L.G. Shaidarova*, A.V. Gedmina**, V.D. Demina***, I.A. Chelnokova****, H.C. Budnikov*****

Kazan Federal University, Kazan, 420008 Russia

E-mail: *LarisaShaidarova@mail.ru, **Anna.Gedmina@kpfu.ru, ***viktori6994@mail.ru, ****Irina.Chelnokova@kpfu.ru, *****Herman.Budnikov@kpfu.ru

Full text PDF

Abstract

Electrodeposited gold and Nafion-gold composite on the surface of glassy carbon electrodes (GCE) have shown electrocatalytic activity during guanine oxidation. In comparison with the unmodified electrode, decreasing of the oxidation potential by 100 mV and increasing of the current of organic compound oxidation have been observed. When the Nafion (NF) film is applied to the surface of the glassy carbon electrode with electrodeposited gold, a five-fold increase of guanine oxidation current has been achieved compared to its oxidation on the modified electrode without the NF film.

Conditions have been found for electrodeposition of gold on the surface of the glassy carbon electrode, including that one covered with the NF film, as well as for registration of the maximum catalytic current on these electrodes. Linear dependence of the electrocatalytic response of the modified electrode from the guanine concentration has been observed in the range from 510–6 to 510–3 mol×L–1 (for Au GCE) and from 510–7 to 510–3 mol×L–1 (for NF-Au GCE).

Keywords: chemically modified electrodes, voltammetric determination of guanine

Acknowledgments. This study was funded by the subsidy allocated as part of the state program for increasing the competitiveness of Kazan Federal University among the world's leading centers of science and education.

Figure Captions

Fig. 1. Cyclic voltamperograms obtained on the Au GCE in the solution of 0.01 M H2SO4 (a) and in solutions with different pH values (b): 1– 2.0; 2 – 6.86; 3– 10.

Fig. 2. Cyclic voltamperograms obtained on the Au GCE (a) in the absence (1) and in the presence (2) of guanine (with c = 510–3 М) at the background of the sulfuric acid solution with pH 2.0; dependence of the maximum oxidation current on the concentration of guanine (b); the diagram showing dependencies of the catalytic effect during guanine oxidation on the time of gold deposition on the GCE.

Fig. 3. Dependence of the maximum guanine oxidation current on the CME with gold deposit on the potential superposition rate in logarithmical coordinates (a), on the square root of the potential superposition rate (b), dependence of the maximum guanine oxidation potential on the potential superposition rate (c).

Fig. 4. Dependence of guanine oxidation current on the NF-Au GCE on the concentration of Nafion (a) and the time of gold deposition (b).

