R.M. Varlamova*, E.P. Medyantseva**, R.R. Hamidullina, H.C. Budnikov***

Kazan Federal University, Kazan, 420008 Russia

E-mail: *Regina.Varlamova@kpfu.ru, **Elvina.Medyantseva@kpfu.ru, ***Herman.Budnikov@kpfu.ru

Full text PDF

Abstract

New amperometric biosensors based on platinum screen printed electrodes modified with multiwalled carbon nanotubes, gold nanoparticles, and immobilized enzyme – tyrosinase have been developed for determination of patulin in the concentrations of 110–6 – 810–12 mol/L with an error of no more than 0.063. The best conditions for obtaining gold nanoparticles have been chosen. The conditions for     immobilization of multi-walled carbon nanotubes and gold nanoparticles on the surface of the planar electrode have been revealed. The conditions for functioning of the proposed biosensors have been identified. The results have been used to control the content of patulin in food products within and lower than the maximum allowable levels.

Keywords: mycotoxins, amperometric biosensor, tyrosinase, patulin, multi-walled carbon nanotubes, gold nanoparticles, food products

Figure Captions

Fig. 1. The cyclic voltamperogram of the products of fermentation of the tyrosinase substrate – phenol in the presence of the tyrosinase biosensor. Phenol concentration 110–3 mol/L, background electrolyte – phosphate buffer saline with рН 7.0.

Fig. 2. Voltamperograms showing the oxidization of phenol and hydrogen peroxide on the tyrosinase biosensor in the absence (2) and in the presence (1) of patulin, cн = 110–6 mol/L (3), phosphate buffer saline with рН 7.0.

Fig. 3. Absorption spectra of Au NP in the chitosan solution: 1) λ 545 nm – pink, 2) λ 540 nm – claret.

Fig. 4. Images in the topography regime in 2D projections of the modified electrode surface: а) Au NP in K3Cit, b) Au NP in chitosan, 1.2×1.2 μm.

Fig. 5. Images in the regime of 3D projections of the modified electrode surface: a) Au NP in K3Cit, b) Au NP in chitosan, 1.2×1.2 μm.

Fig. 6. The dependence of the analytical signal (current) on the number of Au NP applied to the working surface of the electrode.

