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Введение

Данное учебно-методическое пособие включает минимум вводного курса
по римановой геометрии. Оно предназначено для студентов-математиков
III-IV курсов. Рассматриваются различные классы пространств и их
отображений. Например, римановы, конформно-плоские и проективно-
евклидовы пространства, пространства Эйнштейна и пространства посто-
янной кривизны.

Все задачи в пособии служат для контроля правильного усвоения ос-
новных понятий.

В пособии приняты следующие обозначения.
� — символ начала (конца) доказательства.
О — обозначает определение.
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0.1 Связность на многообразии. Ковариантное диф-
ференцирование

Для простоты формулировок предполагаем рассматриваемые функции и
многообразия гладкими. Напомним некоторые определения.

О. Тензорное поле валентности (p, q) в области U ⊂M гладкого мно-
гообразия есть отображение, которое произвольной точке x ∈ M ста-
вит в соответствие тензор Fx(a1, . . . ,aq, η1, . . . , ηp) с аргументами из
касательного и кокасательного пространств.

В координатах тензорное поле задается своими компонентами — на-
бором np+q (n = dimM) функций, которые в каждой точке являются
значениями тензора на базисных векторах и ковекторах касательного и
кокасательного пространств

F
i1...ip
j1...jq

(x) = Fx(∂j1, . . . , ∂jq , dx
i1, . . . , dxip).

Тензорное поле называется гладким, если эти функции гладкие. При пе-
реходе от карты (U, xi) к карте (U ′, xi

′
) компоненты тензорного поля из-

меняются по линейному закону

F
i′1...i

′
p

j ′1...j
′
q
(x′) = P

i′1
i1
. . . P

i′p
ip
F
i1...ip
j1...jq

(x)P j1
j ′1
. . . P

jq
j ′q
, (1)

где матрицей перехода в каждой точке пересечения областей карт являет-
ся якобиева матрица P с элементами P i′

i = ∂xi
′

∂xi и обратная к ней матрица
P−1 с элементами P i

i′ = ∂xi

∂xi′
.

Из этой формулы следует, что обращение тензорного поля в нуль не
зависит от выбора координат.

Для тензорных полей выполнимы алгебраические операции: сложение
тензорных полей одинаковой валентности, умножение, свертывание, сим-
метрирование и альтернирование. Все они выполняются поточечно. Более
того, тензорное поле можно умножить на функцию, поскольку в каждой
точке эта операция сводится к умножению на число.

Напомним простые примеры тензорных полей.
В каждой карте (U, xi) векторное поле a действует на скалярное поле

F : M → R как дифференциальный оператор по формуле

a(F ) = ai∂iF ,
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т.е. в результате получим новое скалярное поле.

Ковекторное поле α : x 7→ T ∗xM задается ковектором в каждой точ-
ке многообразия. Рассмотрим в какой-либо точке x множество векторов,
которые обращают в нуль линейную форму αx:

α(a) = α1a
1 + · · ·+ αna

n = 0.

Это уравнение гиперплоскости в касательном пространстве этой точки.
Следовательно, ковекторное поле в каждой точке многообразия задает
гиперплоскость, т.е. получаем на многообразии так называемое распреде-
ление — поле гиперплоскостей.

О. Ковекторное поле — потенциально, если оно является градиентом
некоторого скалярного поля: α = gradF . Функция F — потенциал поля.

Пусть X(M) — алгебра Ли гладких векторных полей на многообразии
M и h — заданное векторное поле.

О. Ковариантной производной в направлении векторного поля h назы-
вается отображение ∇h : X(M)→ X(M), удовлетворяющее условиям:

1)∇h(λa + µb) = λ∇ha + µ∇hb , ∀λ, µ ∈ R; (2)

2) ∇h(fa) = f∇ha + (hf)a , ∀f ∈ F(M); (3)

3) ∇fh1+gh2
a = f∇h1

a + g∇h2
a ∀f, g ∈ F(M). (4)

Многообразие, на котором задан оператор ковариантного дифференци-
рования, обозначается (M,∇).

Пусть (U, xi) — карта на (M,∇) и {∂i} — натуральный базис. Обозна-
чим частную ковариантную производную через ∇∂i = ∇i и положим

∇i ∂j = Γkij∂k . (5)

Это деривационные уравнения поля натуральных реперов.

Пусть a = aj(x)∂j. Тогда, учитывая свойства (2 – 4), получим

∇ia = ∇i(a
j∂j) = ∂ia

j∂j + Γkija
j∂k = (∂ia

k + Γkija
j)∂k . (6)

Следовательно,
∇iak = ∂ia

k + Γkija
j,
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∇ha = hi∇ia = hi(∂ia
k + Γkija

j)∂k .

Таким образом, задание операции ковариантного дифференцирования эк-
вивалентно заданию в каждой карте совокупности функций Γkij(x). Эти
функции называются компонентами линейной связности относительно
заданной карты, а линейные дифференциальные формы ωkj = Γkijdx

i на-
зываются формами связности.

О. Линейная связность на многообразии M есть отображение
h 7→ ∇h, сопоставляющее каждому векторному полю h ∈ X(M) опера-
тор ковариантного дифференцирования по h.

Более старое название: аффинная связность. Пара (M,∇) называет-
ся пространством аффинной связности. Выясним, как компоненты связ-
ности преобразуются при замене координат xi′ = f i

′
(xi) на пересечении

(U, xi) ∩ (U ′, xi
′
) двух карт.

Теорема 1 При переходе от одних координат к другим компоненты ли-
нейной связности преобразуются по следующему закону

Γk
′

i′j′ = P k′

k (ΓkijP
i
i′P

j
j ′ + P k

i′j ′), где P
i
i′ =

∂xi

∂xi′
, P k

i′j ′ =
∂2xk

∂xi′∂xj ′
, P k′

k =
∂xk

′

∂xk
.

(7)
В матричной записи этот закон имеет вид

ω′ = P (ωP−1 + dP−1),

где ω = (ωkj ) —матрица форм связности.

� Используя (5) и свойства ковариантной производной, получим

Γk
′

i′j ′P
k
k′∂k = Γk

′

i′j ′(x
′)∂k ′ = ∇i′ ∂j ′ = ∇∂i′(P

j
j′∂j) = P j

j ′∇∂i′∂j + ∂i′P
j
j′∂j =

P j
j ′∇(P i

i′∂i)
∂j + P k

i′j ′∂k = P i
i ′P

j
j ′∇∂i∂j + P k

i′j ′∂k = (P i
i ′P

j
j ′Γ

k
ij + P k

i′j ′)∂k,

откуда после свертывания с Pm′

k приходим к утверждению теоремы. �

Формула (7) показывает, что компоненты связности не образуют тен-
зорного поля и обращение их в нуль не имеет инвариантного характера.

Положим в декартовых координатах аффинного пространства An все
функции Γkij(x) равными нулю. Тогда получим на An так называемую
каноническую линейную связность.
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0.2 Параллельный перенос вектора вдоль кривой.
Группа голономии

Пусть γ : [a, b] → M — гладкий путь на пространстве аффинной связно-
сти (M,∇), локально имеющий параметрические уравнения xi = xi(t) с
касательным вектором h = (dx

i

dt ). Тогда

∇a
dt

=
dxi

dt
∇ia =

(dak(t)
dt

+ Γkij(x
l(t))

dxi(t)

dt
aj(t)

)
∂k

называется ковариантной производной векторного поля a вдоль пути γ.

О. Векторное поле a = a(t) назовем параллельным вдоль заданного
гладкого пути γ, если его ковариантная производная вдоль этого пути
равна нулю:

∇a
dt

= 0 ,

то есть в локальных координатах

∇ia
k =

dak(t)

dt
+ Γkij(x

l(t))
dxi(t)

dt
aj(t) = 0. (8)

Теорема 2 Пусть в начальной точке x(0) гладкого пути γ : x = x(t),
t ∈ [0, 1] задан вектор a0 ∈ Tx(0)M . Тогда существует паралельное вектор-
ное поле a = a(t) вдоль этого пути, такое что a(0) = a0. В этом случае
говорят, что во всякой точке этого пути существует единственный вектор,
параллельный данному.

� В силу непрерывности γ образ x([0, 1]) компактного отрезка компактен
в M . Следовательно, компакт x([0, 1]) может быть покрыт конечным чис-
лом областей карт и путь может разбит на конечное число путей, каждый
из которых принадлежит одной карте. Поэтому, не умаляя общности, мож-
но считать, что образ x([0, 1]) принадлежит одной карте. Пусть xi = xi(t)
— уравнение этого пути в локальных кординатах. Условие (8) приводит
к системе обыкновенных линейных дифференциальных уравнений, кото-
рая по теореме Коши имеет единственное гладкое решение при начальных
данных ak(0) = ak0, продолжаемое до значения t = 1.�

О. Для заданного на многообразии M гладкого пути γ : x = x(t), t ∈
[0, 1] отображение Pγ : Tx(0)M → Tx(t)M , которое сопоставляет вектору

9



a0 ∈ Tx(0)M паралельный вдоль γ|[0,t] вектор a(t) ∈ Tx(t)M , называется
параллельным переносом вдоль γ.

Теорема 3 Для заданного на многообразииM гладкого пути γ : x = x(t),
t ∈ [0, 1] параллельный перенос Pγ : Tx(0)M → Tx(1)M есть изоморфизм
касательных пространств.

� Из линейности системы дифференциальных уравнений (8) следует, что
ее решение линейно зависит от начального вектора. Значит, отображе-
ние Pγ — линейно. Параллельный перенос Pγ−1 вдоль пути γ−1 : y =
x(1− t)), t ∈ [0, 1] обратен исходному. Следовательно, это отображение —
изоморфизм.�

Пусть Cx — множество кусочно-гладких петель в точке x ∈ M .
Кусочно-гладкая петля — это кусочно-гладкое отображение

γ : [0, 1]→M, γ(0) = γ(1) = x.

