой:

pξ(x) =

∫
R

pξ,η(x, y)dy.

Условная плотность задается формулой, аналогичной формуле для условной вероятности:

pη(y|ξ = x) =
pξ,η(x, y)

pξ(x)
.

Итак, мы рассматриваем марковский случайный процесс η(t) с непрерывным временем,
где 0 ≤ t ≤ ∞. Процесс может иметь счетное число состояний (то есть случайные величины
η(t) принимают лишь счетное число значений с ненулевой вероятностью, значения мы будем
обозначать натуральными числами i = 1, 2, 3, ...). В этом случае мы обозначим

P (s, i; t, j) = P {η(t) = j|η(s) = i} .

Эти условные вероятности называются вероятностями перехода из состояния i в состояние j
за время от s до t. В случае, когда случайные величины η(t) имеют совместные плотности (а
следовательно, множество значений никак не может быть счетным) мы обозначим плотность
вероятностей перехода из состояния x в состояние y за время от s до t:

p(s, x; t, y) = pη(t)(y|η(s) = x).

2. Уравнение Колмогорова — Чепмена.
Пусть s < u < t. Тогда

p(s, x; t, y) =

∫ ∞
−∞

p(s, x;u, z)p(u, z; t, y)dz.
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В непрерывном случае для доказательства уравнения Колмогорова — Чепмена нужно при-
ложить определенные усилия. В дискретном случае счетного числа состояний все очень просто
и мы доказали дискретный аналог этого равенства (пункт 28.1):

P (s, i; t, j) =
∑
k

P (s, i;u, k)P (u, k; t, j). (∗ ∗ ∗∗)

Отметим также тождество, которое будет позднее использовано несколько раз:∫ ∞
−∞

p(s, x;u, z)dz = 1. (∗ ∗ ∗)

3. Аксиомы диффузионных процессов.
В дальнейшем предполагается, что существуют такие функции a(t, x) и b(t, x), зависящие

от времени и места, что для всех ε > 0 имеют место соотношения:∫
|z−x|>ε

p(t, x; t+ ∆t, z)dz = o(∆t), (1)

∫
|z−x|≤ε

(z − x)p(t, x; t+ ∆t, z)dz = a(t, x)∆t+ o(∆t), (2)∫
|z−x|≤ε

(z − x)2p(t, x; t+ ∆t, z)dz = b(t, x)∆t+ o(∆t). (3)

Легко проверяется, что процесс броуновского движения также удовлетворяет этим аксио-
мам с

a(t, x) = m, b(t, x) = σ2.

Таким образом, диффузионный процесс можно рассматривать как броуновское движение в
неоднородной среде, свойства которой со временем меняются.

4. Дифференциальные уравнения Колмогорова
Прямое уравнение Колмогорова

∂p

∂t
= − ∂

∂y
[a(t, y)p(s, x; t, y)] +

1

2

∂2

∂y2 [b(t, y)p(s, x; t, y)].

Приведем здесь, кое-где не очень строгое, доказательство (из книги Ю.А. Розанова). Рас-
смотрим пробную функцию ϕ (т. е. бесконечно дифференцируемую функцию с компактным
носителем)

ϕ(z) = ϕ(y) + ϕ′(y)(z − y) +
1

2
ϕ′′(y)(z − y)2 + o(z − y)2. (4)

Напомним, что равенство нулю интеграла от произведения всех пробных функций с данной
функцией f влечет равенство почти всюду f = 0. Составим произведение (используя уравнение
Чепмена – Колмогорова):

p(s, x, t+ ∆t, y) =

∫ ∞
−∞

p(s, x; t, z)p(t, z, t+ ∆t, y)dz. (∗)

Теперь рассмотрим интеграл от производной по времении переходной плотности, умноженной
на пробную функцию:

lim
∆t→0

1

∆t

∫ ∞
−∞

(ϕ(y))[p(s, x; t+ ∆t, y)− p(s, x; t, y)]dy =
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(учтем предыдущую формулу)

= lim
∆t→0

1

∆t

∫ ∞
−∞

∫ ∞
−∞

ϕ(y)p(s, x; t, z)p(t, z; t+ ∆t, y)dydz −
∫ ∞
−∞

ϕ(y)p(s, x; t, y)]dydz =

(далее мы поменяем ролями в первом интеграле переменные y и z и учтем, что
∫∞
−∞ p(t, y; t+

∆t, z)dz = 1)

= lim
∆t→0

1

∆t

∫ ∞
−∞

∫ ∞
−∞

[ϕ(z)− ϕ(y)]p(s, x, t, y)p(t, y; t+ ∆t, z)dydz =

(учитывая (1) и ограниченность ϕ, мы по z можем интегрировать лишь по некоторому интер-
валу |z − y| < ε, а ε выбираем сначала из условия малости o(z − y)2 в (4))

= lim
∆t→0

1

∆t

∫ ∞
−∞

∫ y+ε

y−ε

(
ϕ′(y)(z − y) +

1

2
ϕ′′(y)(z − y)2 + o(z − y)2

)
p(s, x, t, y)p(t, y; t+∆t, z)dzdy =

=

∫ ∞
−∞

[
ϕ′(y)a(t, y) +

1

2
ϕ′′(y)b(t, y)

]
p(s, x; t, y)dy.

Далее каждое из слагаемых мы интегрируем по частям, первое слагаемое один раз и второе —
два раза. Мы используем равенство нулю функции ϕ и ее производных вне некоторого интер-
вала, поэтому слагаемые без интегралов зануляются. Напомним, что каждое интегрирование
по частям меняет знак перед интегралом. Итак,∫ ∞
−∞

ϕ(y)
∂

∂t
p(s, x; t, y)dy =

∫ ∞
−∞

ϕ(y)

{
− ∂

∂y
[a(t, y)p(s, x; t, y)] +

1

2

∂2

∂y2 [b(t, y)p(s, x; t, y)]

}
dy.

Ввиду произвольности пробной функции ϕ, получаем уравнение.
Обратное уравнение Колмогорова

−∂p(s, x; t, y)

∂s
= a(s, x)

∂p(s, x; t, y)

∂x
+

1

2
b(s, x)

∂2p(s, x; t, y)

∂x2 .

Строгое доказательство вы можете найти в книге Ю.А. Розанова. Там используется аппа-
рат пробных функций (из теории обобщенных функций). Благодаря использованию пробных
функций, как и выше, можно обосновать использование аксиом (1-3). Здесь я попробую объ-
яснить причины этого уравнения.

p(s, x; t, y) =

∫ ∞
−∞

p(s, x; s+ ∆s, z)p(s+ ∆s, z; t, y)dz. (5)

Разложим p(s+∆s, z; t, y) в ряд Тейлора в окрестности точки (s, z = x) по степеням ∆s и z−x.
Получаем:

p(s+ ∆s, z; t, y) =

= p(s, x; t, y) +
∂p

∂s
(s, x; t, y)∆s+

∂p

∂z
(s, x; t, y)(z − x) +

1

2

∂2p

∂z2 (s, x; t, y)(z − x)2.

Подставляем в (5), имеем (но все это очень нестрого!):

p(s, x; t, y) =

∫ ∞
−∞

p(s, x; s+ ∆s, z)p(s, x; t, y)dz+

+

∫ ∞
−∞

p(s, x, s+ ∆s, z)
∂p

∂s
(s, x; t, y)∆sdz+

+

∫ ∞
−∞

p(s, x; s+ ∆s, z)
∂p

∂x
(s, x; t, y)(z − x)dz +

∫ ∞
−∞

p(s, x; s+ ∆s, z)
1

2

∂2p

∂x2 (s, x; t, y)(z − x)2dz.
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Используя аксиомы диффузионных процессов (это еще менее строго!), имеем (четырежды
используем (***)):

p(s, x; t, y) = p(s, x; t, y)+

+
∂p

∂s
(s, x; t, y)∆s+

∂p

∂x
(s, x; t, y)a(s, x)∆s+

∂2p

∂x2 (s, x; t, y)b(s, x)∆s+ o(∆s).

Дальше сокращаем p(s, x; t, y) в левой и правой части и все делим на ∆s, получаем обратное
уравнение Колмогорова.

Упражнение. Проверьте, что условная плотность винеровского процесса удовлетворяет ак-
сиомам диффузионных процессов и обоим уравнениям Колмогорова.

§34. Стохастические дифференциальные уравнения

Винеровский процесс рассматривается также в радиотехнике и интерпретируется там как
результат интегрирования помех — белого шума. В теории управления движущими аппара-
тами интегральное влияние случайной среды (например, порывы ветра, изменения давления)
также считается винеровским процессом. Но при этом возникают и другие эффекты – в ре-
зультате влияния среды меняется положение управляющих аппаратом систем (двигателя), и
случайно накопившаяся ошибка может давать при этом дополнительную ошибку. Для описа-
ния такого рода явлений используется аппарат стохастических дифференциальных уравнений.
Они вводятся с помощью различных стохастических интегралов.

Еще раз напомним, что для упрощения выкладок введем стандартный винеровский про-
цесс w(t) — это винеровский процесс с нулевым сносом m = 0 и единичным коэффициентом
диффузии σ = 1. Произвольный винеровский процесс получается из него линейным преобразо-
ванием. Мы также изменим несколько обозначения и будем писать все процессы как функции
времени — ξ(t)

1. Стохастические интегралы.
Стохастические интегралы, в которые входят случайные процессы ξ(t), бывают трех видов:

T∫
0

{g(t) + f(t)ξ(t)} dt,

T∫
0

f(t)dξ(t),

где f(t) — это обычная функция, и самые сложные и случайные –

T∫
0

η(t)dξ(t),

где ξ и η — два случайных процесса.
Стохастические интегралы определяются так же, как и обычные, то есть как предел ин-

тегральных сумм. Но при определении самых сложных интегралов возникают любопытные
проблемы. Пределы интегрирования могут быть другими, но при сделанной выше записи вид-
но, что в результате интегрирования возникают новые случайные процессы, ζ(T ).

Интегральные суммы для
T∫
0

f(t)w(t)dt записываются очевидным образом:

∑
f(ti)w(ti)(ti+1 − ti),
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где 0 = t0 < t1 < · · · < tn−1 < tn = T .
Сходимость интегральных сумм легко доказывается для непрерывной функции f и даже в

значительно более общих ситуациях. Проще всего доказывать сходимость в среднем квадрати-
ческом (то есть ξn → ξ, если |E|ξn−ξ|2 → 0). Сами интегральные суммы являются интегралами
от кусочно постоянных случайных процессов. Знак lim ниже означает предел интегральных
сумм.

В данной ситуации случайная величина
T∫
0

f(t)w(t)dt также имеет нормальное распреде-

ление. Попробуем определить параметры этого распределения, то есть подсчитать среднее и
дисперсию. Естественно, что все это мы будем делать не для интеграла общего вида, а лишь
для интегральных сумм.

Итак,

E
T∫

0

(g(t) + f(t))w(t)dt = limE

(∑
i

(g(ti) + f(ti)w(ti))(ti+1 − ti)

)
=

= lim
∑
i

g(ti)(ti+1 − ti) =

T∫
0

g(t)dt.

Значительно хитрее считаются дисперсия или центральный смешанный момент. При ее подсче-
те мы вычитаем среднее, то есть убираем неслучайное слагаемое g(t) из под знака интеграла.

E


T∫

0

f(t)w(t)dt

T∫
0

h(t)w(t)dt

 =

= limE

∑
i

f(ti)w(ti)(ti+1 − ti)
∑
j

h(sj)w(sj)(sj+1 − sj)

 =

= lim
∑
i

∑
j

E (f(ti)w(ti)(ti+1 − ti)h(sj)w(sj)(sj+1 − sj)) =

= lim
∑
i

∑
j

f(ti)h(sj)K(ti, sj)(ti+1 − ti)(sj+1 − sj) =

=

∫ T

0

∫ T

0

f(t)h(s)K(t, s)dtds.

Напомним, что в нашем случае K(t, s) = min(t, s). В частности,

D

 T∫
0

f(t)w(t)dt

 =

∫ T

0

∫ T

0

f(t)f(s) min(t, s)dtds.

Если в приближении интегральными суммами использовать в обоих интегралах одно и то же
разбиение, то проще вычисляется

D

 T∫
0

f(t)dw(t)

 =

= E

 T∫
0

f(t)dw(t)

T∫
0

f(t)dw(t)

 =
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= lim
∑
i

∑
j

E (f(ti)(w((ti+1)− w(ti)f(tj)(w(tj+1)− w(tj))) =

= lim
∑
i

∑
j

E (f(ti)(w((ti+1)− w(ti)f(tj)(w(tj+1)− w(tj))) =

= lim
∑
i

f(ti)
2(ti+1 − ti) =

∫ T

0

f2(t)dt.

Проверьте выкладку. Мы использовали равенство нулю среднего процесса w и независимость
приращений w.

Замечание. Кажется, что при определении интеграла
T∫
0

f(t)dw(t) мы можем использовать

то обстоятельство, что процесс w(t) можно рассматривать на каждом элементарном исходе
ω отдельно как функцию w(t)(ω), а интеграл также записать для каждого ω отдельно как
T∫
0

f(t)w′(t)(ω)dt. Увы, это невозможно. Винер показал, что можно считать функции t→ w(t)(ω)

непрерывными для всех ω, в то же время все эти функции являются недифференцируемыми
ни при одном t (с вероятностью 1). Однако, используя такое разложение процесса по элемен-

тарным исходам, мы вполне можем вводить интегралы вида
T∫
0

f(t)w(t)dt.

2. Интеграл Ито.

Наконец, самый сложный и нетривиальный случай стохастического интеграла —
T∫
0

η(t)dw(t),

где η(t) — случайный процесс. Возможны разные варианты введения этого стохастического
интеграла. Вообще говоря, неясно, какой из этих способов наилучшим образом соответствует
практическим задачам. Наиболее употребительным является интеграл Ито.

В определении интеграла Ито
T∫

0

η(t)dw(t) (3)

процесс η(t) должен иметь важное свойство предсказуемости. А именно, значения процесса
η(t) должны определяться значениями процесса w(s) во все промежутки времени до t вклю-
чительно, но не должны зависеть от приращений процесса w(s) в будущем, при s > t. Таким
образом, процесс η(t) появляется в результате действия помех w(t) в прошлом, а не в будущем.

Пример предсказуемого процесса — η(t) =
t∫

0

w(s)ds.

Ито предложил определить интеграл

T∫
0

η(t)dw(t)

как предел интегральных сумм вида

n∑
i=0

η(ti)(w(ti+1)− w(ti)),

где, как обычно, 0 = t0 < t1 < · · · < tn−1 < tn = T — разбиение ∆ отрезка [0, T ]. Но что
произойдет, если мы рассмотрим другие интегральные суммы, например,

n∑
i=0

η(ti+1)(w(ti+1)− w(ti)).
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Изменение незначительно, и в теории интеграла Римана показывается, что изменение аргу-
мента подинтегральной функции в интервале разбиения не меняет предел. Оказывается, что
в нашем случае случайной подинтегральной функции и случайного дифференциала предел
изменится. Рассмотрим, например, интеграл

T∫
0

w(t)dw(t).

Вычтем из интегральной суммы второго вида

n∑
i=0

w(ti+1)(w(ti+1 − w(ti))

интегральную сумму Ито
n∑
i=0

w(ti)(w(ti+1 − w(ti)).

Разность равна
n∑
i=0

(w(ti+1 − w(ti))
2

(∗∗)

и сходится, как мы уже доказали в пункте 29.4 (оценка параметров) не к 0, а к T .
3. Задача. Вычислить интеграл Ито

T∫
0

w(t)dw(t).

Задача решается искусственным приемом. По видимому, соображением, позволяющим дога-
даться до этого приема, служит то обстоятельство, что в неслучайной ситуации интеграл дол-
жен был бы равняться (

w2(T )− w2(0)
)
/2.

Рассмотрим удвоенное значение этой величины и попробуем связать его с разбиением ∆:

w2(T )− w2(0) = w2(tn)− w2(t0) =

=
[
w2(tn)− w2(tn−1)

]
+
[
w2(tn−1)− w2(tn−2)

]
+ · · ·

[
w2(t2)− w2(t1)

]
+
[
w2(t1)− w2(t0)

]
.

Каждое слагаемое w2(ti+1)− w2(ti) в этой сумме можно представить в виде

2w(ti)[w(ti+1)− w(ti)] + (w(ti+1 − w(ti))
2
.

Первое слагаемое в этом представлении входит в интегральную сумму Ито. Второе слагаемое
входит в сумму (**), предел которой известен. Таким образом, мы получаем представление

w2(T ) =

n−1∑
i=0

2w(ti)[w(ti+1)− w(ti)] +

n−1∑
i=0

(w(ti+1 − w(ti))
2
.

Устремляя диаметр разбиения к 0 и переходя к пределу, получаем

w2(T ) = 2

T∫
0

w(t)dw(t) + T.
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T∫
0

w(t)dw(t) =
(
w2(T )− T

)
/2.

