A.Z. Satdarov

Kazan Federal University, Kazan, 420008 Russia

E-mail: aidar_16saz@mail.ru

Full text PDF

Abstract

Comparative analysis of advantages and disadvantages of the field methods for studying the regressive growth rates and mechanisms of gullies tops has been performed. The traditional methods (linear measurements and tacheometry) have been considered along with the new ones (scanning and photogrammetric survey) which appeared recently and require the use of high-precision equipment and specialized software. The possibility of quantitative evaluation of the gully growth rates and ongoing mechanisms of gully erosion has been analyzed. The need for complex application of the considered methods has been revealed. The possibility of using a certain method with account of resource, time, and financial costs has been considered.

Keywords: gully, erosion, regressive growth, linear measurements, topographic and geodetic surveying, laser scanning, photogrammetry

Acknowledgments. This work was supported by the Russian Science Foundation (project no. 15-17-20006).

Figure captions

Fig. 1. Linear measurements at the gully top.

Fig. 2. Map of the gully designed with the use of tacheometry.

References

  1. Zorina E.F., Nikol'skaya I.I., Kovalev S.N. Methods of determining the intensity of gully growth. Geomorfologiya, 1993, no. 3, pp. 66–75. (In Russian)
  2. Dedkov A.P., Rysin I.I., Chernysheva T.N. Gully erosion on arable lands in Europe. Geomorfologiya, 1993, no. 2, pp. 3–13. (In Russian)
  3. Gareev A.M., Nazarov N.N., Rysin I.I. Basic tendencies of gully erosion development within the Kama Urals. Erozionnye i ruslovye protsessy [Erosion and Channel Processes]. Vol. 6. Chalov R.S. (Ed.). Moscow, Geogr. Fak. Mosk. Gos. Univ., 2015, pp. 46–60. (In Russian)
  4. Grigor'ev I.I. Spatio-temporal analysis of the growth rates of technological gullies in the territory of Udmurtia. Eroziya pochv, ovrazhnaya eroziya, ruslovye protsessy: teoreticheskie i prikladnye voprosy [Soil Erosion, Gully Erosion, Channel Processes: Theoretical and Practical Issues]. Moscow, Geogr. Fak. Mosk. Gos. Univ., 2011, pp. 90–99. (In Russian)
  5. Grigor'ev I.I., Rysin I.I. Research of technological and agricultural gullies in Udmurtia with the use of GIS technologies. Vestn. Udmurt. Univ. Ser. Biol. Nauki Zemle, 2008, no. 1, pp. 49–58. (In Russian)
  6. Grigor'ev I.I., Rysin I.I. Research of technological and agricultural gullies in Udmurtia. Vestn. Udmurt. Univ. Ser. Biol. Nauki Zemle, 2006, no. 11, pp. 83–92. (In Russian)
  7. Rysin I.I., Grigor'ev I.I. Forecasting model of gully growth in Udmurtia. Vestn. Udmurt. Univ. Ser. Biol. Nauki Zemle, 2013, no. 3, pp. 106–114. (In Russian)
  8. Rysin I.I., Grigor'ev I.I. Influence of meteorological factors on the gullies growth in Udmurtia. Vestn. Udmurt. Univ. Ser. Biol. Nauki Zemle, 2010, no. 4, pp. 137–146. (In Russian)
  9. Ryzhov Yu.V. Gully systems in the south of Eastern Siberia. Teoriya i praktika izucheniya geomorfologicheskikh sistem: Materialy XXXI Plenuma Geomorfologicheskoi komissii RAN (5–9 okt. 2011 g.) [Proc. XXXI Plenum of the Geomorphological Commission of the Russian Academy of Sciences (October 5–9, 2011): Theoretical Problems of Modern Geomorphology. Theory and Practice of Studying Geomorphological Systems]. Astrakhan, Technograd, 2011, pp. 233–237. (In Russian)
  10. Daikovskaya T.S. Gullies and gully erosion in the territory of New Moscow. Erozionnye i ruslovye protsessy i sovremennye metody ikh issledovaniya: Materialy X seminara molodykh uchenykh vuzov, ob”edinyaemykh sovetom po probleme erozionnykh, ruslovykh i ust'evykh protsessov (Belgorod, 22–25 apr. 2014 g.) [Proc. X Semin. of Young Scientists in Universities United by the Council on the Problems of Erosion, Channel, and Estuarine Processes: Erosion and Channel Processes and Modern Methods of Their Research (Belgorod, April 22–25, 2014)]. Belgorod: LitKaraVan, 2014, pp. 51–56. (In Russian)