На множестве Cx определим бинарную операцию умножения петель

γ1γ2(t) = γ2(2t) при t ∈ [0, 1/2], γ1γ2(t) = γ1(2t− 1) при t ∈ [1/2, 1].

Если мы рассмотрим на (M,∇) параллельные переносы вдоль этих
петель, то с учетом доказательств теорем 2 и 3 получим

Pγ1γ2 = Pγ1Pγ2.

Таким образом, определена бинарная операция умножения на множе-
стве параллельных переносов Hx вдоль петель в точке x ∈M :

Hx = {Pγ : γ ∈ Cx}.

Используя эту операцию и теорему 3, получим следующий результат.

Теорема 4 Множество Hx с рассмотренным умножением является под-
группой в группе всех невырожденных линейных операторов GL(TxM).
Hx называется группой голономии линейной связности ∇ в точке x ∈M .

Теорема 5 Если гладкое многообразие M связно, то группы голономии
в двух произвольных точках изоморфны.
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�Известно, что связное гладкое многообразие линейно связно. Более того,
любые две его точки x, y можно соединить кусочно-гладким путем γ.
Тогда требуемый изоморфизм можно определить так

φ : Hx → Hy, φ(Pτ) = Pγτγ−1.�

0.3 Геодезические линейной связности. Экспонен-
циальное отображение

Касательным полем на гладком пути γ многообразия называется вектор-
ное поле, состоящее из касательных векторов γ′(t).

О. Гладкий путь γ на многообразии называется геодезическим, если
при некотором каноническом выборе параметра его касательное вектор-
ное поле h = (dx

k

dt ) параллельно вдоль γ.
Из (8) сразу вытекает, что функции xk = xk(t) должны удовлетворять
системе ОДУ 2-го порядка

d2xk

dt2
+ Γkij(x(t))

dxi

dt

dxj

dt
= 0 . (9)

Теорема 6 Для всякой точки x ∈ M и всякого вектора a ∈ TxM в
этой точке существует единственный максимальный (не продолжаемый ни
на какой больший интервал Ix(a) вещественной оси) геодезический путь
γx,a : x = x(t) такой, что x(0) = x, dx

dt (0) = a. Причем, согласно теоре-
ме о гладкой зависимости решений системы ОДУ от начальных данных,
функции xk = xk(t), задающие в локальных координатах геодезический
путь, являются гладкими функциями от 2n + 1 аргументов t, xk, ak. В
этом смысле геодезический путь γx,a гладко зависит от точки x и вектора
a.

Доказательство проводится по той же схеме, что и доказательство теоре-
мы 2.

В аффинном пространстве с канонической линейной связностью па-
раллельный перенос вдоль гладкого пути осуществляется по обычному
закону: его декартовы координаты постоянны. Это сразу следует из (8),
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поскольку все компоненты связности нулевые. Геодезические пути в кано-
нической связности — прямые линии, поскольку решения системы ОДУ

d2xk

dt2
= 0

имеют вид
xk = akt+ bk, ak, bk = const.

Если Ix(a) = R для любой точки x ∈ M и любого вектора a ∈ TxM ,
то многообразие M с линейной связностью ∇ (а также сама связность)
называется геодезически полным (ой).

При замене параметра t → λt геодезический путь γx,a перейдет в
геодезический путь γx,λa. Действительно, поскольку функции yk = xk(λt)

также удовлетворяют уравнениям (9) и dyi(0)
dt = λdx

i(0)
dt , то

γx,a(λt) = γx,λa(t). (10)

Предполагая для простоты рассуждений многообразие аналитическим,
разложим функции, определяющие локальные уравнения геодезического
пути в ряды Тейлора

xi(t) = xi0 + ait+ ci2t
2 + . . .+ cimt

m + . . . , (11)

где xi0 — координаты точки x, ai = dxi(0)
dt , 1 ≤ i ≤ n.

Тогда при любом достаточно малом |λ| соотношение (10) равносильно
тождествам

cim(λa) = λmcim(a), 1 ≤ i ≤ n, 2 ≤ m <∞.

Пусть x0 ∈ (M,∇) и (U ′0, φ) = (U ′0, x
k) — центрированная в x0 карта,

для которой φ(U ′0) — открытый шар с центром в нуле пространства Rn.

Для каждой точки x ∈ U ′0 считаем касательное пространство TxM снаб-
женным евклидовой структурой, по отношению к которой натуральный
базис ортонормирован.

Теорема 7 Существует такое ε > 0 и такая окрестность U0 ⊂ U ′0 точки
x0, что для любой точки x ∈ U0 и любого вектора a ∈ TxM c |a| < ε
геодезическая γx,a определена при |t| < 2 ((−2, 2) ⊂ Ix(a)).
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� Из того, что геодезическая γx,a гладко зависит от x и a, следует су-
ществование такой окрестности U0 ⊂ U ′0 точки x0 и таких чисел ε1, ε2,
что для каждой точки x ∈ U0 и любого вектора a ∈ TxM c |a| < ε1
геодезическая γx,a определена при |t| < 2ε2.

Пусть 0 < ε < ε1ε2. Тогда при |a| < ε верно неравенство |ε−12 a| < ε1, и
потому геодезическая γx,ε−12 a определена при |ε−12 t| < 2.

Доказательство следует теперь из импликаций

t ∈ Ix(a) ⇔ ε2t ∈ Ix(ε−12 a).�

Уменьшив, если нужно, окрестность U0, мы можем считать, что φ(U0) —
открытый шар с центром в нуле пространства Rn.

О. Вектор a ∈ TxM называется экспоненциируемым, если геодезиче-
ская γx,a определена при t = 1 (т.е. если 1 ∈ Ix(a)). (Ox — множество
всех экспоненциируемых векторов в TxM). Для любого экспоненцируемо-
го вектора a ∈ TxM точка

expx a = γx,a(1)

называется экспонентой вектора a, а expx — экспоненциальным отоб-
ражением.

Отметим, что expx 0 = x, т.е. 0 ∈ Ox и если a ∈ Ox, то для каждого
λ ∈ [0, 1] λa ∈ Ox, т.е. Ox обладает свойством звездности.

Равенство Ox = TxM имеет место тогда и только тогда, когда много-
образие геодезически полно. По лемме 1 для каждого x ∈ M существует
такое ε > 0, что B(0, ε) ⊂ Ox, т.е. 0 ∈ IntOx.

Из формулы (11) при t = 1 следует, что если координаты точки expx a
определены, то

(expx a)i = xi + ai + ci2(x, a) + . . .+ cim(x, a) + . . . , (12)

где xi — координаты точки x в карте

(U0, φ), ai =
dxi

dt
, (1 ≤ i ≤ n)
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— координаты вектора a в натуральном базисе, а cim(x, a), 1 ≤ i ≤ n,
2 ≤ m < ∞, — гладкие функции от x, a, являющиеся однородными мно-
гочленами степени m от a1, . . . , an.

Поэтому для любых i, j = 1, . . . , n

∂(expx a)i

∂aj
= δij +

∂ci2(x, a)

∂aj
+ . . .+

∂cim(x, a)

∂aj
+ . . . ,

где
∂cim(x, a)

∂aj

— однородные многочлены положительной степени m− 1 от a1, . . . , an (и,
значит, при a1 = 0, . . . , an = 0 равные нулю).

Таким образом, в точке 0 ∈ TxM якобиева матрица функций (12) яв-
ляется единичной матрицей и точка 0 обладает в TxM фундаментальной
системой окрестностей, содержащихся вOx, на каждой из которых отобра-
жение expx является диффеоморфизмом на некоторую окрестность точки
x.

О. Окрестность U 0 вектора 0 ∈ TxM и окрестность U точки x ∈M
называются нормальными окрестностями, если U 0 обладает свойством
звездности и отображение expx является ее диффеоморфизмом на U .

Таким образом, нормальные окрестности составляют фундаменталь-
ную систему окрестностей (соответственно вектора 0 ∈ TxM и точки
x ∈ M) и каждая нормальная окрестность диффеоморфна открытому
шару в TxM .

Координаты x1, . . . , xn в нормальной окрестности U называются нор-
мальными координатами, если диффеоморфизм exp−1x переводит их в ли-
нейные координаты на U 0.

Нормальные координаты характеризуются тем, что проходящие через
точку x геодезические имеют в них уравнения вида

xi = ait, i = 1, . . . , n.

Имеет место
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Теорема 8 (Уайтхеда) Каждая точка x0 пространства аффинной связ-
ности обладает окрестностью U , являющейся нормальной окрестно-
стью любой своей точки, и такой, что для любых точек x, y ∈ U от-
резок геодезической γx,y содержится в U.

0.4 Ковариантное дифференцирование тензорных
полей

Для распространения операции ковариантного дифференцирования на
тензорные поля любой валентности введем в дополнение к условиям (2–4)
еще два условия.

1) Ковариантная производная скалярного поля совпадает с обычной про-
изводной этого поля в заданном направлении:

∇hF = h(F );

2) Для любой пары тензорных полей F,G

∇h(F ⊗G) = ∇hF ⊗G+ F ⊗∇hG .

Пусть (U, xi) — карта на (M,∇) и {∂i} — натуральный базис. Рассмот-
рим сначала ковекторное поле α = αk(x)dxk.

Дифференцируя ковариантно условие сопряженности базисов

dxk(∂j) = δkj ,

получим ∇idx
k(∂j) + dxk∇i∂j = 0.