References

  1. European Mycotoxin Awareness Network. Available at: http://www.mycotoxins.org.
  2. Mycotoxin Management. Available at: http://www.knowmycotoxins.com/ru/mycotoxins/introduction.
  3. Gogin A.E. Mycotoxins: effective control – effective production. Kombikorma, 2005, no. 2, pp. 68–69. (In Russian)
  4. Bondarenko A.P., Eremin S.A. Determination of zearalenone and ochratoxin a mycotoxins in grain by fluorescence polarization immunoassay. Anal. Chem., 2012, vol. 67, no. 9, pp. 790–794. doi: 10.1134/S1061934812090031.
  5. Urusov A.E., Zherdev A.V., Dzantiev B.B. Immunochemical methods of mycotoxin analysis (review). Appl. Biochem. Microbiol., 2010, vol. 46, no. 3, pp. 253–266.
  6. Zamfir L.-G., Geana I., Bourigua S., Rotariu L., Bala C., Errachid A., Jaffrezic-Renault N. Highly sensitive label-free immunosensor for ochratoxin A based on functionalized magnetic nanoparticles and EIS/SPR detection. Sens. Actuators, B, 2011, vol. 159, no. 1, pp. 178–184. doi: 10.1016/j.snb.2011.06.069.
  7. Pennacchio A., Ruggiero G., Staiano M., Piccialli G., Oliviero G., Lewkowicz A., Synak A., Bojarski P., D'Auria S. A surface plasmon resonance based biochip for the detection of patulin toxin. Opt. Mater., 2014, vol. 36, no. 10, pp. 1670–1675. doi: 10.1016/j.optmat.2013.12.045.
  8. Cheng Y., Liu Y., Huang J., Yuezhong K., Li X., Wen Z., Litong J. Amperometric tyrosinase biosensor based on Fe3O4 nanoparticles-coated carbon nanotubes nanocomposite for rapid detection of coliforms. Electrochim. Acta, 2009, vol. 54, no. 9, pp. 2588–2594. doi: 10.1016/j.electacta.2008.10.072.
  9. Vicentini F.C., Janegitz B.C., Brett C.M.A., Fatibello-Filho O. Tyrosinase biosensor based on a glassy carbon electrode modified with multi-walled carbon nanotubes and 1-butyl-3-methylimidazolium chloride within adihexadecylphosphate film. Sens. Actuators, B, 2013, vol. 188, pp. 1101–1108. doi: 10.1016/j.snb.2013.07.109.
  10. Wang N., Zhao H.-Y., Ji X.-P., Li X.-R., Wang B.-B. Gold nanoparticles-enhanced bisphenol A electrochemical biosensor based on tyrosinase immobilized onto self-assembled monolayers-modified gold electrode. Chin. Chem. Lett., 2014, vol. 25, no. 5, pp. 720–722. doi: 10.1016/j.cclet.2014.01.008.
  11. Singha S., Jain D.V.S., Singlaa M.L. Sol–gel based composite of gold nanoparticles as matix for tyrosinase for amperometric catechol biosensor. Sens. Actuators, B, 2013, vol. 182, pp. 161–169. doi: 10.1016/j.snb.2013.02.111.
  12. Shapovalova E.N., Anan'eva I.A., Elfimova Ya.A., Grineva L.A., Mazhuga A.G., Shpigun O.A. Separation of nitrogen-containing compounds on silica gel modified with gold nanoparticles stabilized by chitosan. Vestn. Mosk. Univ., Ser. 2: Khim., 2012, vol. 53, no. 2, p. 108–114. (In Russian)
  13. Feng W., Ji P. Enzymes immobilized on carbon nanotubes. Biotechnol. Adv., 2011, vol. 29, no. 6, pp. 889–895. doi: 10.1016/j.biotechadv.2011.07.007.
  14. Amjad A., Suhail A., Qayyum H. Simultaneous purification and immobilization of mushroom tyrosinase on an immunoaffinity support. Process Biochem., 2005, vol. 40, no. 7, pp. 2379–2386. doi: 10.1016/j.procbio.2004.09.020.
  15. Li J., Wu R., Hu Q., Wang J. Solid-phase extraction and HPLC determination of patulin in apple juice concentrate. Food Control, 2007, vol. 18, no. 5, pp. 530–534. doi: 10.1016/j.foodcont.2005.12.014.
  16. Berezin I.V. Practical Course of Chemical Enzyme Kinetics. Moscow, Nauka, 1976. 320 p. (In Russian)
  17. Krupyanko V.I. A Vector Method of Representation of Enzymatic Reactions. Moscow, Nauka, 1990. 141 p. (In Russian)
  18. Evtyugin G.A., Budnikov H.C., Stoikova E.E., Fundamentals of Biosensors. Kazan, Kazan. Gos. Univ., 2007. 82 p. (In Russian)
  19. Budnikov H.C., Evtyugin H.C., Evtyugin G.A., Maistrenko V.N. Modified Electrodes for Voltammetry in Chemistry, Biology, and Medicine. Moscow, Binom. Lab. Znaniya, 2009. 416 p. (In Russian)
  20. Kulis Yu.Yu. Analytical Systems Based on Immobilized Enzymes. Vilnius, Mokslas, 1981. 200 p. (In Russian)
  21. Zhao Q., Zhuang Q.K. Determination of phenolic compounds based on the tyrosinase-single walled carbon nanotubes sensor. Electroanalysis, 2005, vol. 17, no. 1, pp. 85–88. doi: 10.1002/elan.200403123.
  22. Shashkanova O.Yu., Ermolaeva T.N. A new method for diagnosis of autoimmune diseases based on the affine reaction on the surface of piezoquartz sensor. Sorbtsionnye Khromatogr. Protsessy, 2009, vol. 9, no. 5, pp. 677–693. (In Russian)
  23. Tarozaitq R., Juskйnas R., Kurtinaitienй M., Jagminienй A., Vaskelis A. Gold colloids obtained by Au(III) reduction with Sn (II): preparation and characterization. Chemija, 2006, vol. 17, nos. 2–3. pp. 1–6.
  24. Starodub N.F., Pilipenko L.N., Egorova A.V., Pilipenko I.V. Patulin mycotoxin: producers, biological effects, indication in food stuffs. Sovrem. Probl. Toksikol., 2008, no. 3, pp. 50–57. (In Russian)
  25. State Standard R51435-99. Apple juice, apple juice concentrates, and drinks containing apple juice. Method for determination of patulin content using high performance liquid chromatography. Moscow, Gosstand. Ross., 2002. 4 p. (In Russian)

For citation: Varlamova R.M., Medyantseva E.P., Hamidullina R.R., Budnikov H.C. Determination of patulin using amperometric tyrosinase biosensors based on electrodes modified with carbon nanotubes and gold nanoparticles. Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki, 2016, vol. 158, no. 3, pp. 351–368. (In Russian)


The content is available under the license Creative Commons Attribution 4.0 License.