  11. Ermolaev O.P. Erosion Belts in Natural and Anthropogenic Landscapes of River Basins. Kazan, Izd. Kazan. Univ., 1992. 148 p. (In Russian)
  12. Rysin I.I. On the modern trend of gully erosion in Udmurtia. Geomorfologiya, 1998, no. 3, pp. 92–101. (In Russian)
  13. Gully Erosion in the East of the Russian Plain. Kazan, Izd. Kazan. Univ., 1990, 144 p. (In Russian)
  14. Pavlyuk Ya.V., Samofalova O.M. Active displays of linear erosion in the territory of river basins. Erozionnye i ruslovye protsessy i sovremennye metody ikh issledovaniya: Materialy X seminara molodykh uchenykh vuzov, ob”edinyaemykh sovetom po probleme erozionnykh, ruslovykh i ust'evykh protsessov (Belgorod, 22–25 apr. 2014 g.) [Proc. X Semin. of Young Scientists in Universities United by the Council on the Problems of Erosion, Channel, and Estuarine Processes: Erosion and Channel Processes and Modern Methods of Their Research (Belgorod, April 22–25, 2014)]. Belgorod: LitKaraVan, 2014, pp.135–141. (In Russian)
  15. Taruvinga K. Gully mapping using remote sensing: case study in KwaZulu-Natal, South Africa. Master Environ. Sci. Thesis. Waterloo, Ontario, Canada, 2008. 121 p. URL: https:// uwspace.uwaterloo.ca/bitstream/handle/10012/4216/Kanyadzo_Taruvinga_Thesis.pdf?sequence=1/.
  16. Marzolff I., Poesen J., Ries J.B. Short to medium-term gully development: human activity and gully erosion variability in selected Spanish gully catchments. Landform Anal., 2011, vol. 17, pp. 111–116.
  17. Shruthi R.B.V., Kerle N., Jetten V. Object-based gully feature extraction using high spatial resolution imagery. Geomorphology, 2011, vol. 134, nos. 3–4, pp. 260–268. doi: 10.1016/j.geomorph.2011.07.003.
  18. Zorina E.F. Gully Erosion: Patterns and Potential of Development. Moscow, GEOS, 2003. 170 p. (In Russian)
  19. Grigor'ev I.I. Using “CREDO” software system for determining the volume and area of gullies. Vestn. Udmurt. Univ. Ser. Biol. Nauki Zemle, 2009, no. 2, pp. 141–145. (In Russian)
  20. Korotina N.M. The rate of gullies growth in Ulyanovsk Volga region. Geomorfologiya, 1981, no. 4, pp. 78–83. (In Russian)
  21. Ryzhov Yu.V. Gully erosion in the intermountain basins of the southwestern Baikal region. Geomorfologiya, 1998, no. 3, pp. 85–92. (In Russian)
  22. Satdarov A.Z. Studying the intensity of erosion-accumulative processes through repeated high-precision topographic surveys (for example, in the Sumka River). Obshchie metodicheskie problemy erozio- i ruslovedeniya. Materialy 9-go seminara molodykh uchenykh: Sb. st. [Proc. 9th Semin. of Young Scientists: General Methodological Problems of Erosion and Riverbed Studying], Moscow, Planeta, 2012, pp. 234–243. (In Russian)
  23. Gainullin I.I., Usmanov B.M., Homyakov P.V. Evaluation of the intensity of coastal processes as a factor of the destruction of archaeological sites (based on the monitoring of the state of archaeological sites in the Republic of Tatarstan). Ekol. Konsult., 2001, no. 4, pp. 30–36. (In Russian)
  24. Vil'danov R.Z., Usmanov B.M. Processing of the coast under the influence of the Kuibyshev Reservoir: at the observation site of the Kuibyshev Backwater. Ekol. Konsult., 2012, no. 1, pp. 8–13. (In Russian)
  25. Olen'kov V.D., Pronina A.A. The technology of laser scanning in the restoration of architectural sites. Stroitel'stvo i ekologiya: teoriya, praktika, innovatsii: Materialy I Mezhdunar. nauch.-prakt. konf. [Proc. I Int. Sci. Pract. Conf.: Construction and Ecology: Theory, Practice, and Innovation]. Chelyabinsk: PIRS, 2015, pp. 81–83. (In Russian)
  26. Makeecheva I.V. Terrestrial laser scanning in the mining industry. Marksheiderskii Vestn., 2007, no. 1, pp. 57–60. (In Russian)
  27. Krutikov D., Barabanshchikova N. Laser scanner models. Prom. Bezop. Geod. Kontrol', 2010, no. 3, pp. 70–71. (In Russian)
  28. Voroshilov A.P., Karachentsev Ju.A. Surveying the cracks at surface laser scanning of buildings and constructions. Vestn. Yuzhn.-Ural. Gos. Univ. Ser. “Stroit. Arkhit.”, 2011, no. 16, pp. 11–14. (In Russian)