Учитывая (5), отсюда найдем

∇idx
k(∂j) = −Γkij ,

т. е.
∇idx

k = −Γkijdx
j . (13)

Это деривационные уравнения поля натуральных кореперов, двойствен-
ные уравнениям (5).

Принимая во внимание свойства (2) и (3), будем иметь

(∇iα) = (∂iαk)dx
k + αk∇idx

k = (∂iαk)dx
k − αkΓkijdxj
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и, следовательно, имеем следующий аналог формулы (6)

∇iαj = ∂iαj − Γkijαk . (14)

Рассмотрим теперь, например, тензорное поле валентности (1, 1). Пусть

F = F i
j (x)∂i ⊗ dxj

— разложение этого тензора по векторам натуральных репера и корепера.
Учитывая деривационные уравнения (5) и (13), получим

∇kF = (∂kF
i
j )∂i ⊗ dxj + F i

j (∇k∂i ⊗ dxj + ∂i ⊗∇kdx
j) =

(∂kF
i
j )∂i ⊗ dxj + F i

j (Γ
s
ki∂s ⊗ dxj − ∂i ⊗ Γjksdx

s) .

В итоге имеем тензорное поле с компонентами

∇kF
i
j = ∂kF

i
j + ΓiksF

s
j − ΓskjF

i
s . (15)

В общем случае координатная формула получается аналогично. При-
ведем ее еще для тензорных полей валентности (0, 2) — билинейных форм:

∇hFij = hk∇kFij = hk(∂kFij − ΓskiFsj − ΓskjFis) . (16)

Для заданного на многообразии M гладкого пути γ : x = x(t), t ∈ [0, 1]
параллельный перенос Pγ : Tx(0)M → Tx(1)M есть изоморфизм касатель-
ных пространств. Следовательно, определен линейный изоморфизм кока-
сательных пространств P ∗γ : T ∗x(1)M → T ∗x(0)M .

Вследствие этого становится возможным параллельное перенесение
тензорных полей любой валентности. Условием этого является обраще-
ние в нуль ковариантной производной вдоль заданной кривой x = x(t),
когда h = (dx

i

dt ). Например, для тензорного поля валентности (0, 2)

∇Fij
dt

=
dFij
dt
− (ΓskiFsj + ΓskjFis)

dxk

dt
= 0.
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0.5 Тензор кручения и симметрические связности.
Геометрический смысл тензора кручения. Коор-
динаты тензора кручения в голономном и него-
лономном реперах

О. Отображение

T : X(M)× X(M)→ X(M), T (a, b) = ∇ab−∇ba− [a, b],

определяет кососимметричное тензорное поле валентности (1, 2), ко-
торое называется тензором кручения аффинной связности ∇. В случае,
когда этот тензор равен нулю, т.е. когда для любых векторных полей
a, b ∈ X(M)

∇ab−∇ba = [a, b],

связность ∇ называется симметрической (или симметричной).

R-билинейность отображения T сразу следует из свойств ковариантной
производной и скобки. Установим F(M)-билинейность этого отображения.

T (fa,b) = ∇fab−∇b(fa)− [fa,b] =

f∇ab− b(f)a− f∇ba− f [a,b] + b(f)a = fT (a,b).

Найдем координаты тензора кручения в некоторой карте

T kij = T (∂i, ∂j)
k = (∇i∂j)

k − (∇j∂i)
k = Γkij − Γkji, i, j, k = 1, . . . , n.

Следовательно, аффинная связность ∇ тогда и только тогда симмет-
рична, когда в каждой карте

Γkij = Γkji, i, j, k = 1, . . . , n.

Теорема 9 Если аффинная связность∇ на многообразииM симметрич-
на, то для любой точки x0 в центрированных в этой точке нормальных
координатах

(Γkij)x0 = 0, i, j, k = 1, . . . , n.
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� Подставим в уравнения геодезических решение

xi = ait, i = 1, . . . , n.

Тогда
Γkij(ta)aiaj = 0, k = 1, . . . , n.

Подставив в эти уравнения t = 0, с учетом симметричности связности
и произвольности чисел ai, i = 1, . . . , n, получим требуемое.�

Пусть x0 ∈M и a, b ∈ Tx0M . Тогда на многообразии M найдется век-
торное поле A, что в карте (U, xi) его компоненты постоянны и в натураль-
ном базисе в точке x0 имеют координаты ai, i = 1, . . . , n, совпадающие
с координатами вектора a.

Интегральная кривая u : t 7→ u(t) этого поля, проходящая при t = 0
через точку x0, будет задаваться в карте (U, xi) функциями

xi(t) = xi0 + ait, i = 1, . . . , n,

где xi0 (i = 1, . . . , n) — координаты точки x0.

Поэтому для координат bi(t) вектора b(t), полученного параллельным
переносом вектора b вдоль кривой u в точку u(t), будут иметь равенства

bi(t) = bi − (Γikj)x0a
kbjt+ o(t).

Фиксируем t. Пусть B — векторное поле на M , координаты которого в
карте (U, xi) постоянны и равны bi(t).

Тогда интегральная кривая v : s → v(s) этого поля, проходящая при
s = 0 через точку u(t), будет задаваться в карте (U, xi) функциями

s 7→ xi(t) + bi(t)s, i = 1, . . . , n.

Для координат точки xt = v(s)|s=t получим равенство

xit = xi0 + (ai + bi)t− (Γikj)x0a
kbjt2 + o(t2).

Точку xt можно представлять себе как результат сдвига точки x0 на
расстояние t сначала в направлении вектора a, а затем в направлении
вектора b.
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Аналогичные формулы (с перестановкой координат ai и bi) будут иметь
место и для точки yt, получающейся сдвигом точки x0 сначала в направ-
лении вектора b, а затем в направлении вектора a. Поэтому

yit − xit = [(Γikj)x0a
kbj − (Γikj)x0a

jbk]t2 + o(t2) =

[(Γikj)x0 − (Γijk)x0]a
kbjt2 + o(t2) = T (a,b)it2 + o(t2).

На инфинитезимальном языке это означает, что попытка построить в
M на векторах a, b бесконечно малый параллелограмм приводит к пя-
тиугольнику, замыкающая сторона которого является бесконечно малой
второго порядка, с точностью до бесконечно малых третьего порядка рав-
ной T (a,b).

Это дает геометрическую интерпретацию тензора кручения и, в част-
ности, показывает, что аффинная связность тогда и только тогда сим-
метрична, когда каждый бесконечно малый параллелограмм замыкается
с точностью до бесконечно малых третьего порядка.

Задача. Пусть аффинная связность∇ на многообразииM симметрич-
на и для любой точки x0 с координатами xk0, k = 1, . . . , n, компоненты
связности равны

(Γkij)x0, i, j, k = 1, . . . , n.

Тогда нормальные координаты в некоторой окрестности этой точки
можно ввести формулами

xk
′
= δk

′

s {(xs − xs0) +
1

2
(Γsij)x0(x

i − xi0)(xj − x
j
0)}, i, j, k′, s = 1, . . . , n.

.

Произвольный базис
Xi, i = 1, . . . , n

модуля X(M) над областью U карты (U, xi) называется неголономным
базисом в отличие от натурального (голономного) базиса.

Сопряженный базис (кобазис), то есть базис модуля 1-форм Ω1M над
U , обозначим так

θj, j = 1, . . . , n.
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По определению

θj(Xi) = δji , i, j = 1, . . . , n.

Компоненты

Γkij = θk(∇Xi
Xj), ωkj = Γkijθ

i, T kij = θk(T (Xi, Xj)), i, j, k = 1, . . . , n

называются компонентами линейной связности, форм связности и тен-
зора кручения соответственно в неголономном базисе {θj}.

Найдем компоненты тензора кручения в неголономном базисе

T kij = θk(T (Xi, Xj)) = θk(∇Xi
Xj −∇Xj

Xi − [Xi, Xj]) = Γkij − Γkji − Ck
ij,

где коэффициенты Ck
ij находятся из разложений

[Xi, Xj] = Ck
ijXk.

0.6 Тензор кривизны линейной связности. Координа-
ты тензора кривизны в голономном и неголоном-
ном реперах. Тождества Бианки. Геометрический
смысл тензора кривизны

О. Отображение

R : X(M)×X(M)×X(M)→ X(M), R(a, b)c = ∇a∇bc−∇b∇ac−∇[a,b]c,

определяет тензорное поле валентности (1, 3), которое называется
тензором кривизны линейной связности ∇.

Найдем координаты тензора кривизны в некоторой карте

R k
ijl = (R(∂i, ∂j)∂l)

k = (∇i∇j∂l)
k − (∇j∇i∂l)

k =

(∇i(Γ
s
jl∂s))

k − (∇j(Γ
s
il∂s))

k =

(∂iΓ
s
jl∂s)

k − (∂jΓ
s
il∂s)

k + (ΓsjlΓ
m
is∂m)k − (ΓsilΓ

m
js∂m)k =
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∂iΓ
k
jl−∂jΓkil+ΓsjlΓ

k
is−ΓsilΓ

k
js = 2{∂[iΓkj]l+Γs[j|l|Γ

k
i]s}, i, j, k, l, m, s = 1, . . . , n.

При замене координат эти компоненты изменяются по тензорному за-
кону

R k′

i′j′l′ = P i
i′P

j
j′P

l
l′P

k′

k R
k

ijl .

Найдем компоненты тензора кривизны в неголономном базисе

R k
ijl = θk(R(Xi, Xj)Xl) = θk(∇Xi

∇Xj
Xl −∇Xj

∇Xi
Xl −∇[Xi,Xj ]Xl) =

θk(∇Xi
(ΓsjlXs)−∇Xj

(ΓsilXs)− Cs
ij∇Xs

Xl) =

θk(Xi(Γ
s
jl)Xs −Xj(Γ

s
il)Xs + ΓsjlΓ

m
isXm − ΓsilΓ

m
jsXm − Cs

ijΓ
m
slXm) =

Xi(Γ
k
jl)−Xj(Γ

k
il) + ΓsjlΓ

k
is − ΓsilΓ

k
js − Cs

ijΓ
k
sl.