References

  1. Li S.P., Li P., Dong T.T.X., Tsim K.W.K. Determination of nucleosides in natural Cordyceps sinensis and cultured Cordyceps mycelia by capillary electrophoresis. Electrophoresis, 2001, vol. 22, no. 1, pp. 144–150.
  2. Wang H.-S., Ju H.-X., Chen H.-Y. Simultaneous determination of guanine and adenine in DNA using an electrochemically pretreated glassy carbon electrode. Anal. Chim. Acta, 2002, vol. 461, no. 2, pp. 243–250.
  3. Chen G., Hah X., Zhang L., Ye J. Determination of purine and pyrimidine bases in DNA by micellar electrokinetic capillary chromatography with electrochemical detection. J. Chromatogr. A, 2002, vol. 954, nos. 1–2, pp. 267–276.
  4. Moral P.G., Arin M.J., Resines J.A., Diez M.T. Simultaneous determination of adenine and guanine in ruminant bacterial pellets by ion-pair HPLC. J. Chromatogr. B, 2005, vol. 826, nos. 1–2, pp. 257–260.
  5. Wang J., Chen G., Muck A., Shin D., Fujishima A. Microchip capillary electrophoresis with a boron-doped diamond electrode for rapid separation and detection of purines. J. Chromatogr. A, 2004, vol. 1022, nos. 1–2, pp. 207–212.
  6. García del Moral P., Arín M.J., Resines J.A., Díez M.T. Simultaneous determination of adenine and guanine in ruminant bacterial pellets by ion-pair HPLC. J. Chromatogr. B, 2005, vol. 826, nos. 1–2, pp. 257–260.
  7. Yeh C.F., Jiang S.J. Determination of monophosphate nucleotides by capillary electrophoresis inductively coupled plasma mass spectrometry. Analyst, 2002, vol. 127, no. 10, pp. 1324–1327.
  8. Heisler I., Keller J., Tauber R., Sutherland M., Fuchs H. A colorimetric assay for the quantitation of free adenine applied to determine the enzymatic activity of ribosome-inactivating proteins. Anal. Biochem., 2002, vol. 302, no. 1, pp. 114–122.
  9. Hao Y.-M., Shen H.-X. Spectrophotometric determination of nucleic acids using palladium(II) complex with 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol. Anal. Chim. Acta, 2000, vol. 413, nos. 1–2, pp. 87–94.
  10. Amri C.E., Baron M.H., Maurel M.C. The micro-distribution of carbonaceous matter in the Murchison meteorite as investigated by Raman imaging. Spectrochim. Acta, Part A, 2005, vol. 61, no. 9, pp. 2049–2056.
  11. Huang Y.-F., Chang H.-T. Analysis of adenosine triphosphate and glutathione through gold nanoparticles assisted laser desorption/ionization mass spectrometry. Anal. Chem., 2007, vol. 79, no. 13, pp. 4852–4859.
  12. Shaidarova L.G., Budnikov G.K. Chemically modified electrodes based on noble metals, polymer films, or their composites in organic voltammetry. J. Anal. Chem., 2008, vol. 63, no. 10, pp. 922–942.
  13. Shaidarova L.G., Budnikov G.K. Problems of Analytical Chemistry. Vol. 14: Chemical Sensors. Amperometricheskie sensory s kataliticheskimi svoistvami v organicheskoi voltamperometrii. [Amperometric Sensors with Catalytic Properties in Organic Voltammetry]. Moscow, Nauka, 2011, pp. 203–284. (In Russian).
  14. Wang Z., Xiao S., Chen Y. β-Cyclodextrin incorporated carbon nanotubes-modified electrodes for simultaneous determination of adenine and guanine. J. Electroanal. Chem., 2006, vol. 589, no. 2, pp. 237–242.
  15. Sun W., Li Y., Duan Y., Jiao K. Direct electrochemistry of guanosine on multi-walled carbon nanotubes modified carbon ionic liquid electrode. Electrochim. Acta, 2009, vol. 54, no. 16, pp. 4105–4110. doi: 10.1016/j.electacta.2009.02.041.
  16. Huang K.-J., Niu D.-J., Sun J.-Y., Han C.-H., Wu Z.-W., Li Y.-L., Xiong X.-Q. Novel electrochemical sensor based on functionalized graphene for simultaneous determination of adenine and guanine in DNA. Colloids Surf., B, 2011, vol. 82, no. 2, pp. 543–549.
  17. Goyal R.N., Gupta V.K., Oyama M., Bachheti N. Voltammetric determination of adenosine and guanosine using fullerene-C60-modified glassy carbon electrode. Talanta, 2007, vol. 71, no. 3, pp. 1110–1117. doi: 10.1016/j.talanta.2006.06.002.
  18. Abbaspour A., Mehrgardi M.A. Electrocatalytic oxidation of guanine and DNA on a carbon paste electrode modified by cobalt hexacyanoferrate films. Anal. Chem., 2004, vol. 76, no. 19, pp. 5690–5696. doi: 10.1021/ac049421f.
  19. Chen S.M., Wang C.H., Lin K.C. Electrocatalytic oxidation of guanine and adenine based on iron hexacyanoferrate film modified electrodes. Int. J. Electrochem. Sci., 2012, vol. 7, no. 1, pp. 405–425.
  20. Chu H.W., Thangamuhy R., Chen S.-M. Zinc oxide/zinc hexacyanoferrate hybrid film-modified electrodes for guanine detection. Electroanalysis, 2007, vol. 19, no. 18, pp. 1944–1951. doi: 10.1002/elan.200703966.
  21. Palecek E., Scheller F., Wang J. Electrochemistry of Nucleic Acids and Proteins. Vol. 1: Towards Electrochemical Sensors for Genomics and Proteomics (Perspectives in Bioanalysis). Elsevier Sci., 2006. 808 p.
  22. Budnikov G.K., Maistrenko V.N., Vyaselev M.R. Fundamentals of Modern Electrochemical Analysis. Moscow, Mir, Binom LZ, 2003. 592 p. (In Russian)
  23. Laviron E. General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J. Electroanal. Chem., 1979, vol. 101, no. 1, pp. 19–28. doi: 10.1016/S0022-0728(79)80075-3.
  24. Andrieux C.P., Saveant J.M. Heterogeneous (chemically modified electrodes, polymer electrodes) vs. homogeneous catalysis of electrochemical reactions. J. Electroanal. Chem., 1978, vol. 93, no. 2, pp. 163–168.

For citation: Shaidarova L.G., Gedmina A.V., Demina V.D., Chelnokova I.A., Budnikov H.C. Voltammetric determination and amperometric detection of guanine on the electrode modified by gold deposit and nafion film. Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki, 2016, vol. 158, no. 3, pp. 369–380. (In Russian)


The content is available under the license Creative Commons Attribution 4.0 License.