4. Существование интеграла Ито.
Теперь попытаемся объяснить – что такое интеграл Ито

T∫
0

η(t)dw(t)

и почему он существует для хороших подынтегральных процессов η(t). Напомним, что процесс
η(t) предполагается зависящим от прошлого и настоящего процесса w. Кроме того, входящие
в него случайные величины должны иметь дисперсию. Мы будем также считать процесс η(t)
непрерывным в среднем квадратическом. Интеграл Ито (как и любой другой интеграл) мы
определяем как предел интегральных сумм

n∑
i=0

η(ti)(w(ti+1)− w(ti)),

где 0 = t0 < t1 < · · · < tn−1 < tn = T — разбиение ∆ отрезка [0, T ]. Эта интегральная сумма на
деле является интегралом кусочно-постоянного процесса

η∆(t) =

n−1∑
i=0

I[ti,ti+1)(t)η(ti).

Сходимость интегралов мы будем понимать в среднем квадратическом. Поэтому имеет смысл
считать среднее и дисперсию интегральных сумм. Так как приращения процесса w не зависят
от прошлого процесса w, они не зависят и от прошлого процесса η(t). Поэтому

E

{
n∑
i=0

η(ti)(w(ti+1)− w(ti))

}
=

n∑
i=0

Eη(ti)E(w(ti+1)− w(ti)) =

n∑
i=0

Eη(ti)× 0 = 0.

Дисперсия считается сложнее.

D

{
n∑
i=0

η(ti)(w(ti+1)− w(ti))

}
= E

{
n∑
i=0

η(ti)(w(ti+1)− w(ti))

}2

=

=

n∑
i=0

n∑
j=0

E [η(ti)(w(ti+1)− w(ti))η(tj)(w(tj+1)− w(tj))] .

А двойная сумма разбивается на слагаемые двух видов: i = j и i 6= j. Если i = j, то ввиду
независимости приращений от прошлого

E
{
η2(ti)(w(ti+1)− w(ti))

2
}

= E
{
η2(ti)

}
E
{

(w(ti+1)− w(ti))
2
}

=

= E
{
η2(ti)

}
(ti+1 − ti).

Пусть i 6= j, для определенности мы будем считать, что i < j. Ввиду независимости прира-
щений от прошлого имеем

E {(η(ti)(w(ti+1)− w(ti))(η(tj)(w(tj+1)− w(tj))} =

= E {[(η(ti)(w(ti+1)− w(ti))η(tj)] (w(tj+1)− w(tj))} =
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= E [(η(ti)(w(ti+1)− w(ti))η(tj)]E [w(tj+1)− w(tj)] =

= E [(η(ti)(w(ti+1)− w(ti))η(tj)]× 0 = 0.

Окончательно мы получаем, что

D

{
n∑
i=0

η(ti)(w(ti+1)− w(ti))

}
=

n∑
i=0

E
{
η2(ti)

}
(ti+1 − ti).

Эта сумма очень похожа на интегральную сумму, но от какого интеграла? Этот интеграл легко
записывается, и мы получаем более приятную формулу:

D


T∫

0

η(t)dw(t)

 =

T∫
0

E[η(t)]2dt.

Из этой формулы, которая верна и для интегральных сумм, то есть для интегралов от кусочно-
постоянных процессов η(t), выводится и сходимость интегральных сумм к интегралу в случае,
например, непрерывного процесса η(t), причем непрерывность мы понимаем в среднем квад-
ратическом, то есть

tn → t⇒ E [η(tn)− η(t)]
2 → 0.

Действительно, тогда по знаменитой теореме Кантора (функция, непрерывная на компакте,
равномерно непрерывна) случайный процесс η(t) равномерно непрерывен в среднем квадрати-
ческом, то есть по любому ε > 0 существует δ > 0 такое, что

|t− s| < δ ⇒ E [η(t)− η(s)]
2
< ε.

Используя это и выбирая разбиение

∆ : 0 = t0 < t1 < · · · < tn−1 < tn = T

диаметра меньше δ, мы построим интегральную сумму

n∑
i=0

η(ti)(w(ti+1)− w(ti)).

Запишем эту сумму как интеграл от кусочно постоянной функции

η∆(t) =

n−1∑
i=0

I[ti,ti+1)(t)η(ti).

Рассмотрим также другое разбиение ∆̃ с такой же оценкой для диаметра. Тогда мы имеем

E [η∆(t)− η(t)]
2
< ε,

E [η∆̃(t)− η(t)]
2
< ε.

Отсюда по тривиальному неравенству

(x− y)2 ≤ 2(x− z)2 + 2(y − z)2

мы имеем
E [η∆(t)− η∆̃(t)]

2
< 4ε,

E

 T∫
0

η∆(t)dw(t)−
T∫

0

η∆̃(t)dw(t)

2

=
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E

 T∫
0

{η∆(t)− η∆̃(t)} dw(t)

2

=

T∫
0

E {η∆(t)− η∆̃(t)}2 dt ≤ 4ε · T.

В последнем равенстве мы использовали формулу для дисперсии интеграла от кусочно по-
стоянного процесса η∆(t) − η∆̃(t) Резюмируем: если диаметр последовательности разбиений
сходится к нулю, то соответствующие интегральные суммы сходятся и их предел называется
интегралом Ито.

В интернете имеется курс лекций (на английском), который можно рекомендовать. Причем
этот курс выкачивать не надо, если вы захотите его посмотреть, я дам файл, но не просто так,
а потом проверю, что вы из него почерпнули.

Lawrence G. Evans. An Introduction to Stochastic Differential Equations. Version1.2. Berkeley
University.

5. Стохастические дифференциальные уравнения
Теперь мы можем ввести понятие стохастического дифференциального уравнения. Для них

неудобно использование обозначений типа dw
dt (траектории винеровского процесса с вероятно-

стью 1 недифференцируемы ни в одной точке), поэтому их предпочитают записывать в диф-
ференциалах.

Решением X уравнения
dX = F (X)dt+G(X)dw(t)

по определению называется такой не зависящий от прошлого винеровского процесса (предска-
зуемый) случайный процесс X, что тождественно

X(t) = X(0) +

∫ t

0

F (X(s))ds+

∫ t

0

G(X(s))dw(s).

Таким образом, хотя стохастические дифференциальные уравнения записываются в диф-
ференциалах, они на деле являются интегральными уравнениями, причем с использовани-
ем стохастических интегралов. Иногда они имеют явное решение, но как правило, для них
разрабатывается техника приближенных вычислений. В теории обычных интегралов и диф-
ференциальных уравнений используют приемы, которые называются ’замена переменных’ и
’интегрирование по частям’.

6. Формула Ито замены переменных
Пусть X — предсказуемый процесс, причем

dX = Fdt+Gdw, (4)

где F и G — некоторые предсказуемые процессы.
Вопрос. Чему равен стохастический дифференциал процесса

Y (t) = u(X(t), t)?

Ответ дается знаменитой формулой Ито:

dY (t) =
∂u

∂t
(X, t)dt+

∂u

∂x
(X, t)dX +

1

2

∂2u

∂x2 (X, t)G2(t)dt.

Более подробно можно записать следующим образом:

dY (t) =
∂u

∂t
(X, t)dt+

∂u

∂x
(X, t)F (t)dt+

∂u

∂x
(X, t)G(t)dw +

1

2

∂2u

∂x2 (X, t)G2(t)dt.

Доказательство этой формулы довольно длинно и технично, оно будет проведено на уровне
идей. Поэтому нет смысла приводить также необходимые для справедливости формулы усло-
вия, их довольно много и все это можно найти в учебниках по теории стохастических диффе-
ренциальных уравнений.
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Для понимания этой формулы рассмотрим частный случай функции u одной переменной,
зависящей только от x и сравним формулу

dY (t) =
∂u

∂x
(X, t)dX +

1

2

∂2u

∂x2 (X, t)G2(t)dt.

в этой случае с обычной формулой замены переменной в интеграле. Мы видим, что в обычной
формуле ∫

u′(X)dX

отсутствует вторая производная
1

2

∂2u

∂x2 (X, t)G2(t)dt.

Почему в формуле Ито используется вторая и в то же время отсутствуют производные более
высокого порядка?

Итак, как получается формула Ито. Мы можем приближенно написать приращение про-
цесса X(t):

X(t+ ∆t)−X(t) = F (t)∆t+G(t)[w(t+ ∆t)− w(t)].

Теперь посмотрим на приращение функции u(X) и разложим его по формуле Тейлора.

u(X(t+ ∆t))− u(X(t)) ≈ u′(X(t))(X(t+ ∆t)−X(t))+

+
1

2
u′′(X(t))(X(t+ ∆t)−X(t))2 =

= u′(X(t))(F (t)∆t+G(t)[w(t+ ∆t)− w(t)])+

+
1

2
u′′(X(t))(F (t)∆t+G(t)[w(t+ ∆t)− w(t)])2 =

= u′(X(t))(F (t)∆t+G(t)[w(t+ ∆t)− w(t)]) +
1

2
u′′(X(t))×

×(F 2(t)∆t2 + 2F (t)G(t)∆t[w(t+ ∆t)− w(t)] +G2(t)[w(t+ ∆t)− w(t)]2).

Подумаем, какие слагаемые в

(F 2(t)∆t2 + 2F (t)G(t)∆t[w(t+ ∆t)− w(t)] +G2(t)[w(t+ ∆t)− w(t)]2)

вносят существенный вклад после суммирования по всем приращениям.
Как мы уже неоднократно видели (например, в §14), сумма приращения F 2(t)∆t2 = o(∆t)

мажорируется диаметром разбиения (умноженным на максимум F 2), поэтому стремится к
нулю. В то же время, сумма слагаемых G2(t)[w(t + ∆t) − w(t)]2 имеет бо́льшее значение. Мы
уже считали

E[w(t+ ∆t)− w(t)]2 = ∆t,

в то же время второй момент этого выражения равен

E
{

[w(t+ ∆t)− w(t)]2
}2

= 2∆t2.

Таким образом, ошибка при замене в сумме случайной величины [w(t + ∆t) − w(t)]2 на его
среднее ∆t мажорируется диаметром разбиения, который сходится к нулю. Мы уже видели, что
суммы всех таких приращений на отрезке [0, T ] сходятся при диаметре разбиения, сходящемся
к 0, к T . Итак, слагаемое

G2(t)[w(t+ ∆t)− w(t)]2

нужно учитывать, заменив его на G2(t)∆t. Рассмотрим другое слагаемое — 2F (t)G(t)∆t[w(t+
∆t)− w(t)].

E(∆t[w(t+ ∆t)− w(t)]) = 0, E(∆t[w(t+ ∆t)− w(t)])2 = ∆t3.

202



Эти величины также являются маленькими. Мы увидели причину появления дополнительного
слагаемого. Напоминаю, что все это нестрого и не может считаться настоящим доказатель-
ством формулы Ито.

7. Применения формулы Ито.
Пример 1. Теперь покажем, как с помощью формулы Ито мы можем опять сосчитать ин-

теграл
T∫

0

w(t)dw(t).

Согласно формуле Ито

dw2(t) = 2w(t)dw(t) +
1

2
2dt.

Переходя к интегралам
T∫

0

dw2(t) = 2

T∫
0

w(t)dw(t) +

T∫
0

dt,

w2(T ) = 2

T∫
0

w(t)dw(t) + T,

что и требовалось.
Замечание. Формула Ито имеет смысл и для функций многих переменных от нескольких

случайных процессов. Используя такую формулу, легко получить следующую:
Формула Ито для произведения
Пусть

dX1 = F1dt+G1dw,

dX2 = F2dt+G2dw,

тогда
d(X1X2) = X2dX1 +X1dX2 +G1G2dt.

Однако эту формулу можно вывести и из трехкратного использования одномерной форму-
лы Ито, используя равенство

d(X1X2) =
1

2
{d(X1 +X2)2 − d(X1)2 − d(X2)2}.

8. Пример решения стохастического дифференциального уравнения

dX(t) = g(t)X(t)dw(t),

где g – непрерывная (детерминированная, то есть неслучайная) функция, X(0) = 1.
Тогда

X(t) = e
− 1

2

t∫
0
g2(s)ds+

t∫
0
gdw

.

Обозначим

Y (t) = −1

2

t∫
0

g2(s)ds+

t∫
0

gdw,

тогда

dY (t) = −1

2
g2(t)dt+ g(t)dw(t).
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По формуле Ито при X(t) = u(Y ) = eY

dX =
∂u

∂x
(Y )dY +

1

2

∂2u

∂x2 (Y )g2dt =

= eY
{
−1

2
g2(t)dt+ g(t)dw(t) +

1

2
g2dt

}
= gXdw.

§35. Мартингалы

В основе понятия мартингала лежит другое важнейшее понятие — условное среднее или
условное математическое ожидание. А именно, пусть дана случайная величина ξ на вероят-
ностном пространстве (Ω,A,P) (т.е. измеримая относительно σ-алгебры A), имеющая среднее
значение Eξ, и пусть дана σ-подалгебра B ⊂ A. Тогда существует такая B-измеримая случай-
ная величина E(ξ|B), связанная с ξ соотношением:∫

B

ξdP =

∫
B

E(ξ|B)dP для всех B ∈ B. (1)

Существование такой функции основано на использовании теоремы Радона – Никодима. Со-
гласно этой теореме, для любого заряда λ на σ-алгебре A (т. е. счетно аддитивного отображения
в R), абсолютно непрерывного относительно вероятности P, т. е. такого, что

P(A) = 0⇐ λ(A) = 0.

В этой ситуации теорема Радона – Никодима утверждает, что существует так называемая
производная Радона – Никодима f = dλ

dP , которая превращает заряд λ в неопределенный
интеграл по f :

λ(A) =

∫
A

f(ω)dP(ω) для всех A ∈ A.

Как же из этой теоремы мы выводим существование условного среднего значения? Мы
вводим заряд λ на B как неопределенный интеграл:

λ(B) =

∫
B

ξdP, для всех B ∈ B.

Из свойств интеграла Лебега следует абсолютная непрерывность λ относительно P. Условным
средним мы и называем производную Радона — Никодима заряда λ. Таким образом, мы сна-
чала ’превращаем’ случайную величину ξ в заряд λ, сужаем область определения заряда на
B, а потом ’превращаем’ суженный заряд в случайную величину.

Лучше всего можно понять условное среднее в случае конечной σ-алгебры B, порожден-
ной конечным числом событий B1, ..., Bk, этот случай был по-существу разобран в разделе
’Функция регрессии’. Нетрудно видеть, что в этой σ-алгебре имеются наименьшие непустые
элементы A1 + ...+An = Ω и каждый элемент σ-алгебры представляется в виде конечной сум-
мы этих элементов. Как выглядит в этой ситуация обычная условная вероятность некоторого
события B, которую мы представляем как условное среднее случайной величины IB? Теперь
это не число, а случайная величина, но она записывается через условные вероятности:

E(IB |B)(ω) = P(B|Ai), если ω ∈ Ai,

эта случайная величина задана с точностью до множества меры 0.
Упражнение 4. Пусть ξ — случайная величина, имеющая среднее и измерима относитель-

но σ-алгебры B. Покажите, что
E(ξ|B) = ξ.
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1. Свойства условного среднего.
Условное среднее ведет себя, как усреднение интеграла (но на каждом Ai в рассмотренном

примере усреднение идет только по Ai).
Например, легко видеть, что

E(aξ + bη|B) = aE(ξ|B) + bE(η|B).

Отметим наиболее важные свойства:
i) E(E(ξ|B)) = E(ξ),

ii) если случайная величина η измерима относительно σ-алгебры B и ограничена, а ξ ин-
тегрируема, то

E(ξη|B) = ηE(ξ|B).

Это утверждение немедленно доказывается в случае η = IB — индикатора события B ∈ B,
а именно, для IBE(ξ|B) проверяется (1). Произвольный случай сводится к этому: сначала
мы доказываем ii) для дискретных η, а потом предельным переходом для произвольных η.
(Рекомендуется самостоятельно провести эти рассуждения.)

iii) если ϕ — выпуклая функция, т. е. для любого λ ∈ (0, 1)

ϕ(λx+ (1− λ)y) ≤ λϕ(x) + (1− λ)ϕ(y),

то
ϕ(E(ξ|B)) ≤ E(ϕ(ξ)|B). (∗)

Сначала нужно доказать неравенство для обычного среднего

ϕ(E(ξ)) ≤ E(ϕ(ξ)). (∗∗)

Доказательство проводится сначала для дискретной случайной величины с конечным
числом значений, при этом все сводится к неравенству, доказываемому по индукции: если
p1 + ...+ pn = 1, pi > 0, то

ϕ(p1x1 + ...+ pnxn) ≤ p1ϕ(x1) + ...+ pnϕ(xn).

Дальше предельным переходом мы доказываем (**) для любой дискретной случайной величи-
ны, а потом и для любой случайной величины (у которой существует соответствующие сред-
ние). Неравенство для условного среднего сводится к к неравенству для обычного средне-
го: сначала мы рассматриваем случай конечной σ-алгебры B, потом предельным переходом
рассматриваем произвольный случай. При этом конечные σ-алгебры мы строим по случай-
ной величине E(ξ|B). (Имеются в виду σ-алгебры, порожденные событиями

{
ξ ∈

[
k
n ,

k+1
n

)}
,

−N ≤ k ≤ N − 1,
{
ξ ∈

[
−∞, −Nn

)}
,
{
ξ ∈

[
N
n ,∞

)}
).