Задача. Пусть ck, F i1...ip
j1...jq

— координаты векторного поля и тензорного
поля в карте (U, xi), где индексы изменяются от 1 до n. Тогда имеют место
формулы (тождества Риччи)

2∇[i∇j]c
k = R k

ijl c
l − T lij∇lc

k,

2∇[k∇m]F
i1...ip
j1...jq

=

p∑
a=1

R ia
kml F

i1...l...ip
j1...jq

−
q∑
b=1

R l
kmjb

F
i1...ip
j1...l...jq

− T lkm∇lF
i1...ip
j1...jq

,

Теорема 10 Пусть линейная связность ∇ на многообразии M симмет-
рична. Тогда ее тензор кривизны удовлетворяет тождеству Бианки

R k
ijl +R k

jli +R k
lij = 0

и дифференциальному тождеству Бианки

∇qR
k

ijl +∇iR
k

jql +∇jR
k

qil = 0.
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� Для любой точки x0 ∈ M в центрированных в этой точке нормальных
координатах

(Γkij)x0 = 0, i, j, k = 1, . . . , n.

Тогда в точке x0
R k
ijl = ∂iΓ

k
jl − ∂jΓkil.

Непосредственное вычисление приводит к тождеству Бианки. Далее

∇qR
k

ijl = ∂q∂iΓ
k
jl − ∂q∂jΓkil.

Снова непосредственное вычисление приводит к дифференциальному
тождеству Бианки. �

Лемма. Компоненты оператора параллельного перенесения Pγ :
TxM → Tx(t)M вдоль пути γ : x = x(t) с начальной точкой x(0) = x

и с начальным касательным вектором p = (dx
i

dt (0)) с точностью до ма-
лых более высокого порядка относительно параметра t равны

P k
j (x, t) = δkj − tΓkij(x)pi. (17)

� Условием параллельного перенесения вектора a вдоль пути x = x(t) с
начальной точкой x = x(0) является

dak

dt
+ Γkij(x(t))

dxi

dt
aj(t) = 0 .

Будем искать решение этой системы ОДУ в виде степенного ряда по па-
раметру t с начальным значением ak(0) = ak

ak(t) = ak + t
dak(t)

dt
(0) + . . .

Значение производной в начальной точке из условия параллельного пере-
несения равно dak(t)

dt (0) = −Γkij(x)piaj, откуда

ak(t) = (δkj − tΓkij(x)pi)aj ,

что доказывает лемму. �

Для того, чтобы выяснить геометрический смысл тензора кривизны,
рассмотрим проходящую через точку x ∈ M 2-мерную поверхность с па-
раметрическими уравнениями xk = xk(u, v).
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Векторы с координатами pi = ∂ux
i(0) и qi = ∂vx

i(0) образуют в этой
точке натуральный базис этой поверхности и определяют ее касательную
2-плоскость L ⊂ TxM .

Рассмотрим на этой поверхности петлю γ : x = x(t), 0 ≤ t ≤ 1 с нача-
лом и концом в точке x. Паралельное перенесение произвольного вектора a
вдоль этой петли порождает изоморфизм касательного пространства TxM
на себя, которое в главной своей части определяется тензором кривизны
и выбранной петлей.

В качестве петли рассмотрим принадлежащий поверхности малый кри-
волинейный параллелограмм, образованный координатными линиями с
вершинами

x(u, v), x1(u+ t, v), x2(u, v + t), x3(u+ t, v + t).

Параллельный перенос вдоль пути γ1 = xx1x3 есть изоморфизм касатель-
ных пространств Pγ1 : TxM → Tx3M .

Аналогичный изоморфизм Pγ2 получается при параллельном перенесе-
нии вдоль пути γ2 = xx2x3. Пусть ∆a = Pγ2(a)− Pγ1(a). Тогда

∆ak = t2R k
ijl (x)piqjal + o(t2) .

Согласно лемме, в точке x1 получим вектор P (x, t)a, а в точке x2 вектор
Q(x, t)a, где оператор параллельного переноса вдоль второй координатной
линии Q(x, t)a определен аналогично P (x, t) с помощью вектора q

Qk
j (x, t) = δkj − tΓkij(x)qi.

Аналогично получим векторы Q(x1, t)P (x, t)a, P (x2, t)Q(x, t)a. Следо-
вательно, необходимо вычислить

∆a = {P (x2, t)Q(x, t)−Q(x1, t)P (x, t)}a = {P (x, t)Q(x, t)−Q(x, t)P (x, t)+

t(qi(x)∂iP (x, t)Q(x, t)− pi(x)∂iQ(x, t)P (x, t))}a + o(t2).

в координатах

∆ak = {(δks − tΓkispi)(δsm − tΓsjmqj)− (δks − tΓkisqi)(δsm − tΓsjmpj)+
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t2(−qi(∂iΓkjmpj + Γkjm∂ip
j) + pi(∂iΓ

k
jmq

j + Γkjm∂iq
j)}am + o(t2) =

t2{(ΓkisΓsjm− ΓkjsΓ
s
im + ∂iΓ

k
jm− ∂jΓkim)piqj}am + o(t2) = t2R k

ijl p
iqjal + o(t2) ,

поскольку векторные поля p, q, являясь операторами частных производ-
ных, коммутируют

[p,q]j = pi∂iq
j − qi∂ipj = 0.

0.7 Тензор Риччи. Форма объема. Эквиаффинная
связность

О. Тензор валентности (0, 2) с компонентами

Rij = R k
kij = 2{∂[kΓki]j + Γs[i|j|Γ

k
k]s}, i, j, k, s = 1, . . . , n,

называется тензором Риччи пространства аффинной связности. Обо-
значается

Ric(a,b) = Rija
ibj.

Задача 1 Доказать, что если линейная связность симметрична, то для
любых a, b ∈ X(M)

Ric(a,b)−Ric(b, a) = TrR(b, a),

где
TrRij = R k

ijk = 2∂[iΓ
k
j]k

— компоненты следа оператора кривизны.

Задача 2 Доказать, что TrR является внешним дифференциалом dγ
дифференциальной формы

γ = Γkjkdx
j,

которая при замене координат изменяется на слагаемое, равное определи-
телю матрицы перехода.
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Следствие. Тензор Риччи симметрической линейной связности то-
гда и только тогда симметричен, когда тензор TrR тождественно ра-
вен нулю, т.е. когда

dγ = 0

(дифференциальная форма замкнута).

О. ПустьM — ориентируемое многообразие, на котором задана нигде
не обращающаяся в нуль форма ω степени n. Такая n-форма называется
формой объема.

Форма объема задает ориентацию наM и для любой карты (U, xi) име-
ет вид

ω|U = fU(x)dx1 ∧ dx2 ∧ · · · ∧ dxn.

Значение этой формы на векторах в фиксированной точке определяет
объем ориентированного параллелепипеда, построенного на этих векторах
в касательном пространстве.

О. Пространство аффинной связности без кручения называется эк-
виаффинным, если оно допускает существование формы объема, сохра-
няющейся при паралельном перенесении.

В локальных координатах это условие сводится к следующим

∇kωi1...in = 0,

которые в силу косой симметрии ωi1...in равносильны таким

∂kω1...n − Γsksω1...n = 0.

Вводя основную плотность e = ω1...n, получим второй вид условия,
характеризующего эквиаффинную связность

Γsks = ∂k ln e.

Из этого условия следует, что основная плотность определяется по
компонентам связности с точностью до постоянного множителя.

Для связности без кручения симметрия тензора Риччи является
необходимым и достаточным условием, чтобы существовала плот-
ность с вышеуказанным свойством.
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Таким образом, эквиаффинная связность характеризуется симмет-
рией тензора Риччи или обращением в нуль тензора TrR.

0.8 Риманова связность. Тензор кривизны римано-
вой связности

О. Римановой (псевдоримановой) метрикой на многообразии M называ-
ется симметричное тензорное поле g валентности (0,2) такое, что для
каждого x ∈M тензор gx задает в касательном пространстве TxM ска-
лярное (псевдоскалярное) произведение. Многообразие, снабженное рима-
новой (псевдоримановой) метрикой называется римановым (псевдори-
мановым) и обозначается (M,g). Тензорное поле g называется также
римановым (псевдоримановым) метрическим тензором.

Для римановой метрики для каждого x ∈ M и для любого a ∈
TxM\{0}

gx(a, a) > 0,

т.е. квадратичная форма для скалярного произведения положительно
определена, а для псевдоримановой метрики для каждого x ∈M из того,
что для любого a ∈ TxM

gx(a,b) = 0,

следует, что b = 0, т.е. квадратичная форма для псевдоскалярного про-
изведения лишь невырождена.

Итак, мы определили полную аналогию первой фундаментальной фор-
мы поверхности и многие понятия римановой геометрии представляют
собой просто многомерное обобщение ее внутренней геометрии.

Отметим, что если многообразие риманово (псевдориманово), то каса-
тельное векторное пространство в каждой его точке является евклидовым
(псевдоевклидовым).

Интерес к псевдоримановым многообразиям возник в связи с общей
теорией относительности: физическое пространство-время этой теории че-
тырехмерно и имеет псевдориманову метрику сигнатуры (–+ + +).

Пусть (U, xi) — некоторая карта на многообразии и {∂i} — соответству-
ющее поле натуральных реперов.
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Тогда метрический тензор имеет компоненты

gij(x) = gx(∂i, ∂j),

а скалярное произведение имеет вид

(a,b)x = gij(x)ai(x)bj(x).