  29. Traveletti J., Oppikofer T., Delacourt C., Malet J.-P., Jaboyedoff M. Monitoring landslide displacements during a controlled rain experiment using a long-range terrestrial laser scanning (TLS). Int. Arch. Photogramm., Remote Sens. Spat. Inf. Sci., Beijing, 2008, vol. XXXVII. pt. B5, pp. 485–490.
  30. Lyapishev K.M., Pogorelov A.V., Shulyakov D.Yu. The study of landslides using terrestrial laser scanning technology. Geodeziya, kartografiya i marksheideriya: Vseros. nauch. Internet-konf. s mezhdunar. uchastiem, Kazan', 5 iyunya, 2014 g.: Materialy konf. [Proc. All-Russian Internet Conf. with Int. Participation: Geodesy, Cartography, and Mine Surveying. Kazan, June 5, 2014]. 2014, pp. 26–32. (In Russian)
  31. Burnashov E.M. Current dynamics of Kaliningrad region seacoast according to annual monitoring studies. Vopr. Sovrem. Nauki Prakt. Univ. im. V.I. Vernadskogo, 2011, no. 2, pp. 10–17. (In Russian)
  32. Day S.S., Gran K.B., Belmont P., Wawrzyniec T. Measuring bluff erosion part 1: terrestrial laser scanning methods for change detection. Earth Surf. Processes Landforms, 2012, vol. 38, no. 10, pp. 1055–1067. doi 10.1002/esp.3353, 13 p.
  33. Dabek P., Zmuda R., Cmielewski B., Szczepanski J. Analysis of water erosion processes using terrestrial laser scanning. Acta Geodyn. Geomater., 2014, vol. 11, no. 1, pp. 45–52.
  34. Ermolaev O.P., Usmanov B.M., Gafurov A.M. The use of terrestrial laser scanning to quantify slope erosion intensity. Dvadtsat' devyatoe plenarnoe mezhvuz. koordinatsionnoe soveshchanie po probleme erozionnykh, ruslovykh i ust'evykh protsessov [29th Plenary Interuniv. Coordination Meeting on the Problem of Erosion, Channel, and Estuarine Processes]. Nauch. konf. UlGPU “Treshnikovskie chteniya – 2014” (g. Ul'yanovsk, 22–24 okt. 2014 g.): Dokl. i kratkie soobshch. [Sci. Conf. UlSPU “Treshnikov. Lectures” – 2014 (Ulyanovsk, October 22–24, 2014): Rep. Brief Commun.], Ulyanovsk, Ul'yanovsk. Gos. Pedagog. Univ. im. I. N. Ul'yanova, 2014, pp. 84–85. (In Russian)
  35. Usmanov B., Yermolaev O., Gafurov A. Estimates of slope erosion intensity utilizing terrestrial laser scanning. Proc. Int. Assoc. Hydrol. Sci., 2015, vol. 367, pp. 59–65. doi:10.5194/piahs-367-59-2015.
  36. Vinci A., Brigante R., Todisco F., F. Mannocchi, F. Radicioni Measuring rill erosion by laser scanning. Catena, 2015, vol. 124, pp. 97–108. doi: 10.1016/j.catena.2014.09.003.
  37. Romanescu G., Cotiuga V., Asandulesei A., Stoleriu C. Use of the 3-D scanner in mapping and monitoring the dynamic degradation of soils: case study of the Cucuteni-Baiceni Gully on the Moldavian Plateau (Romania). Hydrol. Earth Syst. Sci., 2012, vol. 16, no. 3, pp. 953–966. doi: 10.5194/hess-16-953-2012.
  38. Romanescu G., Nicu C.I. Risk maps for gully erosion processes affecting archaeological sites in Moldavia, Romania. Z. Geomorphol., 2014, vol. 58, no. 4, pp. 509–523. doi: 10.1127/0372-8854/2014/0133.
  39. Dzharroush D. Digital camera as a practical survey instrument: problems and solutions. SAPR GIS Avtomob. Dorog, 2014, no. 1, pp. 52–56. (In Russian)
  40. Frankl A., Stal C., Abraha A., Nyssen J., Rieke-Zapp D., De Wulf A., Poesen J. Detailed recording of gully morphology in 3D through image based modeling. Catena, 2015, vol. 127, pp. 92–101. doi: 10.1016/j.catena.2014.12.016.
  41. Gómez-Gutiérrez Á, Schnabel S., Berenguer-Sempere F., Lavado-Contador F., Rubio-Delgado J. Using 3D photo-reconstruction methods to estimate gully headcut erosion. Catena, 2014, vol. 120, pp. 91–101. doi: 10.1016/j.catena.2014.04.004.

For citation: Satdarov A.Z. Methods for research of the regressive growth in gullies: advantages and disadvantages. Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki, 2016, vol. 158, no. 2, pp. 277–292. (In Russian)


The content is available under the license Creative Commons Attribution 4.0 License.