А теперь перейдем к мартингалам.
2. Мартингалы.
Определение. Пусть для каждого t ≥ 0 задана σ-алгебра Ft ⊂ A, причем Ft ⊂ Fs при

t ≤ s. Такой набор σ-алгебр называется фильтрацией. Случайный процесс ξt называется мар-
тингалом относительно этой фильтрации, если при любом t случайная величина ξt измерима
относительно Ft и при любых t ≤ s

E(ξs|Ft) = ξt.

Это определение аналогичным образом формулируется и для дискретного времени {0} ∪N.
Рассмотрим простой пример, в котором Ω состоит из всех бесконечных последовательно-

стей из гербов и решек, F1 состоит из Ω, ∅, множества всех последовательностей вида {г...}
(вероятность этого множества равна 1/2), и множества всех последовательностей вида {р...}
(вероятность этого множества также равна 1/2). Соответственно F2 порождается множествами
{гг...}, {гр...}, {рг...}, {рр...} (с вероятностью 1/4 каждое). Аналогично строятся и все Fn для
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бо́льших n. Пусть случайные величины ξn равны 1 если на n-м месте в элементе находится
герб и −1 если на n-м месте находится решка. Эти случайные величины измеримы относи-
тельно σ-алгебры Fn и |ξn| ≤ 1. Введем также случайную величину η =

∑
n
ξn/2

n. Очевидно,

что случайная величина η интегрируема. Определим последовательность

ηn = E(η|Fn)

Легко проверяется, что последовательность (ηn) представляет собой мартингал, который опре-
деляется фильтрацией и одной случайной величиной η. Более того,

ηn =

n∑
i=1

ξi/2
i п.н.−→ η.

Ниже мы докажем, что при не очень ограничительных условиях любой мартингал имеет по-
хожее свойство.

3. Теорема Дуба. Пусть последовательность (ηn) является мартингалом относитель-
но фильтрации (Fn), причем supn E|ηn| < ∞. Тогда последовательность (ηn) сходится п.
н.

Сначала докажем неравенство для мартингалов. Предварительно напомним обозначение
для любой случайной величины ξ+ = max{ξ, 0}.

Лемма. В условиях теоремы зафиксируем набор η1,..., ηN и зафиксируем числа a < b.
Обозначим через βN случайную величину — число всех перескоков последовательности (ηn)
через отрезок [a, b], то есть число всех кусков в нашем наборе вида ηi(ω), ηi+1(ω), ..., ηj(ω),
где i < j, и ηi(ω) ≤ a, ηj(ω) ≥ b, ηk(ω) < b для всех i < k < j. Тогда

EβN ≤
E(ηN − a)+

b− a
. (2)

Доказательство. Обозначим ξi = (ηi − a)+. Заметим, что в терминах новых случайных
величин ξi один перескок означает изменение от ξi = 0 до значения ξj ≥ b − a, где i < j
и ξk < b − a для всех i < k < j, т.е. момент j — момент первого перескока после i. Далее
обозначим через Ak событие, состоящее из таких ω, что ξi(ω) = 0 для некоторого i < k и
ξm(ω) < b − a для всех i ≤ m < k. Событие Ak отнюдь не означает завершение перескока в
момень k. Но если для данного случайного исхода ω происходит (один!) перескок от ξi(ω) = 0
до ξj(ω) ≥ b−a, то ω попадает во все Ak, где i < k ≤ j. Поэтому для всех ω, в которых начиная
с момента i и кончая моментом j произошел перескок, имеет место неравенство

b− a ≤
j−1∑
k=i

(ξk+1 − ξk)IAk+1
.

Суммируя эти неравенства для всех ω и всех перескоков, получаем

(b− a)βN ≤
N−1∑
i=1

(ξi+1 − ξi)IAi+1 . (3)

Заметим, что к концу нашей последовательности может появиться ξi(ω) = 0, но после этого
никакого перескока не будет. При этом ω все равно попадет во все Ak, где k > i. Тогда левая
часть (3) не увеличится за счет соответствующих слагаемых, но и правая часть не уменьшится,
так как

N∑
k=i+1

ξk(ω)− ξk−1(ω) = ξN − ξi ≥ 0.
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Упражнение. Дан конечный набор вещественных чисел {x1, ..., xn}. Выберем в нем все чис-
ла xi такие, что для данного i существует j(i) ≥ i со свойством xi + ... + xj(i) ≥ 0. Доказать,
что сумма всех выбранных чисел неотрицательна.

Теперь заметим, что функция ϕ : x → max{x − a, 0} является выпуклой функцией, ξi =
ϕ(ηi). По свойству iii)

E (ξi|Fi) = ξi = ϕ(ηi) = ϕ (E(ηi+1|Fi)) ≤ E (ϕ (ηi+1) |Fi) = E (ξi+1|Fi) для любого i.

Существенно, что входящие в (3) индикаторы IAi+1 зависят лишь от значений мартингала
до момента i включительно и поэтому принадлежат Fi. Теперь выведем (2) из (3), используя
свойства i), ii), iii) условного среднего:

(b− a)EβN ≤ E

[
N−1∑
i=1

(ξi+1 − ξi)IAi+1

]
=

N−1∑
i=1

E
[
(ξi+1 − ξi)IAi+1

]
=

N−1∑
i=1

E
[
E
(
(ξi+1 − ξi)IAi+1

|Fi
)]

=

(пока мы использовали i))

=

N−1∑
i=1

E
[
IAi+1

E(ξi+1 − ξi|Fi)
]

(здесь мы использовали свойство ii); как мы уже видели раньше, из iii) следует, что E (ξi+1 − ξi|Fi) ≥
0, поэтому заменяя IAi+1

на 1, мы только усилим неравенство)

≤
N−1∑
i=1

E[E(ξi+1 − ξi|Fi)] =

(а теперь используем i) в другую сторону)

=

N−1∑
i=1

E(ξi+1 − ξi) = EξN − Eξ1 ≤ EξN .

(последнее неравенство следует из неотрицательности ξ1).
Доказательство теоремы. Предположим противное, предел (ηn)(ω) не существует для ω

на множестве A строго положительной меры (убедитесь сами, что это множество измеримо).
Это означает

lim infnηn(ω) < lim supnηn(ω) для всех ω ∈ A.

Это можно записать и по другому:

lim infnηn(ω) < a(ω) < b(ω) < lim supnηn(ω) для всех ω ∈ A.

Разумеется, с каждыми a < b мы можем связать событие

Aa,b = {ω : lim infnηn(ω) < a < b < lim supnηn(ω)}, A =
⋃
a<b

Aa,b.

Последнее равенство верно, если мы рассматриваем в нем лишь пары рациональных a и b,
а множество таких пар счетно. Далее, объединение счетного числа множеств нулевой меры
имеет меру нуль, поэтому из PA > 0 следует существование такой пары рациональных чисел
a < b, что PAa,b > 0. Однако по определению Aa,b для любого ω ∈ Aa,b последовательность
(ηn(ω)) имеет бесконечное число перескоков через (a, b). Поэтому

lim
N

EβN =∞PAa,b =∞.
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Вместе с неравенством (2) это приводит к противоречию с ограниченностью последовательно-
сти E|ηn|.

Пример мартингала, для которого не выполняются условия теоремы Дуба. Рассмотрим
процесс случайного блуждания ξn.

4. Некоторые вопросы.
Что такое момент остановки, если задана возрастающая фильтрация σ-алгебр Ft, t ≥ 0.

Это такая неотрицательная величина τ , что

{τ ≤ t} ⊂ Ft для всех t.

Иными словами, для принятия решения об остановке до момента t включительно, нам доста-
точно наблюдать случайный процесс до этого момента включительно.

Упражнения. 1. Пусть S1,...,Sn — мартингал с конечным временем, τ — случайный момент
остановки. Доказать, что ESτ не зависит от τ .

2. Пусть ξt — случайный процесс, непрерывный в среднем, τ — некоторый момент остановки.
Доказать, что ξτ — случайная величина, то есть измерима.

3. Как доказать, что два условных средних E(ξ|Ft) и E(η|Ft) совпадают почти наверное?
5. Винеровский процесс — мартингал.
Упражнение. Пусть случайная величина ξ имеет среднее и не зависит от σ-алгебры F.

Тогда
E(ξ|F) = Eξп. н..

(Нетрудно догадаться, что означает независимость от σ-алгебры: для любого борелевского
множества B и любого события A ∈ F события {ξ inB} и A должны быть независимы). Как
и обычное среднее, условное среднее также удовлетворяет неравенству |E(ξ|F)| ≤ Const, если
|ξ| ≤ Const п. н. Поэтому, представляя случайную величину как равномерный предел по-
следовательности дискретных случайных величин , как обычно, мы сводим общий случай к
дискретному случаю, а дискретный случай ввиду аддитивности условного среднего сводится
к случаю индикатора события. Итак, событие A не зависит от всех B ∈ F. Проверьте, что
постоянная функция P(A) удовлетворяет определению E(IA|F).

Из этого упражнения легко следует, что винеровский процесс w(t) является мартингалом
относительно фильтрации

Ft = наименьшая σ-алгебра, относительно которой измеримы все w(s), s ≤ t.

Проверьте, что если u ≥ t, то

E(w(t)|Ft) = w(t), E(w(u)− w(t)|Ft) = E(w(u)− w(t)) = 0.

Из этого немедленно следует, что w — мартингал.

§36. Задача о разборчивой невесте

Одним из примеров использования понятия мартингала является ’Задача о разборчивой
невесте’ (другое название — ’Задача о выборе секретаря’). Рассматривается следующая ситуа-
ция — невеста выбирает себе мужа из N женихов. Число женихов известно заранее. Невеста
может лишь сравнивать женихов между собой, и обладает абсолютной памятью, то есть мо-
жет сравнивать данного жениха со всеми виденными ею ранее. Для любых двух женихов она
может сказать, кто из них для нее лучше и кто — хуже, причем эта ранжировка имеет все
свойства порядка — если A лучше B, B лучше C, то A лучше C. Существенное и жесткое
условие — отвергнутый жених перестает участовать в конкурсе, передумать по отношению к
нему уже нельзя. Думается, что первое название лучше соответствует задаче, подчеркивая ее
условный сказочный характер.

1. Постановка задачи.
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Цель невесты в данной задаче — сделать наибольшей вероятность выбора наилучшего же-
ниха среди всех N . Заметим, что в данной ситуации возможны и более прагматичные цели —
например, если все женихи упорядочены по качеству — 1-й (наилучший), 2, 3, ..., N -й (наихуд-
ший), то можно минимизировать среднее значение номера выбранного жениха. Однако задачей
в такой постановке мы заниматься не будем. (Более того, непонятно обоснование такой поста-
новки задачи.)

Единственный приходящий в голову алгоритм — отказ от выбора до n-го жениха, после чего
нужно выбрать первого, который будет лучше всех предыдущих. Наша последующая задача —
оптимизация выбора номера n, а также доказательство (интуитивно понятного) утверждения,
что все другие алгоритмы хуже.

2. Математическая модель.
Если мы говорим о вероятности события и о среднем значении случайной величины, то мы

должны иметь также пространство элементарных исходов с заданными на них вероятностя-
ми. В данной задаче такая модель строится совершенно очевидным способом. Произвольный
элементарный исход ω — это порядок прохождения женихов перед невестой. Как вы знаете,
множество из N элементов можно упорядочить N ! способами, таким образом, |Ω| = N !. Итак,
ω = (ω1, ..., ωN ) — некоторая перестановка чисел {1, 2, ..., N}, ранжировка женихов невестой
уже после знакомства со всеми При этом σ-алгеброй событий является σ-алгебра A всех под-
множеств Ω. Минимальными непустыми элементами этой σ−алгебры являются элементарные
исходы — точки Ω.

Сама постановка задачи определяет естественную возрастающую фильтрацию σ-подалгебр
A: Впрочем, здесь есть над чем подумать. Удобнее всего определять конечные σ-подалгебры за-
данием их минимальных элементов (своего рода элементарных исходов для данной σ-подалгебры).
Все остальные элементы σ-подалгебры будут объединениями минимальных элементов. Напра-
шивается следующая фильтрация: минимальный элемент n-й σ-подалгебры должен опреде-
ляться числами (ω1, ..., ωn) и в него должны входить все элементарные исходы ω = (ω1, ..., ωN ),
первые n чисед в которых совпадают с первыми n числами набора ω. Нетрудно видеть, что
число элементарных исходов в такой σ-подалгебре будет равно N !/(N − n)! (так как число
способов переупорядочить числа, не попавшие в (ω1, ..., ωn), равно (N − n)!). Однако такая
фильтрация не соответствует условиям задачи, так как числа ω1, ..., ωn становятся известны-
ми лишь в случае знакомства со всеми женихами. При построении фильтрации надо исходить
из ситуации.

Итак, каждый минимальный элемент An определяется известным на n-й момент упорядо-
чением первых nженихов. Это упорядочение мы запишем как (σ1, ..., σn) — это некоторая пере-
становка чисел {1, 2, ..., n}. В минимальный элемент An, задаваемый перестановкой (σ1, ..., σn)
мы включаем все элементарные исходы (ω1, ..., ωN ) ∈ Ω, удовлетворяющих условиям: для всех
пар натуральных чисел i, j
leqn неравенствo σi < σj выполняется тогда и только тогда, когда ωi < ωj . Итак, число ми-
нимальных элементов в An равно n!, каждый такой минимальный элемент содержит N !/n!
элементарных исходов из Ω.

3. Задача об оптимальном моменте остановки.
Сначала мы рассмотрим эту задачу в более общей ситуации.
На вероятностном пространстве (Ω,A,P) заданы возрастающая фильтрация σ-подалгебр

{A1,A2, ...,AN = A} и такой набор случайных величин {ξ1, ..., ξN}, что случайная величина ξi
измерима относительно σ-подалгебры Ai для всех i. Рассмотрим также множество T всех слу-
чайных моментов остановки τ со значениями в {1, ..., N}. Напомним, что моментом остановки
τ называется случайная величина со следующим свойством:

{τ ≤ n} ∈ An ∀n ∈ {1, ..., N}.

Для упрощения понимания ситуации мы будем считать Ω конечным (как и в нашей зада-
че). Тогда каждая Ai будет также конечной, а следовательно, будет порождаться конечным
числом минимальных попарно несоместных элементов. Эти элементы целесообразно мыслить
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элементарными исходами, которые получены к моменту времени i. Таким образом, в каждый
момент времени мы имеем множество Ωi элементарных исходов, каждый из которых является
некоторым подмножеством (событием) в момент времени i+1. Определение момента остановки
означает, что в каждый момент времени i полученный к этому моменту элементарный исход
ω(i) дает достаточную информацию для проверки выполнения или невыполнения равенства
τ = i.

Итак, наша задача — найти момент остановки, на котором достигается максимум

V = sup {Eξτ : τ ∈ T} .

Задача решается поэтапно, с помощью индуктивного процесса, причем индукция проводится
не снизу, с n = 1, а сверху, с n = N . Введем множество Tn всех элементов T, принимающих
значения в {n, ..., N}. Очевидно, что T1 = T.

Vn = sup {Eξτ : τ ∈ Tn} .

TN состоит лишь из одного элемента τ ≡ N . Легко определяется максимизирующий τN−1

во множестве TN−1. Действительно,

τN−1(ω) =

{
N, если ξN−1(ω) < E(ξN |AN−1)(ω),
N − 1 если ξN−1(ω) ≥ E(ξN |AN−1)(ω).

Далее мы введем по индукции новые случайные величины ηn, заданные соотношениями ηN =
ξN , ηn = max{ξn,E(ηn+1|An)}. Далее

τn(ω) = inf{i ≥ n : ξi(ω) = ηi(ω)}. (1)

При n = 1 эта конструкция дает решение общей задачи, но нам нужно кое-что доказать.
1) Сначала мы должны показать, что τn является моментом остановки. Тогда на каждом

шаге мы сможем остановиться, исходя лишь из имеющейся на данный момент информации.
Но это очевидно, для τn = i необходимо и достаточно, чтобы для всех j < i выполнялось
ξi(ω) < ηi(ω), а для i было бы равенство ξi(ω) = ηi(ω).

2) E (ξτn |An) = ηn ≥ E (ξτ |An) для любого τ ∈ Tn.
Интегрирование этого неравенства по Ω устанавливает оптимальность момента остановки

τn.
Итак, доказываем 2). Напомним, что доказательство неравенства

E (ξ|F) ≥ E (η|F)

для почти всех ω означает доказательство неравенства∫
A

E (ξ|F) dP ≥
∫
A

E (η|F) dP

для всех A ∈ F. Мы знаем также, что если A ∈ F, то∫
A

ξdP =

∫
A

E (ξ|F) dP.