Отметим, что в силу условия положительной определенности опреде-
литель матрицы метрического тензора

det(gij) > 0.

Так как метрический тензор невырожденный, то в каждой точке опре-
делен линейный изоморфизм ψx : TxM → T ∗xM касательного простран-
ства на кокасательное.

С помощью таких изоморфизмов векторному полю a(x) можно поста-
вить в соответствие ковекторное поле

ψx(a) = αa(x), где αa(b) = (a,b).

При координатной записи вектор и соответствующий ему ковектор обо-
значают одной и той же буквой, различая их лишь положением индекса.

Тогда в координатах это отображение выражается формулой

ai = gija
j

и называется опусканием индекса.

Более того, изоморфизм ψx является линейной изометрией, если опре-
делить скалярное произведение ковекторов формулой

(αa, βb) = (a,b).

Обратное отображение называется поднятием индекса и имеет вид

ai = gijaj,
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где взаимный тензор gij к метрическому тензору определен из соотноше-
ний

gijgjk = δik.

Это позволяет в римановой геометрии вместо ковекторного поля гово-
рить о векторном поле с ковариантными компонентами.

Имея метрический тензор, мы можем в некоторой карте также, как в
теории поверхностей, определить угол между векторными полями, модуль
векторного поля, а также ориентированную длину дуги пути x = x(t)
формулой

l =

t∫
t0

√
gij(x(t))

dxi(t)

dt

dxj(t)

dt
dt.

Теорема 11 На римановом многообразии существует единственная
симметричная линейная связность такая, что при параллельном пе-
ренесении векторов по любому пути сохраняется их скалярное произве-
дение.

Это условие означает, что линейный изоморфизм касательных про-
странств при параллельном перенесении является изометрией. Такая ли-
нейная связность называется римановой.

Отметим, что риманова связность может быть также охарактеризова-
на, как единственная симметричная линейная связность, относительно ко-
торой метрический тензор ковариантно постоянен.

� Пусть при параллельном перенесении векторов a и b вдоль любого
пути x = x(t), т. е. локально при условиях

dak

dt
+ Γkij(x(t))

dxi

dt
aj(t) = 0,

dbk

dt
+ Γkij(x(t))

dxi

dt
bj(t) = 0,

сохраняется скалярное произведение

f(t) = gij(t)a
i(t)bj(t)

этих векторов. Cледовательно, f ′(t) = 0.
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Дифференцируя это тождество и учитывая условие параллельного пе-
ренесения, после несложных выкладок получим

f ′(t) = (∂kgij − Γskigsj − Γskjgis)a
ibj
dxk(t)

dt
= 0.

Заметим, что выражения в скобках есть ковариантные производные
метрического тензора. Принимая во внимание произвольность в выборе
векторов a, b и пути, получим систему алгебраических уравнений

∇kgij = ∂k gij − Γski gsj − Γskj gis = 0

для компонент связности.

Перепишем эти уравнения дважды, сделав циклическую перестановку
нижних индексов kij → ijk → jki.

∂i gjk − Γsij gsk − Γsik gjs = 0,

∂j gki − Γsjk gsi − Γsji gks = 0.

Сложив эти уравнения с знаками (−+ +), получим

∂i gjk + ∂j gki − ∂k gij = 2Γsij gsk.

Свернув обе части этого равенства с glk, получим единственное решение
— символы Кристоффеля

Γlij =
1

2
glk(∂igjk + ∂jgik − ∂kgij). (18)

�

Следствие Если связность риманова, то при параллельном перене-
сении сохраняется угол между векторами и длина вектора.

Отметим также, что тензор кривизны риманова пространства полно-
стью определяется его метрическим тензором.

Опустив верхний индекс с помощью метрического тензора, можно рас-
смотреть также ковариантные компоненты тензора кривизны

Rijmk = gksR
s

ijm· .
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Лемма (i) Компоненты тензора кривизны римановой связности об-
ладают следующими свойствами симметрии

Rkmij = −Rkmji, Rkmij = Rijkm, Rkmij = −Rmkij,

Rkmij +Rmikj +Rikmj = 0.

(ii) Тензор Риччи римановой связности симметричен.

� (i) Первое тождество следует из тождества

2∇[k∇m]gij = −R l
kmiglj −R l

kmjgil.

Третье — следствие тождества Бианки.

Второе следует из тождества

1

2
(Rkijl +Rijkl +Rjkil +Rljik +Riljk +Rjilk−

Rlkji −Rjlki −Rkjli −Rklij −Rlikj −Riklj) = 0.

(ii) Используя первое тождество, получим

R s
ijs· = Rijmkg

mk = 0.

Утверждение следует теперь из следствия предыдущей лекции. �

Скалярной кривизной риманова (псевдориманова) многообразия назы-
вается функция

R = gijRij.

Псевдориманово многообразие, для которого

Rij = λgij

называется пространством Эйнштейна.

Для пространства Эйнштейна

λ =
R

n
.
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0.9 Преобразование связности

Пусть в некотором пространстве аффинной связности (M,∇) задана еще
одна связность ∇̂.

Тогда в некоторой карте разность ковариантных производных вектор-
ного поля имеет v вид

∇̂iv
k −∇iv

k = Skisv
s,

где
Skis = Γ̂kis − Γkis.

Разность ковариантных производных есть тензор и v — произвольный
вектор. Следовательно, S — тензор валентности (1, 2), называемый тен-
зором аффинной деформации.

Заметим, что всякая система функций

Γ̂kis = Γkis + Skis,

где S — тензор валентности (1, 2), определяет аффинную связность.

� Это следует из законов пребразований

Γ̂k
′

i′s′ − Sk
′

i′s′ = P k′

k P
i
i′P

s
s′(Γ̂

k
is − Skis) + P k′

k P
k
i′s′ = P k′

k P
i
i′P

s
s′Γ̂

k
is − Sk

′

i′s′ + P k′

k P
k
i′s′.

�

Этот результат имеет многочисленные приложения. Например, для аф-
финных связностей ∇, ∇̂ и t ∈ R\{−1} система функций

Γ̃kis =
Γkis + tΓ̂kis

1 + t
= Γkis +

t

1 + t
(Γ̂kis − Γkis),

определяет аффинную связность ∇̃.

При t = 1 эта аффинная связность называется средней по отношению
к связностям ∇, ∇̂.

Соотношения
Γ̃kis = Γksi = Γkis + T ksi,
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где T — тензор кручения, определяют взаимную связность для связности
∇.

Используя коэффициенты взаимных связностей, можно построить
среднюю связность взаимной пары

Γ̃kis =
Γkis + Γksi

2
.

Выясним закон преобразования тензора кривизны при преобразовании
связности, подставляя коэффициенты связности в выражение для компо-
нент тензора кривизны

R̃ k
ijl = R k

ijl + 2(∂[iS
k
j]l + Γk[i|s|S

s
j]l + Sk[i|s|Γ

s
j]l + Sk[i|s|S

s
j]l).

Но
∂[iS

k
j]l = ∇[iS

k
j]l − Γk[i|s|S

s
j]l +

1

2
T sijS

k
sl + Γs[i|l|S

k
j]s.

Таким образом,

R̃ k
ijl = R k

ijl + 2(∇[iS
k
j]l + Sk[i|s|S

s
j]l) + T sijS

k
sl.

0.10 Тензоры Бианки, Вейля, Эйнштейна и гауссова
кривизна. Римановы тензоры кривизны двумер-
ного и трехмерного многообразий

Тезорное поле S валентности (0, 4) на (псевдо)римановом пространстве,
удовлетворяющее в каждой карте тождествам

Skmij = −Skmji, Skmij = Sijkm, Skmij = −Smkij,

Skmij + Smikj + Sikmj = 0,

называется виртуальным тензором кривизны или тензором Бианки.

Все тензоры Бианки на (псевдо)римановом пространстве M образуют
F(M)-модуль BM .

Тензором Риччи Ric S тензора Бианки S называется тензор, имеющий
в произвольной карте компоненты

Ric Sij = Skijmg
km.
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Задача 1 Доказать, что тензор Риччи Ric S тензора Бианки S сим-
метричен.

Отображение
Ric : BM → S2M, (19)

где S2M — F(M)-модуль всех симметрических F(M)-билинейных функ-
ционалов из X(M)× X(M) в F(M), является F(M)-линейным.

Если S — тензор Бианки, то обычно вводят следующее обозначение

K =
Ric Sijg

ij

n(n− 1)
.

В случае, когда S = R — тензор кривизны (псевдо)риманова простран-
ства, функция K называется гауссовой кривизной этого пространства.

Тензоры Бианки, тензоры Риччи которых равны нулю, называются
тензорами Вейля или безриччиевыми тензорами.

Задача 2 Тензор E с компонентами

gijkl = gikgjl − gilgjk = 2gk[igj]l.

в произвольной карте (псевдо)риманова пространства является тензо-
ром Бианки. Его след равен n(1− n), т.е. для него K = −1.

Задача 3 Произвольный тензор Бианки S единственным образом
представляется в виде

S = −KE + S0,

где S0 — бесследный тензор (для которого K = 0).

Лемма 1 При n = 2 любой тензор Бианки S имеет вид KE, т.е. его
компоненты выражаются формулой

Sijlk = K(gikgjl − gilgjk) = 2Kgk[igj]l.

Кроме того,

Rij =
R

2
gij.

� Это следует из того, что тензор S имеет единственную существенную
компоненту, т.е. dimBM = 1 и S0 = 0. �
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Поэтому при n = 2 отображение (19) заведомо не сюръективно.

Таким образом, тензор кривизны поверхности полностью характеризу-
ется его гауссовой кривизной (проверить, что K действительно гауссова
кривизна поверхности) и

R2112 = Kg = h.

Теорема 12 При n ≥ 3 отображение (19) сюръективно и, более того,
обладает сечением, т.е. для него существует обратное справа F(M)-
линейное отображение

Q : S2M → BM. (20)

� Нетрудно проверить, что для произвольного тензора t ∈ S2M тензор P
с компонентами

Pijlk = giktjl − giltjk + gjltik − gjktil = 2gk[itj]l − 2gl[itj]k

является тензором Бианки, тензор Риччи которого имеет компоненты

gikPijlk = ntjl − tjl + gjl(Tr t)− tjl) = (Tr t)gjl + (n− 2)tjl,

т.е. выражается формулой

Ric P = (Tr t)g + (n− 2)t,

где
Tr t = gpqtpq

— след тензора t. С другой стороны, непосредственная проверка показы-
вает, что при t = g тензор P = −2E является тензором Бианки.

Следовательно, во-первых

RicE = (1− n)g

и, во-вторых,

Ric

(
P +

Tr t

n− 1
E

)
= (n− 2)t.

34



Тогда формула

Q(t) =
P

n− 2
+

Tr t

(n− 1)(n− 2)
E (21)

определяет F(M)-линейное отображение (20), для которого

Ric ◦Q = id.

�

Следствие 1 При n ≥ 3 подмодуль ImQ модуля BM изоморфен мо-
дулю S2M и выделяется в BM прямым слагаемым.

� Дополнительное слагаемое состоит из тензоров Вейля. �

Тензоры вида Q(t) называются тензорами Эйнштейна.

Таким образом, любой тензор Бианки единственным образом разлага-
ется в сумму некоторого тензора Эйнштейна и некоторого тензора Вейля.

Следствие 2 При n = 3 подмодуль ImQ исчерпывает весь мо-
дуль BM , т.е. любой тензор Бианки является тензором Эйнштейна
Q(RicR).

� Размерность F(M)-модуля тензоров Вейля равна

dim BM − dim S2M =
n2(n2 − 1)

12
− n(n+ 1)

2

и при n = 3 это число равно нулю. Подсчет dim BM . Если у существенной
компоненты тензора Бианки имеется только два различных индекса, то
она одна: Rijij. Если три различных индекса, то таких компонент три:

Rijik, Rijjk, Rikjk.

Если все четыре различных индекса, то достаточно рассмотреть компо-
ненты:

Rijkl, Rikjl, Riljk.

В силу тождества Бианки одна из компонент выражается через две дру-
гие, поэтому существенных компонент две и

dim BM = C2
n + 3C3

n + 2C4
n =

n2(n2 − 1)

12
.

�
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Теорема 13 При n = 3 тензор кривизны выражается через тензор Рич-
чи и гауссову кривизну

Rijlk = gikRjl − gilRjk + gjlRik − gjkRil + 3K(gilgjk − gikgjl) =

2gk[iRj]l − 2gl[iRj]k + 6Kgl[igj]k, (22)

3K =
R

2
.

� Рассмотрим тензор S = RicR. Тогда

Q(RicR) = P +
Tr RicR

2
E = P + 3KE.�

0.11 Секционная кривизна. Пространство постоян-
ной кривизны

Секционной (римановой) кривизной пространства (M, g) в точке x ∈
M в двумерном направлении L ⊂ TxM , определяемым парой линейно
независимых векторов u, v ∈ TxM , называется величина

K = Kx(L) = −R(u,v,u,v)

E(u,v,u,v)
= −Rijklu

ivjukvl

gijkluivjukvl
.

Она не зависит от базиса пространства L, а лишь от самого этого двумер-
ного пространства (проверить).

Если векторы u, v ∈ TxM образуют ортонормированный базис в рима-
новом случае, то формула упрощается (проверить)

K = −R(u,v,u,v).

Псевдориманово (риманово) многообразие (M, g) называется простран-
ством постоянной кривизны, если его секционная кривизна не зависит
ни от точки, ни от двумерного направления.

Теорема 14 Тензор кривизны и риманов тензор кривизны простран-
ства постоянной кривизны K имеют вид для любых u, v, w, z ∈ X(M)

R(u, v, )w = K(g(v,w)u− g(u,w)v),

R(u, v,w, z) = K(g(u, z)g(v,w)− g(u,w)g(v, z)) или R = −KE.
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В координатах

R k
ijl = K(gjlδ

k
i − gilδkj ) = 2Kgl[jδ

k
i],

Rijlk = K(gikgjl − gilgjk) = 2Kgk[igj]l.

� Из определения пространства постоянной кривизны следует, что для
любых u, v ∈ X(M)

R(u,v,u,v) = −K(g(u,u)g(v,v)− g2(u,v)) = −KE(u,v,u,v).

Заметим, что
R̂ = R +KE

является тензором Бианки. Необходимо доказать, что он равен нулю. Дей-
ствительно,

0 = R̂(u,v + w,v + w,u) = R̂(u,v,v,u) + R̂(u,v,w,u) + R̂(u,w,v,u)+

R̂(u,w,w,u) = R̂(u,v,w,u) + R̂(u,w,v,u) = 2R̂(u,v,w,u).

Тогда

0 = R̂(u + w,v, z,u + w) = R̂(u,v, z,w) + R̂(w,v, z,u) =

R̂(u,v, z,w) + R̂(u, z,v,w).

Переставив u, v, z, получим

R̂(z,u,v,w) = R̂(v, z,u,w).

Теперь в силу тождества Бианки

0 = R̂(u,v, z,w) + R̂(z,u,v,w) + R̂(v, z,u,w) = 3R̂(u,v, z,w).�

0.12 Пространство Эйнштейна. Критерий Томаса

Нами было доказано, что любое двумерное риманово пространство явля-
ется пространством Эйнштейна.

Лемма 1 В произвольном (псевдо)римановом пространствеM в каж-
дой карте имеет место равенство

∂kR = 2∇lR
l
k,
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где Rl
k = glsRsk.

� Свернем дифференциальное тождество Бианки

∇qR
k

ijl +∇iR
k

jql +∇jR
k

qil = 0

по индексам q, k
∇qR

q
ijl −∇iRjl +∇jRil = 0. (23)

С другой стороны, учитывая коваринтное постоянство метрического тен-
зора, получим

∂kR = ∂k(g
lsRls) = gls∇kRls,

gjl∇lRjk = ∇lR
l
k,

gjl∇qR
q

ijl = gjlgqs∇qRijls = gjlgqs∇qRjisl = gqs∇qRis = ∇qR
q
i .

Свернув (23) с gjl получим

2∇qR
q
i = ∂iR.�

Теорема 15 При n ≥ 3 скалярная кривизна пространства Эйнштейна
постоянна.

� Если M — пространство Эйнштейна, то

Rl
k =

R

n
δlk.

Учитывая лемму 1, получим

∇lR
l
k =

∂kR

n
=
∂kR

2
.

При n ≥ 3 это возможно только, если ∂kR = 0. �

Задача 1 Формула из леммы 1 равносильна соотношениям

∇lT
lk = 0,

где
T lk = glpgkq(Rpq −

R

2
gpq).
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Следствие 1 При n ≥ 3 в каждом пространстве Эйнштейна тензор
Риччи ковариантно постоянен

∇kRij = 0

и либо тождественно равен нулю, либо является всюду невырожденным
симметрическим тензором.

Предложение 1 Если в пространстве аффинной связности M тен-
зор Риччи ковариантно постоянен, симметричен и невырожден, то
связность на M является метрической связностью и индуцируется
метрическим тензором, по отношению к которой M является про-
странством Эйнштейна.

� Примем тензор Риччи за метрический тензор, который будучи кова-
риантно постоянным индуцирует на M данную связность. По отношению
к этой связности M — пространство Эйнштейна, поскольку Ric = g. �

Задача 2 Симметрический тензор S в римановом пространстве то-
гда и только тогда тождественно равен нулю, когда равна нулю функ-
ция

gikgjlSijSkl.

(Указание. Эта функция равна сумме квадратов компонент Skj = gikSij.)

Для тензора Rpq − λgpq эта функция имеет вид

gikgjl(Rij − λgij)(Rkl − λgkl) =

gikgjl(RijRkl − 2λgijRkl + λ2gijgkl) =

RijR
ij − 2λR + λ2n.

Она равна

RijR
ij − R2

n
при λ =

R

n
.

Критерий Томаса. Риманово пространство тогда и только тогда яв-
ляется пространством Эйнштейна, когда

R2 = nRijR
ij.
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0.13 Конформные преобразования метрического тен-
зора

Согласно следствию 1 лекции 9 при n ≥ 3 тензор кривизны R (псев-
до)риманова пространства имеет разложение

R = Q(Ric) +W,

где W — тензор Бианки с компонентами

Wijlk = Rijlk −
1

n− 2
(gikRjl − gilRjk + gjlRik − gjkRil)−

R

(n− 1)(n− 2)
(gilgjk − gikgjl) = Rijlk −

2

n− 2
(gk[iRj]l − gl[iRj]k)−

2R

(n− 1)(n− 2)
gl[igj]k,

W k
ijl −R k

ijl = − 2

n− 2
(δk[iRj]l − gl[iRk

j])−
2R

(n− 1)(n− 2)
gl[iδ

k
j].

Это вейлевская компонента тензора кривизны.

Говорят, что метрический тензор g̃ на многообразии M получен кон-
формным преобразованием метрического тензора g, если

g̃ = e2σg,

где σ — некоторая функция на M .

Очевидно, что при нетождественном конформном преобразовании дли-
ны кривых меняются, но углы между кривыми остаются прежними.