Начинаем доказательство. По индукции мы предполагаем, что 2) выполняется для всех n
больше или равных данного n и докажем свойство 2) для n = n− 1. Итак, A ∈ An−1, τ ∈ Tn−1.
Мы также обозначим τ ′ = max{τ, n}.∫

A

ξτdP =

∫
A∩{τ=n−1}

ξτdP +

∫
A∩{τ≥n}

ξτdP =
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=

∫
A∩{τ=n−1}

ξn−1dP +

∫
A∩{τ≥n}

ξτ ′dP =

(не только A ∈ An−1, но и {τ ≥ n} ∈ An−1 (кстати, почему?), поэтому во втором интеграле
мы можем заменить подинтегральную случайную величину на ее условное математическое
ожидание относительно An−1)

=

∫
A∩{τ=n−1}

ξn−1dP +

∫
A∩{τ≥n}

E (E (ξτ ′ |An) |An−1) dP ≤

(а теперь мы используем предположение индукции для n = n и для τ = τ ′ ∈ Tn)

≤
∫

A∩{τ=n−1}

ξn−1dP +

∫
A∩{τ≥n}

E (ηn|An−1) dP ≤

(далее мы применяем то, что ηn−1 мажорирует как ξn−1, так и E (ηn|An−1), к обоим интегралам)

≤
∫
A

ηn−1dP.

Теперь, используя индуктивное предположение ξτn = ηn, а также совпадение по построению
τn−1 и τn на событии {τn−1 ≥ n} нужно проверить, что для τ = τn−1 наши неравенства является
равенствами. Итак, согласно предположению индукции∫

A∩{τ≥n}

E
(
E
(
ξτ ′n−1

|An
)
|An−1

)
dP =

∫
A∩{τ≥n}

E (E (ξτn |An) |An−1) dP =

=

∫
A∩{τ≥n}

E (ηn|An−1) dP.

По построению

ηn−1 =

{
ξn−1 на {τn−1 = n− 1}
E(ηn|An−1) на {τn−1 ≥ n}.

4. Решение задачи о разборчивой невесте
Теперь перейдем к конкретной задаче. Итак, Ω состоит из всех наборов (ω1, ..., ωN ) раз-

личных перестановок чисел между 1 и N . ωi = 1 означает, что i-й жених является лучшим.
Нам надо выбрать такой момент остановки τ , что вероятность V = P{ωτ = 1} является макси-
мальной. К сожалению, случайные величины ωi не являются адаптированными, чтобы знать
их значения, мы должны знать всю перестановку женихов. Но ситуацию спасает другое пред-
ставление V :

V = E(ξτ ),

где ξn = P{ωn = 1|An}. Заметим, что {τ = n} ∈ An. Поэтому мы можем использовать для
доказательства следующую цепочку равенств:

V = P{ωτ = 1} =

N∑
n=1

∫
τ=n

I{ωn=1}dP =

=

N∑
n=1

∫
τ=n

E
(
I{ωn=1}|An

)
dP =

N∑
n=1

∫
τ=n

ξndP = Eξτ .
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Для анализа величин ξn нам будет удобно определить σ-алгебры An как наименьшие σ-алгебры,
относительно которых измеримы для всех m ≤ n случайные величины ϕm, равные для дан-
ного ω = (ω1, ..., ωm) числу всех ωi, i ≤ m, не худших ωm. Действительно, легко видеть, что
задание значений всех ϕm, m ≤ n, однозначно определяет элементарный исход (ω1, ..., ωn) для
σ−алгебры An.

Любопытно, что случайные величины ϕn независимы между собой. Действительно, 1 ≤
ϕn ≤ n, P{ϕn = i} = 1/n для всех i ≤ n,

P{ϕ1 = i1, ϕ2 = i2, ..., ϕN = iN} = 1/N !.

Заметим, что случайная величина ξn является функцией ϕn. Действительно,

ξn =

{
n/N, если ϕn = 1,
0, если ϕn > 1.

Все же объясним это равенство. Если ϕn > 1, то среди первых n − 1 чисел ωi найдется по
крайней мере одно меньше ωn. Это верно для всех ω из одного и того же минимального эле-
мента An. Но тогда I{ωn=1} равен 0 на этом элементе. Тем более равно 0 условное среднее —
усреднение I{ωn=1} по этому элементу. Теперь рассмотрим ситуацию ϕn = 1. В этом случае ωn
является лучшим среди первых n элементов набора ω. Но вероятность того, что лучший эле-
мент набора ω находится среди первых n элементов ω равна n/N . Из нашей формулы следует,
что величины ξn также независимы. Это облегчает процесс построения случайных величин ηn
из предыдущего пункта. Мы имеем,

ηN = ξN =

{
1, если ϕN = 1,
0, если ϕN > 1.

Тогда в силу независимости ξN от AN−1 мы имеем

E (ξN |AN−1) = 1/N,

ηN−1 = max{ξN−1,E(ηN |AN−1)} =

{
N−1
N , если ϕN−1 = 1

1/N, если ϕN−1 > 1,

E (ηN−1|AN−2) =
1

N
+
N − 2

N − 1
=
N − 2

N

(
1

N − 1
+

1

N − 2

)
.

Нетрудно видеть, что

E (ηi) ==
i− 1

N

(
1

N − 1
+

1

N − 2
+ ...+

1

N − i

)
.

Таким образом, эта величина перестанет расти, когда i−1
N

(
1

N−1 + 1
N−2 + ...+ 1

N−i

)
зашкалит

за i/N . Этот момент и является оптимальным моментом, после которого может быть произ-
веден выбор по сформулированному выше алгоритму.

§37. Стационарные случайные процессы. Прогноз

1. Определение стационарного случайного процесса.
Определение. Случайный процесс ηt называется стационарным (в узком смысле), если

его совместные распределения не меняются со временем, то есть

Pt1,...tn = Pt1+h,...tn+h

для любых h, t1,...,tn. Заметим, что такой процесс должен быть задан не на [0,∞), а на
(−∞,∞).
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Определение. Случайный процесс ηt называется стационарным в широком смысле, если
его среднее и центральные смешанные моменты (ковариация) не меняются со временем, то
есть

Eξt = Eξ0 для любого t,

E[(ξt+h − Eξt+h)(ξt − Eξt)] = Kξ(h) для всех t и h. (1)

В мировой литературе нормальное распределение часто называется гауссовским, а случай-
ный процесс с совместными гауссовскими распределениями — гауссовским случайным процес-
сом. Винеровский процесс является гауссовским. Мы знаем, что если все совместные распреде-
ления процесса нормальны (то есть гауссовские), то, для их описания достаточно знать векторы
средних и матрицы вторых моментов. Поэтому стационарный в широком смысле гауссовский
процесс является стационарным и в узком смысле.

Из стандартного винеровского процесса w(t) легко получить стационарный процесс, кото-
рый носит имя процесса Орнстейна – Уленбека:

ξt := etw
(
e−2t

)
.

Очевидно, что средние процесса Орнстейна – Уленбека равным средим винеровского процес-
са, а следовательно, равны нулю. Проверим инвариантность ковариации процесса при сдвиге
времени:

E(ξtξt+h) = etet+hw
(
e−2t

)
w
(
e−2t−2h

)
= etet+h min{e−2t, e−2t−2h} = e−h, если h > 0.

Прежде чем перейти к другим примерам гауссовских стационарных процессов, рассмотрим
случайное колебание

ξt = Z cosλt, где Z — центрированная гауссовская случайная величина, λ ∈ R.

Очевидно, что такой процесс не удовлетворяет условию (1), более того:

E[(ξt − Eξt)(ξt − Eξt)] = cos2(λt)EZ2( зависит от t).

Но если перенести определение стационарности на комплексные случайные процессы, то про-
цесс ξt можно представить как вещественную часть стационарного процесса ζt:

ζt = Zeiλt.

При этом соотношение (1) мы представляем как частный случай соотношения

E[(ξt+h − Eξt+h)(ξt − Eξt)] = Kξ(h) для всех t и h. (1′)

Действительно,
Kζ(h) = Eζtζt+h = eiλte−iλ(t+h)EZ2 = e−iλhEZ2.

Эту конструкцию можно обобщить, рассмотрев сумму случайных колебаний с разными часто-
тами λi:

ζt =
∑
k

Zke
iλkt,

где Zk — центрированные независимые гауссовские случайные величины. (Независимость для
стационарности не нужна, но оказывается, что подобное представление имеет место для любого
стационарного гауссовского процесса ξt:

ξt =

∫
R

eiλtdZ(λ), (∗)
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где Z — случайная мера на борелевской σ-алгебре R, значения которой — центрированные
гауссовские случайные величины, причем для непересекающихся множеств A и B случайные
величины Z(A) и Z(B) независимы и (это мера) Z(A + B) = Z(A) + Z(B). Доказательство
представления (*) трудоемко и опирается на классическую теорему Бохнера.

2. Теорема Бохнера.
Прежде чем формулировать эту теорему, мы введем важнейшее свойство неотрицательной

определенности функции и установим справедливость этого свойства для ковариации Kξ.
Определение. Комлексная функция K на R называется неотрицательно определенной,

если ∑
j,k

K(tj − tk)σjσk ≥ 0

для любых конечных наборов одинаковой мощности {tj} ⊂ R и {σj} ⊂ C. Аналогично опреде-
ляется понятие неотрицательной определенности функции на множестве целых чисел Z, но
в этом случае {tj} ⊂ Z.

Теорема A. i) Пусть K : R → C — комплекснозначная непрерывная функция, имеющая
свойство неотрицательной определенности. Тогда K представима в виде

K(t) =

∫
R

eiλtdµ(λ),

где µ — конечная мера на борелевской σ-алгебре R, причем µ(R) = K(0).
ii) Пусть K : Z → C — неотрицательно определенная функция. Тогда K представима в

виде
K(n) =

∫
[−π,π)

eiλndµ(λ),

где µ — конечная мера на борелевской σ-алгебре [−π, π), причем µ([−π, π)) = K(0).
Частным случаем этой теоремы является теорема Бохнера для характеристических функ-

ций. Впрочем, теорема A сводится к теореме B делением на K(0). Нам будет удобнее доказать
теорему B, так как при ее доказательстве мы сможем использовать известные нам факты о
слабой сходимости распределений.

Теорема B. Функция ϕ : R → C является характеристической функцией распределения
P (т.е.

ϕ(t) =

∫
R

eitxdP(x)) (1)

тогда и только тогда, когда
i) ϕ(0) = 1,
ii) ϕ неотрицательно определена,
iii) ϕ непрерывна в точке 0.
Прежде чем доказывать теорему B, проверим свойство неотрицательной определенности

для описываемых в этих теоремах объектов.
Предложение A. Ковариация Kξ стационарного случайного процесса ξt неотрицательно

определена.
Доказательство. Для упрощения записи будем считать, что среднее процесса равно нулю

(его вычли). Положим в (1′) t = tk, t+ h = tj . Имеем:

∑
j,k

K(tj − tk)σjσk =
∑
j,k

E
(
ξtj ξtkσjσk

)
= E

∣∣∣∣∣∣
∑
j

ξtjσj

∣∣∣∣∣∣
2

≥ 0.
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Предложение B. Характеристическая функция ϕξ случайной величины ξ неотрицатель-
но определена.

Доказательство.

∑
j,k

ϕξ(tj − tk)σjσk =
∑
j,k

E
(
eiξtj e−iξtkσjσk

)
= E

∣∣∣∣∣∣
∑
j

eiξtjσj

∣∣∣∣∣∣
2

≥ 0.

Доказательство теоремы B. ’Только тогда’. Свойства i) и iii) характеристической функции
см. в курсе теории вероятностей. Свойство ii) доказано в предложении B.

Доказательство ’тогда’ значительно сложнее и использует слабую компактность про-
странства всех вероятностных мер на компакте K, которая следует из теоремы Рисса для
пространства C(K) — пространство вероятностных мер замкнуто в слабой топологии и на-
ходится внутри единичного шара сопряженного к C(K) пространства зарядов, который по
теореме Алаоглу слабо компактен. Для случая, когда K — отрезок вещественной прямой, тео-
рема Алаоглу не нужна, слабую компактность пространства вероятностных мер мы доказали.

Лемма 1. Для всех t и s из R

a) ϕ(−t) = ϕ̄(t),
b) |ϕ(t)| ≤ ϕ̄(0) = 1,
c) |ϕ(t)− ϕ(s)|2 ≤ 1− |ϕ(t− s)|2 − 2<[ϕ(t)ϕ̄(s)(1− ϕ(t− s))].
Из неравенства с) и свойства iii) следует равномерная непрерывность характеристиче-

ской функции (проверить!).
Доказательство сводится к подбору соответствующих вариантов наборов в (2).
Для доказательства a) надо взять {t1, t2} = {0, t}, а для {σ1, σ2} использовать два варианта:

{1, 1} и {1, i}. Первый вариант позволяет получить a) для мнимых частей ϕ(t) и ϕ(−t), а второй
вариант — для вещественных частей этих чисел. (Проверить!)

Для доказательства b) надо взять также {t1, t2} = {0, t}, но далее рассматривать (2) как
квадратичную форму для переменных {σ1, σ2} и использовать неотрицательность определи-
теля этой формы. (Проверить!)

Для доказательства с) мы берем наборы {t1, t2, t3} = {0, t, s} и опять используем свой-
ство квадратичной формы (2) от переменных {σ1, σ2, σ3} — неотрицательность определителя
третьего порядка ((проверить!)∣∣∣∣∣∣

1 ϕ(t) ϕ(s)
ϕ̄(t) 1 ϕ(t− s)
ϕ̄(s) ϕ̄(t− s) 1

∣∣∣∣∣∣ ≥ 0.

Лемма 2 (Герглотц). Функция ψ неотрицательна определена на группе по сложению

D = {. . .− 3c,−2c,−c, 0, c, 2c, 3c . . .}, c > 0,

тогда и только тогда, когда она совпадает на G с характеристической функцией вероят-
ностной меры на множестве [−π/c,+π/c):

ψ(mc) =

∫
[−π/c,+π/c)

eimcxdF (x). (3)

Доказательство. Сужение функции ψ на конечное множество [−nc, nc]∩D легко представ-
ляется в виде (3): мы вводим плотность

G′n(x) :=
1

2π

n−1∑
m=−n+1

(
1− |m|

n

)
ψ(mc)e−imx = (?)
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=
1

2πn

n∑
j=1

n∑
k=1

ψ((j − k)c)e−i(j−k)x ≥ 0.

Умножая это равенство на eimx при фиксированном m и интегрируя по [−π,+π), мы полу-
чаем (?) (

1− |m|
n

)
ψ(mc) =

∫
[−π,+π)

eimxG′n(x)dx =

∫
[−π/c,+π/c)

eimcxdFn(x), (4)

где Fn — функция распределения, причем Fn(−π/c) = 0, Fn(π/c) = 1.(Проверить!)
Далее мы используем слабую компактность последовательности мер dFn и извлекаем из

нее сходящуюся подпоследовательность dFnk
сл−→ dF . Переходя к пределу по k в (4), получаем

(1). (Проверить!)
Теперь перейдем к доказательству теоремы Бохнера. Мы будем доказывать, что ϕ совпа-

дает с характеристической функцией некоторого распределения на всюду плотном множестве
Q̃ всех двоично рациональных чисел в R. Обозначим через Qn множество всех рациональ-
ных чисел вида k/2n, где k — целое число, n — натуральное число. Тогда Qn ↑ Q̃. Очевидно,
что из неотрицательной определенности ϕ на группе по сложению R следует неотрицательная
определенность сужения ϕ на каждую подгруппу Qn. К каждому такому сужению применима
лемма 2 и по ней для каждого n на множестве [−2nπ, 2nπ) существует такая вероятностная
мера dFn, что

ϕ(k/2n) =

∫
[−2nπ,2nπ)

ei(k/2
n)xdFn(x) для всех целых k. (5)

Введем характеристические функции ψn распределений dFn. Из (5) следует, что ψn → ϕ пото-
чечно на множестве Q̃. Далее нашей целью будет доказательство равностепенной непрерывно-
сти последовательности характеристических функций (ψn) в точке 0. Из нее (точно так же, как
это делалось в доказательстве теоремы непрерывности (посмотреть!)), будет следовать слабая
компактность последовательности мер (dFn).

Для характеристических функций ψ вероятностных распределений на R справедливо три-
виально доказываемое с помощью неравенства Шварца

Неравенство для приращений.

|ψ(t)− ψ(t+ h)|2 ≤ 2|1−<ψ(h)|.

Доказательство неравенства. Напомним, что ψ(t) =
∫
R

eitxdP(x), где P — распределение

вероятностей на R. Имеем:

|ψ(t)− ψ(t+ h)|2 =


∫
R

(
eitx − ei(t+h)x

)
dP(x)


2

=


∫
R

(
eitx

[
1− eihx

])
dP(x)


2

≤

≤
∫
R

∣∣eitx∣∣2 dP(x) ·
∫
R

∣∣1− eihx∣∣2 dP(x) = 1 ·
∫
R

[
1− eihx − e−ihx + 1

]
dP(x) =

=

∫
R

[2− cos(hx)] dP(x) = 2(1−<ψ(h)).