Если σ = const, то метрическая связность при конформном преобразо-
вании не меняется, а потому не меняется и тензор кривизны.

Риманов тензор кривизны изменяется при этом так

R̃ijkl = e2σRijkl, т.е. e−2σR̃ijkl −Rijkl = 0.

Вычислим эту разность в общем случае.

∂lg̃ij = 2e2σσlgij + e2σ∂lgij, σl = ∂lσ.
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Следовательно,

Γ̃kij =
1

2
e−2σgks(∂ig̃js + ∂j g̃is − ∂sg̃ij) = Γkij + Skij,

где тензор деформации имеет вид

Skij = σiδ
k
j + σjδ

k
i − gijgksσs.

Используя ранее полученную формулу для преобразования тензора кри-
визны, получим

R̃ k
ijl = R k

ijl + 2(∇[iS
k
j]l + Sk[i|m|S

m
j]l) =

R k
ijl + 2{∇[i(σj]δ

k
l + δkj]σl − gj]lgksσs)+

(δkmσ[i + σmδ
k
[i − gksσsgm[i)(σj]δ

m
l + δmj]σl − gj]lgmsσs)} =

R k
ijl + 2{(δk[j∇i]σl − gksgl[j∇i]σs) + σ[i(δ

k
j]σl − gj]lgksσs)+

δk[i(σj]σl2− gj]lgmsσmσs)− gksσs(σ[jgi]l − gl[jσi])} =

R k
ijl + 2{(δk[j∇i]σl − gksgl[j∇i]σs)+

δk[i(σj]σl − gj]lgmsσmσs)− gksσsσ[jgi]l}.
Тогда свернув обе части с gkq, получим

e−2σR̃ijlq −Rijlq = 2{(gq[j∇i]σl − gl[j∇i]σq)+

gq[i(σj]σl − gj]lgmsσmσs)− σqσ[jgi]l} = 2{gq[jSi]l − gl[jSi]q},
где

Sil = ∇iσl − σiσl +
1

2
gilg

msσmσs

симметричный тензор. Свертка наденного соотношения с тензором

giq = e2σg̃iq

дает для тензоров Риччи формулу

R̃jl −Rjl = −Sgjl − (n− 2)Sjl, S = giqSiq,

а для скалярных кривизн формулу

e2σR̃−R = −2(n− 1)S.
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0.14 Тензор конформной кривизны. Конформно-
плоские пространства

Из последних двух формул при n > 2 получим

Sjl = −R̃jl −Rjl

n− 2
+

e2σR̃−R
2(n− 1)(n− 2)

gjl ,

и потому
e−2σR̃ijlq −Rijlq = 2{gq[jSi]l − gl[jSi]q} =

−
2gq[j(R̃i]l −Ri]l)

n− 2
+

e2σR̃−R
2(n− 1)(n− 2)

2gq[jgi]l +
2gl[j(R̃i]q −Ri]q)

n− 2

− e2σR̃−R
2(n− 1)(n− 2)

2gl[jgi]q = −2e−2σ
g̃q[jR̃i]l − g̃l[jR̃i]q

n− 2
+

2e−2σR̃

(n− 1)(n− 2)
g̃q[j g̃i]l + 2

gq[jRi]l − gl[jRi]q

n− 2
− 2R

(n− 1)(n− 2)
gq[jgi]l =

e−2σ(R̃ijlq − W̃ijlq) +Wijlq −Rijlq.

Таким образом,

e−2σW̃ijlq = Wijlq, W̃ k
ijl = W k

ijl .

Последний тензор называется тензором конформной кривизны Вейля.

Следовательно, при конформном преобразовании метрического тензо-
ра тензор конформной кривизны Вейля не изменяется.

Для пространства Эйнштейна

W k
ijl −R k

ijl = − 2R

n(n− 1)
δk[igj]l.

Диффеоморфизм (псевдо)римановых пространств

f : (M, gM)→ (M̂, gM̂)

называется конформной эквивалентностью, если метрический тензор
f ∗gM̂ наM получается из метрического тензора gM конформным преобра-
зованием, т.е. если наM существует такая всюду положительная функция
ϕ, что

f ∗gM̂ = ϕgM .
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На этом языке конформная инваринтность тензора Вейля означает, что
для любой конформной эквивалентности

f : (M, gM)→ (M̂, gM̂)

имеет место равенство
f ∗WM̂ = WM ,

где WM̂ и WM — тензоры Вейля пространств (M, gM) и (M̂, gM̂) соот-
ветственно.

Риманово пространство называется конформно-плоским, если его мет-
рический тензор может быть конформно преобразован в метрический тен-
зор евклидова пространства (с тождественно равным нулю тензором кри-
визны.)

Для такого пространства тензор Вейля тождественно равен нулю.

Тензор Вейля равен нулю и в случае, когда каждая точка пространства
M обладает окрестностью, на которой метрический тензор может быть
конформно преобразован в метрический тензор евклидова пространства,
т.е. когда пространство M локально конформно-плоское.

Оказывается, при n ≥ 4 верно и обратное утверждение: если W = 0,
то пространство M локально конформно плоское (без доказательства).

Согласно следствию 2 лекции 9 при n = 3 тензор Вейля тождествен-
но равен нулю.

Существуют трехмерные римановы пространства, не являющиеся
локально конформно-плоскими.

При n = 3 роль тензора Вейля играет тензор V с компонентами

Vijk =
2∇[iRj]k

n− 2
−

∂[iRgj]k
(n− 1)(n− 2)

.

Задача 1. Покажите, что
(i) если трехмерное риманово пространство локально конформно-

плоское, то V = 0;
(ii) при n ≥ 4 из равенства W = 0 следует равенство V = 0.
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При n = 3 равенство V = 0 не только необходимо, но и достаточ-
но для того, чтобы риманово пространство было локально конформно-
плоским.

Задача 2 Найдите и разберите доказательство утверждения. Вся-
кое двумерное риманово пространство является локально конформно-
плоским.

Однако утверждение о том, что любая поверхность является глобально
конформно-плоским неверно. Справедливо лишь следующее более слабое
утверждение.

Теорема 16 Любое двумерное риманово пространство конформно экви-
валентно геодезически полной поверхности постоянной гауссовой кри-
визны.

Следствие 1 На любом двумерном хаусдорфовом паракомпактном глад-
ком многообразии существует геодезически полная метрика постоянной
гауссовой кривизны.

0.15 Аффинные отображения пространств аффин-
ной связности. Аффиннитеты

Пусть (M,∇), (M̂, ∇̂) — пространства аффинной связности.

В каждой карте (U, x1, . . . , xn) ((V, y1, . . . , ym)) линейная связность ∇
(∇̂) задается матрицей ω (ω̂) форм связности.

Пусть f : M → M̂ — гладкое отображение. Карты (U, x1, . . . , xn),
(V, y1, . . . , ym) назовем f -связанными, если f(U) = V .

В таких картах отображение f в координатах задается функциями

yb = f b(x1, . . . , xn), b = 1, . . . ,m.

Якобиева матрица

Jf = (∂if
b), 1 ≤ i ≤ n, 1 ≤ b ≤ m,

этих функций называется якобиевой матрицей отображения f в картах
(U, x1, . . . , xn), (V, y1, . . . , ym).
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Напомним, что векторные поля a ∈ X(M) и â ∈ X(M̂) называются
f -связанными, если

dfxax = âf(x)
для любой точки x ∈ M , т.е. если для любой пары f -связанных карт
(U, x1, . . . , xn), (V, y1, . . . , ym) имеют место равенства

∂if
bai = âb ◦ f, 1 ≤ i ≤ n, 1 ≤ b ≤ m,

где ai, âb — компоненты векторных полей a и â в соответствующих картах.

Теорема 17 Следующие свойства гладкого отображения f : M → M̂
равносильны
(A) Если поля a, b ∈ X(M) f -связаны с полями â, b̂ ∈ X(M̂), то поле

∇ab f − связано с полем ∇̂âb̂.

(B) Для любых f -связанных карт (U, x1, . . . , xn), (V, y1, . . . , ym)

Jfω = f ∗ω̂Jf + dJf на U.

(C) Для любой кривой γ : I → M и любого векторного поля a : t 7→ a(t)
на γ

∇̂
dt

[dfγ(t)a(t)] = dfγ(t)
∇
dt

a(t), t ∈ I.

(D) Для любой кривой γ : I →M

dfy ◦ Pγ = P̂f◦γ ◦ dfx,

где x — начальная и y — конечная точки кривой γ, Pγ и P̂f◦γ — парал-
лельные переносы вдоль кривых γ и f ◦ γ.

� Если поля a, b ∈ X(M) f -связаны с полями â, b̂ ∈ X(M̂), то для любых
f -связанных карт (U, x1, . . . , xn), (V, y1, . . . , ym)

∂if
bai = âb ◦ f, ∂if

bbi = b̂b ◦ f на U.

С другой стороны

(∇ab)k = (∂ib
k + Γkijb

j)ai, (∇̂âb̂)c = (∂ab̂
c + Γ̂cabb̂

b)âa.
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Поэтому
(∇̂âb̂)c ◦ f = (∂ab̂

c ◦ f + (Γ̂cab ◦ f)b̂b ◦ f)âa ◦ f =

((∂ab̂
c ◦ f)∂if

a + (Γ̂cab ◦ f)∂jf
bbj∂if

a)ai =

(∂i(b̂
c ◦ f) + (Γ̂cab ◦ f)∂jf

b∂if
abj)ai =

(∂i(∂jf
cbj) + (Γ̂cab ◦ f)∂jf

b∂if
abj)ai =

(∇ab)j∂jf
c + (−∂kf cΓkij + ∂i∂jf

c + (Γ̂cab ◦ f)∂jf
b∂if

a)aibj.

Поскольку равенство

(∇ab)j∂jf
c = (∇̂âb̂)c ◦ f

означает, что поля ∇ab и ∇̂âb̂ f -связаны, а равенство

∂kf
cΓkij = ∂i∂jf

c + (Γ̂cab ◦ f)∂jf
b∂if

a

после умножения на dxi перейдет в равенство (B), то это доказывает рав-
носильность (A) и (B). �

Задача 1 Завершите доказательство теоремы 1.

Гладкое отображение f : M → M̂ обладающее свойствами (A − D)
называется аффинным отображением.

Задача 2 Каждый интервал I ⊂ R является пространством аффин-
ной связности относительно канонической связности ∇∂t = ∂t. Поэто-
му имеет смысл говорить о кривых γ : R→M , являющихся аффинными
отображениями. Покажите, что это в точности геодезические кривые
пространства M .

Ясно, что свойство отображения быть аффинным является локальным
свойством, т.е. отображение f : M → M̂ аффинно, если оно аффинно на
некоторой окрестности любой точки x ∈M .

Кроме того, из свойства (D) аффинных отображений непосредственно
следует, что каждое аффинное отображение переводит геодезические в
геодезические, и поэтому в нормальных координатах записывается ли-
нейными функциями.
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Теорема 18 (О единственности аффинного отображения) Пусть аф-
финные отображения f, g : M → M̂ обладают свойствами

f(x) = g(x), dfx = dgx.

Тогда f = g на компоненте связности многообразия M , содержащей
точку x ∈M .

� Пусть
C = {y ∈M : f(y) = g(y), dfy = dgy}.

Отображения f и g непрерывны, а многообразие M хаусдорфово. Следо-
вательно, множество C замкнуто.

С другой стороны, из того, что каждое аффинное отображение в нор-
мальных координатах записывается линейными функциями, непосред-
ственно следует, что для любой точки x ∈ C каждая ее нормальная
окрестность содержится в C.

Тогда множество C открыто. Являясь открыто-замкнутым множеством
содержащим точку x, множество C содержит компоненту связности этой
точки.

Значит, f = g на компоненте связности многообразия M , содержащей
точку x. �

Ясно, что композиция аффинных отображений является аффинным
отображением.

Аффинное отображение, являющееся диффеоморфизмом, называется
аффинным диффеоморфизмом, аффинным изоморфизмом или аффинни-
тетом.

Для аффиннитета f условие (B) можно переписать в виде

ω = J−1f (f ∗ω̂)Jf + J−1f dJf .

В частном случае, когда аффиннитет f действует по равенству координат,
(т.е. каждую точку x ∈ (U, x1, . . . , xn) переводит в точку y ∈ (V, y1, . . . , ym)
с теми же координатами), это условие приобретает вид

ω = f ∗ω̂,
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означающий, что ω̂ переходит в ω при подстановке yi = xi, 1 ≤ i ≤ n
(формы ω̂, в ω отличаются лишь обозначениями переменных).

Каждый диффеоморфизм f : M → M̂ определяет по формуле

(f∗a)y = dfxax, x = f−1(y),

биекцию f∗ : X(M) → X(M̂), обладающую тем свойством, что поля a и
f∗a f -связаны.

Поэтому в силу свойства (A) теоремы 1, диффеоморфизм f : M → M̂
тогда и только тогда является аффиннитетом, когда для любого поля
a ∈ X(M)

∇̂f∗a ◦ f∗ = f∗ ◦ ∇a.

Отсюда непосредственно следует, что каждый аффинитет сохраняет
тензоры кручения и кривизны, точнее, для любого аффиннитета f : M →
M̂ имеют место равенства

T = f ∗T̂ , R = f ∗R̂.

Эти равенства необходимы, но вообще говоря недостаточны для того, что-
бы диффеоморфизм f : M → M̂ был аффиннитетом.

0.16 Геодезические отображения пространств аф-
финной связности. Проективно-евклидово про-
странство аффинной связности

Из уравнений геодезических пространства аффинной связности следует,
что у линейных связностей с компонентами

Γkij, Γ̂kij =
1

2
(Γkij + Γkji)

геодезические общие.

Следовательно, для исследования геодезических достаточно ограни-
читься линейными связностями без кручения.

Диффеоморфизм пространств аффинной связности, при котором гео-
дезические кривые отображаются на геодезические кривые называется
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геодезическим или проективным диффеоморфизмом, а о пространствах
говорят, что они проективны друг другу.

Отнесем соответствующие области карт к системе координат, общей по
отоношению к геодезическому диффеоморфизму.

Можно даже считать, что у нас одно многообразие с различными сим-
метричными линейными связностями.

Пусть

a =

(
dxk

dt

)
, b = λa

касательные векторы к общей геодезической переносимые параллельно в
связностях ∇ и ∇̂ соответственно.

Тогда условия параллельного перенесения примут вид

d2xk

dt2
+ Γkij(x(t))

dxi

dt

dxj

dt
= 0,

d(λdxk)

dt2
+ Γ̂kij(x(t))

dxi

dt

λdxj

dt
= 0.

Откуда найдем
Skijdx

idxj = −d lnλ dxk,

где Skij = Γ̂kij − Γkij — тензор аффинной деформации.

Перейдем к равносильным соотношениям

dx[lS
k]
ijdx

idxj = 0, (24)

которые должны удовлетворяться тождественно, т.е. при любых значени-
ях dxi. Поэтому

δ
[l
(mS

k]
ij) = 0,

что в силу симметричности тензора деформации по нижним индексам
эквивалентно соотношениям

δ[lmS
k]
ij + δ

[l
i S

k]
jm + δ

[l
j S

k]
mi = 0.

Свертывая по индексам l и m, получим

(n+ 1)Skij − δki Sssj − δkmSssi = 0.
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Следовательно, тензор аффинной деформации, соответствующей проек-
тивному отображению, имеет вид

Skij = δki pj + δkj pi,

где
pi =

1

n+ 1
Sssi.

Обратно, если это уравнение выполнено, то подстановка Skij в уравнение
(24) обращает его в тождество.

Ковектор pi называется ковектором проективного преобразования ли-
нейной связности.

Если оба пространства эквиаффинны, то

pi =
1

n+ 1
∂i ln

ê

e
,

где e и ê — основные плотности.

Следовательно, для того, чтобы проективное отображение сохраняло
эквиаффинность необходимо и достаточно, чтобы ковектор преобразо-
вания был градиентен.

Учитывая закон преобразования тензора кривизны при преобразовании
линейной связности, получим

R̃ k
ijl = R k

ijl + 2(∇[iS
k
j]l + Sk[i|m|S

m
j]l) =

R k
ijl + 2{∇[i(pj]δ

k
l + δkj]pl) + (δkmp[i + pmδ

k
[i)(pj]δ

m
l + δmj] pl)} =

R k
ijl + 2{∇[ipj]δ

k
l + δk[j∇i]pl + δk[ipj]pl} = R k

ijl + 2{p[ij]δkl + δk[jpi]l},
где pij = ∇ipj − pipj.

Заметим, что если конформное соответствие двух пространств яв-
ляется в проективным, то линейные связности этих пространств сов-
падают.

Действительно, свертывая равенство

σiδ
k
j + σjδ

k
i − gijgklσl = δkj pi + δki pj

50



сначала по индексам k и j, а потом свертывая с тензором gij, получим два
уравнения:

nσi = (n+ 1)pi, (2− n)σi = 2pi,

которые удовлетворяются при целом n только нулевыми значениями ко-
векторов σi и pi.

Пространство аффинной связности, проективное евклидову простран-
ству, называется проективно-евклидовым пространством.

Таким образом, тензор кривизны проективно-евклидова пространства
имеет вид

R k
ijl = 2{p[ji]δkl + δk[ipj]l} (25)

и существует ковектор pi, удовлетворяющий уравнениям

∇ipj = pij + pipj.

Задача 1 Показать, что условие интегрируемости последних уравнений
имеют вид

∇[ipj]k = 0. (26)

Итак, доказана

Теорема 19 Пространство аффинной связности без кручения является
проективно-евклидовым тогда и только тогда, когда существует тен-
зор pij, удовлетворяющий (25) и (26).

Задача 2 Показать, что при n > 2 условие (26) является следствием
условия (25) (применить тождество Бианки).

Используя (25), выразим тензор pij через тензор Риччи.

Rjl = npjl − plj, Rlj = nplj − pjl.

Следовательно,

pjl =
nRjl +Rlj

n2 − 1
.

Эквипроективным пространством называется эквиаффинное
проективно-евклидово пространство.
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Его тензоры Риччи и pij симметричны, поэтому для эквипроективного
пространства

R k
ijl = 2δk[ipj]l, Rjl = (n− 1)pjl, (27)

а тензор Риччи удовлетворяет условию (уравнению) Кодацци

∇[iRj]k = 0. (28)

В эквипроективном пространстве можно указать общее решение уравне-
ния Кодацци.

Рассмотрим для этого систему дифференциальных уравнений

bjk = ∇j∇kϕ+
ϕ

n− 1
Rjk, (29)

где bjk — симметричный тензор. Найдем условия ее интегрируемости,
предполагая, что пространство эквипроективно.

∇[ibj]k = −1

2
R l
ijk ∇lϕ+

∇[iϕRj]k

n− 1
+

ϕ

n− 1
∇[iRj]k,

но в силу (25), (27) и (28) получим

∇[ibj]k = 0. (30)

Таким образом, общее решение уравнения (30) в эквипроективном про-
странстве имеет (29), где ϕ — произвольная гладкая функция.

В частности, в евклидовом пространстве общее решение уравнения (30)
имеет вид

bjk = ∇j∇kϕ. (31)
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