Вернемся к доказательству теоремы Бохнера. Возьмем θ ∈ [0, 1/2n]. Следующее неравен-
ство основано на монотонности функции cos на [0,±π] и является решающим:

1−<ψn(θ/2n) =

∫
[−π,π)

(1− cos(θx)dFn(2nx) ≤
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≤
∫

[−π,π)

(1− cosxdFn(2nx) = 1−<ϕ(1/2n).

Далее каждое h в окрестности нуля для каждого n мы представляем в виде h = (kn + θn)/2n

(0 ≤ θn < 1, kn — целое) и оцениваем расстояние |1−ψn(h)|2 с помощью неравенства треуголь-
ника:

|1− ψn(h)|2 ≤ 2|1− ψn(kn/2
n)|2 + 2|ψn(kn/2

n)− ψn(h)|2 ≤
≤ 2|1− ψn(kn/2

n)|2 + 4(1−<ψn(θn/2
n)2 ≤≤ 2|1− ψn(kn/2

n)|2 + 4(1−<ψn(1/2n)|2 =

= 2|1− ϕ(kn/2
n)|2 + 4(1−<ϕ(1/2n)|2.

Используя непрерывность ϕ, правую часть можно сделать сколь угодно малой за счет выбора
окрестности для h. Итак, из непрерывности ϕ в нуле следует равностепенная непрерывность
последовательности (ψn) в нуле. Далее мы выбираем слабо сходящуюся подпоследовательность
функций распределения Fnk , предел которой F пока не обязан быть функцией распределения.
Доказательство того, что это — функция распределения, проводится так же, как и в дока-
зательстве теоремы непрерывности. Небольшое отличие состоит в том, что неравенство для
усечений используется здесь для каждой характеристической функции ψn, при этом нужная
оценка получается ввиду равностепенной непрерывности.

Замечание к теореме непрерывности. Легко проверяется, что в формулировке теоремы
непрерывности условие того, что предельная функция ϕ является характеристической функ-
цией, излишне. Достаточно потребовать непрерывность функции ϕ в точке 0. А именно, сна-
чала доказывается слабая компактность семества функций распределений Fn, в качестве F
берется предел некоторой сходящейся подпоследовательности Fnk , после чего доказывается,
что ϕ = ϕF , Fn

w−→ F .
Завершим это доказательства формулировкой теоремы, к которой мы стремились:
Теорема A. i) Пусть ξt — стационарный непрерывный гауссовский процесс на R (или Z),

Kξ : R→ C (или Kξ : R→ C) ковариация процесса ξ. Тогда имеет место представление

K(t) =

∫
R

eiλtdµξ(λ),

где µξ — конечная мера на борелевской σ-алгебре R, причем µ(R) = K(0) (или

K(n) =

∫
[−π,π)

eiλndµξ(λ),

где µξ — конечная мера на борелевской σ-алгебре [−π, π), причем µξ([−π, π)) = K(0).
Мы будем называть µξ спектральной мерой процесса ξ, а если

dµξ(λ) = fξ(λ)dλ,

то функцию fξ будем называть спектральной плотностью процесса.
4. Спектральное разложение для стационарных случайных процессов.
Мы будем в дальнейшем рассматривать лишь гауссовские стационарные процессы, причем

непрерывные в среднем квадратическом.
Теорема. Произвольный гауссовский стационарный случайный процесс ξt (t ∈ R) можно

представить в виде:

ξt =

∫
R

eiλtdZ(λ), (∗)

где Z — случайная мера на борелевской σ-алгебре R, значения которой — центрированные
гауссовские случайные величины, причем для непересекающихся множеств A и B случайные
величины Z(A) и Z(B) независимы и (это — мера) Z(A+B) = Z(A) + Z(B).
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Доказательство представления (*) опирается на теорему Бохнера. Здесь мы объясним, как
строится случайная мера Z. Отображение Φ, переводящее случайные величины ξt в функции
λ → eiλt ∈ L2(R,B(R), µ), является изометрическим и продолжается до изометрического
отображения на замыкание Lin{ξt :∈ R} в пространстве L2((Ω,A,P). Изометричность следует
из определения спектральной меры µ. Легко показывается, что Lin{λ → eiλt : t ∈ R} всюду
плотно в L2(R,B(R), µ). Мы берем Z(B) := Φ−1(IB).

Для обоснования этой конструкции нужно проверить, что функции λ → eiλt порожда-
ют L2(R,B(R), µ). Для этого достаточго проверить, что линейные комбинации функций eiλt
в метрике L2(R,B(R), µ) индикаторы всех борелевских множеств. Более того, в силу счет-
ной аддитивности и ограниченности µ нам достаточно показать возможность приближения
индикаторов I(−∞,a] на любом отрезке [b, c]. Из теории рядов Фурье или теоремы Стоуна—
Вейерштрасса следует возможность равномерного приближения любой непрерывной функции.
В свою очередь, как мы это уже делали (где ?) ограниченная последовательность непрерывных
функций поточечно сходится к I(−∞,a].

5. Прогноз для процессов с дискретным временем
Для упрощения ситуации мы будем рассматривать далее стационарные процессы с дис-

кретным временем {n ∈ bfN}. В этом случае спектральная мера процесса сосредоточена на
окружности λ ∈ [−π, π) и имеется по крайней мере один стационарный процесс, для которого
спектральная мера вычисляется. Этот процесс ηn мы будем называть процессом белого шума,
его ковариацияK(n) равна I{0}(n). Таким образом случайные величины ηn независимы, имеют
среднее 0 и дисперсию 1. Очевидно, что

K(n) =
1

2π

∫ π

−π
1 · e−nλdλ,

таким образом спектральная мера µη имеет плотность 1
2π . Далее предлагается использовать

модели, использующие стационарные процессы, получающиеся из белого шума некоторыми
линейными преобразованиями и для них строить теорию оптимального прогноза (подробное
изложение см. в [4]).

Давайте рассмотрим два стационарных процесса, ξn и ζn, связанные линейными соотноше-
нием:

ζn = a0ξn + a1ξn−1 + ...+ amξn−m,

оказывается, что по спектральной плотности одного из этих процессов можно восстановить
спектральную плотность другого процесса. Дело в том, что если случайные величины ξn мы
отождествляем с функциями einλ, то тогда случайные величины ζn следует отождествлять с
функциями a0e

inλ + a1e
i(n−1)λ + ...+ ame

i(n−m)λ. Теперь подсчитаем Kζ :

Kζ(n) = E[ζ0ζn] =

=

∫ π

−π
(a0e

i0λ + a1e
−iλ + ...+ ame

−imλ)(a0einλ + a1ei(n−1)λ + ...+ amei(n−m)λ)fξ(λ)dλ =

=

∫ π

−π
ei0λeinλ(a0e

i0λ + a1e
−iλ + ...+ ame

−imλ)(a0ei0λ + a1e−iλ + ...+ ame−imλ)fξ(λ)dλ =

=

∫ π

−π
ei0λeinλfζ(λ)dλ.

Но тогда мы можем положить

fζ(λ) = fξ(λ)
∣∣a0(ei0λ + a1e

iλ + ...+ ame
imλ
∣∣2 .

Теперь мы можем выписать спектральную плотность для двух видов процессов, которые опре-
деляются с помощью процесса белого шума: процесс скользящего среднего ξn определяется
соотношением

ξn = a0ηn + a1ηn−1 + ...+ amηn−m,
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процесс авторегрессии ζn определяется обратным соотношением

ηn = b0ζn + b1ζn−1 + ...+ bmζn−k. (∗)

Согласно только сформулированному принципу получаем:

fξ(λ) =
1

2π

∣∣a0(ei0λ + a1e
iλ + ...+ ame

imλ
∣∣2 , fζ(λ) =

1

2π

1

|b0(ei0λ + b1eiλ + ...+ bkeikλ|2
.

Отметим, что из тех же соображений мы можем выписать спектральную плотность процесса,
которая получается из процесса белого шума в два этапа, сначала по процессу ηn определяется
процесс ξn, потом по нему строится соотношением (*) процесс ζn, но в (*) роль η играет процесс
ξ. В этой конструкции спектральная плотность является дробью

1

2π

∣∣a0(ei0λ + a1e
iλ + ...+ ame

imλ
∣∣2

|b0(ei0λ + b1eiλ + ...+ bkeikλ|2
. (1)

Теперь, наконец, перейдем к задаче прогноза.
Решением задачи прогноза для стационарного процесса ξn на один шаг является случай-

ная величина ξ̂1 ∈ Lin{ξ0, ξ−1, ...} (замыкание в норме L2), которая минимизирует E(ξ1 − ξ̂1)2.
Хорошо известно хотя бы из трехмерного опыта, что такой минимум достигается при ортого-
нальном проектировании ξ1 на Lin{ξ0, ξ−1, ...}, а это в свою очередь эквивалентно ортогональ-
ности ξ1 − ξ̂1 пространству Lin{ξ0, ξ−1, ...}, а для этого достаточно ξ1 − ξ̂1 ⊥ ξn для любого
n ∈ {0,−1,−2, ...}.

Теперь перенесем эту ситуацию в пространство Hξ = L2([−π, π), fξ(λ)dλ), где fξ — спек-
тральная плотность процесса ξ. При таком переходе случайные величины ξn, где n ∈ Z, Z
— множество всех целых чисел, переходят в функции λ → einλ, пространство Lin{ξ0, ξ−1, ...}
переходит в подпространство Hξ = L2([−π, π), fξ(λ)dλ), образ случайной величины ξ̂1 мы обо-
значим

g ∈ Lin{1 = ei0λ, e−iλe−i2λ, ...},

причем должно выполняться eiλ − g ⊥ einλ в Hξ ∀n = 0,−1,−2, ..., то есть∫ π

−π
(eiλ − g(λ))einλfξ(λ)dλ = 0 ∀n = 0,−1,−2, .... (∗)

Далее мы покажем, как решается задача прогноза лишь для конкретного примера fξ(λ) =
(2 + e−iλ)(2 + eiλ). Заметим, что имеет место такая факторизация fξ = f1f2 (где f1 = 2 +
e−iλ, f2 = 2 + eiλ), что функции f1 и f−1

1 являются суммами равномерно сходящегося ряда
по функциям einλ, n = 0,−1,−2, ... (причем для f1 это просто сумма), аналогично функции
f2 и f−1

2 являются суммами равномерно сходящегося ряда по функциям einλ, n = 0, 1, 2, ....
Следующую лемму мы предлагаем доказать самостоятельно:

Лемма. Пусть функция u принадлежит Lin{e−iλ, e−i2λ, ...}, то есть

u(λ) =
∑
n>0

ane
inλ, сходимость в пространстве L2([−π, π), dλ), (∗∗)

функция v разлагается в равномерно сходящийся ряд

v(λ) =
∑
n≥0

bne
inλ, сходимость в пространстве C([−π, π)),

тогда uv разлагается в ряд

u(λ)v(λ) =
∑
n>0

cne
inλ, сходимость в пространстве L2([−π, π), dλ).
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Здесь dλ — обычная мера Лебега без умножения на спектральный множитель.
Замечание. Условие равномерной сходимости v по-видимому существенно. В противном

случае просто может не получиться принадлежности L2([−π, π), dλ). К сожалению, не могу
предложить контрпример.

Итак, как использовать определенное выше разложение. Для наглядности введем четыре
замкнутых линейных подпространства пространства L2([−π, π), dλ):

H+ :=

u|[−π, π) : u =
∑
n≥0

ane
inλ,

∑
a2
n <∞

 ,

H̃+ :=

{
u[−π, π) : u =

∑
n>0

ane
inλ,

∑
a2
n <∞

}
,

H− :=

u|[−π, π) : u =
∑
n≥0

ane
−inλ,

∑
a2
n <∞

 ,

H̃− :=

{
u[−π, π) : u =

∑
n>0

ane
−inλ,

∑
a2
n <∞

}
.

Очевидно, что

H+ ⊥ H̃−H− ⊥ H̃+, L
2([−π, π), dλ) = H+ ⊕ H̃− = H− ⊕ H̃+,

⊕ здесь означает ортогональную прямую сумму. Соотношение (*) мы можем представить как

(eiλ − g(λ))f1(λ)f2(λ) ⊥ einλ∀n = 0,−1,−2, (∗ ∗ ∗)

или (что то же) (eiλ − g(λ))f1(λ)f2(λ) ∈ H̃+. Согласно лемме

(eiλ − g(λ))f1(λ) = (eiλ − g(λ))f1(λ)f2(λ)f
(−1)
2 (λ) ∈ H̃+.

Обратно, из этого соотношения следует (***). Дальнейшее просто: мы берем ряд eiλf1(λ) и
берем из него ту часть ряда, которая относится к H−, она равна g(λ))f1(λ), для вычисления g
нужно умножить g(λ))f1(λ) на f−1

1 (λ).
Итак,

eiλf1(λ) = 2eiλ + 1,

g(λ))f1(λ) = 1, (∗ ∗ ∗∗)

g(λ)) = 1/f1(λ) = 1/2e0iλ − 1/4e−iλ + 1/8e−2iλ − 1/16e−3iλ + ....

Переходя к случайному процессу, получаем

ξ̂1 = ξ0/2− ξ−1/4 + ξ−2/8− ξ−3/16 + ....

То, что в правой части (****) мы получили 1, объясняется простотой процесса. Впрочем,
если бы мы прогнозировали на два шага, мы просто получили бы 0, то есть прогноз на два
шага ничего не дает кроме среднего процесса.

Наконец, что делать для более сложных процессов, как получить факторизацию f = f1f2

даже для процесса со спектральной плотностью (1 + 2e−iλ)(1 + 2eiλ). В этом случае деление 1
на каждый из сомножителей не приводит к равномерно сходящемуся ряду по степеням einλ.
Оказывается, все просто, умножив 1 + 2e−iλ на eiλ, а 1 + 2eiλ на e−iλ, мы приходим к старой
ситуации. Аналогично действуя и используя основную теорему алгебры, мы можем доказать
существование факторизации для любой функции вида (1).
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3. Теорема. Имеется стационарный случайный процесс ξn, n ∈ Z, с нулевым средним и с
дискретным временем. Тогда на единичной окружности существует такая случайная мера
Z с ортогогональными приращениями, что

ξn =

∫
[−π,π)

eiλndZ(λ). (1)

Из стационарности процесса следует неотрицательная определенность функции

K(n) = Eξ0ξ̄n.

Действительно ∑
m

∑
n

K(m− n)σmσ̄n = E

(∑
m

∑
n

ξmξ̄nσmσ̄n

)
=

= E

∣∣∣∣∣∑
m

ξmσm

∣∣∣∣∣
2

≥ 0.

Заметим, что по любой возрастающей функции F на [π, π) можно построить случайную
меру Z с ортогональными приращениями с гауссовскими распределениями, такую, что F (λ) =
EZ2(λ). Это следует из теоремы Колмогорова о совместных распределениях.

Введем пространство H2 — замыкание Lin{ξn : n ∈ Z} в метрике, заданной скалярным
произведением

(ξ, η) := E(ξη̄).

Одновременно рассмотрим функцию F (λ), существование которой следует из теоремы Бохнера
и которая определяется соотношением

K(n) =

∫
[−π,π)

eiλndF (λ),E(ξmξ̄n) = K(m− n) =

∫
[−π,π)

eiλ(m−n)dF (λ).

Рассмотрим отображение Φ : ξn → eiλn, которое является изометричным отображением H2

в пространство L2([−π, π), dF ). Легко видеть (??1), что это отображение изометрично, а со-
гласно теореме Стоуна — Вейерштрасса образ этого отображения всюду плотен. Обратное
отображение переводит функции I[0,λ) в некоторые случайные величины Z(λ). Ортогональ-
ность приращений Z(µ) − Z(λ), Z(λ), 0 < λ < µ следует из ортогональности функций I[0,λ) и
I[λ,µ) в пространстве L2([−π, π), dF ).

Функция F может являться интегралом от некоторой функции f , которая называется спек-
тральной плотностью. Как находить спектральную плотность для некоторых случайных про-
цессов, задаваемых некоторыми условиями, не используя обратное преобразование Фурье? На-
до начинать от простейшего стационарного процесса ζn, состоящего из независимых N(0, 1)-
нормальных случайных величин. В этой ситуации

Kζ(n) =

{
1, если n = 0,
0, если n 6= 0.

Легко видеть, что спектральная плотность ζn имеет вид f(λ) = 1/2π, так как из теории рядов
Фурье известно, что функции eiλn ортогональны для разных n относительно меры dλ. Так как
все точки спектра с равной интенсивностью входят в спектр, процесс ζn называется процес-
сом белого шума. Для этого процесса задача прогноза не имеет смысла, так как будущее не
зависит от прошлого и настоящего, следовательно, и прогноз не будет зависеть от прошлого и
настоящего.

Теперь посмотрим, что происходит со спектральной плотностью fϕ процесса при линейном
преобразовании произвольного процесса ϕn. А именно, от процесса ϕn мы переходим к процес-
су ψn = a0ϕn + a1ϕn−1 + ...+ akϕn−k. Однако при построенном ранее отображении случайные
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величины ψn переходят в функции a0e
iλn + a1e

iλ(n−1) + ... + ake
iλ(n−k), в частности, ψ0 пере-

ходит в функцию a0e
iλ0 + a1e

iλ(−1) + ... + ake
iλ(−k), тогда корреляционная функция процесса

ψn также интерпретируется как скалярное произведение этих функций и будет иметь вид

Kψ(n) =

∫
[−π,π)

eiλnfψ(λ)dλ =

=

∫
[−π,π)

(a0e
iλn + a1e

iλ(n−1) + ...+ ake
iλ(n−k))(a0eiλ0 + a1eiλ(−1) + ...+ akeiλ(−k))fϕ(λ)dλ =

=

∫
[−π,π)

eiλn
∣∣∣a0e

iλ0 + a1e
iλ) + ...+ ake

iλk
∣∣∣2 fξ(λ)dλ.

Отсюда немедленно следует соотношение между fϕ и fψ:

fψ(λ) =
∣∣∣a0e

iλ0 + a1e
iλ) + ...+ ake

iλk
∣∣∣2 fϕ(λ).

Теперь мы можем записать спектральную плотность трех типов процессов, которые ли-
нейным образом записываются через заданный процесс белого шума ζn, все три процесса мы
будем обозначать одной и той же буквой ξ.

Процесс скользящего среднего — это ξn = a0ζn + a1ζn−1 + ...+ akζn−k. Согласно сказанному
(ϕn = ζn, ψn = ξn), в этом случае

fξ(λ) =
1

2π

∣∣∣a0e
iλ0 + a1e

iλ) + ...+ ake
iλk
∣∣∣2 .

Процесс авторегрессии — это процесс ξn, связанный с процессом ζn следующим соотноше-
нием: ζn = a0ξn + a1ξn−1 + ...+ akξn−k. В этом случае ϕn = ξn, ψn = ζn. Поэтому

fξ(λ) =
1

2π

1∣∣a0eiλ0 + a1eiλ) + ...+ akeiλk
∣∣2 . (2)

Замечание. Не для любого набора (an) существует процесс ξn. Например, если a0 = 1,
a1 = −1, an = 0 для n > 1, то складывая соотношения для ζn получаем ζn + ...+ ζ1 = ξn − ξ0,
D(ξn − ξ0) = n→∞. Это следует также из неинтегрируемости функции fξ(λ) в (2)(??2)

Процесс смешанного типа — это ξn такой, что ξn = a0ηn + a1ηn−1 + ... + akηn−k, где ζn =
b0ηn + b1ηn−1 + ...+ bsηn−s. Аналонично предыдущим двум случаям, в этой ситуации

fξ(λ) =
1

2π

∣∣a0e
iλ0 + a1e

iλ) + ...+ ake
iλk
∣∣2∣∣b0eiλ0 + b1eiλ) + ...+ bseiλs
∣∣2 . (3)

Задача прогноза. Теперь мы рассмотрим задачу прогноза для стационарного случайного
процесса. Идея прогноза (для простоты рассмотрим прогноз на один шаг) состоит в ортого-
нальном проектировании случайной величины ξ1 на замыкание линейной оболочки случайных
величин ξ0, ξ−1, .... Действительно, как хорошо известно из геометрии, при ортогональном про-
ектировании мы получаем элемент, находящийся от проектируемого на минимальном расстоя-
нии. В результате проектирования мы получим вообше говоря бесконечную линейную комби-
нацию c0ξ0 +c1ξ1 + .... На практике это используется следующим образом: из полученных нами
в результате наблюдения или эксперимента чисел ξ0(ω), ξ−1(ω), ... мы составляем линейную
комбинацию c0ξ0(ω) + c1ξ−1(ω) + .... Полученное число будет нашим прогнозом.

Мы будем рассматривать задачу прогноза для простоты при условии 0 < C1 ≤ fξ(λ) ≤
C2 < ∞. (??3 Почему это условие выполняется для функций из (3))?). (??4 Где это усло-
вие дальше используется?). Чтобы облегчить ситуацию, задача переносится на пространство
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L2([−π, π), fξ(λ)dλ), в этом пространстве мы проектируем функцию eiλ на замыкание ли-
нейной оболочки функций eiλ0, eiλ(−1), eiλ(−2),..., в результате получаем функцию прогноза
g(λ) = c0 · 1 + c−1e

iλ(−1) + c−2e
iλ(−2) и нужные нам коэффициенты c−i, i = 0, 1, 2, .... Иногда

можно получить точные формулы для коэффициентов. Идея состоит в переходе из простран-
ства L2([−π, π), fξ(λ)dλ) в пространство L2([−π, π), fξ(λ)dλ), в котором все просто, все функции
eiλk ортогональны при разных k.

Введем несколько линейных подпространств пространства L2([−π, π), dλ):
h≤0 является замыканием линейной оболочки функций eiλn, где n ≤ 0, h>0 является за-

мыканием линейной оболочки функций eiλn, где n > 0. Хотя сами функции eiλn непрерывны,
функции из пространств h≤0 и h>0 могут не быть непрерывными. Более того, каждый эле-
мент L2([−π, π), dλ) однозначно раскладывается в виде суммы элемента из h≤0 и элемента
из h>0. Эти подпространства ортогональны в смысле скалярного произведения пространства
L2([−π, π), dλ) (но не в смысле пространства L2([−π, π), fξ(λ)dλ));

C≤0 (соответственно, C≥0) — пространства непрерывных функций, являющихся равномер-
ными пределами конечных линейных комбинаций функций eiλn, где n ≤ 0 (соответственно,
n ≥ 0). Разумеется, эти пространства незамкнуты в L2([−π, π), dλ). Более того, эти простран-
ства являются не только линейными пространствами, но и алгебрами. Действительно, произве-
дения функций eiλn, где n ≤ 0, также являются функциями eiλn, n ≤ 0, поэтому произведения
конечных линейных комбинаций таких функций также являются конечными линейными ком-
бинациями такого же вида. Переход к равномерному пределу приводит нас к функциям изC≤0.
Пространства C≤0 и C≥0 полны относительно используемой для них нормы ‖f‖∞ = maxt |f(t)|
(??5).

Нам понадобятся и другие аналогичные утверждения: i) произведение функции из h≤0

и функции из C≤0 принадлежит h≤0, ii) произведение функции из h>0 и функции из C≥0

принадлежит h>0. Оба утверждения проверяются одинаково, проверим i). Заметим (??6), что
если fn → f в h≤0, gn → g в C≤0, то fngn → fg в h≤0. Это доказывается элементарными
оценками (??7).

Теперь мы займемся самой задачей прогоноза на один шаг: прогноз на один шаг для процес-
са ξn по данным ξn, n ≤ 0, обозначим через γ. Но мы процесс перевели в L2([−π, π), fξ(λ)dλ),
в частности, ξn, n ≤ 0, превратились в функции eiλn, n ≤ 0, а функция, в котороую превраща-
ется прогноз γ, мы обозначим g, разность значения процесса в момент 1 и прогноза для этого
значения превращается в eiλ − g(λ). Итак,

eiλ − g(λ) ⊥ eiλn∀n ≤ 0.

в пространстве L2([−π, π), fξ(λ)dλ). В интегралах это записывается следующим образом:∫
[−π,π)

[
eiλ − g(λ)

]
eiλ(−n)fξ(λ)dλ) = 0∀n ≤ 0.

Теперь все это переведем в пространство L2([−π, π), dλ) (??8):[
eiλ − g(λ)

]
fξ(λ) ∈ h>0, (4)

g(λ) ∈ h≤0. (5)

Далее мы будем решать задачу при выполнении условия факторизации:

fξ = f1f2, f1 ∈ C≤0, f
−1
1 ∈ C≤0, f2 = f̄1 ∈ C≥0, f

−1
2 =∈ C≥0.

В результате (4) и благодаря утверждению i) (??9) свойство (4) заменяется на

h(λ) :=
[
eiλ − g(λ)

]
f1 ∈ h>0. (6)

Итак,
eiλf1 = g(λ)f1(λ) + h(λ), где g ∈ h≤0, h ∈ h>0.
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Более того, используя утверждение i) (??10) мы получаем

gf1 ∈ h≤0, h ∈ h>0.

Таким образом, алгоритм нахождения наилучшего прогноза оказывается следующим (?11):
надо взять функцию eiλf1 и разложить ее в ряд Фурье по степеням einλ, n ∈ Z. Часть ряда,
принадлежащая h≤0, образует функцию gf1, разделив эту функцию на f1, получаем g.

Последнее, что надо сделать — показать, что спектральная плотность вида (3) удовлетворя-
ет условию факторизации. Заметим, что из принятых выше соглашений следует, что числитель
и знаменатель (3) не имеют корней на [−π, π). Итак (??12), дробь (3) представляется в виде

fξ(λ) = C
(z1 − eiλ)(z̄1 − e−iλ) · · · (zn − eiλ)(z̄n − e−iλ)

(u1 − eiλ)(ū1 − e−iλ) · · · (um − eiλ)(ūm − e−iλ)
,

где C — положительная константа, zk, uj — корни соответствующих (??13) многочленов, не
равные 1. Легко видеть, что все числа zk, uj можно считать по абсолютной величине строго
больше 1 (??14 Где это потом используется?). Действительно, если |zk| < 1, мы можем заменить
соответствующие два множителя (изменяя при этом C), используя следующее равенство:

(zk − eiλ)(z̄k − e−iλ) = (zke
−iλ − 1)(z̄ke

iλ − 1)eiλe−iλ = (e−iλ − 1

zk
)(eiλ − 1

z̄k
)|zk|2.

(??15. Как же так? Ведь согласно основной теореме алгебры, разложение на элементарные
множители единственно.) Итак, мы считаем условие на абсолюные величины выполненными
и можем теперь выписать f1 и f2:

f1(λ) =
√
C

z̄1 − e−iλ) · · · (z̄n − e−iλ)

(ū1 − e−iλ) · · · (ūm − e−iλ)
, f2(λ) =

√
C

(z1 − eiλ) · · · (zn − eiλ)

(u1 − eiλ) · · · (um − eiλ)
.

Числитель f1 очевидным образом принадлежитC≤0, каждый множитель 1
(um−e−iλ)

по формуле
геометрической прогрессии разлагается в ряд по степеням e−ikλ, k ≥ 0, который сходится
равномерно. Далее мы используем то, что C≤0 — алгебра.

Пример. ξn = ζn − 2ζn−1. Имеем: fξ(λ) = 1
2π (1 − 2eiλ)(1 − 2e−iλ), другое представление

fξ(λ) = 2
π

(
1− 1

2e
iλ
) (

1− 1
2e
−iλ), f1(λ) =

√
2√
π

(
1− 1

2e
−iλ), eiλf1(λ) =

√
2√
π

(
eiλ − 1

2

)
, g(λ)f1(λ) =

√
2√
π

(
− 1

2

)
g(λ) =

√
2√
π

(
−1

2

)
(f1(λ))−1 = −1

2
− 1

4
e−iλ − 1

8
e−2iλ · · · .

Оценка в момент времени 1 имеет вид:

ξ̂1 = −1

2
ξ0 −

1

4
ξ−1 −

1

8
ξ−2 · · · .

Добавление (не надо дальше учить).
Простейшая форма — некоторая определенная функция f(x) + ηt, где ηt — стационарный

случайный процесс.
Процесс с комплексными значениями и ковариация такого стационарного процесса. Моти-

вация — процесс ξ cos(at) — заведомо нестационарный. Но если добавить iξ sin(at), получится
заведомо стационарный процесс ξeiat. Если время дискретно, то a ∈ [0, 2π). Задача оптималь-
ного выбора f(x). Процесс белого шума в дискретном случае. Почему белый?

3. Безгранично делимые распределения
Определение 1. Безгранично делимое распределение вероятностей P на числовой прямой —

это такое распределение, что для любого натуральногого n существуют одинаково распреде-
ленные независимые случайные величины ξ1,..., ξn, что

P = Pξ1+...+ξn .
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Представление Леви для характеристической функции ϕ произвольного безгранично де-
лимого распределения:

logψG,γ(t) = iγt+

∫ ∞
−∞

(
eitx − 1− itx

1 + x2

)
1 + x2

x2
dG(x) (6)

где G — неубывающая ограниченная функция, γ — действительная постоянная, а подынте-
гральная функция в точке x = 0 считается равной −t2/2.

Теорема. Функция ψG,γ является характеристической функцией безгранично делимого
распределения.

Доказательство. Так как
ψG,γ =

(
ψG/n,γ/n

)n
,

для доказательства безграничной делимости достаточно доказать, что ψG,γ при любых G и γ
является характеристической функцией распределения. Доказательство положительной опре-
деленности этой функции представляется доволно трудным, поэтому проще показать, что эта
функция является пределом последовательности характеристических функций. Мы заменим
интеграл (6) на верхнюю и нижнюю часть и каждую из них представим как предел интегралов
по отрезку, а каждый из них — как предел интегральных сумм.

Итак, ∫ 1/ε

ε

(
eitx − 1− itx

1 + x2

)
1 + x2

x2
dG(x) = lim

n

n−1∑
k=0

Tnk,

где

Tnk =

(
eitξk − 1− itξk

1 + ξ2
k

)
1 + ξ2

k

ξ2
k

(G(xk+1)−G(xk),

ε = x0 < ... < xn = 1/ε, xk ≤ ξk ≤ xk+1,max
k
|xk+1 − xk| → 0(n→∞).

Каждое Tnk записывается в виде

Tnk = itank + λnk
(
eitbnk − 1

)
.

Соответственно, eTnk является характеристической функции сдвинутого на ank распределения
Пуассона с параметром λnk и шагом bnk (а не 1, как у классического распределения Пуассона).

Определение 2. Последовательность {Xnk : k ≤ kn} серий независимых случайных вели-
чин называется удовлетворяющей условию бесконечной малости, если

max
k≤kn

P{|Xnk| ≥ ε} → 0 при n→∞ для любого фиксированного ε > 0. (7)

Теорема 2. Пусть последовательность {Xnk : k ≤ kn} удовлетворяет условию бесконеч-
ной малости, τ — некоторое положительное число. Обозначим через Fnk функции распреде-
ления случайных величин Xnk,

ank =

∫
|x|<τ

xdFnk(x); F̄nk(x) = Fnk(x+ ank);

γn =

kn∑
k=1

ank +

∞∫
−∞

x

1 + x2
dF̄nk(x)

 ;

Gnk(x) =

kn∑
k=1

x∫
−∞

y2

1 + y2
dF̄nk(y).
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Тогда
kn∑
k=1

Xnk
L−→ ϕ

тогда и только тогда, когда
Gn

L−→ G, γn → γ.

Доказательство. Обозначим характеристическую функцию Xnk через ϕnk, характеристи-

ческую функцию
kn∑
k=1

Xnk через ϕn, а распределение
kn∑
k=1

Xnk — через Pn. Очевидная оценка

|ψG,γ − ϕn| ≤ |ψG,γ − ψGn,γn |+ |ψGn,γn − ϕn|

показывает, что доказательство сводится к доказательству двух сходимостей:
a) ψGn,γn(t)→ ψG,γ(t) для всех t ∈ R,
b) |ψGn,γn(t)− ϕn(t)| → 0 для всех t ∈ R.
Первое утверждение является самостоятельным фактом — теоремой о сходимости характе-

ристических функций. Впрочем, для полноты доказательства нам нужно доказать еще слабую
компактность семейства распределений {Pn}.
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НЕОБХОДИМЫЕ СВЕДЕНИЯ ИЗ ДРУГИХ МАТЕМАТИЧЕСКИХ КУРСОВ

Анализ
Производная сложной функции
Критерии Коши сходимости последовательности и ряда
Критерий ε-милиционеров
Критерий сходимости ряда в терминах абсолютно сходящегося ряда
Равномерная непрерывностоть и теорема Кантора
Компактность отрезка на числовой прямой
Интегральные суммы Римана — Стильтьеса
Преобразование Фурье
Линейная алгебра
Дополнение ортонормированной системы до ортонормированного базиса
Ортогональная матрица
Неотрицательно определенная квадратичная форма
Сумма квадратов как произведение вектора-строки на вектор-столбец
Вращение и сумма квадратов координат
Теория меры
Продолжение меры с полуалгебры на алгебры, с алгебры на σ-алгебру
Эквивалентность счетной аддитивности и непрерывности для конечно аддитивной функции

множеств на алгебре
Определение интеграла Лебега по вероятностной мере
Теорема Лебега для сходимости по вероятности
Теорема Радона — Никодима
Функциональный анализ
Теорема Банаха о неподвижной точке
Теорема Брауэра о неподвижной точке
Комплексный анализ
Интеграл по замкнутому контуру
Дифференциальные уравнения
Метод вариации постоянной.
Уравнения с частными производными.
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ЭКЗАМЕНЫ И ЗАЧЕТЫ

Экзамен по теории вероятностей
ПРОГРАММА
Частотная интерпретация вероятности. Вероятностное пространство. Теория вероятностей

и теория меры (сравнение обозначений и терминологий).
СОБЫТИЯ. Классическая модель. Различные варианты выборок. Задача о k гербах в n

экспериментах. Модели Больцмана — Максвелла (полиномиальная) и Бозе — Эйнштейна. Гео-
метрическая модель.

Формула сложения. Условная вероятность и независимость. Формула умножения. Задача о
распаде атома. Формулы полной вероятности и Байеса. Пример на контроль качества. Задача
о разорении игрока.

Независимость. Условная независимость. Эквивалентные определения независимости в со-
вокупности. Операции с независимыми событиями. Примеры: электрическая цепь и пример
Бернштейна.

Модель Бернулли. Предельная теорема Пуассона.
Независимые полуалгебры и алгебры. Связь счетной аддитивности и непрерывности. Неза-

висимость σ-алгебр и теорема о монотонных классов.
СЛУЧАЙНЫЕ ВЕЛИЧИНЫ. Случайные величины и их распределения на борелевской σ-

алгебре. Два определения случайной величины (прообразы борелевских множеств и прообразы
интервалов), их эквивалентность. Борелевская функция случайной величины - случайная ве-
личина. Свойства функции распределения (в частности, непрерывность вероятностной меры).
Примеры распределений (Бернулли, биномиальное, Пуассона, нормальное, равномерное, экс-
поненциальное). Вывод плотности нормального распределения с произвольными параметрами.
Связь функции распределения и функции плотности. Распределения квадрата и экспоненты.

Случайные векторы и наборы случайных величин. Распределения случайных векторов (сов-
местные распределения случайных величин). Связь совместной функции распределения и сов-
местной функции плотности. Задача о плотности распределения проекции случайного вектора.
Задание распределения по совместной функции распределения.

Независимые случайные величины. Эквивалентность двух определений независимости слу-
чайных величин. (в частности, операции с независимыми событиями, сохраняющие независи-
мость). Функции нескольких независимых случайных величин и теорема о монотонных клас-
сах. Независимость на языке совместной плотности для непрерывного случая.

Распределения, связанные с набором независимых нормальных случайных величин: Коши,
хи-квадрат (с выводом), Стьюдента.

Многомерное нормальное распределение (вводится только невырожденное). Стандартное
нормальное распределение.

Лемма о вращении стандартного нормального случайного вектора.
Среднее и его свойства. Доказательства (Формула замены переменной. Среднее произ-

ведение независимых случайных величин). Вычисление среднего в случае дискретного или
непрерывного распределений. Дисперсия и ее свойства. Вычисление среднего и дисперсии для
некоторых распределений (биномиальное, нормальное, равномерное, Пуассона, χ2, Стьюден-
та). Пример отсутствия среднего. Моменты и другие характеристики.

Неотрицательная определенность матрицы вторых моментов. Коэффициент корреляции и
его свойства. Связь с независимостью. Случай совместного нормального распределения. При-
мер двух зависимых симметричных случайных величин со значениями в {0,+1,−1} с нулевым
коэффициентом корреляции. Функция регрессии (случай константы, дискретной случайной
величины, совместной функции плотности и нормального распределения).

ПОСЛЕДОВАТЕЛЬНОСТИ СЛУЧАЙНЫХВЕЛИЧИН. Сходимость по вероятности. Нера-
венство Чебышева. Слабый закон больших чисел. Применение к частоте события. Метод Монте-
Карло.

Лемма Бореля — Кантелли. Критерий Коши сходимости ряда почти наверное. Неравенство

230



Колмогорова. Сходимость по Чезаро и связь с обычной сходимостью. Усиленный закон боль-
ших чисел для разно распределенных случайных величин со вторым моментом. Усиленный
закон больших чисел Колмогорова для одинаково pаспределенных случайных величин.

Слабая сходимость распределений. Эквивалентность двух определений (на языке интегра-
лов и функций распределений). Связь сходимости по вероятности и слабой сходимости.

ЗАДАЧИ ИЗ ПРАКТИКИ (не включается среднее значение, дисперсия и т.д.), будут две
задачи из всего предшествующего (события, формулы, независимость, случайные величины,
случайные векторы, их распределения и распределения функций, в том числе независимые
случайные величины).

Вопросы, на которые нужно отвечать сразу:
1) Определение независимых событий. Нужно понимать, что верно и обратное, если вероят-

ность произведения равна произведению вероятностей, то эти события независимы, даже если
на первый взгляд кажутся зависимыми. Верно и противоположное, если нужного равенства
вероятностей нет, то события зависимы.

2) События, независимые в совокупности. Вероятность произведения равна произведению
вероятностей для любого поднабора.

3) Несовместные события, их нельзя путать с независимыми. Нужно понимать, что для
несовместных A и B имеет место P(A∪B) = P(A) +P(B) (мы пишем, используя дополнитель-
ную нагрузку на символ, P(A + B) = P(A) + P(B)). Это частный случай формулы сложения,
используется при решении задач. Для независимых событий верна другая формула (ее помнить
не обязательно) P(A ∪B) = P(A) + P(B)− P(A)P(B).

Итак, формула P(A + B) = P(A) + P(B) будет использоваться в самых разных вариантах.
Например, P(A) = P(Ω) − P(A) — частный случай формулы P(A) = P(A + B) − P(B). Итак,
для вычисления (или оценки сверху) вероятности события его нужно разбить на несколько
несовместных событий, каждое из которых легче вычислить (или оценить).

4) Определение условной вероятности.
5) Вычисление вероятности попадания случайного вектора в множество в дискретном и

непрерывном случаях. Приведем алгоритм для двумерного случайного вектора (ξ, η). В дис-
кретном случае знание распределения означает знание всех вероятностей

P{(ξ, η) = (xi, yi)} = pi, где
∑
i

pi = 1.

Итак, для вычисления P{(ξ, η)}, надо сложить все числа pi, для которых (xi, yi) ∈ B. Например,
для вычисления P{ξ = x} надо сложить все числа pi, для которых xi = x (в этом случае
B = {x} ×R).

Аналогично, в непрерывном случае мы должны взять интеграл по B от совместной функ-
ции плотности. Обратно, это равенство является определением совместной функции плотности.
Поэтому в двумерном случае функция плотности ξ задается интегралом (точнее, может быть
задана интегралом, так как функция плотности задана с точностью до значений на множестве
лебеговой меры нуль)

pξ(x) =

∫
R

pξ,η(x, y)dy.

Действительно, при таком задании мы будем иметь тождество для любого борелевского B:

P{ξ ∈ B} =

∫
B

pξ(x)dx =

= P{(ξ, η) ∈ B ×R} =

∫
B×R

pξ,η(x, y)dxdy.

6) Определение независимости случайных величин: ξ и η:

P{(ξ, η) ∈ B1 ×B2} = P{ξ ∈ B1} · P{η ∈ B2}.
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В дискретном случае нужно проверить, что для всех возможных значений x и y случайных
величин ξ и η имеет место равенство

P{ξ = x, η = y} = P{ξ = x} · P{η = y}. (1)

Определение получается сложением этих равенств по всем возможным значениям x ∈ B1 и
y ∈ B2 случайных величин ξ и η. В непрерывном случае для независимости необходимо и
достаточно разложение

pξ,η(x, y) = pξ(x) · pη(y) (2)

для всех x и y, за исключением множества лебеговой меры нуль.
7) Как записывается совместная функция плотности независимых случайных величин ξ1,

ξ2,...,ξn, имеющих одну и ту же функцию плотности p.
8) Вычисление среднего в дискретном случае

Eξ =
∑
i

xiP{ξ = xi},

суммирование по всем возможным значениям xi случайной величины ξ. Соответственно, если
заданы вероятности значений случайного вектора (ξ, η), то

Eξ =
∑
i

xiP{ξ = xi, η = yi},

суммирование по всем возможным значениям (xi, yi) случайного вектора (ξ, η).
9) Вычисление среднего в непрерывном случае

Eξ =

∫
R

xpξ(x)dx.

Соответственно, если задана совместная плотность случайного вектора (ξ, η), то

Eξ =

∫
R

∫
R

xpξ,η(x, y)dxdy.

10) Аддитивность среднего, константа выносится из под знака среднего, среднее константы
равно этой константе, в частности E(Eξ) = Eξ (среднее значение — это константа).

11) Среднее произведения независимых случайных величин равно произведению средних.
12) Два определения дисперсии:

Dξ = E(ξ − Eξ)2 = Eξ2 − (Eξ)2.

13. Свойства дисперсии — дисперсия не меняется при сдвиге случайной величины на кон-
станту (Dξ = D(ξ + c)), при умножении случайной величины на константу ее дисперсия умно-
жается на квадрат константы, и, наконец, дисперсия суммы независимых случайных величин
равна сумме дисперсий.

14) Параметры нормального распределения: m — среднее, σ2 — дисперсия.
15) Определение функции распределения, ее связь с функцией плотности.
Требование отвечать на эти вопросы сразу вынужденно. Все это многократно используется,

и если не воспринимать эти вещи как очевидные, то вы не будете успевать понимать лекции в
следующем семестре. Так что рекомендуется несколько раз все это повторить, причем в конце
ваших занятий, когда вы устали. Спрашиваться это будет в конце экзамена.
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Экзамен по математической статистике
Кроме материала курса математической статистики надо на уровне определений и фор-

мулировок знать следующий материал:
Квадратичная форма. Вращение квадратичной формы. Ортогональная матрица, связь с ор-

тонормированным базисом. Дополнение ортонормированной системы до ортонормированного
базиса. Независимые события. Условная вероятность, формула полной вероятности. Формула
полной вероятности для плотности и условной плотности. Распределение Бернулли. Распреде-
ление Пуассона. Нормальное распределение. Экспоненциальное распределение. Равномерное
распределение. Лемма о вращении стандартного нормального случайного вектора. Независи-
мые случайные величины. Свойства функций независимых случайных величин. Совместная
плотность независимых случайных величин. Совместная плотность одинаково распределенных
независимых случайных величин. Среднее, дисперсия, коэффициент корреляции. Алгебраиче-
ские свойства среднего и дисперсии. Две формулы для дисперсии. Сходимость по вероятности.
Закон больших чисел. Слабая сходимость распределений, эквивалентность двух определений.
Где в курсе математической статистики используются все эти понятия и результаты? (Весь
раздел без доказательства)

Программа
Характеристическая функция. Элементарные свойства характеристической функции. Фор-

мула обращения. Теорема единственности.
Теорема о слабой компактности. Критерий слабой компактности в пространстве функций

распределения. Неравенство для усечений. Доказательство теоремы непрерывности.
Вычисление характеристической функции нормального распределения.
Применения характеристических функций. Центральная предельная теорема для одина-

ково распределенных слагаемых. Центральная предельная теорема в схеме серий (теорема
Линдеберга). Аппроксимация распределения χ2 и Стьюдента нормальным распределением.
Моделирование нормального распределения

Многомерная характеристическая функция, элементарные свойства и многомерные тео-
рема единственности и непрерывности (без доказательств). Определение многомерного нор-
мального распределения общего вида (возможно, вырожденного). Многомерная центральная
предельная теорема.

Эмпирическое распределение и его характеристики. Вероятностные и статистические моде-
ли. Примеры моделей. График эмпирической функции распределения. Оценивание парамет-
ров. Состоятельные оценки. Несмещенные оценки. Несмещенная оценка среднего и дисперсии
в нормальной модели.

Эффективные оценки. Неравенство Рао — Крамера. Теорема о том, что эффективная оцен-
ка является оценкой максимального правдоподобия. Алгоритм нахождения эффективной оцен-
ки (если она существует). Эффективная оценка среднего в нормальной модели. Оценка дис-
персии в нормальной модели. Контрпример для эмпирического среднего (как оценки среднего
равномерного распределения).

Состоятельная оценка. Примеры и контрпример для модели Коши. Теорема о состоятельно-
сти оценки максимального правдоподобия (без доказательства неравенства Йенсена). Пример.

Доверительные интервалы. Построение доверительного интервала для среднего (при неиз-
вестной дисперсии) и для дисперсии (при неизвестном среднем). Связь понятия состоятельной
оценки и понятия доверительного интервала.

Достаточные статистики и теорема факторизации.
Проверка статистических гипотез. Критерий Стьюдента (условия применения и вывод).

Критерий χ2. Вывод предельного распределения статистики χ2 (с использованием многомер-
ной центральной предельной теоремы). Оценка минимума χ2. Случай нескольких параметров.
Применение для проверки независимости двух признаков. Критерий Колмогорова — Смирнова
и сведение вычисления уровня значимости к случаю равномерного распределения. Критерий
знаков. Эмпирический коэффициент корреляции и вывод его распределения в предположении
независимости в нормальной модели. Проверка независимости в нормальной модели.
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Ранговые критерии (понятие). Критерий однородности, критерий серий. Критерий Вилкок-
сона. Асимметрия и эксцесс. Проверки на нормальность выборки. Критерий Фишера.

Задача сравнения гипотез. Лемма Неймана – Пирсона. Равномерно наиболее мощные кри-
терии. Примеры существования и несуществования равномерно наиболее мощных критериев.
Область безразличия.

Последовательный критерий Вальда.
Последние вопросы прочитать по данному электронному учебному пособию. Регрессия.

Корреляция. Факторный анализ. Метод главных компонент.
В зависимости от посещения практических занятий может быть предложен во-

прос построения доверительных интервалов или проверки гипотезы на конкретных
числах. Если в программе имеются вопросы, которых не было на лекциях (за исключением
последнего раздела), то на основании своих (!) лекций это можно доказать.
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Зачет по теории случайных процессов
Кроме материала курса теории случайных процессов надо на уровне определений и фор-

мулировок знать следующий материал:
Независимые события. Условная вероятность, формула полной вероятности. Распределение

Бернулли. Распределение Пуассона. Нормальное распределение. Экспоненциальное распреде-
ление. Независимые случайные величины. Свойства функций независимых случайных вели-
чин. Совместная плотность независимых случайных величин. Совместная плотность одинаково
распределенных независимых случайных величин. Среднее, дисперсия. Алгебраические свой-
ства среднего и дисперсии. Две формулы для дисперсии. Сходимость по вероятности. Закон
больших чисел. Характеристическая функция. Формула обращения. Теорема единственности.
Элементарные свойства характеристической функции. Вычисление характеристической функ-
ции нормального распределения. Центральная предельная теорема для одинаково распреде-
ленных слагаемых. (Весь раздел без доказательства). Где в курсе теории случайных процессов
используются все эти понятия и результаты?

Основные понятия теории случайных процессов (отвечать сразу определения и формули-
ровки)

1. Что такое случайный процесс с непрерывным и дискретным временем.
2. Среднее процесса и ковариация процесса
3. Совместные распределения процесса
4. Свойства траекторий процесса
5. Аксиомы винеровского процесса. Одномерные распределения винеровского процесса со

сносом и диффузией
6. Аксиомы пуассоновского процесса. Одномерные распределения пуассоновского процесса
7. Что такое стационарный случайный процесс
8. В чем состоит линейный прогноз стационарного процесса. На что происходит проекти-

рование
9. Что такое спектральная плотность стационарного случайного процесса.
10.Что такое стохастический интеграл Ито, какие у него интегральные суммы?
11. Что такое мартингал?
12. Что такое процесс случайного блуждания?
13. Что такое однородная цепь Маркова?
Программа
Лемма Бореля — Кантелли. Критерий Коши сходимости ряда почти наверное. Неравенство

Колмогорова. Сходимость по Чезаро и связь с обычной сходимостью. Усиленный закон боль-
ших чисел для разно распределенных случайных величин со вторым моментом. Усиленный
закон больших чисел Колмогорова для одинаково pаспределенных случайных величин.

Одномерное случайное блуждание. Задача о пьяном гуляке и принцип отражения. Задача о
баллотировке. Марковское свойство случайного блуждания. Задача о постоянном везении. За-
дача о возвращении случайного блуждания в начало на прямой, на плоскости, в пространстве.
Задача о продолжительном везении. Распределение арксинуса.

Марковский процесс и цепь Маркова. Однородная цепи Маркова. Переходные вероятности.
Задача о возвращении для однородной цепи Маркова со счетным числом состояний. Теорема
о существовании инвариантного состояния у цепи Маркова.

Пуассоновский и винеровский процессы: параметры, вывод распределений, ковариация,
совместное распределение . Производящая функция. Процессы гибели и размножения.

Оценка параметров сноса и диффузии процесса Винера. Теорема Колмогорова о непрерыв-
ности траекторий. Непрерывность траекторий процесса Винера. Применение — сходимость
почти наверное к коэффициенту сноса процесса. Недифференцируемость траекторий винеров-
ского процесса.

Марковские процессы. Диффузионные процессы.
Стационарные процессы. Прогноз для стационарного процесса. Процессы скользящего сред-

него и авторегрессии. Процесс Орнстейна — Уленбека.
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Интеграл Ито. Формула Ито. Два вывода
∫ T

0
wtdwt. Пример применения формулы Ито для

решения одного стохастического дифференциального уравнения.
Заряды. Теоремы Хана и Радона — Никодима. Понятие об условном среднем. Условная ве-

роятность относительно σ-алгебры. Мартингалы. Теорема Дуба о почти наверное сходимости
мартингала. Мартингалы в финансовой математике. Задача об оптимальном моменте останов-
ки. Применение: задача о разборчивой невесте.
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ТАБЛИЦЫ ВЕРОЯТНОСТЕЙ (см. [30])

Таблица 1. Функция распределения Φ стандартного нормального распределения:

Φ(x) =

x∫
−∞

1√
2π
e−

x2

2 dx.

Горизонтальная часть таблицы указывает сотые доли x. Значения Φ умножены на 104.∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x 0 1 2 3 4 5 6 7 8 9
0.0 5000 5040 5080 5120 5160 5200 5239 5279 5319 5359
0.1 5398 5438 5478 5517 5557 5596 5636 5675 5714 5753
0.2 5793 5832 5871 5910 5948 5987 6026 6064 6103 6141
0.3 6179 6217 6256 693 6331 6338 6406 6443 6480 6517
0.4 6554 6591 6628 6664 6700 6736 6772 6808 6844 6879
0.5 6915 6950 6985 7019 7054 7088 7123 7157 7190 7224
0.6 7257 7291 7324 7357 7389 7422 7454 7486 7517 7549
0.7 7580 7611 7642 7673 7703 7734 7764 7794 7823 7852
0.8 7881 7910 7939 7967 7995 8023 8051 8078 8106 8133
0.9 8159 8186 8212 8238 8264 8289 8315 8340 8365 8389
1.0 8413 8437 8461 8485 8508 8381 8554 8577 8599 8621
1.1 864 8665 8686 8708 8729 8749 8770 8790 8810 8831
1.2 8849 8869 8888 8907 8925 8944 8962 8980 8997 9015
1.3 9032 9049 9066 9082 9099 9115 9131 9147 9162 9177
1.4 9192 9207 9222 9236 9251 9255 9279 9292 9306 9319
1.5 9332 9345 9357 9370 9382 9394 9406 9418 9429 9441
1.6 9452 9463 9474 9484 9495 9505 9515 9525 9535 9545
1.7 9554 9564 9573 9582 8591 9599 9608 9616 9625 9633
1.8 9641 9649 9656 9664 9671 9678 9686 9693 9699 9705
1.9 9713 9719 9726 9732 9738 9744 9750 9756 9761 9767
2.0 9772 9778 9783 9788 9793 9798 9803 9808 9812 9817
2.1 9821 9825 9830 9834 9838 9842 9846 9850 9854 9857
2.2 9861 9864 9868 9871 9875 9878 9881 9884 9887 9890
2.3 9893 9896 9898 9901 9904 9906 9909 9911 9913 9915
2.4 9918 9920 9922 9925 9927 9929 9931 9932 9934 9936
2.5 9938 9940 9941 9943 9945 9946 9948 9949 9951 9952
2.6 9953 9955 9956 9957 9959 9960 9961 9962 9963 9964
2.7 9965 9966 9967 9968 9969 9970 9971 9972 9973 9974
2.8 9974 9975 9976 9977 9977 9978 9979 9979 9980 9981
2.9 9981 9982 9982 9983 9984 9984 9985 9985 9986 9986
3.0 9987 9987 9987 9988 9988 9989 9989 9989 9990 9990
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Таблица 2. (1− p)-квантиль q распределения χ2: P{χ2
n > q} = p.
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n\p 0.995 0.99 0.975 0.95 0.9 0.1 0.05 0.025 0.01 0.005
2 0.0100 0.0201 0.0506 0.103 0.211 4.605 5.991 7.378 9.210 10.597
3 0.0717 0.115 0.216 0.352 0.584 6.251 7.815 9.348 11.345 12.838
4 0.207 0.297 0.484 0.711 1.064 7.779 9.488 11.143 13.277 14.860
5 0.412 0.554 0.831 1.145 1.610 9.236 11.070 12.832 15.086 16.750
6 0.676 0.872 1.237 1.635 2.204 10.645 12.592 14.449 16.812 18.548
7 0.989 1.239 1.690 2.167 2.833 12.017 14.067 16.013 18.475 20.278
8 1.344 1.646 2.180 2.733 3.490 13.362 15.507 17.535 20.090 21.955
9 1.735 2.088 2.700 3.325 4.168 14.684 16.919 19.023 21.666 23.589

10 2.156 2.558 3.247 3.940 4.865 15.987 18.307 20.483 23.209 25.188
11 2.603 3.053 3.816 4.575 5.578 17.275 19.675 21.920 24.725 26.757
12 3.074 3.571 4.404 5.226 6.304 18.549 21.026 23.336 26.217 28.300
13 3.565 4.107 5.009 5.892 7.042 19.812 22.362 24.736 27.688 29.819
14 4.075 4.660 5.629 6.571 7.790 21.064 23.685 26.119 29.141 31.319
15 4.601 5.229 6.262 7.261 8.547 22.307 24.996 27.488 30.578 32.801
16 5.142 5.812 6.908 7.962 9.312 23.542 26.296 28.845 32.000 34.267
17 5.697 6.408 7.564 8.672 10.085 24.769 27.587 30.191 33.409 35.718
18 6.265 7.015 8.231 9.390 10.865 25.989 28.869 31.526 34.805 37.156
19 6.844 7.633 8.907 10.117 11.651 27.204 30.144 32.852 36.191 38.582
20 7.434 8.260 9.591 10.851 12.443 28.412 31.410 34.170 37.566 39.997
21 8.034 8.897 10.283 11.591 13.240 29.615 32.671 35.479 38.932 41.401
22 8.643 9.542 10.982 12.338 14.041 30.813 33.924 36.781 40.289 42.796
23 9.260 10.196 11.688 13.091 14.848 32.007 35.172 38.076 41.638 44.181
24 9.886 10.856 12.401 13.848 15.659 33.196 36.415 39.364 42.980 45.558
25 10.520 11.524 13.120 14.611 16.473 34.382 37.652 40.646 44.314 46.928
26 11.160 12.198 13.844 15.379 17.292 35.563 38.885 41.923 45.642 48.290
27 11.808 12.879 14.573 16.151 18.114 36.741 40.113 43.194 46.963 49.645
28 12.461 13.565 15.308 16.928 18.939 37.916 41.337 44.461 48.278 50.993
29 13.121 14.256 16.047 17.708 19.768 39.087 42.557 45.722 49.588 52.336
30 13.787 14.953 16.791 18.493 20.599 40.256 43.773 46.979 50.892 53.672
31 14.458 15.655 17.539 19.281 21.434 41.422 44.985 48.232 52.191 55.003
32 15.134 16.362 18.291 20.072 22.271 42.585 46.194 49.480 53.486 56.328
33 15.815 17.073 19.047 20.867 23.110 43.745 47.400 50.725 54.776 57.648
34 16.501 17.789 19.806 21.664 23.952 44.903 48.602 51.966 56.061 58.964
35 17.192 18.509 20.569 22.465 24.797 46.059 49.802 53.203 57.342 60.275
36 17.887 19.233 21.336 23.269 25.643 47.212 50.998 54.437 58.619 61.581
37 18.586 19.960 22.106 24.075 26.492 48.363 52.192 55.668 59.892 62.882
38 19.289 20.691 22.878 24.884 27.343 49.513 53.384 56.895 61.162 64.181
39 19.996 21.426 23.654 25.695 28.196 50.660 54, 572 58.120 62.428 65.476
40 20.707 22.164 24.433 26.509 29.051 51.805 55.758 59.342 63.691 66.766
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Таблица 3. (1− p)-квантиль q распределения Стьюдента случайной величины
tn: P{tn > q} = p.
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n\p 0.05 0.025 0.01 0.005
1 6.3138 12.7062 31.8205 63.6567
2 2.9200 4.3027 6.9646 9.9248
3 3534 3.1824 4.5407 5.8409
4 1318 2.7764 3.7469 4.6041
5 4759 5706 3649 0321
6 1.9432 2.4469 3.1427 3.7074
7 8946 3646 2.9980 4995
8 8595 3060 8965 3554
9 8331 2622 8214 2498

10 8125 2281 7638 1693
11 1.7959 2.2010 2.7181 3.1058
12 7823 1788 6810 0545
13 7709 1604 6503 0123
14 7613 1448 6245 2.9768
15 7530 1314 6025 9467
16 1.7459 2.1199 2.5835 2.9208
17 7396 1098 5669 8982
18 7341 1009 5524 8784
19 7291 0930 5395 8609
20 7247 0860 5280 8453
21 1.7207 2.0796 2.5176 2.8314
22 7171 0739 5083 8188
23 7139 0687 4999 8073
24 7109 0639 4922 7969
25 7081 0595 4851 7874
26 7056 0555 4786 7787
27 1.7033 2.0518 2.4727 2.7707
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n\p 0.05 0.025 0.01 0.005
28 1.7011 2.0484 2.4671 2.7633
29 6991 0452 4620 7564
30 6973 0423 4573 7500
32 6939 0369 4487 7385
34 6909 0322 4411 7284
36 6883 0281 4345 7195
38 6860 0244 4286 7116
40 6839 0211 4233 7045
42 1.6820 2.0181 2.4185 2.6981
44 6802 0154 4141 6923
46 6787 0129 4102 6870
48 6772 0106 4066 6822
50 6759 0086 4033 6778
55 2.6730 2.0040 2.3961 2.6682
60 6706 0003 3901 6603
65 6686 1.9971 3851 6536
70 6669 9944 3808 6479
80 6641 9901 3739 6387
90 6620 9867 3685 6316

100 1.6602 1.9840 2.3642 2.6259
120 6577 9799 3578 6174
150 6551 9759 3515 6090
200 6525 9719 3451 6006
250 1.6510 1.9695 2.3414 2.5956
300 6499 9679 3388 5923
400 6487 9659 3357 5882
500 1.6479 1.9647 2.3338 2.5857
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Таблица 4. 0.95-квантиль q распределения Фишера случайной величины

Fm,n =
nχ2

m

mχ2
n

,P{Fm.n > q} = 0.05.

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

n \m 1 2 3 4 5 6 7 8 9
1 161.45 199.50 215.71 224.58 230.16 233.99 236.77 238.88 240.54
2 18.513 19.000 19.164 19.247 19.296 19.330 19.353 19.371 19.385
3 10.128 9.5521 9.2766 9.1172 9.0135 8.9406 8.8868 8.8452 8.8123
4 7.7086 6.9443 6.5914 6.3883 6.2560 6.1631 6.0942 6.0410 5.9988
5 6.6079 5.7861 5.4095 5.1922 5.0503 4.9503 4.8759 4.8183 4.7725
6 5.9874 5.1433 4.7571 4.5337 4.3874 4.2839 4.2066 4.1468 4.0990
7 5.5914 4.7374 4.3468 4.1203 4.9715 3.8660 3.7870 3.7257 3.6767
8 5.3177 4.4590 4.0662 3.8378 3.6875 3.5806 3.5005 3.4381 3.3881
9 5.1174 4.2565 3.8626 3.6331 3.4817 3.3738 3.2927 3.2296 3.1789

10 4.9646 4.1028 3.7083 3.4780 3.3258 3.2172 3.1355 3.0717 3.0204
11 4.8443 3.9823 3.5874 3.3567 3.2039 3.0946 3.0123 2.9480 2.8962
12 4.7472 3.8853 3.4903 3.2592 3.1059 2.9961 2.9134 2.8486 2.7964
13 4.6672 3.8056 3.4105 3.1791 3.0254 2.9153 2.8321 2.7669 2.7144
14 4.6001 3.7389 3.3439 3.1122 2.9582 2.8477 2.7642 2.6987 2.6458
15 4.5431 3.6823 3.2874 3.0556 2.9013 2.7905 2.7066 2.6408 2.5876
16 4.4940 3.6337 3.2389 3.0069 2.8524 2.7413 2.6572 2.5911 2.5377
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Таблицы, используемые при проверке выборки на нормальность

В следующих таблицах для выборки (x1, ..., xn) используются стандартные обозначения:

x̄ =
x1 + ...+ xn

n
, s2 =

1

n

n∑
i=1

(xi − x̄)2.

Таблица 5. (1− p)-квантиль q распределения выборочной характеристики
эксцесса в нормальной модели с выборкой (x1, ..., xn)

Эксцесс обозначается в [30] b2 =

1

n

n∑
i=1

(xi − x̄)4

s4 .
Число в таблице q определяется равенством P {b2 > q} = p.

∣∣∣∣∣∣∣∣∣∣∣∣

n \ p 0.01 0.05 0.95 0.99
50 4.92 4.01 2.13 1.95

100 4.40 3.77 2.35 2.18
150 4.14 3.66 2.45 2.30
200 3.98 3.57 2.51 2.37
250 3.87 3.51 2.55 2.42

∣∣∣∣∣∣∣∣∣∣∣∣
Таблица 6. (1− p)-квантиль q распределения выборочной характеристики

асимметрии g1 в нормальной модели с выборкой (x1, ..., xn)

Асимметрия обозначается в [30] g1 =

1

n

n∑
i=1

(xi − x̄)3

s3 .
Число в таблице q определяется равенством P {g1 > q} = p.
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n \ p 0.05 0.01
√
Dg1

25 0.711 1.061 0.4354
30 0.661 0.982 0.4052
35 0.621 0.921 0.3804
40 0.587 0.869 0.3596
45 0.558 0.825 0.3418
50 0.533 9, 787 0.3264
60 9.492 0.723 0.3009
70 0.459 0.673 0.2806
80 0.432 0.631 0.2638
90 0.409 0.596 0.2498

100 0.389 0.567 0.2377

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Таблица 7. (1− p)-квантиль q распределения выборочной характеристики

d в нормальной модели с выборкой (x1, ..., xn)

d =

1

n

n∑
i=1

|xi − x̄|

s .
Число в таблице q определяется равенством P {d > q} = p.
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n \ p 0.01 0.05 0.1 0.9 0.95 0.99
√
Dd

11 0.9359 0.9073 0.8899 0.7409 0.7153 0.6675 0.05784
16 9137 8884 8733 7452 7236 6829 0.04976
21 9001 8768 8631 7495 7304 6950 0.04419
26 8901 8686 8570 7530 7360 7040 0.04011
31 8827 8625 8511 7559 7404 7110 0.03697
36 8769 8578 8468 7583 7440 7167 0.03447
41 8722 8540 8436 7604 7470 7216 0.03241
46 8682 8508 8409 7621 7496 7256 0.03068
51 8648 8481 8385 7636 7518 7291 0.02919
61 0.8592 0.8434 0.8349 0.7662 0.7554 0.7347 0.02678
71 8549 8403 8321 7683 7583 7393 0.02487
81 8515 8376 8298 7700 7607 7430 0.02332
91 8484 8353 8279 7714 7626 7460 0.02203

101 8460 8344 8264 7726 7644 7487 0.02094
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Примечание. Для таблиц 6 и 7 для n, отличных от использованных в таблице, в [30] предла-

гается использовать линейную интерполяцию или экстраполяцию. Причем интерполяция или
экстраполяция должны проводиться не по аргументу n, а по аргументу

√
Dg1 в таблице 6 и по

аргументу
√
Dd в таблице 7. Там же приведены формулы для дисперсий:

Dg1 =
6(n− 2)

(n+ 1)(n+ 3)

Dd =
1

n

{
1 +

2

π

[√
n(n− 2) + arcsin

1

n− 1

]}
− n− 1

π

[
Γ
(
n−1

2

)
Γ
(
n
2

) ]2

.

Таблица 8. Функция распределения рангового коэффициента корреляции Спирмена ρ
в нормальной модели с выборкой (x1, ..., xn)
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В таблице для каждого числа наблюдений n указаны вероятности p(n) = P{ρ ≤ r(n)}, где
числа r(n) пробегают значения (не все), которые для данного n может принимать ρ.

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

r(4) p(4) r(5) p(5) r(6) p(6) r(7) p(7) r(8) p(8) r(9) p(9) r(10) p(10
− 1

5 0.458 − 12
120 0.475 − 90

210 0.210 − 116
336 0.249 − 144

504 0.250 − 216
720 0.218 − 258

990 0.235
− 2

5 0.375 − 24
120 0.392 − 102

210 0.178 − 128
336 0.198 − 180

504 0.195 − 264
720 0.168 − 318

990 0.184
− 3

5 0.208 − 36
120 0.342 − 114

210 0.149 − 140
336 0.151 − 216

504 0.150 − 312
720 0.125 − 378

990 0.139
− 4

5 0.167 − 48
120 0.258 − 126

210 0.121 − 152
336 0.118 − 252

504 0.108 − 360
720 0.089 − 438

990 0.102
−1 0.042 − 60

120 0.225 − 138
210 0.088 − 164

336 0.083 − 288
504 0.076 − 408

720 0.060 − 498
990 0.072

− 72
120 0, 175 − 150

210 0.068 − 176
336 0.055 − 324

504 0.048 − 456
720 0.038 − 558

990 0.048
− 84

120 0.117 − 162
210 0.051 − 188

336 0.033 − 360
504 0.029 − 504

720 0.022 − 618
990 0.030

− 96
120 0.067 − 174

210 0.029 − 200
336 0.017 − 396

504 0.014 − 552
720 0.011 − 678

990 0.017
− 108

120 0.042 − 186
210 0.017 − 212

336 0.0062 − 432
504 0.0054 − 600

720 0.0041 − 738
990 0.0087

−1 0.0083 − 198
210 0.0083 − 224

336 0.0014 − 468
504 0.0011 − 648

720 0.0010 − 798
990 0.0036

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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